WO2021088692A1 - 一种波束建立方法及装置 - Google Patents

一种波束建立方法及装置 Download PDF

Info

Publication number
WO2021088692A1
WO2021088692A1 PCT/CN2020/124271 CN2020124271W WO2021088692A1 WO 2021088692 A1 WO2021088692 A1 WO 2021088692A1 CN 2020124271 W CN2020124271 W CN 2020124271W WO 2021088692 A1 WO2021088692 A1 WO 2021088692A1
Authority
WO
WIPO (PCT)
Prior art keywords
random access
ssb
access preamble
symbol
cyclic shift
Prior art date
Application number
PCT/CN2020/124271
Other languages
English (en)
French (fr)
Inventor
周建伟
徐晨蕾
罗禾佳
王晓鲁
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to EP20885695.5A priority Critical patent/EP4047851B1/en
Publication of WO2021088692A1 publication Critical patent/WO2021088692A1/zh
Priority to US17/738,863 priority patent/US20220263701A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/26Systems using multi-frequency codes
    • H04L27/2601Multicarrier modulation systems
    • H04L27/2647Arrangements specific to the receiver only
    • H04L27/2655Synchronisation arrangements
    • H04L27/2668Details of algorithms
    • H04L27/2673Details of algorithms characterised by synchronisation parameters
    • H04L27/2676Blind, i.e. without using known symbols
    • H04L27/2678Blind, i.e. without using known symbols using cyclostationarities, e.g. cyclic prefix or postfix
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/26Systems using multi-frequency codes
    • H04L27/2601Multicarrier modulation systems
    • H04L27/2647Arrangements specific to the receiver only
    • H04L27/2655Synchronisation arrangements
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/06Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
    • H04B7/0686Hybrid systems, i.e. switching and simultaneous transmission
    • H04B7/0695Hybrid systems, i.e. switching and simultaneous transmission using beam selection
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/14Relay systems
    • H04B7/15Active relay systems
    • H04B7/185Space-based or airborne stations; Stations for satellite systems
    • H04B7/1851Systems using a satellite or space-based relay
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/14Relay systems
    • H04B7/15Active relay systems
    • H04B7/185Space-based or airborne stations; Stations for satellite systems
    • H04B7/1853Satellite systems for providing telephony service to a mobile station, i.e. mobile satellite service
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W56/00Synchronisation arrangements
    • H04W56/001Synchronization between nodes
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W56/00Synchronisation arrangements
    • H04W56/001Synchronization between nodes
    • H04W56/0015Synchronization between nodes one node acting as a reference for the others
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W74/00Wireless channel access
    • H04W74/002Transmission of channel access control information
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W74/00Wireless channel access
    • H04W74/08Non-scheduled access, e.g. ALOHA
    • H04W74/0833Random access procedures, e.g. with 4-step access
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0001Arrangements for dividing the transmission path
    • H04L5/0014Three-dimensional division
    • H04L5/0023Time-frequency-space
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0048Allocation of pilot signals, i.e. of signals known to the receiver
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0091Signaling for the administration of the divided path
    • H04L5/0092Indication of how the channel is divided

