WO2021088545A1 - 一种全自动化学发光免疫分析仪的加样方法 - Google Patents

一种全自动化学发光免疫分析仪的加样方法 Download PDF

Info

Publication number
WO2021088545A1
WO2021088545A1 PCT/CN2020/116848 CN2020116848W WO2021088545A1 WO 2021088545 A1 WO2021088545 A1 WO 2021088545A1 CN 2020116848 W CN2020116848 W CN 2020116848W WO 2021088545 A1 WO2021088545 A1 WO 2021088545A1
Authority
WO
WIPO (PCT)
Prior art keywords
sampling needle
liquid
discharge
sample
discharged
Prior art date
Application number
PCT/CN2020/116848
Other languages
English (en)
French (fr)
Inventor
吴国银
黄海进
尤文艳
Original Assignee
苏州长光华医生物医学工程有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 苏州长光华医生物医学工程有限公司 filed Critical 苏州长光华医生物医学工程有限公司
Publication of WO2021088545A1 publication Critical patent/WO2021088545A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N35/00Automatic analysis not limited to methods or materials provided for in any single one of groups G01N1/00 - G01N33/00; Handling materials therefor
    • G01N35/10Devices for transferring samples or any liquids to, in, or from, the analysis apparatus, e.g. suction devices, injection devices
    • G01N35/1009Characterised by arrangements for controlling the aspiration or dispense of liquids
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
    • G01N33/53Immunoassay; Biospecific binding assay; Materials therefor
    • G01N33/5302Apparatus specially adapted for immunological test procedures

