WO2021088480A1 - Srs传输方法、装置、网络设备、终端和存储介质 - Google Patents

Srs传输方法、装置、网络设备、终端和存储介质 Download PDF

Info

Publication number
WO2021088480A1
WO2021088480A1 PCT/CN2020/111414 CN2020111414W WO2021088480A1 WO 2021088480 A1 WO2021088480 A1 WO 2021088480A1 CN 2020111414 W CN2020111414 W CN 2020111414W WO 2021088480 A1 WO2021088480 A1 WO 2021088480A1
Authority
WO
WIPO (PCT)
Prior art keywords
srs
signal
terminal
uplink
configuration information
Prior art date
Application number
PCT/CN2020/111414
Other languages
English (en)
French (fr)
Inventor
缪德山
黄秋萍
汤文
Original Assignee
大唐移动通信设备有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 大唐移动通信设备有限公司 filed Critical 大唐移动通信设备有限公司
Priority to US17/774,869 priority Critical patent/US20220407650A1/en
Priority to EP20885153.5A priority patent/EP4057740A4/en
Publication of WO2021088480A1 publication Critical patent/WO2021088480A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0091Signaling for the administration of the divided path
    • H04L5/0094Indication of how sub-channels of the path are allocated
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0048Allocation of pilot signals, i.e. of signals known to the receiver
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/20Control channels or signalling for resource management
    • H04W72/23Control channels or signalling for resource management in the downlink direction of a wireless link, i.e. towards a terminal
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0048Allocation of pilot signals, i.e. of signals known to the receiver
    • H04L5/0051Allocation of pilot signals, i.e. of signals known to the receiver of dedicated pilots, i.e. pilots destined for a single user or terminal

Definitions

  • the present disclosure relates to the field of wireless communication technology, and in particular to an SRS transmission method, device, network equipment, terminal, and storage medium.
  • the network equipment usually corrects the uplink time-frequency offset error based on the SRS (sounding reference signal, channel sounding reference signal) sent by the terminal.
  • SRS sounding reference signal, channel sounding reference signal
  • the embodiments of the present disclosure provide an SRS transmission method, device, network equipment, terminal, and storage medium to solve the problem that the existing SRS cannot meet the timing and frequency deviation requirements of the uplink in time.
  • embodiments of the present disclosure provide an SRS transmission method, including:
  • the determining the SRS configuration information based on the uplink related information corresponding to the terminal specifically includes:
  • the uplink related information includes the moving speed and/or uplink information of the terminal;
  • the SRS configuration information is determined.
  • the determination of the SRS configuration parameters based on the uplink related information corresponding to the terminal specifically includes:
  • the SRS transmission interval parameter is determined based on the moving speed of the terminal; wherein, the SRS transmission interval parameter includes the SRS symbol interval and/or the SRS transmission unit interval.
  • the uplink information includes at least one of an uplink frequency offset, an uplink delay, and a signal-to-noise ratio;
  • the determining the SRS configuration parameters based on the uplink related information corresponding to the terminal specifically includes:
  • the SRS transmission interval parameter includes the SRS symbol interval and/or the SRS transmission unit interval
  • the determination of the SRS configuration parameters based on the uplink related information corresponding to the terminal specifically includes:
  • the determination of the SRS configuration parameters based on the uplink related information corresponding to the terminal specifically includes:
  • the SRS repeated transmission parameters include the number of repetitions of the SRS transmission unit and/or the number of consecutively transmitted symbols in the SRS transmission unit .
  • the SRS configuration information carries the SRS configuration parameter, or the identifier corresponding to the SRS configuration parameter.
  • the SRS configuration information includes a mapping relationship between SRS resources and PUSCH resources;
  • the terminal After the delivering the SRS configuration information to the terminal, it further includes:
  • the joint transmission of SRS and PUSCH means that the SRS signal is sent first, and the PUSCH signal is sent later;
  • the receiving the SRS signal and the PUSCH signal sequentially sent by the terminal based on the trigger instruction specifically includes:
  • the SRS configuration information is at least one of RRC signaling, MAC signaling, and DCI signaling; wherein, the RRC signaling is used to configure the SRS signal, the MAC signaling and the DCI The signaling is used to trigger the sending of the SRS signal.
  • the MAC signaling and the DCI signaling used to trigger the transmission of the SRS signal carry one or more of the following SRS parameter information:
  • SRS symbol interval SRS transmission unit interval
  • the number of repetitions of SRS transmission unit the number of consecutively transmitted symbols in the SRS transmission unit
  • the subcarrier interval of the SRS signal the number of time slots occupied by SRS transmission.
  • embodiments of the present disclosure provide an SRS transmission method, including:
  • the SRS configuration information is determined by the network device based on uplink related information corresponding to the terminal;
  • an SRS signal is sent to the network device.
  • the SRS configuration information carries SRS configuration parameters, or an identifier corresponding to the SRS configuration parameters
  • the sending an SRS signal to the network device based on the SRS configuration information specifically includes:
  • an SRS signal is sent to the network device.
  • the SRS configuration parameters include one or more of the following:
  • SRS symbol interval SRS transmission unit interval
  • the number of repetitions of SRS transmission unit the number of consecutively transmitted symbols in the SRS transmission unit
  • the subcarrier interval of the SRS signal the number of time slots occupied by SRS transmission.
  • the SRS configuration information includes a mapping relationship between SRS resources and PUSCH resources;
  • the network device After receiving the SRS configuration information issued by the network device, it further includes:
  • the joint transmission of SRS and PUSCH means sending the SRS signal first, and then sending the PUSCH signal;
  • the SRS signal and the PUSCH signal are sent sequentially.
  • the sending of SRS signals and PUSCH signals in sequence based on the trigger instruction specifically includes:
  • the SRS signal is sent, and after waiting for a preset interval, the PUSCH signal is sent.
  • the SRS configuration information is at least one of RRC signaling, MAC signaling, and DCI signaling; wherein, the RRC signaling is used to configure the SRS signal, the MAC signaling and the DCI The signaling is used to trigger the sending of the SRS signal.
  • the MAC signaling and the DCI signaling used to trigger the transmission of the SRS signal carry one or more of the following SRS parameter information:
  • SRS symbol interval SRS transmission unit interval
  • the number of repetitions of SRS transmission unit the number of consecutively transmitted symbols in the SRS transmission unit
  • the subcarrier interval of the SRS signal the number of time slots occupied by SRS transmission.
  • an SRS transmission device including:
  • the configuration information determining unit is configured to determine SRS configuration information based on uplink related information corresponding to the terminal;
  • a configuration information sending unit configured to deliver the SRS configuration information to the terminal
  • the SRS receiving unit is configured to receive the SRS signal sent by the terminal based on the SRS configuration information.
  • an SRS transmission device including:
  • a configuration information receiving unit configured to receive SRS configuration information issued by a network device; the SRS configuration information is determined by the network device based on uplink related information corresponding to the terminal;
  • the SRS sending unit is configured to send an SRS signal to the network device based on the SRS configuration information.