Definitions

  • This application relates to the field of communication technology, and in particular to a beam establishment method and device.
  • Non-Terrestrial Networks refers to satellite mobile communication networks.
  • the future 5G and its evolution network need not only meet a variety of business needs, but also need to provide wider business coverage.
  • satellite communications are less affected by geographic conditions and can achieve the goal of global coverage, the development of satellite communications is of great significance.
  • satellite communication can provide a strong communication guarantee for effective disaster relief.
  • effective communication can be carried out through satellite communication, thereby ensuring full coverage of communication.
  • the SSB scans periodically in a time-sharing manner.
  • the terminal detects an SSB larger than the threshold, it performs uplink random access according to the random access timing (RACH Occasion, RO) corresponding to the SSB, and gNB (5G).
  • RACH Occasion, RO random access timing
  • gNB 5G
  • the base station distinguishes its access beams according to different uplink random access time-frequency resources or physical random access channel (Physical Random Access Channel, PRACH) sequence, and completes the establishment of the initial beam.
  • PRACH Physical Random Access Channel
  • the downlink SSB is sent in multiple beams simultaneously in a code division manner, which solves the problem of long downlink beam scanning time to a certain extent.
  • the association period between SSB and RO will be longer, that is, the time interval for the terminal to initiate random access will be longer; in addition, because the NTN scenario has a larger round-trip transmission delay than the terrestrial network, in order to solve this problem,
  • the design sequence of PRACH in NTN is generally lengthened, which further increases the correlation period between SSB and RO. Affect user experience.
  • the embodiment of the application provides a beam establishment method and device.
  • the solution of the embodiment of the application can associate a Preamble sequence with multiple SSBs by adding a cyclic shift or performing different symbol ordering to the Preamble sequence.
  • the number of SSB indexes that can be associated in the RO reduces the length of the association period between the RO and the SSB, reduces the time interval for the terminal device to initiate random access, and effectively improves the user experience.
  • an embodiment of the present application provides a beam establishment method, including:
  • the terminal device acquires multiple synchronization information blocks SSB in multiple beams, where the SSB includes an SSB index;
  • the terminal device determines a target beam among the multiple beams according to the association relationship between the SSB index and a first random access preamble, and the first random access preamble is based on cyclic shift and/or symbol ordering Determine, wherein the symbol is a symbol of a sequence part in the first random access preamble, and the sequence part includes at least two kinds of symbols;
  • the terminal device transmits a first random access preamble through the target beam to initiate a random access request.
  • the UE after synchronization according to the SSB issued by the satellite, the UE obtains the first random access preamble, which is determined based on cyclic shift or symbol ordering, or based on both at the same time, and then according to The association relationship between the first random access preamble and the SSB index determines the target beam that the UE accesses, and finally random access is initiated through the target beam to complete beam establishment.
  • the random access preamble is determined according to the cyclic shift and/or symbol ordering, the available random access preamble sequence in one RO is increased, thereby increasing the number of UEs that can access network equipment through the same RO.
  • the time interval for the terminal device to initiate random access is reduced, which effectively improves the user experience.
  • the determining the target beam in the multiple beams according to the association relationship between the SSB index and the first random access preamble includes:
  • the cyclic shift is obtained by calculating at least the SSB index and the length parameter of the first random access preamble sequence.
  • the cyclic shift is:
  • SSB index represents the SSB index
  • offset represents the offset
  • L RA represents the length of the first random access preamble sequence
  • n is an integer
  • % represents the remainder.
  • the method further includes:
  • the terminal device receives indication information, where the indication information is used to indicate the cyclic shift and/or the symbol ordering.
  • an embodiment of the present application provides a beam establishment method, including:
  • the communication device receives the first random access preamble in the random access request
  • the communication device determines the target beam accessed by the terminal device according to the association relationship between the first random access preamble and the synchronization information block SSB index, and the first random access preamble is determined based on cyclic shift and/or symbol ordering, Wherein, the symbol is a symbol of a sequence part in the first random access preamble, and the sequence part includes at least two kinds of symbols.
  • the method before the receiving the first random access preamble in the random access request, the method further includes:
  • the communication device sends instruction information, where the instruction information is used to indicate the cyclic shift and/or the symbol ordering.
  • an embodiment of the present application provides a terminal device, which includes:
  • a receiving unit configured to obtain synchronization information blocks SSB in multiple beams, where the SSB includes an SSB index;
  • a processing unit configured to determine a target beam among the multiple beams according to the association relationship between the SSB index and a first random access preamble, the first random access preamble based on cyclic shift and/or symbol ordering Determine, wherein the symbol is a symbol of a sequence part in the first random access preamble, and the sequence part includes at least two kinds of symbols;
  • the sending unit is configured to send a first random access preamble through the target beam to initiate a random access request.
  • the receiving unit is further configured to:
  • the indication information is used to indicate the cyclic shift and/or the symbol ordering.
  • an embodiment of the present application provides a communication device, and the communication device includes:
  • the input unit is used to receive the first random access preamble in the random access request
  • the processing unit determines the target beam accessed by the terminal device according to the association relationship between the first random access preamble and the synchronization information block SSB index, the first random access preamble is determined based on cyclic shift and/or symbol ordering, where The symbol is a symbol of a sequence part in the first random access preamble, and the sequence part includes at least two kinds of symbols.
  • the output unit is configured to send a random access response to the terminal device through the target beam.
  • the output unit is further used for:
  • Send instruction information where the instruction information is used to indicate the cyclic shift and/or the symbol ordering.
  • an embodiment of the present application provides a communication device, including a processor and a memory, and the processor and the memory are electrically coupled;
  • the processor invokes part or all of the computer program instructions stored in the memory, so that the communication device executes any method of the first aspect or the second aspect.
  • the apparatus further includes: a transceiver for communicating with other devices; for example, receiving multiple synchronization information blocks SSB in multiple beams sent by a network device.
  • an embodiment of the present invention provides a computer-readable storage medium.
  • the computer storage medium includes program instructions that, when run on a computer, cause the computer to execute the operations described in the first or second aspect. Either method.
  • the embodiments of the present application provide a computer program product containing instructions, which when run on a computer or processor, cause the computer or processor to execute the above-mentioned first aspect or second aspect and any of them. Methods in one possible implementation.
  • FIG. 1 is a schematic diagram of NTN beam coverage provided by an embodiment of this application.
  • 2A is a schematic diagram of establishing an association relationship between SSB and RO according to an embodiment of the application
  • FIG. 2B is a schematic diagram of an association between SSB and RO provided by an embodiment of this application;
  • FIG. 2C is a schematic diagram of another association between SSB and RO provided by an embodiment of this application.
  • FIG. 2D is a schematic diagram of an association period between SSB and RO according to an embodiment of this application.
  • 2E is a schematic diagram of another association period between SSB and RO provided by an embodiment of this application.
  • FIG. 3A is a schematic flowchart of a channel access method provided by an embodiment of this application.
  • FIG. 3B is a schematic diagram of a Preamble sequence provided by an embodiment of the application.
  • FIG. 3C is a schematic diagram of signaling for issuing a cyclic shift value according to an embodiment of the application.
  • FIG. 3D is a schematic diagram of signaling for delivering related values according to an embodiment of the application.
  • FIG. 3E is a schematic diagram of sorting different symbols of a Preamble sequence provided by an embodiment of the application.
  • FIG. 4 is a schematic block diagram of a terminal device provided in an embodiment of this application.
  • FIG. 5 is a schematic block diagram of a communication device provided in an embodiment of this application.
  • FIG. 6 is a structural block diagram of another communication device provided in an embodiment of this application.
  • FIG. 7 is a schematic block diagram of another terminal device provided in an embodiment of this application.
  • FIG. 8 is a schematic block diagram of another communication device provided in an embodiment of this application.
  • Terminal devices also known as terminal equipment (terminal equipment), user equipment (UE), mobile station (mobile station, MS), mobile terminal (mobile terminal, MT), etc.
  • terminal devices include handheld devices with wireless connection functions, vehicle-mounted devices, and Internet of Things devices.
  • terminal devices can be: mobile phones (mobile phones), tablets, notebook computers, handheld computers, mobile Internet devices (MID), wearable devices, virtual reality (VR) devices, augmented reality (augmented reality (AR) equipment, wireless terminals in industrial control, wireless terminals in self-driving, wireless terminals in remote medical surgery, and smart grids Wireless terminals, wireless terminals in transportation safety, wireless terminals in smart cities, or wireless terminals in smart homes, etc.
  • It can also be a terminal device in a 5G network, a public land mobile network (Public Land Mobile Network, PLMN) that will evolve in the future, or a terminal device in other communication systems in the future, and so on.
  • PLMN Public Land Mobile Network
  • the communication device can be a base station, an evolved NodeB (eNB or eNodeB) in an LTE system, or cloud wireless access
  • the wireless controller in the cloud radio access network (CRAN) scenario or the network device can be a relay station, an access point, an in-vehicle device, and a new generation base station (next generation Node B, gNodeB) in the 5G network, etc., this application
  • the network equipment mentioned in the embodiment may also be a satellite, or a satellite base station. It mainly provides wireless access services for terminal devices, dispatches wireless resources to connected terminal devices, and provides reliable wireless transmission protocols and data encryption protocols.
  • the satellite base station may also refer to a base station that uses artificial earth satellites or high-altitude aircraft as wireless communication, and the device may also be a communication device or a chip in a communication device.
  • the satellite base station can be a geostationary earth (geostationary earth orbit, GEO) satellite, it can also be a non-geostationary earth orbit (NGEO) medium orbit (MEO) satellite and low earth orbit (LEO) Satellites can also be High Altitude Platform Station (HAPS), etc.
  • GEO geostationary earth
  • NGEO non-geostationary earth orbit
  • MEO medium orbit
  • LEO low earth orbit Satellites
  • HAPS High Altitude Platform Station
  • Beam refers to the shape formed on the surface of the earth by the electromagnetic wave emitted by the satellite antenna, just like the beam of a flashlight has a certain range, and its shape is determined by the transmitting antenna. Or the signal emitted by the satellite is not a 360° radiation, but a signal wave emitted concentratedly in a certain azimuth.
  • a satellite cell contains at least one satellite beam. In some cases, the satellite beam can also be considered as a cell concept.
  • Synchronization information block refers to the combination of primary synchronization sequence, secondary synchronization sequence, physical broadcast channel and demodulation reference signal in NR, that is, PSS, SSS, PBCH and DMRS are in four consecutive Orthogonal Frequency Division Multiplexing (OFDM) is received in the symbol and then forms a synchronization information block (Synchronization/PBCH block, SSB), which is mainly used for downlink synchronization.
  • OFDM Orthogonal Frequency Division Multiplexing
  • Random access refers to the process from when the user sends a random access preamble to try to access the network until the basic signaling connection is established with the network. Random access includes contention-based random access and non-contention-based random access. In contention-based random access, there are four steps: the UE initiates a random access request (Random Access Preamble or Msg1) to the network device, and the network device sends an access response (Random Access Response or Msg2) to the UE.
  • Msg1 Random Access Preamble
  • Msg2 Random Access Response
  • the UE sends a connection request (Scheduled Transmission or Msg3) to the network device, and the network device performs conflict resolution (Contention Resolution or Msg4); in non-contention-based random access, there are three steps: the network device sends a preamble allocation (Random Access) to the UE Preamble assignment or Msg0), the UE initiates a random access request (Random Access Preamble or Msg1) to the network device, and the network device sends an access response (Random Access Response or Msg2) to the UE.
  • the "and/or” in this application describes the association relationship of the associated objects, indicating that there can be three relationships, for example, A and/or B, which can mean: A alone exists, A and B exist at the same time, and B exists alone. This situation.
  • the character "/” generally indicates that the associated objects before and after are in an "or” relationship.
  • the multiple involved in this application refers to two or more.
  • the word "exemplary” is used to mean serving as an example, illustration, or illustration. Any embodiment or implementation described as an “example” in this application should not be construed as being more preferable or advantageous than other embodiments or implementations. To be precise, the term example is used to present the concept in a concrete way.