Definitions

  • This application belongs to the technical field of medical devices, and in particular relates to a sample adding method for an automatic chemiluminescence immunoassay analyzer.
  • the technical problem to be solved by the present invention is: in order to solve the problem of large bubbles generated when the sampling needle is discharged in the prior art, thereby providing a sample adding method for an automatic chemiluminescence immunoassay analyzer.
  • the technical scheme adopted by the present invention to solve its technical problems is: a sample adding method for a fully automatic chemiluminescence immunoassay analyzer, which includes the following steps:
  • S4 Determine whether the discharge volume V 2 exceeds the discharge volume threshold that will generate bubbles; if it exceeds the discharge volume threshold, proceed to S51, and if it does not exceed the discharge volume threshold, proceed to S52;
  • step S51 the needle tip of the sampling needle is controlled to move upwards to more than h from the bottom of the cuvette to ensure that the needle tip is above the liquid surface; then the sample liquid is discharged And the upper air column, and control the sampling needle to gradually raise, the height of raising is V 2 /S.
  • the moving speed of the sampling needle is a constant speed when the sampling needle is gradually raised.
  • the flow rate of the sampling needle discharge is increased when the lower air column is discharged, and decreased when the sample liquid is discharged, and is higher than the discharge. Increase when the air column.
  • the sampling method of the automatic chemiluminescence immunoassay analyzer of the present invention adopts a flat-head sampling needle, and the cross-sectional radius of the needle tip of the sampling needle is r.
  • the needle tip of the sampling needle is controlled to move upward to a distance from the bottom of the cuvette. Above h, below h+r; then start to nest and control the sampling needle to gradually raise, the height of elevation is V 2 /S.
  • the raising speed v 1 ⁇ r 2 /S*v 2
  • v 2 is the flow rate during the sampling.
  • step S52 the flow rate of the sampling needle discharge is increased during the discharge of the lower air column, and decreased when the sample liquid is discharged, and is higher than the discharge.
  • the air column is reduced again.
  • step S3 the step of obtaining the discharge volume V 2 of the sample solution to be discharged next time is:
  • the serial number of the batch of sample liquid is called, and the discharge volume V 2 of the sample liquid is obtained according to the serial number.
  • step S4 the step of obtaining the discharge volume threshold is: taking a reaction cup, discharging a certain amount of the sampling needle, and then displacing the sampling needle The tip of the needle moves below the liquid surface; then a number of discharge experiments are performed, and the discharge volume gradually increases each time.
  • the discharge volume threshold is obtained and recorded.
  • the sample adding method of the automatic chemiluminescence immunoassay analyzer of the present invention further includes:
  • the beneficial effects of the present invention are: effectively reducing the generation of bubbles, reducing the probability of the wall hanging liquid in the reaction cup caused by bubble bursting, thereby improving the accuracy of the test result.
  • Fig. 1 is a schematic diagram of a sampling needle layout state of an embodiment of the present application
  • FIG. 2 is a flowchart of a sample adding method of an automatic chemiluminescence immunoassay analyzer according to an embodiment of the present application
  • FIG. 3 is a schematic diagram of the sample liquid structure at the tip of the sampling needle of Application Example 2.
  • FIG. 3 is a schematic diagram of the sample liquid structure at the tip of the sampling needle of Application Example 2.
  • connection should be understood in a broad sense, unless otherwise clearly specified and limited.
  • it can be a fixed connection or a detachable connection.
  • Connected or integrally connected it can be a mechanical connection or an electrical connection; it can be directly connected or indirectly connected through an intermediate medium, and it can be the internal communication between two components.
  • connection should be understood through specific circumstances.
  • one end of the pipe 7 is connected with a sampling needle 1, and the sampling needle 1 extends into the reaction cup 4 for sampling.
  • the sampling needle 1 is divided into upper air column 3, sample liquid 2, and lower air from top to bottom.
  • the upper air column 3 is used to isolate the cleaning fluid, and the lower air column prevents the needle tip from shaking.
  • This embodiment provides a sample loading method for an automatic chemiluminescence immunoassay analyzer, as shown in FIG. 2, including the following steps:
  • S4 Determine whether the discharge volume V 2 exceeds the discharge volume threshold that will generate bubbles; if it exceeds the discharge volume threshold, proceed to S51, and if it does not exceed the discharge volume threshold, proceed to S52;
  • step S51 is to avoid bubbles generated by the discharge of the lower air column, and avoid bubbles generated by the discharge of the upper air column.
  • step S52 The function of step S52 is to avoid bubbles generated by the discharge of the lower air column, and to ensure that the sample is cleaned when the small displacement sample liquid is discharged.
  • step S4 the determination of the threshold comes from experiments.
  • step S51 the needle tip of the sampling needle is controlled to move upward to a distance h above the bottom of the cuvette to ensure that the needle tip is above the liquid surface; and then start to discharge the sample Liquid and the upper air column, and control the sampling needle to gradually raise, the height of the elevation is V 2 /S. Because of this draining is completed, the liquid surface height is elevated V 2 / S, so that the height of the elevation is V 2 / S, the height of the tip can be better maintained and the level difference between the top of the column of air in order to avoid Air bubbles are generated during the discharge process.
  • the moving speed of the sampling needle is a constant speed when the sampling needle is gradually raised.
  • the height difference between the needle tip and the liquid surface can be better controlled, so as to avoid the generation of air bubbles during the discharge of the upper air column.
  • step S51 the flow rate of the sampling needle discharge is increased when the lower air column is discharged, and decreased when the sample liquid is discharged.
  • the upper air column increases.
  • step S52 the flow rate of the sampling needle discharge is increased when the lower air column is discharged, and decreased when the sample liquid is discharged.
  • the upper air column is reduced again.
  • speed up the discharge speed to save time, when discharging liquid, reduce the discharge speed to avoid liquid splashing, and lower the discharge speed when discharging the upper air column to avoid bubbles.
  • step S3 the step of obtaining the discharge volume V 2 of the sample solution to be discharged next time is:
  • the serial number of the batch of sample liquid is called, and the discharge volume V 2 of the sample liquid is obtained according to the serial number.
  • step S4 the step of obtaining the discharge volume threshold is: take a reaction cup, discharge a certain amount of liquid with the sampling needle, and then sample The needle tip of the needle moves below the liquid surface; then several discharge experiments are performed, and the discharge volume gradually increases each time.
  • the discharge volume threshold is obtained and recorded.
  • the sample loading method of the automatic chemiluminescence immunoassay analyzer of this embodiment further includes:
  • This embodiment provides a sample loading method for an automatic chemiluminescence immunoassay analyzer, as shown in FIG. 2, including the following steps:
  • S4 Determine whether the discharge volume V 2 exceeds the discharge volume threshold that will generate bubbles; if it exceeds the discharge volume threshold, proceed to S51, and if it does not exceed the discharge volume threshold, proceed to S52;
  • the sampling method of the automatic chemiluminescence immunoassay analyzer of this embodiment adopts a flat-headed sampling needle, and the cross-sectional radius of the sampling needle tip is r.
  • the sampling needle tip is controlled to move upward to a distance h above the bottom of the cuvette. , Below h+r; then start to nest and control the sampling needle to gradually raise, the height of elevation is V 2 /S.
  • step S51 when the discharge volume V 2 exceeds the discharge volume threshold, when the sample liquid is discharged from the needle tip, the liquid surface at the lower end of the liquid column is hemispherical due to surface tension, and the radius of the sphere is r. Therefore, in this embodiment
  • the tip of the sampling needle is controlled to move upwards from the bottom of the cuvette to h above and below h+r, when the sample liquid is discharged, the lowest point of the lower end of the liquid column can contact the cuvette 4 as shown in Figure 3
  • the liquid surface surface of the collected sample liquid 5, so the lower end of the liquid column will be drained into the collected sample liquid 5 below, so that almost no liquid splash occurs when the sample liquid is discharged, which greatly improves the accuracy of the experiment.
  • the raising speed v 1 ⁇ r 2 /S*v 2
  • v 2 is the flow rate during the nesting.