  • embodiments of the present disclosure provide a network device, including a memory, a processor, and a program stored in the memory and capable of running on the processor, and the processor implements the following steps when the program is executed:
  • embodiments of the present disclosure provide a terminal, including a memory, a processor, and a program stored in the memory and capable of running on the processor, and the processor implements the following steps when the program is executed:
  • the SRS configuration information is determined by the network device based on uplink related information corresponding to the terminal;
  • an SRS signal is sent to the network device.
  • embodiments of the present disclosure provide a non-transitory computer-readable storage medium on which a computer program is stored, and when the computer program is executed by a processor, the steps of the method provided in the first aspect or the second aspect are implemented .
  • the SRS transmission method, device, network equipment, terminal, and storage medium provided by the embodiments of the present disclosure determine SRS configuration information based on uplink related information, and realize the dynamic configuration of SRS related parameters, so that the related configuration of SRS can be better It adapts to the rapid changes in Doppler frequency shift and transmission delay caused by the rapid movement of satellites, so that the uplink time-frequency estimation can resist the fast-changing timing and frequency deviation, and meet the timeliness requirements of the uplink time-frequency estimation.
  • Fig. 1 is a schematic diagram of two working modes of satellite communication in the prior art
  • Figure 2 is a schematic diagram of coverage of multiple satellite beams of satellites in the prior art
  • Fig. 3 is a schematic diagram of Doppler and timing compensation in bent-pipe satellite communication in the prior art
  • FIG. 4 is a schematic flowchart of an SRS transmission method provided by an embodiment of the disclosure.
  • FIG. 5 is a schematic diagram of the SRS symbol interval provided by an embodiment of the disclosure.
  • FIG. 6 is a schematic diagram of the configuration of SRS repeated transmission parameters provided by an embodiment of the disclosure.
  • FIG. 7 is a schematic diagram of joint transmission of SRS and PUSCH provided by an embodiment of the disclosure.
  • FIG. 8 is a schematic flowchart of an SRS transmission method provided by another embodiment of the present disclosure.
  • FIG. 9 is a schematic structural diagram of an SRS transmission device provided by an embodiment of the disclosure.
  • FIG. 10 is a schematic structural diagram of an SRS transmission apparatus provided by another embodiment of the present disclosure.
  • FIG. 11 is a schematic structural diagram of a network device provided by an embodiment of the disclosure.
  • FIG. 12 is a schematic structural diagram of a base station provided by an embodiment of the present invention.
  • the speed of the satellite is as high as 8km/s, which causes the propagation distance between the terminal and the satellite to change rapidly, and the Doppler frequency shift also changes rapidly.
  • the positioning information or ephemeris information of the terminal is inaccurate, it is difficult for the terminal to compensate for the deviation of the timing information in real time, which will cause a large error in the uplink synchronization.
  • a more robust method is needed to help network equipment determine the timing and frequency deviation.
  • FIG 1 is a schematic diagram of two working modes of satellite communication in the prior art.
  • one working mode is the bent pipe mode, which corresponds to the transparent forwarding marked in the figure.
  • the satellite only forwards signals transparently, without doing anything.
  • the terminal communicates with the customs station; the other working mode is regenerative communication, which corresponds to the processing and forwarding marked in the figure.
  • the satellite can detect the information in the received signal and process and forward it to complete the function of the network device. Connect the terminal and the customs station.
  • the connection between the terminal and the satellite is called the user link, and the connection between the satellite and the gateway is the feeder link.
  • FIG. 2 is a schematic diagram of coverage of multiple satellite beams of satellites in the prior art.
  • the network device can perform Doppler compensation based on the center point of the beam. For example, when sending a signal in the downlink, the network device first compensates for the public part of the cell, and the remaining Doppler frequency shift will be reduced. It is beneficial for the terminal to perform frequency synchronization and tracking based on the synchronization signal. When the uplink signal is sent, the terminal will also compensate for the remaining Doppler compensation, and the network equipment will perform public uplink Doppler compensation.
  • the uplink Doppler frequency shift can also be all Terminal compensation:
  • the distance between the terminal and the network device is always changing.
  • the terminal only Compensate the remaining TA part.
  • Fig. 3 is a schematic diagram of Doppler and timing compensation in bent-pipe satellite communication in the prior art. As shown in Fig. 3, the beam center point is used as the reference point. Whether it is Doppler compensation and TA compensation, the terminal only compensates for the relative reference The remaining part helps reduce the complexity of the terminal
  • the moving speed of the terminal also has a larger range.
  • the speed of an airplane terminal is 1200km/h
  • the speed of a fixed terminal is 0.
  • the network can configure the relevant parameters of SRS transmission, including comb (frequency domain subcarrier spacing), number of symbols, SCS (subcarrier spacing, subcarrier bandwidth), and the number of repetitions.
  • SRS subcarrier spacing, subcarrier bandwidth
  • Fig. 4 is a schematic flow chart of the SRS transmission method provided by the embodiments of the present disclosure.
  • the execution subject of the method may be a network-side device in a satellite communication system, such as a base station.
  • the method includes:
  • Step 410 Determine SRS configuration information based on uplink related information corresponding to the terminal.
  • the terminal may be various user equipment with wireless communication functions under the satellite communication system, such as a handheld device, a vehicle-mounted device, a wearable device, and the like.
  • the uplink related information corresponding to the terminal is the information associated with the uplink status corresponding to the terminal, such as the mobile speed of the terminal itself, the uplink frequency offset value, time offset value or uplink value obtained by the network equipment through the uplink measurement.
  • the signal-to-noise ratio, etc. are not specifically limited in the embodiments of the present disclosure.
  • the moving speed of the terminal may be obtained by the network through uplink signal estimation, or obtained by the terminal report.
  • the SRS configuration information is used to instruct the terminal to send the relevant configuration parameters of the SRS signal.
  • the SRS configuration information can be used only for the configuration of the relevant parameters of the SRS, or it can trigger the transmission of the SRS signal while indicating the configuration of the relevant parameters of the SRS. This is not specifically limited.
  • Step 420 Deliver SRS configuration information to the terminal.
  • the SRS configuration information is delivered to the terminal, so that the terminal can configure the relevant parameters of the SRS based on the SRS configuration information after receiving the SRS configuration information, and when it arrives at the SRS The signal sending cycle or when the trigger signaling is received, the SRS signal is sent to the network device.
  • Step 430 Receive the SRS signal sent by the terminal based on the SRS configuration information.
  • the network device correspondingly receives the SRS signal sent by the terminal based on the SRS configuration information, and timely captures the uplink timing and frequency deviation based on the received SRS signal.
  • the method provided by the embodiments of the present disclosure determines SRS configuration information based on uplink related information, and realizes the dynamic configuration of SRS related parameters, so that the related configuration of SRS can better adapt to the Doppler shift and transmission caused by the rapid satellite movement.
  • the rapid change of the time delay enables the uplink time-frequency estimation to counter rapidly changing timing and frequency deviations, and meet the timeliness requirements of the uplink time-frequency estimation.