  • the embodiments of the present application provide a method and device for realizing automatic neighbor relationship in a satellite network.
  • the method and device are based on the same technical concept. Since the method and device have similar principles for solving problems, the implementation of the device and method can be Refer to each other, and the repetition will not be repeated.
  • the satellite communication system can be integrated with a traditional mobile communication system.
  • the mobile communication system may be a fourth-generation (4th Generation, 4G) communication system (for example, a long-term evolution (LTE) system), and worldwide interoperability for microwave access (WiMAX) communication System, the fifth generation (5th Generation, 5G) communication system (for example, the new radio (NR) system), and the future mobile communication system, etc.
  • 4G fourth-generation
  • LTE long-term evolution
  • WiMAX worldwide interoperability for microwave access
  • 5G fifth generation
  • NR new radio
  • Beam establishment in NR includes two processes: downlink synchronization based on SSB index, and random access based on RO.
  • Downlink synchronization is the synchronization between the UE and the received beam signal.
  • the satellite sends the SSB through the beam, and the UE completes the synchronization between the UE and the beam signal according to the SSB in the scanned beam.
  • a random access channel (Physical Random Access Channel, PRACH) is a channel used by the UE to send random access related signals.
  • the PRACH sequence is a random access signal related sequence.
  • the PRACH sequence is a preamble sequence.
  • SSB has multiple transmission opportunities in the time domain period, and different beams can be used. Therefore, in NR, only when the SSB beam scanning signal covers the UE, the downlink synchronization and the acquisition of PRACH related information can initiate random access, that is, the SSB needs to establish an association relationship with the RO, and the base station determines according to the UE's uplink PRACH resource location The beam sent by the downlink random access response (Random Access Response, RAR).
  • RAR Random Access Response
  • the random access process includes contention-based random access and non-contention-based random access. At most 64 random access preambles can be allocated in one RO for random access to the UE. In the random access process based on competition, the Preamble index is randomly selected by the UE, and in the random access process based on non-competition, the Preamble index is indicated by the satellite. The value range of the Preamble index is related to the SSB index, because the SSB index is related to the RO.
  • FIG. 2A is a schematic diagram of establishing an association relationship between SSB and RO according to an embodiment of this application.
  • the relationship between SSB and RO is indicated by the fields shown in FIG. 2A.
  • PRACH parameter configuration ssb-perRACH-OccasionAndCB-PreamblesPerSSB is used to configure:
  • the number of SSBs corresponding to each RO from 1/8 to 16;
  • CB Preamble contention-based preamble
  • the CB Preamble index order in each RO is increasing;
  • FIG. 2B is a schematic diagram of the association between SSB and RO provided by an embodiment of the application.
  • ssb-perRACH-Occasion 1/8
  • CB-PreamblesPerSSB 60 as an example
  • 1 SSB is mapped to 8 ROs
  • the CB Preamble sequence on each RO is 0-59 respectively.
  • n CB Preambles starting from n*64/N correspond to SSB n.
  • N ssb-perRACH-Occasion
  • n CB-PreamblesPerSSB, n ⁇ [0, N-1], where 64 is the maximum number of preambles in a cell.
  • FIG. 2C is a schematic diagram of another association between SSB and RO provided by an embodiment of the application.
  • 4 SSBs Corresponding to an RO the number of CB Preambles used by each SSB is 12.
  • the CB Preambles corresponding to the 4 SSBs are 0-11, 16-27, 32-43, and 48-59 respectively.
  • the concept of an association cycle is introduced here, which means how many PRACH configuration cycles are required in the time domain after all the SSB indexes are associated with the RO.
  • the PRACH configuration cycle is the one that configures the RO cycle.
  • the round-up function is used to obtain an integer number of PRACH configuration periods.
  • the association period between the SSB and the RO is related to the PRACH configuration period, and is in a proportional relationship.
  • the number of ROs in a PRACH configuration period is limited, and the number of preambles corresponding to one RO is also limited, so the SSBs that can be associated with the preamble sequence are also limited. Therefore, in NTN, with the increase of SSB and the increase of Preamble sequence, if the association between SSB and RO is performed in the traditional way, the association period between SSB and RO will increase, resulting in a longer time interval for the UE to initiate random access. , Affect the user experience.
  • FIG. 3A is a schematic flowchart of a beam establishment method according to an embodiment of the application. As shown in FIG. 3A, the beam establishment method includes the following steps:
  • a terminal device acquires multiple synchronization information blocks SSB in multiple beams, where the SSB includes an SSB index.
  • the satellite beam scans and sends the SSB periodically in a time-sharing manner.
  • the UE uses the SSB in the beam to complete downlink synchronization.
  • First obtain the relevant parameters in the SSB such as the system message (Master Information Block, MIB) in the physical broadcast channel (Physical Broadcast Channel, PBCH), including the system frame number, the sub-carrier interval of the SSB, the sub-carrier offset of the SSB, and SSB index and other information.
  • MIB Master Information Block
  • PBCH Physical Broadcast Channel
  • uplink random access according to related information, such as the SSB index, to complete the establishment of the beam.
  • the terminal device determines a target beam among the multiple beams according to the association relationship between the SSB index and the first random access preamble, where the first random access preamble is based on a cyclic shift and/or symbol
  • the ordering is determined, wherein the symbol is a symbol of a sequence part in the first random access preamble, and the sequence part includes at least two kinds of symbols.
  • the SSB index is associated with the RO, and its essence is that the SSB is associated with the random access preamble allocated in the RO.
  • the maximum number of preambles in an RO is 64, and the number of SSBs is far more than this value. Therefore, when the Preamble resource in the RO is lacking, a manner in which one Preamble is associated with multiple SSBs can be used to reduce the association period between the two and improve the association efficiency.
  • the association between one Preamble and multiple SSBs is realized by adding a cyclic shift to the Preamble to generate a new Preamble sequence.
  • the cyclic shift refers to the position where the entire sequence moves in a certain direction based on the original Preamble sequence.
  • FIG. 3B is a schematic diagram of a preamble sequence provided by an embodiment of the application.
  • the preamble can be composed of a cyclic prefix (CP), a sequence (Sequence, SEQ), and a guard band GT Composition, wherein SEQ can be ZC sequence or m sequence, etc.
  • CP cyclic prefix
  • SEQ sequence
  • guard band GT Composition wherein SEQ can be ZC sequence or m sequence, etc.
  • the ZC sequence may include a ZC sequence used for detecting fractional multiple delay estimation and a ZC sequence used for integer multiple delay estimation.
  • the ZC sequence used for fractional delay estimation cannot be cyclically shifted, but only the ZC sequence used for integer delay estimation is cyclically Shift.
  • the length of the ZC sequence is 839 and 139, and the corresponding cyclic shift Cv ranges are [0,838] and [0,138] respectively.
  • the cyclic shift is added to the ZC sequence used for integer time offset estimation.
  • the length of the ZC sequence is 839, 839 cyclic shifts can be added Bit, then the maximum number of SSBs that can correspond to an RO is: 839*64; when the length of the ZC sequence is 139, 139 cyclic shifts can be added, then the maximum number of SSBs that can correspond to an RO is: 139 *64.
  • One cyclic shift can be used to associate with one SSB index, or multiple cyclic shifts can be used to associate with one SSB index.
  • the cyclic shift value can be issued by the satellite.
  • the cyclic shift value can be added to the system message of the SSB, and the UE can determine the new Preamble corresponding to the UE according to the selected Preamble and the cyclic shift value available in the acquired SSB.
  • Figure 3C is a schematic diagram of signaling for sending a cyclic shift value according to an embodiment of this application.
  • the corresponding cyclic shift value can be sent using RACH-ConfigGeneric signaling as shown in italics ssb in Figure 3C. -ro-cv field as shown.
  • the Preamble sequence on the same RO maps the cyclic shift and the SSB index one by one according to the ssb-ro-cv field issued by the satellite and in a pre-appointed order (such as: from small to large or from large to small).
  • a pre-appointed order such as: from small to large or from large to small.
  • the satellite detects the corresponding Preamble sequence through the corresponding Cv, it can determine the access beam selected by the terminal device, and complete the processing beam establishment process.
  • the cyclic shift is obtained by calculation at least from the SSB index and the PRACH sequence length parameter.
  • the purpose of adding a cyclic shift to the Preamble is to enable the new Preamble sequence generated from the original Preamble sequence and the cyclic shift to be associated with the SSB. Therefore, the cyclic shift corresponds to the SSB index; in addition, the cyclic shift is performed on the sequence of the preamble, so the cyclic shift value is related to the sequence length of the preamble.
  • the cyclic shift is:
  • SSB index represents the SSB index
  • offset represents the offset, which can be any integer value, including positive integers, zero or negative integers.
  • L RA represents the total length of the sequence in the Preamble, which can be 839 or 139.
  • n represents the cyclic shift interval allocated for each SSB index, and n is a positive integer, which indicates that the cyclic shift interval is an integer value. Or n can also be a negative integer, indicating the cyclic shift interval in the opposite direction to when n is a positive integer.
  • % Means taking the remainder, and taking the remainder of L RA means that the cyclic shift value is not greater than L RA .
  • the number of SSBs corresponding to one RO may exceed the number of cyclic shifts, so there may be a situation where multiple SSB indexes correspond to the same cyclic shift.
  • a preset rule can be used to limit the mapping relationship between the SSB index and the cyclic shift, for example, consecutive SSB indexes are mapped to the same RO.
  • the cyclic shift of the SSB index mapping and the cyclic shift of the consecutive SSB index mapping form a reverse direction, for example, the cyclic shift corresponding to the SSB with the SSB index of 4 is 120, and the cyclic shift corresponding to the SSB with the index of 5 is 10, then it means that the latter should correspond to the next RO to avoid the situation where the same cyclic shift corresponds to the previous SSB index.
  • n and offset in the above formula can be issued through RACH-ConfigGeneric signaling, or a fixed value known by the terminal device and the satellite can be used. If it is sent through signaling, the form can be as shown in the protocol field in Figure 3D signaling.
  • the ellipsis in INTEGER((7) is the set value of n and offset.
  • a new Preamble sequence is generated by performing different symbol ordering for the Preamble to realize the association between one Preamble and multiple SSBs.
  • the symbol is the sequence symbol in the Preamble.
  • the Preamble sequence symbol can be composed of ZC sequence or m sequence. Under the premise that the root sequence is the same, the sequence of the Preamble sequence symbol can be different. The symbol sequence and SSB correspondence can be used to make the satellite according to the detected sequence. The order of the preamble sequence determines the beam that the UE accesses. Please refer to FIG. 3E.
  • FIG. 3E is a schematic diagram of sorting different symbols of a Preamble sequence provided in an embodiment of the application. As shown in FIG. 3E, the Preamble sequence includes ZC0 for integer multiple delay estimation and decimal multiple Time delay estimation ZC1, where the number of symbols ZC0 is 1, and the number of symbols ZC1 is 5.
  • ZC0 of pattern 1 is in the sequence
  • the first bit in (b) in Figure 3E, the ZC1 of pattern 2 is the fourth bit in the sequence, and the two can be used to associate different SSB indexes.
  • the detection delay between different symbol sequences cannot be less than the detection delay corresponding to the CP, so as to avoid satellites from different
  • the correlation between the preamble sequence and the SSB index determines the beam corresponding to the UE, UE detection ambiguity occurs.
  • the symbol sequence can also be issued by the satellite.
  • a symbol order can be added to the system message of the SSB, and then the UE can determine the new Preamble sequence corresponding to the UE according to the selected Preamble and the available symbol order in the acquired SSB.
  • the new Preamble sequence and multiple SSB indexes are mapped one by one according to the agreed sequence.
  • the agreed order may be ascending according to the SSB index, or may be the time sequence of issuing the SSB index, etc.
  • the cyclic shift and symbol sorting can be added to the system message of the SSB at the same time, then the UE can select the Preamble and the available cyclic shift and symbol sorting in the obtained SSB. Jointly determine the new Preamble sequence corresponding to the UE. In order to associate the new Preamble sequence with the SSB index.
  • the terminal device sends a first random access preamble to the network device through the target beam to initiate a random access request.
  • the communication device receives the first random access preamble in the random access request sent by the terminal device, and the association relationship between the first random access preamble and the SSB index determines the target beam accessed by the terminal device.
  • the communication device sends a random access response to the terminal device through the target beam.
  • the UE determines the target beam to be accessed through the association between the SSB index and the first random access preamble sequence in the RO, and then the UE sends the first random access preamble sequence through the target beam to initiate random access to the network device.
  • the device analyzes the detected first random access preamble sequence and the association relationship between the first random access preamble sequence and the SSB index to obtain the target beam that the UE accesses, and then sends a random access response to the UE through the target beam.
  • non-contention-based random access the random access process has been completed by this step.
  • contention-based random access subsequent connection request initiation procedures and conflict resolution procedures must be performed.
  • the UE after synchronization according to the SSB issued by the satellite, the UE obtains the first random access preamble.
  • the first random access preamble includes cyclic shift or symbol ordering, or both. Determine the target beam that the UE accesses according to the association relationship between the first random access preamble and the SSB index, and finally perform random access through the target beam to complete beam establishment.