Landscapes

  • Health & Medical Sciences (AREA)
  • Immunology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Analytical Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Hematology (AREA)
  • Pathology (AREA)
  • Molecular Biology (AREA)
  • Urology & Nephrology (AREA)
  • General Physics & Mathematics (AREA)
  • General Health & Medical Sciences (AREA)
  • Biochemistry (AREA)
  • Biomedical Technology (AREA)
  • Cell Biology (AREA)
  • Medicinal Chemistry (AREA)
  • Food Science & Technology (AREA)
  • Biotechnology (AREA)
  • Microbiology (AREA)
  • Investigating Or Analysing Materials By The Use Of Chemical Reactions (AREA)
  • Automatic Analysis And Handling Materials Therefor (AREA)

Abstract

一种全自动化学发光免疫分析仪的加样方法,包括步骤S1:每次排样时,记录液量,当前反应杯(4)中的液量为之前排样的总和;根据反应杯(4)的截面积计算液面高度;S2:取样针(1)运动至液面以上Xmm,确保下方空气柱在液面以上排放;S3:根据待排液量区分,液量较大时,原地开始排放样液(2)和上方空气柱(3),并上抬取样针(1),防止针尖被反应杯(4)中液体(5)淹没过高;液量较小时,取样针(1)继续向下移动至液面以下Ymm,并静止排放样液(2)和上方空气柱(3),保证针尖液体与反应杯(4)中的液体(5)有接触,能够排放完全;S4:待排放过程结束后,取样针(1)回到垂直方向的零点,继续后续动作。该方法能够有效减少气泡的产生,降低气泡爆裂引起的反应杯(4)内壁挂液概率,从而提高测试结果的准确性。