  • step 410 specifically includes:
  • Step 411 Determine SRS configuration parameters based on uplink related information corresponding to the terminal; wherein, the uplink related information includes the moving speed of the terminal and/or uplink information.
  • the uplink information includes at least one of an uplink frequency offset, an uplink delay, and a signal-to-noise ratio.
  • the uplink frequency offset refers to the estimated value of the frequency offset of the uplink
  • the uplink delay is the delay of the uplink
  • the signal-to-noise ratio refers to the signal-to-noise ratio of the uplink.
  • the above-mentioned link information may include the above-mentioned various parameters. For any one or more of them, the embodiments of the present disclosure do not specifically limit this.
  • SRS configuration parameters are parameters used for SRS configuration, such as sub-carrier spacing, the number of consecutive symbols in a transmission unit, the number of repetitions and intervals of different transmission units, comb, sequence characteristics, and so on.
  • Any parameter in the uplink related information can be pre-associated with one or more parameter settings in the SRS configuration parameter, and the corresponding parameter in the SRS can be dynamically adjusted through the detected change of any parameter in the uplink related information, thereby It can better adapt to the rapid changes of Doppler frequency shift and transmission delay caused by the rapid movement of satellites.
  • Step 412 Determine the SRS configuration information based on the SRS configuration parameters.
  • the corresponding SRS configuration information is determined based on the adjusted SRS configuration parameters, so as to instruct the terminal to perform the SRS configuration based on the SRS configuration parameters corresponding to the SRS configuration information.
  • step 411 when the uplink related information includes the moving speed of the terminal, step 411 specifically includes: determining the SRS transmission interval parameter based on the moving speed of the terminal; wherein, the SRS transmission interval parameter includes the SRS symbol interval and / Or SRS transmission unit interval.
  • the SRS symbol interval is the interval between two adjacent SRS symbols. There is a corresponding relationship between the mobile speed of the terminal and the uplink frequency offset, and there is a corresponding relationship between the uplink frequency offset and the SRS symbol interval. Therefore, the corresponding relationship between the mobile speed of the terminal and the SRS symbol interval can be determined from this, and then According to the moving speed of the terminal, the corresponding SRS symbol interval is determined.
  • the SRS transmission unit interval is the interval between two adjacent SRS transmission units. Similarly, there is a similar correspondence between the moving speed of the terminal and the SRS transmission unit interval.
  • the size of the SRS transmission unit interval can be adjusted correspondingly based on the size of the moving speed of the terminal.
  • step 411 when the uplink related information includes the uplink frequency offset, step 411 specifically includes: determining the SRS transmission interval parameter based on the uplink frequency offset corresponding to the terminal; wherein, the SRS transmission interval parameter includes the SRS symbol interval And/or SRS transmission unit interval.
  • the uplink frequency offset includes the uplink Doppler offset, the difference between the uplink receiving clock and the transmitting clock, or the frequency offset caused by the device.
  • the Doppler offset plays a leading role.
  • the inter-symbol phase deviation ⁇ 2*pi*delta_f*delta_t, where the interval between two adjacent SRS symbols is delta_t, and the uplink frequency offset is delta_f.
  • the phase error between symbols is obtained by performing correlation detection on two adjacent SRS symbols. Assuming that the interval delta_t of the SRS symbols is a fixed value, the smaller the uplink frequency offset delta_f, the smaller the phase deviation ⁇ . In order to avoid that the phase deviation ⁇ is too small to affect the detection accuracy, when the uplink frequency offset delta_f is small, the interval delta_t of the SRS symbols can be increased.
  • FIG. 5 is a schematic diagram of the SRS symbol interval provided by an embodiment of the disclosure.
  • the uplink frequency offset can be adjusted correspondingly based on the size of the uplink frequency offset.
  • step 411 when the uplink related information includes the uplink time delay, step 411 specifically includes: determining the SRS subcarrier interval based on the change information of the uplink delay corresponding to the terminal.
  • the length of the cyclic prefix CP is related to the subcarrier spacing.
  • the main reason is to keep the boundaries of different subcarrier spacing aligned. For example, when the subcarrier spacing is 15khz, the length of the corresponding time slot is 1ms. When the subcarrier interval is 120khz, the corresponding time slot length is 0.125ms, and the difference between the two is 8 times.
  • the cyclic prefix CP When the cyclic prefix CP is short, its ability to fight time delay is also weak. For example, when the sub-carrier spacing is 120khz, the corresponding CP length is equal to 0.59us, which is less than the countermeasure timing deviation of 0.3us. In order to improve the estimation capability of the uplink delay deviation, it is necessary to expand the CP. For example, if the subcarrier interval is changed to 15khz, the corresponding CP length can reach 4.6us, which can combat larger timing deviations. Adjusting the CP length is to improve the anti-delay deviation capability of the SRS signal, so as to estimate the change value of the delay through the SRS signal, and notify the terminal according to the change value, and the terminal can adjust the TA value of the uplink signal accordingly.
  • the change information of the uplink delay such as the increase or decrease of the uplink delay, and the difference between the increase or decrease of the uplink delay, etc., based on the change information.
  • the subcarrier spacing of the SRS can be dynamically adjusted, so that when the uplink delay changes sharply, the delay estimation capability of the SRS can be improved to combat larger timing deviations.
  • step 411 when the uplink related information includes the signal-to-noise ratio, step 411 specifically includes: determining the SRS repeated transmission parameter and/or the number of time slots occupied by the SRS transmission based on the signal-to-noise ratio corresponding to the terminal; Wherein, the SRS repeated transmission parameter includes the number of repetitions of the SRS transmission unit and/or the number of consecutively transmitted symbols in the SRS transmission unit.
  • the signal-to-noise ratio when the signal-to-noise ratio is low, at least one of increasing the number of SRS symbols contained in one SRS transmission unit, increasing the number of repeated SRS transmission units, and increasing the number of time slots occupied by SRS transmission , To ensure the uplink diversity reception capability.
  • FIG. 6 is a schematic diagram of the configuration of SRS repeated transmission parameters provided by an embodiment of the disclosure.
  • the boxes filled with diagonal lines in Figure 6 are SRS units.
  • Multiple SRS units can be transmitted in one time slot, and each SRS unit can contain For one or more SRS symbols, by adjusting the number of repetitions of the SRS transmission unit, the number of consecutively transmitted symbols in the SRS transmission unit, and the number of time slots occupied by SRS transmission, the purpose of adjusting the number of retransmissions of SRS symbols can be achieved, thereby ensuring the When the signal-to-noise ratio is low, the uplink can also have better diversity reception capabilities.
  • the SRS configuration information carries the SRS configuration parameter, or the identifier corresponding to the SRS configuration parameter.
  • the network device can explicitly or implicitly allow the terminal to configure the SRS through the SRS configuration information.
  • the SRS configuration information may directly carry the SRS configuration parameters, so that the SRS configuration parameters are explicitly sent to the terminal for the terminal to configure the SRS related parameters.