  • the Preamble has cyclic shift and/or symbol ordering, the number of UEs that can access network equipment through the same RO is increased, the time interval for the terminal device to initiate random access is reduced, and the user experience is effectively improved.
  • a terminal device 400 which can be used for satellite communication.
  • the terminal device 400 can execute each step performed by the terminal device in the method of FIG. 3A, and in order to avoid repetition, the details are not described herein again.
  • the device may include modules that perform one-to-one correspondence of the methods/operations/steps/actions described in FIG. 3A.
  • the modules may be hardware circuits, software, or hardware circuits combined with software.
  • the terminal device 400 may be a terminal device or a chip applied to the terminal device.
  • the terminal device 400 includes: a receiving module 401, a processing module 402, a sending module 403, and optionally, a storage module 404 (not shown in the figure), wherein the receiving module 401, the sending module 403, and the storage module 404 are respectively associated with the processing module 402 is connected, wherein the receiving module 401 and the sending module 403 can also be connected to the storage module 404:
  • the storage module 404 is used to store a computer program. More specifically, a memory can be used to perform the functions of the storage module 930. The specific type of the memory will be introduced below.
  • the receiving module 401 is configured to obtain multiple synchronization information blocks SSB in multiple beams.
  • the processing module 402 is configured to determine a target beam among the multiple beams according to the association relationship between the SSB index and the first random access preamble code Preamble according to all or part of the computer program stored in the storage module 404,
  • the first random access preamble includes cyclic shift and/or symbol ordering, and the symbol is a sequence symbol in the preamble.
  • a processor or processing chip may be used to perform the functions of the processing module 402, and the specific type of the processor or processing chip will be introduced below.
  • the sending module 403 is configured to send a first random access preamble to the network device through the target beam to initiate a random access request.
  • the receiving module 401 is further configured to receive a random access response issued by the target beam, and complete beam establishment.
  • the receiving module 401 is further configured to receive indication information, where the indication information is used to indicate the cyclic shift and/or the symbol ordering.
  • the receiving module 401 and the sending module 403 may also be a transceiving module for executing the method steps performed by the receiving module 401 and the sending module 403 described above.
  • FIG. 5 is a schematic block diagram of a communication device 500 according to an embodiment of the present application, and the communication device may be used for satellite communication. It should be understood that the communication device 500 can execute each step performed by the communication device in the method of FIG. 3A, and in order to avoid repetition, details are not described herein again.
  • the communication device may include a module corresponding to the method/operation/step/action described in FIG. 3A.
  • the module may be a hardware circuit, software, or a combination of hardware circuit and software.
  • the communication device 500 includes: an input module 501, an output module 502, and a processing module 503.
  • the output module 502 and the input module 501 may be one module: an I/O module.
  • the input module 501 is configured to receive the first random access preamble in the random access request sent by the terminal device; more specifically, an antenna, a radio frequency module, a transceiver, or a combination of the above can be used to execute the input module 501 Function.
  • the processing module 503 is configured to determine, according to the association relationship between the first random access preamble and the SSB index, the target beam that the terminal device accesses, the first random access preamble includes a loop For shifting and/or symbol sorting, the symbols are sequence symbols in the Preamble; more specifically, a processor or processing chip can be used to perform the functions of the processing module 503. The specific type of the processor or processing chip will be described below Introduction.
  • the output module 502 is configured to send a random access response through the target beam. More specifically, an antenna, a radio frequency module, a transceiver, or a combination of the above can be used to perform the function of the output module 502.
  • the output module 502 is further configured to send indication information, where the indication information is used to indicate the cyclic shift and/or the symbol ordering.
  • FIG. 6 is a structural block diagram of a communication device 600 according to an embodiment of the present application. It should be understood that the communication device 600 can execute each step performed by the terminal device or the communication device in the method of FIG. 3A, and in order to avoid repetition, details are not described herein again.
  • the communication device 600 includes: a processor 111 and a memory 113, and the processor 111 and the memory 113 are electrically coupled;
  • the memory 113 is configured to store computer program instructions.
  • the memory 1 is located in the device, the memory 2 is integrated with the processor 111, or the memory 3 is located outside the device;
  • the processor 111 is configured to execute part or all of the computer program instructions in the memory, and when the part or all of the computer program instructions are executed, the device executes the method described in any of the foregoing embodiments.
  • a transceiver 112 for communicating with other devices; for example, receiving synchronization information blocks SSB in multiple beams sent by a network device.
  • the communication device 600 shown in FIG. 6 may be a chip or a circuit.
  • a chip or circuit may be provided in a terminal device or a communication device.
  • the aforementioned transceiver 112 may also be a communication interface.
  • the transceiver includes a receiver and a transmitter.
  • the communication device 600 may also include a bus system.
  • the processor 111, the memory 113, and the transceiver 112 are connected by a bus system.
  • the processor 111 is used to execute the instructions stored in the memory 113 to control the transceiver to receive and send signals, and complete the communication device in the implementation method involved in this application. Or the steps of the terminal device.
  • the memory 113 may be integrated in the processor 111, or may be provided separately from the processor 111.
  • the function of the transceiver 112 may be implemented by a transceiver circuit or a dedicated transceiver chip.
  • the processor 111 may be implemented by a dedicated processing chip, a processing circuit, a processor, or a general-purpose chip.
  • the processor may be a central processing unit (CPU), a network processor (NP), or a combination of a CPU and an NP.
  • the processor may further include a hardware chip or other general-purpose processors.
  • the aforementioned hardware chip may be an application-specific integrated circuit (ASIC), a programmable logic device (PLD), or a combination thereof.
  • the above-mentioned PLD can be a complex programmable logic device (CPLD), a field-programmable gate array (FPGA), a generic array logic (generic array logic, GAL) and other programmable logic devices , Discrete gates or transistor logic devices, discrete hardware components, etc. or any combination thereof.
  • the general-purpose processor may be a microprocessor or the processor may also be any conventional processor or the like.
  • the memory mentioned in the embodiments of the present application may be a volatile memory or a non-volatile memory, or may include both volatile and non-volatile memory.
  • the non-volatile memory can be read-only memory (Read-Only Memory, ROM), programmable read-only memory (Programmable ROM, PROM), erasable programmable read-only memory (Erasable PROM, EPROM), and electrically available Erase programmable read-only memory (Electrically EPROM, EEPROM) or flash memory.
  • the volatile memory may be random access memory (Random Access Memory, RAM), which is used as an external cache.
  • RAM random access memory
  • SRAM static random access memory
  • DRAM dynamic random access memory
  • DRAM synchronous dynamic random access memory
  • DDR SDRAM Double Data Rate Synchronous Dynamic Random Access Memory
  • Enhanced SDRAM, ESDRAM Enhanced Synchronous Dynamic Random Access Memory
  • Synchronous Link Dynamic Random Access Memory Synchronous Link Dynamic Random Access Memory
  • DR RAM Direct Rambus RAM
  • the embodiment of the present application provides a computer storage medium storing a computer program, and the computer program includes a method for executing the foregoing method.
  • the embodiments of the present application provide a computer program product containing instructions, which when run on a computer, cause the computer to execute the method provided above.
  • FIG. 7 is a terminal device 700 provided by an embodiment of the present application, which may be used to execute the beam establishment method and specific embodiments described above.
  • the device may be a communication device or a chip in a communication device. As shown in FIG. 7, the device includes: at least one input interface (Input(s)) 121, a logic circuit 122, and at least one output interface (Output(s)) 123.
  • the input interface 121 is used to obtain multiple synchronization information blocks SSB in multiple beams.
  • the logic circuit 122 is configured to determine a target beam among the multiple beams according to the association relationship between the SSB index and a first random access preamble, where the first random access preamble is based on a cyclic shift and/or symbol The ordering is determined, wherein the symbol is a symbol of a sequence part in the first random access preamble, and the sequence part includes at least two kinds of symbols.
  • the output interface 123 is configured to send a first random access preamble through the target beam to initiate a random access request.
  • the input interface 121 is further configured to receive a random access response issued by the target beam, and complete beam establishment.
  • the aforementioned logic circuit 122 may be a chip, an encoder, an encoding circuit or other integrated circuits that can implement the method of the present application.
  • the device 700 is only used to execute the beam establishment method of the terminal device, so the specific description of the configuration method is involved, especially the function of the logic circuit 122 or the output interface 123 can refer to the corresponding implementation The relevant part of the example will not be repeated here.
  • FIG. 8 is a communication device 800 provided by an embodiment of the present application, which may be used to execute the above-mentioned beam establishment method and specific embodiments applicable to it.
  • the network device may be a satellite or a communication chip in a satellite. As shown in FIG. 8, the device includes: at least one input interface (Input(s)) 131, a logic circuit 132, and at least one output interface (Output(s)) 133.
  • the input interface 131 is used to receive the first random access preamble in the random access request.
  • the logic circuit 132 is configured to determine the target beam accessed by the terminal device according to the association relationship between the first random access preamble and the synchronization information block SSB index, the first random access preamble is based on cyclic shift and/or symbol ordering It is determined, wherein the symbol is a symbol of a sequence part in the first random access preamble, and the sequence part includes at least two kinds of symbols.
  • the output interface 133 is used to send a random access response through the target beam.
  • the aforementioned logic circuit 132 may be a chip, an encoder, an encoding circuit or other integrated circuits that can implement the method of the present application.
  • the device 800 is only used to perform the network equipment beam establishment method, so the specific description of the configuration method is involved, especially the function of the logic circuit 132 or the output interface 133, please refer to the corresponding embodiment.
  • the device embodiments described above are only illustrative.
  • the division of the units is only a logical function division, and there may be Other division methods, for example, multiple units or components can be combined or integrated into another system, or some features can be ignored or not implemented.
  • the displayed or discussed mutual communication connections may be indirect couplings or communication connections through some interfaces, devices or units, and may be in electrical, mechanical, or other forms.
  • the units in the device embodiments of the present application may be integrated into one processing unit, or each unit may exist alone physically, or two or more units may be integrated into one unit.
  • the processor in the embodiment of the present application may be a central processing unit (central processing unit, CPU), or other general-purpose processors, digital signal processors (digital signal processors, DSP), and application-specific integrated circuits. (application specific integrated circuit, ASIC), field programmable gate array (field programmable gate array, FPGA) or other programmable logic devices, transistor logic devices, hardware components, or any combination thereof.
  • the general-purpose processor may be a microprocessor or any conventional processor.
  • the methods in the embodiments of the present application may be implemented in whole or in part by software, hardware, firmware, or any combination thereof.
  • software When implemented by software, it can be implemented in the form of a computer program product in whole or in part.
  • the computer program product includes one or more computer programs or instructions.
  • the computer may be a general-purpose computer, a special-purpose computer, a computer network, or other programmable devices.
  • the computer program or instruction may be stored in a computer-readable storage medium or transmitted through the computer-readable storage medium.
  • the computer-readable storage medium may be any available medium that can be accessed by a computer or a data storage device such as a server integrating one or more available media.
  • the usable medium may be a magnetic medium, such as a floppy disk, a hard disk, and a magnetic tape; it may also be an optical medium, such as a CD-ROM, a DVD; and it may also be a semiconductor medium, such as a solid state disk (SSD), random Access memory (random access memory, RAM), read-only memory (ROM), registers, etc.
  • this application can be provided as methods, systems, or computer program products. Therefore, this application may adopt the form of a complete hardware embodiment, a complete software embodiment, or an embodiment combining software and hardware. Moreover, this application may adopt the form of a computer program product implemented on one or more computer-usable storage media (including but not limited to disk storage, CD-ROM, optical storage, etc.) containing computer-usable program codes.
  • computer-usable storage media including but not limited to disk storage, CD-ROM, optical storage, etc.