Description

一种全自动化学发光免疫分析仪的加样方法 技术领域
本申请属于医疗器械技术领域,尤其是涉及一种全自动化学发光免疫分析仪的加样方法。
背景技术
目前,目前全自动化学发光仪器中,吸取试剂或者样本时,多带有上、下方空气柱,上方空气柱用来隔离清洗液,下方空气柱防止针尖甩液,污染台面。调查发现,部分全自动化学发光免疫分析仪排样时,为避免试剂或样本排不干净,多采用液下排样方式。在排样时,业内很多设备使用液面探测进行取样针定位,该方法过度依赖液面探测的灵敏度,灵敏度太高时容易出现误探情况,灵敏度较低时取样针会过冲到液面以下进行排样,由于空气柱的存在,在液面以下排样,极易产生气泡;并且每个厂家的设备上取样针/试剂针/磁珠针的针尖形状不同,常见的有斜口和平口,斜口的切面更大,更容易因排放空气柱“吹”出气泡;气泡足够大时,可能会爆裂喷溅到反应杯内壁,如果清洗分离不完全,可能会对实验结果造成影响,问题亟待解决。
发明内容
本发明要解决的技术问题是:为解决现有技术中取样针排液时会产生较大气泡的问题,从而提供一种全自动化学发光免疫分析仪的加样方法。
本发明解决其技术问题所采用的技术方案是:一种全自动化学发光免疫分析仪的加样方法,包括以下步骤:
S1:将取样针移动到反应杯杯底,进行首次排样;
取样针每次排样,排样的排液量均进行记录;
S2:根据之前排液量的总和V 1,并根据反应杯的截面积S计算反应杯中已经形成的液面的高度h,h=V 1/S;
S3:获取待排出的样液的排液量V 2
S4:判定排液量V 2是否超过会产生气泡的排液量阈值;超过排液量阈值则进行S51,不超过排液量阈值则进行S52;
S51:控制取样针针尖移动到距离反应杯杯底h以上,进行下方空气柱的排放;随后开始排放样液和上方空气柱,并控制取样针逐渐抬高;
S52:控制取样针针尖移动到距离反应杯杯底h以上,进行下方空气柱的排放;然后,控制取样针针尖移动到距离反应杯杯底h以下,开始排放样液和上方空气柱,取样针高度不变。
优选地,本发明的全自动化学发光免疫分析仪的加样方法,在步骤S51中,控制取样针针尖向上移动到距离反应杯杯底h以上,确保针尖在液面以上;随后开始排放样液和上方空气柱,并控制取样针逐渐抬高,抬高的高度为V 2/S。
优选地,本发明的全自动化学发光免疫分析仪的加样方法,在步骤S51中,取样针逐渐抬高时移动速度为匀速。
优选地,本发明的全自动化学发光免疫分析仪的加样方法,在步骤S51中,取样针排样的流速进行下方空气柱的排放时增大,在排放样液时减小,在排放上方空气柱时增大。
优选地,本发明的全自动化学发光免疫分析仪的加样方法,采用平头取样针,取样针的针尖横截面半径为r,在步骤S51中,控制取样针针尖向上移动到距离反应杯杯底h以上,h+r以下;随后开始排样并控制取样针逐渐抬高,抬高的高度为V 2/S。
优选地,本发明的全自动化学发光免疫分析仪的加样方法,取样针逐渐抬高时,抬升的速度v 1=πr 2/S*v 2,v 2为排样时的流速。
优选地,本发明的全自动化学发光免疫分析仪的加样方法,在步骤S52中,取样针排样的流速进行下方空气柱的排放时增大,在排放样液时减小,在排放上方空气柱时再减小。
优选地,本发明的全自动化学发光免疫分析仪的加样方法,步骤S3中,获取下次待排出的样液的排液量V 2的步骤为:
在排样开始前,给待排样的每个批次的样液进行编号,记载每个编号对应批次的样液的排液量;
在样液待排出时调取该批次样液的编号,根据编号获取样液的排液量V 2
优选地,本发明的全自动化学发光免疫分析仪的加样方法,步骤S4中,获得排液量阈值的步骤为:取一个反应杯,将取样针进行一定量的排液,随后将取样针的针尖移动到液面之下;随后进行若干次排液实验,每次的排液量逐渐增大,当排液开始产生气泡时,得出排液量阈值,并进行记录。