  • the SRS configuration information may also carry an identifier corresponding to the SRS configuration parameter, such as the SRS type corresponding to the SRS configuration parameter, the ID of the SRS resource corresponding to the SRS configuration parameter, etc., so as to implicitly allow the terminal to perform SRS configuration.
  • multiple SRS resources can be preset, and different SRS resources correspond to different SRS configuration parameters.
  • the SRS resources corresponding to the terminal can be further determined, and the SRS resources The ID is carried in the SRS configuration information and sent to the terminal, so that the terminal can extract the ID of the SRS resource from it after receiving the SRS configuration information, so as to call the corresponding SRS resource based on the ID to realize the transmission of the SRS signal.
  • Another way is to define multiple SRS types, and notify the terminal to send different SRS signals through the type ID.
  • the SRS configuration information includes the mapping relationship between SRS resources and PUSCH resources.
  • multiple SRS resources and multiple PUSCH resources may be preset, and the SRS resources and PUSCH resources may be associated in advance to determine the mapping relationship between SRS resources and PUSCH resources.
  • the mapping relationship between SRS resources and PUSCH resources can be the corresponding relationship between the SRS resource identifier determined by any parameter such as the time-frequency position, sequence, and subcarrier spacing of the SRS and a PUSCH resource, so that when the PUSCH transmission is notified, the PUSCH transmission can be scheduled or SRS transmission is triggered, and the terminal performs joint transmission of SRS signals and PUSCH.
  • step 420 it also includes: issuing a trigger command for triggering the joint transmission of SRS and PUSCH to the terminal.
  • the joint transmission of SRS and PUSCH means sending the SRS signal first, and then sending the PUSCH signal; receiving the SRS that the terminal sends sequentially based on the trigger command Signal and PUSCH signal.
  • the network lacks the uplink synchronization information of the terminal, resulting in uplink timing or frequency deviation. Therefore, the terminal is required to send the SRS signal in advance when sending PUSCH to help the network obtain the uplink timing and frequency. Deviation information, thereby helping the demodulation of PUSCH.
  • the trigger instruction is used to trigger the joint transmission of SRS and PUSCH, that is, the SRS signal is sent in advance before the PUSCH signal is sent.
  • the trigger instruction may include the PUSCH resource or the identifier corresponding to the PUSCH resource, so that the terminal can determine the PUSCH resource based on the trigger instruction, and determine the SRS resource based on the mapping relationship between the SRS resource and the PUSCH resource contained in the SRS configuration information, and thereby determine the SRS resource based on the SRS resource
  • the SRS signal is transmitted, and the PUSCH signal is transmitted based on the PUSCH resource.
  • the trigger instruction may also include the SRS resource or the identifier corresponding to the SRS resource, so that the terminal can determine the SRS resource based on the trigger instruction, and determine the PUSCH resource based on the mapping relationship between the SRS resource and the PUSCH resource contained in the SRS configuration information, thereby SRS signals are transmitted based on SRS resources, and PUSCH signals are transmitted based on PUSCH resources.
  • FIG. 7 is a schematic diagram of the joint transmission of SRS and PUSCH provided by an embodiment of the disclosure.
  • the SRS signal is transmitted twice before the PUSCH signal, each of which is an SRS unit.
  • the relevant features and configuration parameters of the SRS signal may be notified to the terminal in advance.
  • the network device may send SRS configuration information to the terminal in advance.
  • the method provided in the embodiments of the present disclosure can help the network device obtain timing and frequency deviation information before demodulating the PUSCH through the joint transmission of SRS and PUSCH, which is helpful for the demodulation of PUSCH.
  • the interval setting here is to prevent the interference between SRS signal and PUSCH signal.
  • the interval is preset, which can be one or more symbols, or one or more time slots, which is not specifically limited in the embodiments of the present disclosure. .
  • the SRS signal and PUSCH signal sent by the receiving terminal in sequence based on the trigger command specifically include: the receiving terminal sends the SRS signal previously sent based on the trigger command, and adjusts the PUSCH receiving timing and frequency reference value based on the SRS signal; the receiving terminal is based on The PUSCH signal sent after the trigger command.
  • an interval is set between the SRS signal sent first and the PUSCH signal sent later, so that the network device can detect the SRS signal at a corresponding time interval. Internally adjust the receiving timing and frequency reference value of the received PUSCH, so as to better demodulate the subsequently received PUSCH signal.
  • the SRS configuration information is at least one of RRC signaling, MAC signaling, and DCI signaling; wherein, RRC signaling is used to configure SRS signals, MAC signaling and DCI signaling Used to trigger SRS signal transmission.
  • periodic SRS signals it can be configured through RRC signaling without triggering; for semi-persistent SRS signals, MAC (Media Access Control) signaling is used for triggering; for non-periodic SRS signals , Using DCI (Downlink Control Information) signaling to trigger.
  • RRC Radio Resource Control
  • SRS configuration including subcarrier spacing, the number of consecutively transmitted symbols in an SRS transmission unit, the number of repetitions and intervals of different SRS transmission units, comb, sequence characteristics, etc.;
  • a resource set contains multiple SRS resources, and different SRS resources can be assigned to different users.
  • a resource set is a resource pool, corresponding to a frequency band resource, and corresponding to different SRS parameter sets.
  • SRS configuration parameters including SRS symbol interval, SRS transmission unit interval, the number of repetitions of SRS transmission unit, the number of consecutively transmitted symbols in the SRS transmission unit, the subcarrier interval of the SRS signal, and the number of time slots occupied by SRS transmission, etc.;
  • SRS type where different type IDs correspond to different SRS parameter sets
  • the resource ID or resource set ID of the SRS can be used.
  • FIG. 8 is a schematic flowchart of an SRS transmission method provided by another embodiment of the present disclosure.
  • the execution subject of the method is a terminal in a satellite communication system, and the method includes:
  • Step 810 Receive SRS configuration information issued by the network device; the SRS configuration information is determined by the network device based on uplink related information corresponding to the terminal.
  • the uplink related information corresponding to the terminal is the information associated with the uplink state corresponding to the terminal, such as the mobile speed of the terminal itself, the uplink frequency offset value, time offset value or uplink value obtained by the network device through uplink measurement.
  • the signal-to-noise ratio of the link, etc. are not specifically limited in the embodiment of the present disclosure.
  • the SRS configuration information is used to instruct the terminal to send the relevant configuration parameters of the SRS signal.
  • the SRS configuration information can be used only for the configuration of the relevant parameters of the SRS, or it can trigger the transmission of the SRS signal while indicating the configuration of the relevant parameters of the SRS. This is not specifically limited.
  • the network device can obtain corresponding related configuration parameters based on the uplink related information corresponding to the terminal, and then obtain the SRS configuration information and deliver it to the terminal. Then the terminal receives the SRS configuration information.
  • Step 820 Send an SRS signal to the network device based on the SRS configuration information.
  • the SRS signal is sent to the network device for the network device Based on the SRS signal, the uplink timing and frequency deviation are captured in time.