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Physics & Mathematics (AREA)
  • Astronomy & Astrophysics (AREA)
  • Aviation & Aerospace Engineering (AREA)
  • General Physics & Mathematics (AREA)
  • Mobile Radio Communication Systems (AREA)
  • Radio Relay Systems (AREA)

Abstract

本申请公开了一种波束建立方法,终端装置获取多个波束中的同步信息块SSB,然后根据SSB索引与第一随机接入前导之间的关联关系确定多个波束中的目标波束,该第一随机接入前导基于循环移位和/或符号排序确定,最后通过目标波束发送随机接入前导以发起随机接入请求。通信设备接收终端装置发送的随机接入请求中的第一随机接入前导,然后根据上述关联关系确定终端装置接入的目标波束。本申请实施例通过循环移位和/或符号排序的方法确定第一随机接入前导,能够增加一个随机接入时机RO中关联的SSB索引个数,减少RO与SSB的关联时长,使终端装置发起随机接入的时间间隔减少,有效提升用户体验。

Description

一种波束建立方法及装置
本申请要求于2019年11月08日提交中国知识产权局、申请号为201911089943.5、申请名称为“一种波束建立方法及装置”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及通信技术领域,尤其涉及一种波束建立方法及装置。
背景技术
地面网络(Terrestrial Networks,TN)是指基站通信网络,非地面网络(Non-Terrestrial Networks,NTN)是指卫星移动通信网络。未来的5G及其演进网络不仅需要满足多种业务需求,还需要提供更广的业务覆盖。由于卫星通信受地理条件的影响较小,可以实现全球覆盖的目标,因此卫星通信的发展具有非常重要的意义。尤其是在受到自然灾害,使得当地的基础通信设施遭受严重破坏且无法进行正常通信的时候,卫星通信可以为有效的抗灾抢险提供强有力的通信保障。另外,在一些不利于架设地面基站的区域,包括海洋、沙漠、高山等,可以通过卫星通信进行有效的通信,从而保证通信的全覆盖性。
在NTN中通信需要建立波束连接。在NR标准中,SSB采用分时方式周期性的进行扫描,当终端检测到大于门限的SSB后,根据该SSB对应的随机接入时机(RACH Occasion,RO)进行上行随机接入,gNB(5G基站)根据上行随机接入的时频资源或物理随机接入信道(Physical Random Access Channel,PRACH)序列的不同来区分其接入的波束,完成初始波束的建立。但是在NTN场景下,由于覆盖范围的增加,其波束数量要比地面网大的多,如图1所示,在卫星覆盖区域有密集的波束(beam)分布,因此,在UE初始接入阶段,需要有更多的SSB数量来支持波束扫描。
传统方法中针对下行SSB波束的扫描,主要提出下行SSB以码分等方式在多个波束同时发送,一定程度上解决下行波束扫描时间长的问题,但是由于上行PRACH序列个数和发送PRACH的时频资源有限,因此SSB和RO的关联周期会变长,即终端发起随机接入的时间间隔会变长;另外,由于NTN场景比地面网有更大的往返传输时延,为了解决该问题,目前NTN中PRACH的设计序列普遍加长,进一步增加了SSB和RO的关联周期。影响用户体验。
发明内容
本申请实施例提供一种波束建立方法及装置,采用本申请实施例的方案能够通过对Preamble序列增加循环移位或进行不同的符号排序,使得一个Preamble序列与多个SSB进行关联,增加了一个RO中能够关联的SSB索引个数,减少了RO与SSB的关联周期时长,使终端装置发起随机接入的时间间隔减少,有效提升了用户体验。
第一方面,本申请实施例提供一种波束建立方法,包括:
终端装置获取多个波束中的多个同步信息块SSB,所述SSB中包括SSB索引;
所述终端装置根据所述SSB索引与第一随机接入前导码之间的关联关系确定所述多个 波束中的目标波束,所述第一随机接入前导基于循环移位和/或符号排序确定,其中,所述符号为所述第一随机接入前导中序列部分的符号,所述序列部分包含至少两种符号;
所述终端装置通过所述目标波束发送第一随机接入前导以发起随机接入请求。
在本申请实施例中,在根据卫星下发的SSB进行同步后,UE获取第一随机接入前导,第一随机接入前导基于循环移位或符号排序,或者同时基于两者确定,再根据第一随机接入前导与SSB索引的关联关系确定UE接入的目标波束,最后通过目标波束发起随机接入,完成波束建立。在这个过程中,因为随机接入前导根据循环移位和/或符号排序确定,增加了一个RO中的可用随机接入前导序列,进而增加了能够通过同一个RO接入网络设备的UE数量,使终端装置发起随机接入的时间间隔减少,有效提升了用户体验。
可选的,所述根据所述SSB索引与第一随机接入前导之间的关联关系确定所述多个波束中的目标波束包括:
获取所述第一随机接入前导;
根据所述第一随机接入前导与所述SSB索引的关联关系确定目标SSB,并将所述目标SSB对应的波束确定为目标波束。
可选的,所述循环移位至少由所述SSB索引和所述第一随机接入前导序列长度参数计算获得。
可选的,所述循环移位为:
C v=(n*SSB index+offset)%L RA
其中,SSB index表示所述SSB索引,offset表示偏移量,L RA表示所述第一随机接入前导序列的长度,n为整数,%表示取余。
可选的,在所述获取多个波束中的SSB之后,所述方法还包括:
所述终端装置接收指示信息,所述指示信息用于指示所述循环移位和/或所述符号排序。
第二方面,本申请实施例提供了一种波束建立方法,包括:
通信装置接收随机接入请求中的第一随机接入前导;
所述通信装置根据所述第一随机接入前导与同步信息块SSB索引之间的关联关系确定终端装置接入的目标波束,第一随机接入前导基于循环移位和/或符号排序确定,其中,所述符号为所述第一随机接入前导中序列部分的符号,所述序列部分包含至少两种符号。
可选的,在所述接收随机接入请求中的第一随机接入前导之前,所述方法还包括:
所述通信装置发送指示信息,所述指示信息用于指示所述循环移位和/或所述符号排序。
第三方面,本申请实施例提供了一种终端装置,该装置包括:
接收单元,用于获取多个波束中的同步信息块SSB,所述SSB中包括SSB索引;
处理单元,用于根据所述SSB索引与第一随机接入前导之间的关联关系确定所述多个波束中的目标波束,所述第一随机接入前导基于循环移位和/或符号排序确定,其中,所述符号为所述第一随机接入前导中序列部分的符号,所述序列部分包含至少两种符号;
发送单元,用于通过所述目标波束发送第一随机接入前导以发起随机接入请求。
在一个可选的示例中,在所述获取多个波束中的SSB之后,所述接收单元还用于:
接收指示信息,所述指示信息用于指示所述循环移位和/或所述符号排序。
第四方面,本申请实施例提供了一种通信装置,该通信装置包括:
输入单元,用于接收随机接入请求中的第一随机接入前导;
处理单元,根据所述第一随机接入前导与同步信息块SSB索引之间的关联关系确定终端装置接入的目标波束,第一随机接入前导基于循环移位和/或符号排序确定,其中,所述符号为所述第一随机接入前导中序列部分的符号,所述序列部分包含至少两种符号。
输出单元,用于通过所述目标波束向所述终端装置发送随机接入响应。
在一个可选的示例中,所述输出单元还用于:
发送指示信息,所述指示信息用于指示所述循环移位和/或所述符号排序。
第五方面,本申请实施例提供了一种通信装置,包括处理器和存储器,该处理器和该存储器之间电偶合;
该处理器调用该存储器中存储的部分或者全部计算机程序指令,使得该通信装置执行第一方面或第二方面的任一方法。
在一个可选的示例中,该装置还包括:收发器,用于和其他设备进行通信;例如接收网络设备发送的多个波束中的多个同步信息块SSB。
第六方面,本发明实施例提供了一种计算机可读存储介质,该计算机存储介质包括程序指令,该程序指令在计算机上运行时,使该计算机执行如第一方面或第二方面所述的任一方法。
第七方面,本申请实施例提供了一种包含指令的计算机程序产品,当其在计算机或处理器上运行时,使得该计算机或处理器执行如上述第一方面或者第二方面及其任一种可能的实施方式中的方法。
本申请的这些方面或其他方面在以下实施例的描述中会更加简明易懂。
附图说明
为了更清楚地说明本申请实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本申请的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1为本申请实施例提供的一种NTN波束覆盖示意图;
图2A为本申请实施例提供的一种SSB和RO的关联关系建立示意图;
图2B为本申请实施例提供的一种SSB和RO的关联示意图;
图2C为本申请实施例提供的另一种SSB和RO的关联示意图;
图2D为本申请实施例提供的一种SSB和RO的关联周期示意图;
图2E为本申请实施例提供的另一种SSB和RO的关联周期示意图;
图3A为本申请实施例提供的一种信道接入方法流程示意图;
图3B为本申请实施例提供的一种Preamble序列示意图;
图3C为本申请实施例提供的一种下发循环移位值的信令示意图;
图3D为本申请实施例提供的一种下发相关值的信令示意图;
图3E为本申请实施例提供的一种Preamble序列的不同符号排序示意图;
图4为本申请实施例中提供的一种终端装置的示意性框图;
图5为本申请实施例中提供的一种通信装置的示意性框图;
图6为本申请实施例中提供的另一种通信装置的结构框图;
图7为本申请实施例中提供的另一种终端装置的示意性框图;
图8为本申请实施例中提供的另一种通信装置的示意性框图。
具体实施方式
为了使读者方便理解本申请实施例,首先对本申请实施例中使用的部分术语进行解释说明,可以理解,以下术语用于帮助读者更好的理解本申请的应用场景及技术方案,使读者能够通过术语解释快速理解方案中的技术特征,术语解释并不会对技术特征构成绝对限定。
1)终端装置,又称之为终端设备(terminal equipment),用户设备(user equipment,UE)、移动台(mobile station,MS)、移动终端(mobile terminal,MT)等,是一种向用户提供语音和/或数据连通性的设备。例如,终端设备包括具有无线连接功能的手持式设备、车载设备、物联网设备等。目前,终端设备可以是:手机(mobile phone)、平板电脑、笔记本电脑、掌上电脑、移动互联网设备(mobile internet device,MID)、可穿戴设备,虚拟现实(virtual reality,VR)设备、增强现实(augmented reality,AR)设备、工业控制(industrial control)中的无线终端、无人驾驶(self driving)中的无线终端、远程手术(remote medical surgery)中的无线终端、智能电网(smart grid)中的无线终端、运输安全(transportation safety)中的无线终端、智慧城市(smart city)中的无线终端,或智慧家庭(smart home)中的无线终端等。还可以是5G网络中的终端设备、未来演进的公用陆地移动通信网络(Public Land Mobile Network,PLMN)或未来的其他通信系统中的终端设备等。
2)、通信装置,用于与终端设备通信的装置或设备,该通信装置可以是基站,还可以是LTE系统中的演进型基站(evoled NodeB,eNB或eNodeB),还可以是云无线接入网络(cloud radio access network,CRAN)场景下的无线控制器,或者该网络设备可以为中继站、接入点、车载设备以及5G网络中的新一代基站(next generation Node B,gNodeB)等,本申请实施例中提到的网络设备还可以是卫星,或称卫星基站。主要为终端设备提供无线接入服务,调度无线资源给接入的终端设备,提供可靠的无线传输协议和数据加密协议等。卫星基站也可以指将人造地球卫星或高空飞行器等作为无线通信的基站,该装置也可以是通信设备或者通信设备中的芯片。卫星基站可以是静止轨道(geostationary earth orbit,GEO)卫星,也可以是非静止轨道(none-geostationary earth orbit,NGEO)的中轨道(medium earth orbit,MEO)卫星和低轨道(low earth orbit,LEO)卫星,还可以是高空通信平台(High Altitude Platform Station,HAPS)等。
3)、波束,指由卫星天线发射出来的电磁波在地球表面上形成的形状,就像手电筒的光束有一定的范围,其形状由发射天线确定。或者卫星发射的信号非360°的辐射,而是在一定的方位集中发射的信号波。一个卫星小区包含至少一个卫星波束,在某些情况下,卫星波束也可以认为是一个小区的概念。
4)、同步信息块,是指在NR中,由主同步序列、辅同步序列、物理广播信道和解调参考信号组合在一起构成的,也就是PSS、SSS、PBCH和DMRS在四个连续的正交频分 复用(Orthogonal Frequency Division Multiplexing,OFDM)符号内接收然后构成同步信息块(Synchronization/PBCH block,SSB),主要是用于下行同步。
5)、随机接入,是指从用户发送随机接入前导码开始尝试接入网络到与网络间建立起基本的信令连接之前的过程。随机接入包括基于竞争的随机接入和基于非竞争的随机接入。在基于竞争的随机接入中,包括四个步骤,分别为:UE向网络设备发起随机接入请求(Random Access Preamble或Msg1),网络设备向UE发送接入响应(Random Access Response或Msg2),UE向网络设备发送连接请求(Scheduled Transmission或Msg3),网络设备进行冲突解决(Contention Resolution或Msg4);基于非竞争的随机接入中,包括三个步骤:网络设备向UE发送前导分配(Random Access Preamble assignment或Msg0),UE向网络设备发起随机接入请求(Random Access Preamble或Msg1),网络设备向UE发送接入响应(Random Access Response或Msg2)。
本申请中的“和/或”,描述关联对象的关联关系,表示可以存在三种关系,例如,A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B这三种情况。字符“/”一般表示前后关联对象是一种“或”的关系。
本申请中所涉及的多个,是指两个或两个以上。
在本申请的描述中,“第一”、“第二”等词汇,仅用于区分描述的目的,而不能理解为指示或暗示相对重要性,也不能理解为指示或暗示顺序。