优选地,本发明的全自动化学发光免疫分析仪的加样方法,还包括:
S6:在排放过程结束后,取样针升高至高度高于反应杯杯口。
本发明的有益效果是:有效减少气泡的产生,降低气泡爆裂引起的反应杯内壁挂液概率,从而提高测试结果的准确性。
附图说明
下面结合附图和实施例对本申请的技术方案进一步说明。
图1是本申请实施例的取样针排样状态示意图;
图2是本申请实施例的全自动化学发光免疫分析仪的加样方法流程图;
图3是申请实施例2的取样针针尖处样液结构示意图。
图中的附图标记为:
1 取样针
2 样液
3 上方空气柱
4 反应杯
5 已收集的样液
7 管道。
具体实施方式
需要说明的是,在不冲突的情况下,本申请中的实施例及实施例中的特征可以相互组合。
在本申请的描述中,需要理解的是,术语“中心”、“纵向”、“横向”、“上”、“下”、“前”、“后”、“左”、“右”、“竖直”、“水平”、“顶”、“底”、“内”、“外”等指示的方位或位置关系为基于附图所示的方位 或位置关系,仅是为了便于描述本申请和简化描述,而不是指示或暗示所指的装置或元件必须具有特定的方位、以特定的方位构造和操作,因此不能理解为对本申请保护范围的限制。此外,术语“第一”、“第二”等仅用于描述目的,而不能理解为指示或暗示相对重要性或者隐含指明所指示的技术特征的数量。由此,限定有“第一”、“第二”等的特征可以明示或者隐含地包括一个或者更多个该特征。在本发明创造的描述中,除非另有说明,“多个”的含义是两个或两个以上。
在本申请的描述中,需要说明的是,除非另有明确的规定和限定,术语“安装”、“相连”、“连接”应做广义理解,例如,可以是固定连接,也可以是可拆卸连接,或一体地连接;可以是机械连接,也可以是电连接;可以是直接相连,也可以通过中间媒介间接相连,可以是两个元件内部的连通。对于本领域的普通技术人员而言,可以通过具体情况理解上述术语在本申请中的具体含义。
下面将参考附图并结合实施例来详细说明本申请的技术方案。
实施例1
如图1所示,管道7的一端连接有取样针1,取样针1伸入反应杯4内进行排样,取样针1内从上至下分为上方空气柱3、样液2、下方空气柱,上方空气柱3用来隔离清洗液,下方空气柱防止针尖甩液。
本实施例提供一种全自动化学发光免疫分析仪的加样方法,如图2所示,包括以下步骤:
S1:将取样针移动到反应杯杯底,进行首次排样;
取样针每次排样,排样的排液量均进行记录;
S2:根据之前排液量的总和V 1,并根据反应杯的截面积S计算反应杯中已经形成的液面的高度h,h=V 1/S;
S3:获取待排出的样液的排液量V 2
S4:判定排液量V 2是否超过会产生气泡的排液量阈值;超过排液量阈值则进行S51,不超过排液量阈值则进行S52;
S51:控制取样针针尖移动到距离反应杯杯底h以上,进行下方空气柱的排放;随后开始排放样液和上方空气柱,并控制取样针逐渐抬高;
S52:控制取样针针尖移动到距离反应杯杯底h以上,进行下方空气柱的排放;然后,控制取样针针尖移动到距离反应杯杯底h以下,开始排放样液和上方空气柱,取样针高度不变。
本实施例的全自动化学发光免疫分析仪的加样方法,步骤S51的作用是:避免了下方空气柱排放产生气泡,并避免了上方空气柱排放产生气泡。
步骤S52的作用是:避免了下方空气柱排放产生气泡,并保证小排量样液排放时样本排干净。
步骤S4中,阈值的确定来自于实验。
优选地,本实施例的全自动化学发光免疫分析仪的加样方法,在步骤S51中,控制取样针针尖向上移动到距离反应杯杯底h以上,确保针尖在液面以上;随后开始排放样液和上方空气柱,并控制取样针逐渐抬高,抬高的高度为V 2/S。因为本次排液完成时,液面升高的高 度是V 2/S,所以抬高的高度为V 2/S时,能够较好地保持针尖与液面的高度差,以避免上方空气柱排放过程中产生气泡。