  • the method provided by the embodiments of the present disclosure determines SRS configuration information based on uplink related information, and realizes the dynamic configuration of SRS related parameters, so that the related configuration of SRS can better adapt to the Doppler shift and transmission caused by the rapid satellite movement.
  • the rapid change of the time delay enables the uplink time-frequency estimation to counter rapidly changing timing and frequency deviations, and meet the timeliness requirements of the uplink time-frequency estimation.
  • the SRS configuration information carries the SRS configuration parameter, or the identifier corresponding to the SRS configuration parameter;
  • step 820 specifically includes:
  • Step 821 Determine SRS configuration parameters based on the SRS configuration information.
  • the SRS configuration parameters are parameters used for SRS configuration
  • the SRS configuration information can directly carry the SRS configuration parameters, so that the terminal can directly extract the SRS configuration parameters from the SRS configuration information.
  • the SRS configuration information may also carry an identifier corresponding to the SRS configuration parameter, such as the SRS type corresponding to the SRS configuration parameter, the ID of the SRS resource corresponding to the SRS configuration parameter, etc., so that the terminal can indirectly determine the SRS configuration parameter based on the SRS configuration information.
  • Step 822 Send an SRS signal to the network device based on the SRS configuration parameter.
  • the SRS configuration is performed based on the SRS configuration parameters, and the SRS signal is sent to the network device when the sending period of the SRS signal is reached or the trigger signaling is received.
  • SRS configuration parameters include one or more of the following: SRS symbol interval, SRS transmission unit interval, SRS transmission unit repetition times, number of consecutively transmitted symbols in SRS transmission unit, SRS signal subcarrier interval, And the number of time slots occupied by SRS transmission.
  • the SRS symbol interval and the SRS transmission unit interval can be dynamically adjusted based on the moving speed of the terminal or the uplink frequency offset; the subcarrier interval of the SRS signal can be dynamically adjusted based on the change information of the uplink delay corresponding to the terminal; the number of repetitions of the SRS transmission unit, The number of consecutively transmitted symbols in the SRS transmission unit and the number of time slots occupied by SRS transmission can be dynamically adjusted based on the signal-to-noise ratio of the uplink corresponding to the terminal.
  • the SRS configuration information includes the mapping relationship between SRS resources and PUSCH resources.
  • multiple SRS resources and multiple PUSCH resources may be preset, and the SRS resources and PUSCH resources may be associated in advance to determine the mapping relationship between SRS resources and PUSCH resources.
  • step 810 it also includes: receiving a trigger instruction issued by a network device for triggering the joint transmission of SRS and PUSCH.
  • the joint transmission of SRS and PUSCH means sending the SRS signal first, and then sending the PUSCH signal; based on the trigger instruction, sending the SRS sequentially Signal and PUSCH signal.
  • the trigger instruction is used to trigger the joint transmission of SRS and PUSCH, that is, the SRS signal is sent in advance before the PUSCH signal is sent.
  • the trigger instruction can include the PUSCH resource or the identifier corresponding to the PUSCH resource.
  • the terminal can determine the PUSCH resource based on the trigger instruction, and determine the SRS resource based on the mapping relationship between the SRS resource and the PUSCH resource contained in the SRS configuration information, and then send based on the SRS resource SRS signals, PUSCH signals are transmitted based on PUSCH resources.
  • the trigger instruction may also include the SRS resource or the identifier corresponding to the SRS resource.
  • the terminal may determine the SRS resource based on the trigger instruction, and determine the PUSCH resource based on the mapping relationship between the SRS resource and the PUSCH resource contained in the SRS configuration information, and thereby determine the PUSCH resource based on SRS resources send SRS signals, and PUSCH signals are sent based on PUSCH resources.
  • the method provided in the embodiments of the present disclosure can help the network device obtain timing and frequency deviation information before demodulating the PUSCH through the joint transmission of SRS and PUSCH, which is helpful for the demodulation of PUSCH.
  • the sequence of SRS signals and PUSCH signals based on the trigger instruction specifically includes: sending the SRS signal based on the trigger instruction, and after waiting for a preset interval, sending the PUSCH signal.
  • the preset interval is the preset interval, and its purpose is to prevent the interference between the SRS signal and the PUSCH signal.
  • the preset interval can be one or more symbols, or one or more time slots. Embodiments of the present disclosure There is no specific restriction on this.
  • an interval is set between the SRS signal sent first and the PUSCH signal sent later, so that the network device can adjust within the time corresponding to the preset interval after detecting the SRS signal PUSCH reception timing and frequency reference value, so as to better demodulate the subsequently received PUSCH signal.
  • the SRS configuration information is at least one of RRC signaling, MAC signaling, and DCI signaling; wherein, RRC signaling is used to configure SRS signals, and MAC signaling and DCI signaling are used to trigger SRS Signal sending.
  • the MAC signaling and the DCI signaling used to trigger SRS signal transmission carry one or more of the following SRS parameter information:
  • SRS symbol interval SRS transmission unit interval
  • the number of repetitions of SRS transmission unit the number of consecutively transmitted symbols in the SRS transmission unit
  • the subcarrier interval of the SRS signal the number of time slots occupied by SRS transmission.
  • an SRS transmission method specifically includes the following steps:
  • the network device determines the SRS configuration parameter based on at least one of the terminal's moving speed, the terminal's uplink frequency offset, the uplink delay, and the signal-to-noise ratio, and explicitly or explicitly in the RRC configuration signaling or MAC/DCI trigger signaling. Contains SRS configuration parameters implicitly.
  • the SRS configuration parameters include at least one of the following parameters: configurable number of consecutively transmitted symbols in one SRS unit, configurable symbol interval between transmission units, configurable subcarrier interval, and configurable Number of repetitions of the sending unit
  • different SRS subcarriers SCS are configured to achieve different cyclic prefix lengths, or different CP lengths are directly configured to resist different uplink delay deviations.
  • different intervals of SRS symbols are configured to improve the frequency offset estimation capability of SRS signals.
  • different numbers of SRS continuous transmission symbols are configured to counter different channel SNR conditions.
  • the terminal receives the SRS configuration parameters explicitly or implicitly sent by the network device, performs SRS configuration, and sends the corresponding SRS signal according to the trigger signaling to help the network estimate the time-frequency offset error.
  • the method provided by the embodiments of the present disclosure can configure different SRSs according to the moving speed of different users, has low overhead, reasonable design, and solves the time-frequency synchronization requirements of multiple users in a cell and the requirements of quickly obtaining uplink time-frequency offset errors.
  • the SRS transmission method further includes: the network device triggers the joint transmission of SRS and PUSCH, where the SRS signal is used for time-frequency estimation in advance, and the symbol or slot interval can be configured between the SRS signal and the PUSCH signal. Eliminate the interference of SRS signal and PUSCH signal or reserve the time-frequency adjustment processing interval of network equipment.
  • FIG. 9 is a schematic structural diagram of an SRS transmission device provided by an embodiment of the disclosure.