另外,在本申请实施例中,“示例的”一词用于表示作例子、例证或说明。本申请中被描述为“示例”的任何实施例或实现方案不应被解释为比其它实施例或实现方案更优选或更具优势。确切而言,使用示例的一词旨在以具体方式呈现概念。
本申请实施例提供一种适用于卫星网络的自动邻区关系实现方法及装置,其中,方法、装置是基于同一技术构思的,由于方法、装置解决问题的原理相似,因此装置与方法的实施可以相互参见,重复之处不再赘述。
本申请实施例的技术方案可以应用于各种通信系统,例如:卫星通信系统。其中,所述卫星通信系统可以与传统的移动通信系统相融合。例如:所述移动通信系统可以为第四代(4th Generation,4G)通信系统(例如,长期演进(long term evolution,LTE)系统),全球互联微波接入(worldwide interoperability for microwave access,WiMAX)通信系统,第五代(5th Generation,5G)通信系统(例如,新无线(new radio,NR)系统),及未来的移动通信系统等。
下面将结合附图,对本申请实施例进行详细描述。
NR中的波束建立包括两个过程:基于SSB索引的下行同步,和基于RO的随机接入。下行同步是UE与接收到的波束信号进行同步。卫星通过波束下发SSB,UE根据扫描到的波束中的SSB完成UE与波束信号的同步。
随机接入信道(Physical Random Access Channel,PRACH)是UE用来发送随机接入相关信号的信道,PRACH序列为随机接入信号相关序列,在本申请实施例中,PRACH序列即为Preamble序列。SSB在时域周期内有多次发送机会,可以使用不同的波束。因此NR中,只有当SSB的波束扫描信号覆盖到UE,进行下行同步并获取PRACH相关信息后才能发起随机接入,即SSB需要与RO建立关联关系,同时基站根据UE上行PRACH的资源 位置,决定下行随机接入响应(Random Access Response,RAR)发送的波束。
在随机接入过程中,包括基于竞争的随机接入和基于非竞争的随机接入。一个RO中至多可以分配64个随机接入前导码Preamble,以供分配给UE进行随机接入。基于竟争的随机接入过程,其Preamble索引是由UE随机择的,基于非竞争的随机接入过程,其Preamble索引是由卫星指示的。Preamble索引的取值范围与SSB索引有关联,因为SSB索引与RO有着关联关系。
以基于竞争的随机接入为例,请参阅图2A,图2A为本申请实施例提供的一种SSB和RO的关联关系建立示意图,SSB和RO的关系通过如图2A所示的字段指示,PRACH参数配置中ssb-perRACH-OccasionAndCB-PreamblesPerSSB用于配置:
1、每个RO对应的SSB个数,从1/8到16个;
2、每个SSB所使用的基于竞争的前导序列(CB Preamble)个数。
(1)当ssb-perRACH-Occasion<1,即一个SSB对应多个RO时。
SSB Index和PRACH中的CB Preamble对应关系,顺序为:
在一个RACH Occasion中Preamble索引的顺序是递增的;
每个RO中的CB Preamble索引顺序是递增的;
当配置频率复用RO的频率资源时,按照频域索引递增;
当配置PRACH时隙内的多个RO时,按照PRACH时隙内索引递增;
当配置多个PRACH时隙时,按照PRACH时隙索引递增。
请参阅图2B,图2B为本申请实施例提供的一种SSB和RO的关联示意图,如图2B所示,以ssb-perRACH-Occasion=1/8,CB-PreamblesPerSSB=60为例,1个SSB映射到8个RO,每个RO上的CB Preamble序列分别为0-59。
(2)当ssb-perRACH-Occasion>=1,即多个SSB对应一个RACH Occasion时。
从n*64/N开始的连续n个CB Preamble对应于SSB n。其中N=ssb-perRACH-Occasion,n=CB-PreamblesPerSSB,n∈[0,N-1],其中64为一个小区中最大的Preamble个数。
请参阅图2C,图2C为本申请实施例提供的另一种SSB和RO的关联示意图,如图2C所示,以ssb-perRACH-Occasion=4,CB-PreamblesPerSSB=12为例,4个SSB对应一个RO,每个SSB使用的CB Preamble个数为12。则4个SSB对应的CB Preamble分别为0-11,16-27,32-43,48-59。
SSB索引与RO进行关联需要一定的关联时间,在此引入一个关联周期的概念,即表示所有SSB索引全部关联到RO后,需要时域上多少个PRACH配置周期,其中PRACH配置周期为配置RO的周期。
当一个SSB对应多个RO时,关联周期与PRACH配置周期的关系为:
Figure PCTCN2020124271-appb-000001
其中T表示关联周期,t表示PRACH配置周期,n表示SSB的个数,r表示一个SSB对应的RO个数,R表示一个PRACH配置周期内包含的RO个数。请参阅图2D,图2D为本申请实施例提供的一种SSB和RO的关联周期示意图,如图2D所示,假设一个SSB与4个RO对应,而4个RO刚好为一个PRACH配置周期,那么关联周期=PRACH配置周期*SSB个数。
当多个SSB对应一个RO时,关联周期中包括的PRACH配置周期
Figure PCTCN2020124271-appb-000002
其中n表示SSB的个数,N表示一个RO对应的SSB个数,R表示一个PRACH配置周期内包含的RO个数。请参阅图2E,图2E为本申请实施例提供的另一种SSB和RO的关联周期示意图,如图2E所示,假设4个SSB与1个RO对应,总共有8个SSB,与2个RO对应,一个PRACH配置周期包括2个RO,那么关联周期为T=8/4/2*t=t,即关联周期对应为一个PRACH配置周期。
在本申请实施例中的公式,如果除以R后的计算结果为小数,则采用向上取整函数获得整数个PRACH配置周期。
根据上述描述可知,SSB与RO的关联周期与PRACH配置周期相关,且成正比关系。一个PRACH配置周期中的RO个数有限,一个RO对应的Preamble个数也有限,那么Preamble序列能够关联的SSB也有限。因此,在NTN中,在SSB增多和Preamble序列增长的情况下,如果按照传统的方式进行SSB与RO的关联,则SSB与RO的关联周期将增长,导致UE发起随机接入的时间间隔变长,影响用户体验。
为了解决上述问题,请参阅图3A,图3A为本申请实施例提供的一种波束建立方法流程示意图,如图3A所示,该波束建立方法包括如下步骤:
301、终端装置获取多个波束中的多个同步信息块SSB,所述SSB中包括SSB索引。
卫星波束采用分时方式周期性地扫描并发送SSB,当发送SSB的波束扫描信号覆盖到UE,UE利用该波束中的SSB完成下行同步。首先获取SSB中的相关参数,例如物理广播信道(Physical Broadcast Channel,PBCH)中的系统消息(Master Information Block,MIB),包括系统帧号、SSB的子载波间隔、SSB的子载波偏移,以及SSB索引等信息。根据获取的系统信息进行下行同步。进一步的,还可以根据相关信息,例如SSB索引进行上行随机接入,进而完成波束的建立。
302、所述终端装置根据所述SSB索引与第一随机接入前导之间的关联关系确定所述多个波束中的目标波束,所述第一随机接入前导基于循环移位和/或符号排序确定,其中,所述符号为所述第一随机接入前导中序列部分的符号,所述序列部分包含至少两种符号。
根据前述描述已经知道,在随机接入过程中,SSB索引与RO相关联,其实质就是SSB与RO中分配的随机接入前导Preamble相关联。一个RO中的Preamble个数最大为64,而SSB的个数远不止这个数值。因此,在RO中的Preamble资源缺乏的情况下,可以采用一个Preamble与多个SSB关联的方式来减少两者的关联周期,提升关联效率。
在可选情况下,通过为Preamble增加循环移位生成新的Preamble序列的方式来实现一个Preamble与多个SSB的关联。其中,循环移位是指在原本的Preamble序列基础上整个序列向某个方向移动的位置。
请参阅图3B,图3B为本申请实施例提供的一种Preamble序列示意图,如图3B中的(a)所示,Preamble可由循环前缀(CP),序列(Sequence,SEQ),以及保护带GT组成,其中SEQ可以为ZC序列或者m序列等。以ZC序列为例,假设ZC序列由m个ZC符号组成,分别为ZC001,ZC002,……,ZCm,该ZC序列对应的循环移位为2,那么ZC序列中的所有ZC符号依次向右移动2个位置,对应如图3B中的(b)所示的新Preamble序列,可以用来关联一个SSB。
其中,ZC序列可以包括用于检测小数倍时延估计ZC序列和用于整数倍时延估计的ZC 序列。在本申请实施例中,由于NTN下往返传输时延很大,因此用于小数倍时延估计的ZC序列无法进行循环移位,而仅将用于整数倍时延估计的ZC序列进行循环移位。
在NR中,ZC序列的长度有839和139两种,则其对应的循环移位Cv范围分别为[0,838]和[0,138]。当ssb-perRACH-Occasion>=1,即多个SSB对应一个RO时,在用于整数倍时偏估计的ZC序列上增加循环移位,当ZC序列长度为839时,可以增加839个循环移位,那么一个RO上能够对应的最大SSB个数为:839*64个;当ZC序列长度为139时,可以增加139个循环移位,那么一个RO上能够对应的最大SSB个数为:139*64个。可以采用一个循环移位与一个SSB索引关联,也可以采用多个循环移位与一个SSB索引关联。
可选情况下,循环移位值可以由卫星下发。例如在卫星下发SSB的时候,可以在SSB的系统消息里面附加循环移位值,那么UE可以根据选取的Preamble以及获取到的SSB中可用的循环移位值确定UE对应的新的Preamble。请参阅图3C,如图3C为本申请实施例提供的一种下发循环移位值的信令示意图,利用RACH-ConfigGeneric信令下发相应的循环移位值可以如图3C中的斜体ssb-ro-cv字段所示。相同RO上的Preamble序列按照卫星下发的ssb-ro-cv字段,按照事先约定的顺序(如:从小到大或从大到小),将循环移位和SSB索引进行一一映射。例如图2C中ssb-perRACH-Occasion=4,即4个SSB对应一个RO,则可以按照ssb-ro-cv信令中前4个Cv对整数倍时偏估计的ZC序列进行循环移位,即Cv=(0,1,2,3),获得新的ZC序列并按照顺序与SSB索引进行一一映射。当卫星通过对应的Cv检测出相应的Preamble序列后,即可以判断终端装置选取的接入波束,完成处理波束建立过程。
或者,在可选情况下,循环移位至少由SSB索引和PRACH序列长度参数计算获得。
为Preamble增加循环移位是为了使得根据原本的Preamble序列与循环移位生成的新的Preamble序列能够与SSB进行关联。因此,循环移位与SSB索引相对应;另外,循环移位是在Preamble的序列上进行的,因此循环移位值与Preamble的序列长度相关。
可选的,循环移位为:
C v=(n*SSB index+offset)%L RA
其中SSB index表示SSB索引;offset表示偏移量,可以是任意的整数值,包括正整数,零或者负整数。L RA表示Preamble中的序列总长度,可以为839或139。n表示为每个SSB索引分配的循环移位间隔,n为正整数,表示循环移位间隔为整数值。或者n也可以为负整数,表示与n为正整数时相反方向的循环移位间隔。%表示取余,对L RA取余表示循环移位值不大于L RA
以图2C所示配置ssb-perRACH-Occasion=4为例,即4个SSB对应一个RO,假设n取10,offset取0,L RA为839,SSB index分别为0、1、2和3,则计算得到的4个SSB索引分别对应的Cv为:0、10、20和30,此时终端装置和卫星就可以建立如表1所示的SSB索引和RO中的循环移位之间的映射关系:
表1
SSB Index C v
0 0
1 10
2 20
3 30
由于NTN中的SSB个数很多,一个RO对应的SSB个数可能超过循环移位的个数,那么可能存在多个SSB索引对应同一个循环移位的情况。为了避免这种情况,可以采用预设规则限制SSB索引与循环移位的映射关系,例如:连续的SSB索引映射到同一个RO。那么如果SSB索引映射的循环移位与其连续的SSB索引映射的循环移位形成逆转向,例如SSB索引为4的SSB对应的循环移位为120,而索引为5的SSB对应的循环移位为10,那么表示后者应该对应到下一个RO,避免出现与前面的SSB索引对应相同循环移位的情况。或者也可以等到SSB索引对应的循环移位是前面已经出现过的循环移位时,再将该SSB对应到下一个RO。这样卫星在根据循环移位进行SSB索引判断时不会出现模糊问题。
上述公式中的n和offset的值可以通过RACH-ConfigGeneric信令下发,也可以采用终端装置和卫星已知的固定值。如果通过信令进行下发,形式可如图3D信令中协议字段所示,INTEGER(…)中的省略号即为设置的n和offset的值。
上述计算循环移位的公式只是举例的一种形式,不仅限于此种表达形式,由该思想衍生出的其他形式的计算公式均在本发明的保护范围内。
可选情况下,通过为Preamble进行不同的符号排序来生成新的Preamble序列以实现一个Preamble与多个SSB的关联。其中符号为Preamble中的序列符号。
由前述描述可知,Preamble序列符号可以由ZC序列或m序列等组成,在根序列相同的前提下,Preamble序列符号排列顺序可以不同,通过符号排列顺序和SSB进行对应,可以使得卫星根据检测到的Preamble序列排序顺序确定UE接入的波束。请参阅图3E,图3E为本申请实施例提供的一种Preamble序列的不同符号排序示意图,如图3E所示,Preamble序列中包括用于进行整数倍时延估计的ZC0和用于小数倍时延估计的ZC1,其中符号ZC0的个数为1,符号ZC1个数为5,不同的排序顺序可以组成不同的图案,在图3E中的(a)中,图案1的ZC0在序列中的第一位,在图3E中的(b)中,图案2的ZC1在序列中的第4位,两者可以用来关联不同的SSB索引。
另外,在采用Preamble序列的不同符号排序与多个SSB索引分别关联时,需要注意的是,不同的符号排序之间的检测时延不能小于CP对应的检测时延,以避免卫星在根据不同的Preamble序列与SSB索引之间的关联关系确定UE对应的波束时,产生UE检测模糊。
可选情况下,符号排序也可以由卫星下发。例如在卫星下发SSB的时候,可以在SSB的系统消息里面附加符号排序,那么UE可以根据选取的Preamble以及获取到的SSB中的可用符号排序确定UE对应的新的Preamble序列。最后按照约定的顺序将新的Preamble序列与多个SSB索引进行一一映射。其中约定的顺序可以是按照SSB索引由小到大,也可以是SSB索引的下发时间先后顺序等。