优选地,本实施例的全自动化学发光免疫分析仪的加样方法,在步骤S51中,取样针逐渐抬高时移动速度为匀速。本优选实施例中,能够更好的控制针尖与液面的高度差,以避免上方空气柱排放过程中产生气泡。
优选地,本实施例的全自动化学发光免疫分析仪的加样方法,在步骤S51中,取样针排样的流速进行下方空气柱的排放时增大,在排放样液时减小,在排放上方空气柱时增大。排放气体时,加快排放速度节省时间,排放液体时,降低排放速度以避免液体的飞溅。
优选地,本实施例的全自动化学发光免疫分析仪的加样方法,在步骤S52中,取样针排样的流速进行下方空气柱的排放时增大,在排放样液时减小,在排放上方空气柱时再减小。排放下方空气柱时,加快排放速度节省时间,排放液体时,降低排放速度以避免液体的飞溅,排放上方空气柱时降低排放速度以避免产生气泡。
优选地,本实施例的全自动化学发光免疫分析仪的加样方法,步骤S3中,获取下次待排出的样液的排液量V 2的步骤为:
在排样开始前,给待排样的每个批次的样液进行编号,记载每个编号对应批次的样液的排液量;
在样液待排出时调取该批次样液的编号,根据编号获取样液的排液量V 2
优选地,本实施例的全自动化学发光免疫分析仪的加样方法,步 骤S4中,获得排液量阈值的步骤为:取一个反应杯,将取样针进行一定量的排液,随后将取样针的针尖移动到液面之下;随后进行若干次排液实验,每次的排液量逐渐增大,当排液开始产生气泡时,得出排液量阈值,并进行记录。
优选地,本实施例的全自动化学发光免疫分析仪的加样方法,还包括:
S6:在排放过程结束后,取样针升高至高度高于反应杯杯口。
实施例2
本实施例提供一种全自动化学发光免疫分析仪的加样方法,如图2所示,包括以下步骤:
S1:将取样针移动到反应杯杯底,进行首次排样;
取样针每次排样,排样的排液量均进行记录;
S2:根据之前排液量的总和V 1,并根据反应杯的截面积S计算反应杯中已经形成的液面的高度h,h=V 1/S;
S3:获取待排出的样液的排液量V 2
S4:判定排液量V 2是否超过会产生气泡的排液量阈值;超过排液量阈值则进行S51,不超过排液量阈值则进行S52;
S51:控制取样针针尖移动到距离反应杯杯底h以上,进行下方空气柱的排放;随后开始排放样液和上方空气柱,并控制取样针逐渐抬高;
S52:控制取样针针尖移动到距离反应杯杯底h以上,进行下方空气柱的排放;然后,控制取样针针尖移动到距离反应杯杯底h以下, 开始排放样液和上方空气柱,取样针高度不变。
本实施例的全自动化学发光免疫分析仪的加样方法,采用平头取样针,取样针的针尖横截面半径为r,在步骤S51中,控制取样针针尖向上移动到距离反应杯杯底h以上,h+r以下;随后开始排样并控制取样针逐渐抬高,抬高的高度为V 2/S。
如图3所示,在排液量V 2超过排液量阈值时,样液从针尖排出时,液柱下端的液面由于表面张力呈现半球形,球体半径为r,因此,本实施例中,当在步骤S51中,控制取样针针尖向上移动到距离反应杯杯底h以上,h+r以下时,样液排出时,液柱下端的最低点如图3所示能够接触反应杯4中已收集的样液5的液面表面,因此液柱下端会被引流到下方已收集的样液5中,这样在样液排放时几乎不会发生液体的飞溅,极大提高实验精确度。
优选地,本实施例的全自动化学发光免疫分析仪的加样方法,取样针逐渐抬高时,抬升的速度v 1=πr 2/S*v 2,v 2为排样时的流速。当v 1=πr 2/S*v 2时,保证已收集的样液5的液面和针尖的距离在取样针针尖向上移动过程中始终不变,即维持了上述的液柱下端会被引流到下方的状态。
以上述依据本申请的理想实施例为启示,通过上述的说明内容,相关工作人员完全可以在不偏离本项申请技术思想的范围内,进行多样的变更以及修改。本项申请的技术性范围并不局限于说明书上的内容,必须要根据权利要求范围来确定其技术性范围。