  • the SRS transmission device includes a configuration information determining unit 910, a configuration information sending unit 920, and an SRS receiving unit 930;
  • the configuration information determining unit 910 is configured to determine SRS configuration information based on uplink related information corresponding to the terminal;
  • the configuration information sending unit 920 is configured to deliver the SRS configuration information to the terminal;
  • the SRS receiving unit 930 is configured to receive the SRS signal sent by the terminal based on the SRS configuration information.
  • the SRS transmission device determines SRS configuration information based on uplink related information, and realizes the dynamic configuration of SRS related parameters, so that the related configuration of SRS can better adapt to the Doppler shift caused by the rapid satellite movement. And the rapid change of transmission delay, so that the uplink time-frequency estimation can resist the fast-changing timing and frequency deviation, and meet the timeliness requirements of the uplink time-frequency estimation.
  • the configuration information determining unit 910 includes:
  • the parameter determination subunit is configured to determine SRS configuration parameters based on uplink related information corresponding to the terminal; wherein the uplink related information includes the moving speed and/or uplink information of the terminal;
  • the information determining subunit is configured to determine the SRS configuration information based on the SRS configuration parameters.
  • the parameter determination subunit is specifically configured to:
  • the SRS transmission interval parameter is determined based on the moving speed of the terminal; wherein, the SRS transmission interval parameter includes the SRS symbol interval and/or the SRS transmission unit interval.
  • the uplink information includes at least one of an uplink frequency offset, an uplink delay, and a signal-to-noise ratio;
  • the parameter determination subunit is specifically configured to:
  • the SRS transmission interval parameter includes the SRS symbol interval and/or the SRS transmission unit interval
  • the parameter determination subunit is specifically configured to:
  • the parameter determination subunit is specifically configured to:
  • the SRS repeated transmission parameters include the number of repetitions of the SRS transmission unit and/or the number of consecutively transmitted symbols in the SRS transmission unit .
  • the SRS configuration information carries the SRS configuration parameter, or the identifier corresponding to the SRS configuration parameter.
  • the SRS configuration information includes a mapping relationship between SRS resources and PUSCH resources
  • the SRS transmission device further includes:
  • the joint trigger sending unit is configured to issue a trigger instruction for triggering the joint sending of SRS and PUSCH to the terminal;
  • the joint signal receiving unit is configured to receive the SRS signal and the PUSCH signal sequentially sent by the terminal based on the trigger instruction.
  • the joint signal receiving unit is specifically configured to:
  • the SRS configuration information is at least one of RRC signaling, MAC signaling, and DCI signaling; wherein, the RRC signaling is used to configure the SRS signal, and the MAC signaling And the DCI signaling is used to trigger the transmission of the SRS signal.
  • the MAC signaling and the DCI signaling used to trigger SRS signal transmission carry one or more of the following SRS parameter information:
  • SRS symbol interval SRS transmission unit interval
  • the number of repetitions of SRS transmission unit the number of consecutively transmitted symbols in the SRS transmission unit
  • the subcarrier interval of the SRS signal the number of time slots occupied by SRS transmission.
  • FIG. 10 is a schematic structural diagram of an SRS transmission device provided by another embodiment of the present disclosure.
  • the SRS transmission device includes a configuration information receiving unit 1010 and an SRS sending unit 1020;
  • the configuration information receiving unit 1010 is configured to receive SRS configuration information issued by a network device; the SRS configuration information is determined by the network device based on uplink related information corresponding to the terminal;
  • the SRS sending unit 1020 is configured to send an SRS signal to the network device based on the SRS configuration information.
  • the SRS transmission device determines SRS configuration information based on uplink related information, and realizes the dynamic configuration of SRS related parameters, so that the related configuration of SRS can better adapt to the Doppler shift caused by the rapid satellite movement. And the rapid change of transmission delay, so that the uplink time-frequency estimation can resist the fast-changing timing and frequency deviation, and meet the timeliness requirements of the uplink time-frequency estimation.
  • the SRS configuration information carries SRS configuration parameters, or identifiers corresponding to the SRS configuration parameters
  • the SRS sending unit 1020 is specifically configured to:
  • an SRS signal is sent to the network device.
  • the SRS configuration parameters include one or more of the following:
  • SRS symbol interval SRS transmission unit interval
  • the number of repetitions of SRS transmission unit the number of consecutively transmitted symbols in the SRS transmission unit
  • the subcarrier interval of the SRS signal the number of time slots occupied by SRS transmission.
  • the SRS configuration information includes a mapping relationship between SRS resources and PUSCH resources
  • the SRS transmission device further includes:
  • a joint trigger receiving unit configured to receive a trigger instruction issued by the network device for triggering joint transmission of SRS and PUSCH;
  • the joint signal sending unit is configured to sequentially send the SRS signal and the PUSCH signal based on the trigger instruction.
  • the joint signal sending unit is specifically configured to:
  • the SRS signal is sent, and after waiting for a preset interval, the PUSCH signal is sent.
  • the SRS configuration information is at least one of RRC signaling, MAC signaling, and DCI signaling; wherein, the RRC signaling is used to configure the SRS signal, and the MAC signaling And the DCI signaling is used to trigger the transmission of the SRS signal.
  • the MAC signaling and the DCI signaling used to trigger SRS signal transmission carry one or more of the following SRS parameter information:
  • SRS symbol interval SRS transmission unit interval
  • the number of repetitions of SRS transmission unit the number of consecutively transmitted symbols in the SRS transmission unit
  • the subcarrier interval of the SRS signal the number of time slots occupied by SRS transmission.
  • FIG. 11 is a schematic diagram of the physical structure of a network device provided by an embodiment of the present disclosure.
  • the network device may include: a processor 1101, a communication interface 1102, a memory 1103, and a communication BUS 1104.
  • the processor 1101, the communication interface 1102, and the memory 1103 communicate with each other through the communication bus 1104.
  • the processor 1101 can call a computer program stored on the memory 1103 and run on the processor 1101 to perform the following steps:
  • the determining SRS configuration information based on uplink related information corresponding to the terminal specifically includes:
  • the SRS configuration information is determined.
  • the determining the SRS configuration parameters based on the uplink related information corresponding to the terminal specifically includes:
  • the SRS transmission interval parameter is determined based on the moving speed of the terminal; wherein, the SRS transmission interval parameter includes the SRS symbol interval and/or the SRS transmission unit interval.
  • the uplink information includes at least one of an uplink frequency offset, an uplink delay, and a signal-to-noise ratio;
  • the determining the SRS configuration parameters based on the uplink related information corresponding to the terminal specifically includes:
  • the SRS transmission interval parameter includes the SRS symbol interval and/or the SRS transmission unit interval
  • the determination of the SRS configuration parameters based on the uplink related information corresponding to the terminal specifically includes:
  • the determination of the SRS configuration parameters based on the uplink related information corresponding to the terminal specifically includes:
  • the SRS repeated transmission parameters include the number of repetitions of the SRS transmission unit and/or the number of consecutively transmitted symbols in the SRS transmission unit .