可选情况下,在卫星下发SSB的时候,可以在SSB的系统消息里面同时附加循环移位和符号排序,那么UE可以根据选取的Preamble以及获取到的SSB中的可用循环移位和符号排序共同确定UE对应的新的Preamble序列。以便将新的Preamble序列与SSB索引进行关联。
303、终端装置通过目标波束向网络设备发送第一随机接入前导以发起随机接入请求;
304、通信装置接收终端装置发送的随机接入请求中的第一随机接入前导,第一随机接入前导与SSB索引之间的关联关系确定所述终端装置接入的目标波束。
305、通信装置通过目标波束向终端装置发送随机接入响应。
UE通过SSB索引与RO中的第一随机接入前导序列的关联关系确定了接入的目标波束,然后UE通过该目标波束发送第一随机接入前导序列以向网络设备发起随机接入,网络设备根据检测到的第一随机接入前导序列以及第一随机接入前导序列与SSB索引之间的关联关系解析获得UE接入的目标波束,再通过目标波束向UE发送随机接入响应。在基于非竞争的随机接入中,到该步骤已经完成随机接入过程。在基于竞争的随机接入中,则还要进行后续的连接请求发起过程和冲突解决过程。
可见,在本申请实施例中,在根据卫星下发的SSB进行同步后,UE获取第一随机接入前导,第一随机接入前导包括循环移位或符号排序,或者同时包括两者,再根据第一随机接入前导与SSB索引的关联关系确定UE接入的目标波束,最后通过目标波束进行随机接入,完成波束建立。在这个过程中,因为Preamble具有循环移位和/或符号排序,增加了能够通过同一个RO接入网络设备的UE数量,使终端装置发起随机接入的时间间隔减少,有效提升了用户体验。
基于与上述波束建立方法的同一技术构思,如图4所示,提供了一种终端装置400,该终端装置可以用于卫星通信。终端装置400能够执行图3A方法中由终端装置执行的各个步骤,为了避免重复,此处不再详述。一种设计中,该装置可以包括执行图3A中所描述的方法/操作/步骤/动作所一一对应的模块,该模块可以是硬件电路,也可是软件,也可以是硬件电路结合软件实现。一种设计中,终端装置400可以为终端装置,也可以为应用于终端装置中的芯片。终端装置400包括:接收模块401,处理模块402,发送模块403,可选的,还包括存储模块404(图中未示出),其中接收模块401、发送模块403以及存储模块404分别与处理模块402相连接,其中接收模块401和发送模块403也可以与存储模块404连接:
所述存储模块404,用于存储计算机程序,更具体地,可以使用存储器来执行所述存储模块930的功能,存储器的具体类型将在下文介绍。
示例的,所述接收模块401,用于获取多个波束中的多个同步信息块SSB。
处理模块402,用于根据存储模块404存储的全部或部分计算机程序来根据所述SSB索引与第一随机接入前导码Preamble之间的关联关系确定所述多个波束中的目标波束,所述第一随机接入前导包括循环移位和/或符号排序,所述符号为Preamble中的序列符号。更具体地,可以使用处理器或处理芯片来执行所述处理模块402的功能,处理器或处理芯片的具体类型将在下文介绍。
所述发送模块403,用于通过目标波束向网络设备发送第一随机接入前导以发起随机接入请求。
可选的,所述接收模块401还用于接收目标波束下发的随机接入响应,完成波束建立。
可选的,所述接收模块401,还用于接收指示信息,所述指示信息用于指示所述循环移位和/或所述符号排序。
可选的,接收模块401和发送模块403还可以为一个收发模块,用于执行上述接收模块401和发送模块403执行的方法步骤。
基于与上述波束建立方法的同一技术构思,图5是本申请实施例的通信装置500的示意性框图,该通信装置可以用于卫星通信。应理解,所述通信装置500能够执行图3A的方法中由通信装置执行的各个步骤,为了避免重复,此处不再详述。一种设计中,该通信装置可以包括执行图3A中所描述的方法/操作/步骤/动作所一一对应的模块,该模块可以是硬件电路,也可是软件,也可以是硬件电路结合软件实现。一种设计中,通信装置500包括:输入模块501、输出模块502和处理模块503,在具体实现时,输出模块502和输入模块501可以是一个模块:I/O模块。
所述输入模块501,用于接收终端装置发送的随机接入请求中的第一随机接入前导;更具体地,可以使用天线,射频模块,收发器,或上述组合来执行所述输入模块501的功能。
所述处理模块503,用于所述通信装置根据所述第一随机接入前导与SSB索引之间的关联关系确定所述终端装置接入的目标波束,所述第一随机接入前导包括循环移位和/或符号排序,所述符号为Preamble中的序列符号;更具体地,可以使用处理器或处理芯片来执行所述处理模块503的功能,处理器或处理芯片的具体类型将在下文介绍。
所述输出模块502用于通过所述目标波束发送随机接入响应。更具体地,可以使用天线,射频模块,收发器,或上述组合来执行所述输出模块502的功能。
可选的,所述输出模块502还用于发送指示信息,所述指示信息用于指示所述循环移位和/或所述符号排序。
图6是本申请实施例的通信装置600的结构框图。应理解,所述通信装置600能够执行图3A的方法中由终端装置或者通信装置执行的各个步骤,为了避免重复,此处不再详述。通信装置600包括:处理器111和存储器113,所述处理器111和所述存储器113之间电偶合;
所述存储器113,用于存储计算机程序指令,可选的,所述存储器1位于所述装置内,所述存储器2与处理器111集成在一起,或者所述存储器3位于所述装置之外;
所述处理器111,用于执行所述存储器中的部分或者全部计算机程序指令,当所述部分或者全部计算机程序指令被执行时,使得所述装置执行上述任一实施例所述的方法。
可选的,还包括:收发器112,用于和其他设备进行通信;例如接收网络设备发送的多个波束中的同步信息块SSB。
应理解,图6所示的通信装置600可以是芯片或电路。例如可设置在终端装置或者通信装置内的芯片或电路。上述收发器112也可以是通信接口。收发器包括接收器和发送器。进一步地,该通信装置600还可以包括总线系统。
其中,处理器111、存储器113、收发器112通过总线系统相连,处理器111用于执行该存储器113存储的指令,以控制收发器接收信号和发送信号,完成本申请涉及的实现方法中通信装置或者终端装置的步骤。所述存储器113可以集成在所述处理器111中,也可以与所述处理器111分开设置。
作为一种实现方式,收发器112的功能可以考虑通过收发电路或者收发专用芯片实现。处理器111可以考虑通过专用处理芯片、处理电路、处理器或者通用芯片实现。处理器可以是中央处理器(central processing unit,CPU),网络处理器(network processor,NP)或者CPU和NP的组合。处理器还可以进一步包括硬件芯片或其他通用处理器。上述硬件芯片可以是专用集成电路(application-specific integrated circuit,ASIC),可编程逻辑器件(programmable logic device,PLD)或其组合。上述PLD可以是复杂可编程逻辑器件(complex programmable logic device,CPLD),现场可编程逻辑门阵列(field-programmable gate array,FPGA),通用阵列逻辑(generic array logic,GAL)及其他可编程逻辑器件、分立门或者晶体管逻辑器件、分立硬件组件等或其任意组合。通用处理器可以是微处理器或者该处理器也可以是任何常规的处理器等。
还应理解,本申请实施例中提及的存储器可以是易失性存储器或非易失性存储器,或可包括易失性和非易失性存储器两者。其中,非易失性存储器可以是只读存储器(Read-Only Memory,ROM)、可编程只读存储器(Programmable ROM,PROM)、可擦除可编程只读存储器(Erasable PROM,EPROM)、电可擦除可编程只读存储器(Electrically EPROM,EEPROM)或闪存。易失性存储器可以是随机存取存储器(Random Access Memory,RAM),其用作外部高速缓存。通过示例性但不是限制性说明,许多形式的RAM可用,例如静态随机存取存储器(Static RAM,SRAM)、动态随机存取存储器(Dynamic RAM,DRAM)、同步动态随机存取存储器(Synchronous DRAM,SDRAM)、双倍数据速率同步动态随机存取存储器(Double Data Rate SDRAM,DDR SDRAM)、增强型同步动态随机存取存储器(Enhanced SDRAM,ESDRAM)、同步连接动态随机存取存储器(Synchlink DRAM,SLDRAM)和直接内存总线随机存取存储器(Direct Rambus RAM,DR RAM)。应注意,本申请描述的存储器旨在包括但不限于这些和任意其它适合类型的存储器。
本申请实施例提供了一种计算机存储介质,存储有计算机程序,该计算机程序包括用于执行上述的方法。
本申请实施例提供了一种包含指令的计算机程序产品,当其在计算机上运行时,使得计算机执行上述提供的方法。
图7是本申请实施例提供的一种终端装置700,其可以用于执行上述的波束建立方法和具体实施例,该装置可以是通信设备或者通信设备中的芯片。如图7所示,所述装置包括:至少一个输入接口(Input(s))121,逻辑电路122,至少一个输出接口(Output(s))123。
输入接口121,用于获取多个波束中的多个同步信息块SSB。
逻辑电路122,用于根据所述SSB索引与第一随机接入前导之间的关联关系确定所述多个波束中的目标波束,所述第一随机接入前导基于循环移位和/或符号排序确定,其中,所述符号为所述第一随机接入前导中序列部分的符号,所述序列部分包含至少两种符号。
输出接口123,用于通过所述目标波束发送第一随机接入前导以发起随机接入请求。
可选的,所述输入接口121还用于接收目标波束下发的随机接入响应,完成波束建立。
可选的,上述的逻辑电路122可以是芯片,编码器,编码电路或其他可以实现本申请方法的集成电路。
由于具体的方法和实施例在前面已经介绍过,该装置700只是用于执行该终端装置波 束建立方法,因此涉及配置方法的具体描述,特别是逻辑电路122或输出接口123的功能可以参考对应实施例的相关部分,此处不再赘述。
图8是本申请实施例提供的一种通信装置800,其可以用于执行上述的适用于波束建立方法和具体实施例,该网络设备可以是卫星或者卫星中的通信芯片。如图8所示,所述装置包括:至少一个输入接口(Input(s))131,逻辑电路132,至少一个输出接口(Output(s))133。
输入接口131,用于接收随机接入请求中的第一随机接入前导。
逻辑电路132,用于根据所述第一随机接入前导与同步信息块SSB索引之间的关联关系确定终端装置接入的目标波束,第一随机接入前导基于循环移位和/或符号排序确定,其中,所述符号为所述第一随机接入前导中序列部分的符号,所述序列部分包含至少两种符号。
输出接口133用于通过所述目标波束发送随机接入响应。
可选的,上述的逻辑电路132可以是芯片,编码器,编码电路或其他可以实现本申请方法的集成电路。
由于具体的方法和实施例在前面已经介绍过,该装置800只是用于执行网络设备波束建立方法,因此涉及配置方法的具体描述,特别是逻辑电路132或输出接口133的功能可以参考对应实施例的相关部分,此处不再赘述。
本领域普通技术人员可以意识到,结合本文中所公开的实施例描述的各示例的单元及算法步骤,能够以电子硬件、或者计算机软件和电子硬件的结合来实现。这些功能究竟以硬件还是软件方式来执行,取决于技术方案的特定应用和设计约束条件。专业技术人员可以对每个特定的应用来使用不同方法来实现所描述的功能,但是这种实现不应认为超出本申请的范围。
所属领域的技术人员可以清楚地了解到,为描述的方便和简洁,上述描述的系统、装置和单元的具体工作过程,可以参考前述方法实施例中的对应过程,在此不再赘述。
在本申请所提供的几个实施例中,应该理解到,以上所描述的装置实施例仅仅是示意性的,例如,所述单元的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个单元或组件可以结合或者可以集成到另一个系统,或一些特征可以忽略,或不执行。另一点,所显示或讨论的相互之间的通信连接可以是通过一些接口,装置或单元的间接耦合或通信连接,可以是电性,机械或其它的形式。
另外,在本申请装置实施例中的各单元可以集成在一个处理单元中,也可以是各个单元单独物理存在,也可以两个或两个以上单元集成在一个单元中。
可以理解的是,本申请的实施例中的处理器可以是中央处理单元(central processing unit,CPU),还可以是其他通用处理器、数字信号处理器(digital signal processor,DSP)、专用集成电路(application specific integrated circuit,ASIC)、现场可编程门阵列(field programmable gate array,FPGA)或者其他可编程逻辑器件、晶体管逻辑器件,硬件部件或者其任意组合。通用处理器可以是微处理器,也可以是任何常规的处理器。
本申请的实施例中的方法可以全部或部分地通过软件、硬件、固件或者其任意组合来实现。当使用软件实现时,可以全部或部分地以计算机程序产品的形式实现。所述计算机 程序产品包括一个或多个计算机程序或指令。在计算机上加载和执行所述计算机程序或指令时,全部或部分地执行本申请实施例所述的流程或功能。所述计算机可以是通用计算机、专用计算机、计算机网络、或者其他可编程装置。所述计算机程序或指令可以存储在计算机可读存储介质中,或者通过所述计算机可读存储介质进行传输。所述计算机可读存储介质可以是计算机能够存取的任何可用介质或者是集成一个或多个可用介质的服务器等数据存储设备。所述可用介质可以是磁性介质,例如,软盘、硬盘、磁带;也可以是光介质,例如,CD-ROM,DVD;还可以是半导体介质,例如,固态硬盘(solid state disk,SSD),随机存取存储器(random access memory,RAM)、只读存储器(read-only memory,ROM)和寄存器等。
本领域内的技术人员应明白,本申请的实施例可提供为方法、系统、或计算机程序产品。因此,本申请可采用完全硬件实施例、完全软件实施例、或结合软件和硬件方面的实施例的形式。而且,本申请可采用在一个或多个其中包括有计算机可用程序代码的计算机可用存储介质(包括但不限于磁盘存储器、CD-ROM、光学存储器等)上实施的计算机程序产品的形式。
本申请是参照根据本申请实施例的方法、设备(系统)、和计算机程序产品的流程图和/或方框图来描述的。应理解可由计算机程序指令实现流程图和/或方框图中的每一流程和/或方框、以及流程图和/或方框图中的流程和/或方框的结合。可提供这些计算机程序指令到通用计算机、专用计算机、嵌入式处理机或其他可编程数据处理设备的处理器以产生一个机器,使得通过计算机或其他可编程数据处理设备的处理器执行的指令产生用于实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能的装置。