Claims (10)

  1. 一种全自动化学发光免疫分析仪的加样方法,其特征在于,包括以下步骤:
    S1:将取样针移动到反应杯杯底,进行首次排样;
    取样针每次排样,排样的排液量均进行记录;
    S2:根据之前排液量的总和V 1,并根据反应杯的截面积S计算反应杯中已经形成的液面的高度h,h=V 1/S;
    S3:获取待排出的样液的排液量V 2
    S4:判定排液量V 2是否超过会产生气泡的排液量阈值;超过排液量阈值则进行S51,不超过排液量阈值则进行S52;
    S51:控制取样针针尖移动到距离反应杯杯底h以上,进行下方空气柱的排放;随后开始排放样液和上方空气柱,并控制取样针逐渐抬高;
    S52:控制取样针针尖移动到距离反应杯杯底h以上,进行下方空气柱的排放;然后,控制取样针针尖移动到距离反应杯杯底h以下,开始排放样液和上方空气柱,取样针高度不变。
  2. 根据权利要求1所述的全自动化学发光免疫分析仪的加样方法,其特征在于,在步骤S51中,控制取样针针尖向上移动到距离反应杯杯底h以上,确保针尖在液面以上;随后开始排放样液和上方空气柱,并控制取样针逐渐抬高,抬高的高度为V 2/S。
  3. 根据权利要求2所述的全自动化学发光免疫分析仪的加样方法,其特征在于,在步骤S51中,取样针逐渐抬高时移动速度为匀速。
  4. 根据权利要求1-3任一项所述的全自动化学发光免疫分析仪的 加样方法,其特征在于,在步骤S51中,取样针排样的流速进行下方空气柱的排放时增大,在排放样液时减小,在排放上方空气柱时增大。
  5. 根据权利要求4所述的全自动化学发光免疫分析仪的加样方法,其特征在于,采用平头取样针,取样针的针尖横截面半径为r,在步骤S51中,控制取样针针尖向上移动到距离反应杯杯底h以上,h+r以下;随后开始排样并控制取样针逐渐抬高,抬高的高度为V 2/S。
  6. 根据权利要求5所述的全自动化学发光免疫分析仪的加样方法,其特征在于,取样针逐渐抬高时,抬升的速度v 1=πr 2/S*v 2,v 2为排样时的流速。
  7. 根据权利要求1-3任一项所述的全自动化学发光免疫分析仪的加样方法,其特征在于,在步骤S52中,取样针排样的流速进行下方空气柱的排放时增大,在排放样液时减小,在排放上方空气柱时再减小。
  8. 根据权利要求1-3任一项所述的全自动化学发光免疫分析仪的加样方法,其特征在于,步骤S3中,获取下次待排出的样液的排液量V 2的步骤为:
    在排样开始前,给待排样的每个批次的样液进行编号,记载每个编号对应批次的样液的排液量;
    在样液待排出时调取该批次样液的编号,根据编号获取样液的排液量V 2
  9. 根据权利要求1-3任一项所述的全自动化学发光免疫分析仪的加样方法,其特征在于,步骤S4中,获得排液量阈值的步骤为:取 一个反应杯,将取样针进行一定量的排液,随后将取样针的针尖移动到液面之下;随后进行若干次排液实验,每次的排液量逐渐增大,当排液开始产生气泡时,得出排液量阈值,并进行记录。
  10. 根据权利要求1-3任一项所述的全自动化学发光免疫分析仪的加样方法,其特征在于,还包括:
    S6:在排放过程结束后,取样针升高至高度高于反应杯杯口。
PCT/CN2020/116848 2019-11-04 2020-09-22 一种全自动化学发光免疫分析仪的加样方法 WO2021088545A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201911067560.8A CN110780085B (zh) 2019-11-04 2019-11-04 一种全自动化学发光免疫分析仪的加样方法
CN201911067560.8 2019-11-04

Publications (1)

Publication Number Publication Date
WO2021088545A1 true WO2021088545A1 (zh) 2021-05-14

Family

ID=69388933

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/116848 WO2021088545A1 (zh) 2019-11-04 2020-09-22 一种全自动化学发光免疫分析仪的加样方法

Country Status (2)

Country Link
CN (1) CN110780085B (zh)
WO (1) WO2021088545A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110780085B (zh) * 2019-11-04 2021-03-09 苏州长光华医生物医学工程有限公司 一种全自动化学发光免疫分析仪的加样方法
CN115407078B (zh) * 2022-11-01 2023-01-31 丹娜(天津)生物科技股份有限公司 具有样本前置处理功能的分析仪及样本前置处理方法