  • the SRS configuration information carries the SRS configuration parameter, or an identifier corresponding to the SRS configuration parameter.
  • the SRS configuration information includes a mapping relationship between SRS resources and PUSCH resources;
  • the processor After the SRS configuration information is delivered to the terminal, the processor further implements the following steps when executing the program:
  • the joint transmission of SRS and PUSCH means that the SRS signal is sent first, and the PUSCH signal is sent later;
  • the receiving the SRS signal and the PUSCH signal sequentially sent by the terminal based on the trigger instruction specifically includes:
  • the SRS configuration information is at least one of RRC signaling, MAC signaling, and DCI signaling; wherein, the RRC signaling is used to configure the SRS signal, the MAC signaling and the The DCI signaling is used to trigger the transmission of the SRS signal.
  • the MAC signaling and the DCI signaling used to trigger the transmission of the SRS signal carry one or more of the following SRS parameter information:
  • SRS symbol interval SRS transmission unit interval
  • the number of repetitions of SRS transmission unit the number of consecutively transmitted symbols in the SRS transmission unit
  • the subcarrier interval of the SRS signal the number of time slots occupied by SRS transmission.
  • the network device in this embodiment can implement all the method steps in the above method embodiment, and can achieve the same technical effect.
  • the same parts in this embodiment and the method embodiment are not described here. And the same technical effect will be repeated.
  • the above-mentioned logical instructions in the memory 1103 can be implemented in the form of a software functional unit and when sold or used as an independent product, they can be stored in a computer readable storage medium.
  • the embodiments of the present disclosure provide a computer software product, which is stored in a storage medium and includes a number of instructions to make a computer device (for example, a personal computer, a server, or a network device, etc.) execute All or part of the steps of the method described in each embodiment of the present disclosure.
  • the aforementioned storage media include: U disk, mobile hard disk, read-only memory (ROM, Read-Only Memory), random access memory (RAM, Random Access Memory), magnetic disks or optical disks and other media that can store program codes. .
  • FIG. 12 is a schematic diagram of the physical structure of a terminal provided by an embodiment of the disclosure.
  • the terminal may include: a processor 1201, a communication interface 1202, a memory 1203, and a communication bus 1204 Among them, the processor 1201, the communication interface 1202, and the memory 1203 communicate with each other through the communication bus 1204.
  • the processor 1201 may call a computer program stored on the memory 1203 and run on the processor 1201 to perform the following steps:
  • the SRS configuration information is determined by the network device based on uplink related information corresponding to the terminal;
  • an SRS signal is sent to the network device.
  • the SRS configuration information carries SRS configuration parameters, or an identifier corresponding to the SRS configuration parameters
  • the sending an SRS signal to the network device based on the SRS configuration information specifically includes:
  • an SRS signal is sent to the network device.
  • the SRS configuration parameters include one or more of the following:
  • SRS symbol interval SRS transmission unit interval
  • the number of repetitions of SRS transmission unit the number of consecutively transmitted symbols in the SRS transmission unit
  • the subcarrier interval of the SRS signal the number of time slots occupied by SRS transmission.
  • the SRS configuration information includes a mapping relationship between SRS resources and PUSCH resources;
  • the processor After receiving the SRS configuration information issued by the network device, the processor further implements the following steps when executing the program:
  • the joint transmission of SRS and PUSCH means sending the SRS signal first, and then sending the PUSCH signal;
  • the SRS signal and the PUSCH signal are sent sequentially.
  • the step of sequentially sending the SRS signal and the PUSCH signal based on the trigger instruction specifically includes:
  • the SRS signal is sent, and after waiting for a preset interval, the PUSCH signal is sent.
  • the SRS configuration information is at least one of RRC signaling, MAC signaling, and DCI signaling; wherein, the RRC signaling is used to configure the SRS signal, the MAC signaling and the The DCI signaling is used to trigger the transmission of the SRS signal.
  • the MAC signaling and the DCI signaling used to trigger the transmission of the SRS signal carry one or more of the following SRS parameter information:
  • SRS symbol interval SRS transmission unit interval
  • the number of repetitions of SRS transmission unit the number of consecutively transmitted symbols in the SRS transmission unit
  • the subcarrier interval of the SRS signal the number of time slots occupied by SRS transmission.
  • the terminal in this embodiment can implement all the method steps in the above method embodiment, and can achieve the same technical effect.
  • the same parts and the same parts in this embodiment as in the method embodiment and The same technical effect will be repeated.
  • the above-mentioned logical instructions in the memory 1203 can be implemented in the form of a software functional unit and when sold or used as an independent product, they can be stored in a computer readable storage medium.
  • the embodiments of the present disclosure provide a computer software product, which is stored in a storage medium and includes several instructions to make a computer device (which may be a personal computer, a server, or a network device, etc.) execute All or part of the steps of the method described in each embodiment of the present disclosure.
  • the aforementioned storage media include: U disk, mobile hard disk, read-only memory (ROM, Read-Only Memory), random access memory (RAM, Random Access Memory), magnetic disks or optical disks and other media that can store program codes. .
  • the embodiments of the present disclosure also provide a non-transitory computer-readable storage medium on which a computer program is stored.
  • the SRS transmission method provided in the foregoing embodiments is implemented, for example, including: Uplink related information, determining SRS configuration information; delivering the SRS configuration information to the terminal; receiving the SRS signal sent by the terminal based on the SRS configuration information.
  • the embodiments of the present disclosure also provide a non-transitory computer-readable storage medium on which a computer program is stored.
  • the SRS transmission method provided in the foregoing embodiments is implemented, for example, including: SRS configuration information sent; the SRS configuration information is determined by the network device based on uplink related information corresponding to the terminal; and based on the SRS configuration information, an SRS signal is sent to the network device.
  • the device embodiments described above are merely illustrative.
  • the units described as separate components may or may not be physically separated, and the components displayed as units may or may not be physical units, that is, they may be located in One location, or it can be distributed to multiple network units. Some or all of the modules may be selected according to actual needs to achieve the objectives of the solutions of the embodiments. Those of ordinary skill in the art can understand and implement without creative work.
  • each implementation manner can be implemented by software plus a necessary general hardware platform, and of course, it can also be implemented by hardware.
  • the embodiments of the present disclosure provide a computer software product, which can be stored in a computer-readable storage medium, such as ROM/RAM, magnetic disk, optical disk, etc., and includes several instructions to enable a computer device (It can be a personal computer, a server, or a network device, etc.) execute the methods described in each embodiment or some parts of the embodiment.