Claims (15)

  1. 一种波束建立方法,其特征在于,所述方法包括:
    终端装置获取多个波束中的同步信息块SSB,所述SSB中包括SSB索引;
    所述终端装置根据所述SSB索引与第一随机接入前导之间的关联关系确定所述多个波束中的目标波束,所述第一随机接入前导基于循环移位和/或符号排序确定,其中,所述符号为所述第一随机接入前导中序列部分的符号,所述序列部分包含至少两种符号;
    所述终端装置通过所述目标波束发送第一随机接入前导以发起随机接入请求。
  2. 根据权利要求1所述的方法,其特征在于,所述根据所述SSB索引与第一随机接入前导之间的关联关系确定所述多个波束中的目标波束包括:
    获取所述第一随机接入前导;
    根据所述第一随机接入前导与所述SSB索引的关联关系确定目标SSB,并将所述目标SSB对应的波束确定为目标波束。
  3. 根据权利要求1或2所述的方法,其特征在于,所述循环移位至少由所述SSB索引和所述第一随机接入前导序列长度参数计算获得。
  4. 根据权利要求3所述的方法,其特征在于,所述循环移位为:
    C v=(n*SSB index+offset)%L RA
    其中,SSB index表示所述SSB索引,offset表示偏移量,L RA表示所述第一随机接入前导序列的长度,n为整数,%表示取余。
  5. 根据权利要求1-4任一项所述的方法,其特征在于,在所述获取多个波束中的SSB之后,所述方法还包括:
    所述终端装置接收指示信息,所述指示信息用于指示所述循环移位和/或所述符号排序。
  6. 一种波束建立方法,其特征在于,所述方法包括:
    通信装置接收随机接入请求中的第一随机接入前导;
    所述通信装置根据所述第一随机接入前导与同步信息块SSB索引之间的关联关系确定终端装置接入的目标波束,第一随机接入前导基于循环移位和/或符号排序确定,其中,所述符号为所述第一随机接入前导中序列部分的符号,所述序列部分包含至少两种符号;
    所述通信装置通过所述目标波束发送随机接入响应。
  7. 根据权利要求6所述的方法,其特征在于,在所述接收随机接入请求中的第一随机接入前导之前,所述方法还包括:
    所述通信装置发送指示信息,所述指示信息用于指示所述循环移位和/或所述符号排序。
  8. 一种终端装置,其特征在于,所述装置包括:
    接收单元,用于获取多个波束中的同步信息块SSB,所述SSB中包括SSB索引;
    处理单元,用于根据所述SSB索引与第一随机接入前导之间的关联关系确定所述多个波束中的目标波束,所述第一随机接入前导基于循环移位和/或符号排序确定,其中,所述符号为所述第一随机接入前导中序列部分的符号,所述序列部分包含至少两种符号;
    发送单元,用于通过所述目标波束发送第一随机接入前导以发起随机接入请求。
  9. 根据权利要求8所述的装置,其特征在于,在所述获取多个波束中的SSB之后,所述接收单元还用于:
    接收指示信息,所述指示信息用于指示所述循环移位和/或所述符号排序。
  10. 一种通信装置,其特征在于,所述网络设备包括:
    输入单元,用于接收随机接入请求中的第一随机接入前导;
    处理单元,根据所述第一随机接入前导与同步信息块SSB索引之间的关联关系确定终端装置接入的目标波束,第一随机接入前导基于循环移位和/或符号排序确定,其中,所述符号为所述第一随机接入前导中序列部分的符号,所述序列部分包含至少两种符号;
    输出单元,用于通过所述目标波束向所述终端装置发送随机接入响应。
  11. 根据权利要求10所述的通信装置,其特征在于,所述输出单元还用于:
    发送指示信息,所述指示信息用于指示所述循环移位和/或所述符号排序。
  12. 一种通信装置,其特征在于,
    包括:处理器和存储器,所述处理器和所述存储器之间电偶合;
    所述处理器调用所述存储器中存储的部分或者全部计算机程序指令,使得该通信装置执行如权利要求1-5或权利要求6-7所述的任一方法。
  13. 一种计算机可读存储介质,其特征在于,所述计算机存储介质中存储有计算机可读指令,当计算机读取并执行所述计算机可读指令时,使得计算机执行如权利要求1-5或权利要求6-7所述的任一方法。
  14. 一种计算机程序产品,其特征在于,所述计算机程序产品包括计算机程序代码,当所述计算机程序代码在计算机上运行时,使得计算机执行如权利要求1-5任一项所述的方法,或者,执行如权利要求6-7任一项所述的方法。
  15. 一种通信装置,包括:输入接口电路,逻辑电路和输出接口电路,其中,所述逻辑电路,用于执行如权利要求1-5任一项所述的方法,或者,执行如权利要求6-7任一项所述的方法。
PCT/CN2020/124271 2019-11-08 2020-10-28 一种波束建立方法及装置 WO2021088692A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP20885695.5A EP4047851B1 (en) 2019-11-08 2020-10-28 Beam establishment method and apparatus
US17/738,863 US20220263701A1 (en) 2019-11-08 2022-05-06 Beam establishment method and apparatus

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201911089943.5A CN112787785B (zh) 2019-11-08 2019-11-08 一种波束建立方法及装置
CN201911089943.5 2019-11-08

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US17/738,863 Continuation US20220263701A1 (en) 2019-11-08 2022-05-06 Beam establishment method and apparatus

Publications (1)

Publication Number Publication Date
WO2021088692A1 true WO2021088692A1 (zh) 2021-05-14

Family

ID=75748494

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/124271 WO2021088692A1 (zh) 2019-11-08 2020-10-28 一种波束建立方法及装置

Country Status (4)

Country Link
US (1) US20220263701A1 (zh)
EP (1) EP4047851B1 (zh)
CN (1) CN112787785B (zh)
WO (1) WO2021088692A1 (zh)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114599117A (zh) * 2022-03-07 2022-06-07 中国科学院微小卫星创新研究院 低轨卫星网络随机接入中回退资源的动态配置方法
CN114727422A (zh) * 2022-03-07 2022-07-08 中国科学院微小卫星创新研究院 低轨卫星网络随机接入中信道资源的动态配置方法
WO2023155594A1 (zh) * 2022-02-18 2023-08-24 大唐移动通信设备有限公司 Msg3发送方法、Msg3接收方法、装置、设备及可读存储介质
US11943816B2 (en) * 2020-10-14 2024-03-26 Qualcomm Incorporated Random access preamble spatial overloading

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023092360A1 (zh) * 2021-11-24 2023-06-01 株式会社Ntt都科摩 通信系统中的终端以及基站
WO2023155589A1 (zh) * 2022-02-16 2023-08-24 华为技术有限公司 上行接入方法及通信装置
CN116709564A (zh) * 2022-02-28 2023-09-05 展讯半导体(南京)有限公司 一种通信方法及其装置
CN116981071A (zh) * 2022-04-14 2023-10-31 展讯通信(上海)有限公司 随机接入方法及设备
CN118019107A (zh) * 2022-10-27 2024-05-10 大唐移动通信设备有限公司 一种利用接入波束进行随机接入的方法和ue及基站

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109327912A (zh) * 2017-07-31 2019-02-12 中兴通讯股份有限公司 一种随机接入方法和装置
WO2019066575A1 (ko) * 2017-09-28 2019-04-04 엘지전자 주식회사 무선 통신 시스템에서 무선 신호 송수신 방법 및 장치
CN110050506A (zh) * 2017-11-17 2019-07-23 Lg电子株式会社 发送和接收物理随机接入信道的方法及其装置

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20200305197A1 (en) * 2016-03-11 2020-09-24 Lg Electronics Inc. System information signal reception method, user equipment, system information signal transmitting method and base station
CN109792771B (zh) * 2016-09-29 2024-04-09 华为技术有限公司 一种随机接入前导序列的生成方法及用户设备
KR20190059913A (ko) * 2016-09-29 2019-05-31 가부시키가이샤 엔티티 도코모 유저단말, 무선기지국 및 무선 통신 방법
CN108235444B (zh) * 2016-12-12 2021-09-10 北京三星通信技术研究有限公司 随机接入的方法及基站设备、用户设备
CN108322282B (zh) * 2017-01-16 2021-11-12 北京三星通信技术研究有限公司 随机接入前导序列的生成方法、指示方法和装置
WO2018131985A1 (en) * 2017-01-16 2018-07-19 Samsung Electronics Co., Ltd. Method and apparatus for performing random access
CN108809597B (zh) * 2017-05-05 2023-05-26 北京三星通信技术研究有限公司 前导序列循环移位量确定方法及其集合配置方法与装置
EP3636024B1 (en) * 2017-05-05 2023-08-23 Samsung Electronics Co., Ltd. Method and apparatus for uplink transmission in wireless communication system
US11533750B2 (en) * 2017-10-09 2022-12-20 Qualcomm Incorporated Random access response techniques based on synchronization signal block transmissions
CN110380837B (zh) * 2018-02-24 2020-12-25 华为技术有限公司 非竞争随机接入的方法和装置
CN110312309B (zh) * 2018-03-27 2021-12-31 华为技术有限公司 一种随机接入的方法及装置
CN109041250B (zh) * 2018-07-19 2022-03-18 宇龙计算机通信科技(深圳)有限公司 一种ssb的传输方法、客户端及基站
WO2020166848A1 (ko) * 2019-02-15 2020-08-20 엘지전자 주식회사 무선 통신 시스템에서 단말의 빔 관련 상향링크 피드백 정보 전송 방법 및 이를 지원하는 단말 및 기지국
JPWO2020196537A1 (zh) * 2019-03-28 2020-10-01

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109327912A (zh) * 2017-07-31 2019-02-12 中兴通讯股份有限公司 一种随机接入方法和装置
WO2019066575A1 (ko) * 2017-09-28 2019-04-04 엘지전자 주식회사 무선 통신 시스템에서 무선 신호 송수신 방법 및 장치
CN110050506A (zh) * 2017-11-17 2019-07-23 Lg电子株式会社 发送和接收物理随机接入信道的方法及其装置

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
LG ELECTRONICS: ""Physical layer design of initial access signals and channels for NR-U"", 3GPP TSG RAN WG1 #98BIS, R1-1910816, 20 October 2019 (2019-10-20), XP051789602 *
See also references of EP4047851A4

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11943816B2 (en) * 2020-10-14 2024-03-26 Qualcomm Incorporated Random access preamble spatial overloading
WO2023155594A1 (zh) * 2022-02-18 2023-08-24 大唐移动通信设备有限公司 Msg3发送方法、Msg3接收方法、装置、设备及可读存储介质
CN114599117A (zh) * 2022-03-07 2022-06-07 中国科学院微小卫星创新研究院 低轨卫星网络随机接入中回退资源的动态配置方法
CN114727422A (zh) * 2022-03-07 2022-07-08 中国科学院微小卫星创新研究院 低轨卫星网络随机接入中信道资源的动态配置方法
CN114599117B (zh) * 2022-03-07 2023-01-10 中国科学院微小卫星创新研究院 低轨卫星网络随机接入中回退资源的动态配置方法
CN114727422B (zh) * 2022-03-07 2023-01-10 中国科学院微小卫星创新研究院 低轨卫星网络随机接入中信道资源的动态配置方法

Also Published As

Publication number Publication date
EP4047851A4 (en) 2022-12-07
CN112787785B (zh) 2022-08-26
US20220263701A1 (en) 2022-08-18
EP4047851B1 (en) 2024-03-13
EP4047851A1 (en) 2022-08-24
CN112787785A (zh) 2021-05-11

Similar Documents

Publication Publication Date Title
WO2021088692A1 (zh) 一种波束建立方法及装置
TWI824109B (zh) 兩步驟隨機接取中從使用者設備到基地台之訊息結構
CN111279757B (zh) 一种传输消息的方法及设备
US20170290064A1 (en) Method for configuring random access response window, base station and user equipment
WO2020200157A1 (zh) 传输方法、装置、终端、基站、通信系统及存储介质
KR20190095431A (ko) 참고 신호 송신 방법 및 장치
US11178703B2 (en) Communication method and communications device
WO2021088740A1 (zh) 适用于卫星网络的随机接入前导配置方法及装置
WO2019157910A1 (zh) 同步信号块的传输方法、通信装置及通信设备
JP2021503791A (ja) 検出ウィンドウ指示方法及び装置
WO2022061507A1 (zh) 信息传输方法、设备及存储介质
BR112021002427A2 (pt) método, aparelho, dispositivo de acesso randômico e dispositivo de armazenamento
CN113556667A (zh) 定位信号处理方法及装置
CN114616911A (zh) 信息指示方法及装置
CN109803442A (zh) 一种同步信号的发送方法、网络设备及终端设备
WO2019214583A1 (zh) 上行传输的方法和用户设备
US20220287082A1 (en) Random access method and apparatus, network device, terminal, and storage medium
EP4106475A1 (en) Random access response method and apparatus
WO2019141244A1 (zh) 随机接入方法、装置、设备、芯片、存储介质及程序产品
WO2023143363A1 (zh) 一种通信方法和装置
CN106576361B (zh) 基于nb m2m的dci长度的指示方法、装置和设备
US20230112445A1 (en) Method and apparatus for transmitting uplink channel for random access in wireless communication system
WO2020223842A1 (en) Resource mapping for low latency rach
CN115175292A (zh) 一种功率调整方法、通信装置、芯片及其模组设备
CN117880839A (zh) 资源配置方法及相关装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20885695

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020885695

Country of ref document: EP

Effective date: 20220520

NENP Non-entry into the national phase

Ref country code: DE