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1611946A (zh) * 2003-09-19 2005-05-04 株式会社东芝 化学分析装置、其注入方法及稀释杯
CN103900997A (zh) * 2012-12-28 2014-07-02 深圳迈瑞生物医疗电子股份有限公司 样本分析仪及检测采样针排液的方法及装置
US20150309060A1 (en) * 2014-03-24 2015-10-29 Jeol Ltd. Apparatus and Method for Automated Analysis
CN205049374U (zh) * 2015-10-10 2016-02-24 济南百博生物技术股份有限公司 一种两点感应的生化试剂取样、加样装置
CN108676924A (zh) * 2018-06-01 2018-10-19 安图实验仪器(郑州)有限公司 小空间小体积加样管的分段加样方法
CN110146141A (zh) * 2019-04-26 2019-08-20 浙江大学 改进套筒型加样针的液面探测装置和方法
CN110780085A (zh) * 2019-11-04 2020-02-11 苏州长光华医生物医学工程有限公司 一种全自动化学发光免疫分析仪的加样方法

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3742580B2 (ja) * 2001-04-11 2006-02-08 株式会社堀場製作所 自動蓄尿検査装置
JP2007047083A (ja) * 2005-08-11 2007-02-22 Olympus Corp 分注装置における配管内の気泡の有無判定方法および分注装置
JP4982266B2 (ja) * 2007-06-22 2012-07-25 株式会社日立ハイテクノロジーズ 分注処理装置
CN110031643A (zh) * 2013-11-26 2019-07-19 株式会社日立高新技术 自动分析装置

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1611946A (zh) * 2003-09-19 2005-05-04 株式会社东芝 化学分析装置、其注入方法及稀释杯
CN103900997A (zh) * 2012-12-28 2014-07-02 深圳迈瑞生物医疗电子股份有限公司 样本分析仪及检测采样针排液的方法及装置
US20150309060A1 (en) * 2014-03-24 2015-10-29 Jeol Ltd. Apparatus and Method for Automated Analysis
CN205049374U (zh) * 2015-10-10 2016-02-24 济南百博生物技术股份有限公司 一种两点感应的生化试剂取样、加样装置
CN108676924A (zh) * 2018-06-01 2018-10-19 安图实验仪器(郑州)有限公司 小空间小体积加样管的分段加样方法
CN110146141A (zh) * 2019-04-26 2019-08-20 浙江大学 改进套筒型加样针的液面探测装置和方法
CN110780085A (zh) * 2019-11-04 2020-02-11 苏州长光华医生物医学工程有限公司 一种全自动化学发光免疫分析仪的加样方法

Also Published As

Publication number Publication date
CN110780085A (zh) 2020-02-11
CN110780085B (zh) 2021-03-09

Similar Documents

Publication Publication Date Title
WO2021088545A1 (zh) 一种全自动化学发光免疫分析仪的加样方法
JP5024990B2 (ja) 自動分析装置及びプローブ昇降方法
EP1992952A2 (en) Liquid dispensing apparatus
US9945882B2 (en) Method for pipetting liquids in an automated analysis apparatus
JP2009300152A (ja) 自動分析装置
CN103900997B (zh) 样本分析仪及检测采样针排液的方法及装置
JP4538477B2 (ja) 自動分析装置
JPWO2015111470A1 (ja) 自動分析装置
JP2010117222A (ja) 試料容器、分注装置、分注方法及び分析装置
JPS63109330A (ja) 液面検出方法及びその装置
US20160313360A1 (en) Method for monitoring the functionality of a wash station for pipetting needles
JPS6113175B2 (zh)
JP2010271203A (ja) 液体のサンプリング方法、及び自動分析装置
JP2010286324A (ja) 分注装置、自動分析装置、および分注方法
JP2019515299A (ja) 分析機器のプローブ洗浄ステーション
US5185269A (en) Immunobead aspirator and method of use
US20230009785A1 (en) Automatic Analysis Device
JP7153803B2 (ja) 自動分析装置およびその水平出し方法
CN220063515U (zh) 一种采样装置与采样系统
WO2020066300A1 (ja) 試験方法、分注装置
JPS59120960A (ja) 吸引ノズルの自動插導方法
JP2005127895A (ja) 血液等の試料サンプリング機構におけるサンプリング管の洗浄方法
CN217787120U (zh) 一种液路凝块检测仪
CN209069650U (zh) 一种液体取样装置的排液装置
CN219279878U (zh) 一种低温采样管

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20883751

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20883751

Country of ref document: EP

Kind code of ref document: A1