Abstract

本公开实施例提供一种SRS传输方法、装置、网络设备、终端和存储介质。SRS传输方法包括:基于终端对应的上行相关信息,确定SRS配置信息;向所述终端下发所述SRS配置信息;接收所述终端基于所述SRS配置信息发送的SRS信号。本公开实施例提供的方法、装置、网络设备、终端和存储介质,基于上行相关信息,确定SRS配置信息,实现了SRS相关参数的动态配置,使得SRS的相关配置能够更好地适应由于卫星快速移动导致的多普勒频移和传输时延的快速变化,从而使得上行时频估计能够对抗快速变化的定时和频率偏差,满足上行时频估计的及时性需求。

Description

SRS传输方法、装置、网络设备、终端和存储介质
相关申请的交叉引用
本申请要求于2019年11月06日提交的申请号为201911078524.1,发明名称为“SRS传输方法、装置、网络设备、终端和存储介质”的中国专利申请的优先权,其通过引用方式全部并入本文。
技术领域
本公开涉及无线通信技术领域,尤其涉及一种SRS传输方法、装置、网络设备、终端和存储介质。
背景技术
目前的通信系统中,网络设备通常基于终端发送的SRS(sounding reference signal,信道探测参考信号)来修正上行的时频偏误差。
在卫星通信系统中,由于卫星的快速移动,终端和卫星的传播距离也在快速变化,由此导致了多普勒频移和传输时延的快速变化。终端在定位信息或者星历信息不准确的情况下,很难实时补偿定时信息的偏差,会导致较大上行同步的误差。目前仅基于SRS无法满足及时捕获上行的定时和频率偏差的需求。
发明内容
本公开实施例提供一种SRS传输方法、装置、网络设备、终端和存储介质,用以解决现有的SRS无法满足及时捕获上行的定时和频率偏差需求的问题。
第一方面,本公开实施例提供一种SRS传输方法,包括:
基于终端对应的上行相关信息,确定SRS配置信息;
向所述终端下发所述SRS配置信息;
接收所述终端基于所述SRS配置信息发送的SRS信号。
优选地,所述基于终端对应的上行相关信息,确定SRS配置信息,具体包括:
基于终端对应的上行相关信息,确定SRS配置参数;其中,所述上行 相关信息包括终端的移动速度和/或上行链路信息;
基于SRS配置参数,确定所述SRS配置信息。
优选地,当所述上行相关信息包括终端的移动速度时,所述基于终端对应的上行相关信息,确定SRS配置参数,具体包括:
基于终端的移动速度,确定SRS发送间隔参数;其中,所述SRS发送间隔参数包括SRS符号间隔和/或SRS发送单元间隔。
优选地,所述上行链路信息包括上行频偏、上行时延和信噪比中的至少一种;
当所述上行相关信息包括上行频偏时,所述基于终端对应的上行相关信息,确定SRS配置参数,具体包括:
基于终端对应的上行频偏,确定SRS发送间隔参数;其中,所述SRS发送间隔参数包括SRS符号间隔和/或SRS发送单元间隔;
当所述上行相关信息包括上行时延时,所述基于终端对应的上行相关信息,确定SRS配置参数,具体包括:
基于终端对应的上行时延的变化信息,确定SRS子载波间隔;
当所述上行相关信息包括信噪比时,所述基于终端对应的上行相关信息,确定SRS配置参数,具体包括:
基于终端对应的信噪比,确定SRS重复发送参数和/或SRS传输占用的时隙数;其中,所述SRS重复发送参数包括SRS发送单元的重复次数和/或SRS发送单元内连续发送符号数。
优选地,所述SRS配置信息中携带有所述SRS配置参数,或所述SRS配置参数对应的标识。
优选地,所述SRS配置信息包括SRS资源和PUSCH资源之间的映射关系;
所述向所述终端下发所述SRS配置信息,之后还包括:
向所述终端下发用于触发SRS和PUSCH联合发送的触发指令;所述SRS和PUSCH联合发送是指先发送SRS信号,后发送PUSCH信号;
接收所述终端基于所述触发指令顺序发送的SRS信号和PUSCH信号。
优选地,所述顺序发送的SRS信号和PUSCH信号之间存在间隔;
所述接收所述终端基于所述触发指令顺序发送的SRS信号和PUSCH 信号,具体包括:
接收所述终端基于所述触发指令在先发送的SRS信号,基于所述SRS信号调整PUSCH的接收定时和频率参考值;
接收所述终端基于所述触发指令在后发送的PUSCH信号。
优选地,所述SRS配置信息为RRC信令、MAC信令和DCI信令中的至少一种;其中,所述RRC信令用于配置所述SRS信号,所述MAC信令和所述DCI信令用于触发所述SRS信号发送。
优选地,用于触发SRS信号发送的所述MAC信令和所述DCI信令中携带以下SRS参数信息中的一种或多种:
SRS符号间隔,SRS发送单元间隔,SRS发送单元的重复次数,SRS发送单元内连续发送符号数,SRS信号的子载波间隔,以及SRS传输占用的时隙数。
第二方面,本公开实施例提供一种SRS传输方法,包括:
接收网络设备下发的SRS配置信息;所述SRS配置信息是所述网络设备基于终端对应的上行相关信息确定的;
基于所述SRS配置信息,向所述网络设备发送SRS信号。
优选地,所述SRS配置信息中携带有SRS配置参数,或SRS配置参数对应的标识;
所述基于所述SRS配置信息,向所述网络设备发送SRS信号,具体包括:
基于所述SRS配置信息,确定所述SRS配置参数;
基于所述SRS配置参数,向所述网络设备发送SRS信号。
优选地,所述SRS配置参数包括以下一种或多种:
SRS符号间隔,SRS发送单元间隔,SRS发送单元的重复次数,SRS发送单元内连续发送符号数,SRS信号的子载波间隔,以及SRS传输占用的时隙数。
优选地,所述SRS配置信息包括SRS资源和PUSCH资源之间的映射关系;
所述接收网络设备下发的SRS配置信息,之后还包括:
接收所述网络设备下发的用于触发SRS和PUSCH联合发送的触发指 令;所述SRS和PUSCH联合发送是指先发送SRS信号,后发送PUSCH信号;
基于所述触发指令,顺序发送SRS信号和PUSCH信号。
优选地,所述基于所述触发指令,顺序发送SRS信号和PUSCH信号,具体包括:
基于所述触发指令,发送SRS信号,等待预设间隔后,发送PUSCH信号。
优选地,所述SRS配置信息为RRC信令、MAC信令和DCI信令中的至少一种;其中,所述RRC信令用于配置所述SRS信号,所述MAC信令和所述DCI信令用于触发所述SRS信号发送。
优选地,用于触发SRS信号发送的所述MAC信令和所述DCI信令中携带以下SRS参数信息中的一种或多种:
SRS符号间隔,SRS发送单元间隔,SRS发送单元的重复次数,SRS发送单元内连续发送符号数,SRS信号的子载波间隔,以及SRS传输占用的时隙数。
第三方面,本公开实施例提供一种SRS传输装置,包括:
配置信息确定单元,配置成基于终端对应的上行相关信息,确定SRS配置信息;
配置信息发送单元,配置成向所述终端下发所述SRS配置信息;
SRS接收单元,配置成接收所述终端基于所述SRS配置信息发送的SRS信号。
第四方面,本公开实施例提供一种SRS传输装置,包括:
配置信息接收单元,配置成接收网络设备下发的SRS配置信息;所述SRS配置信息是所述网络设备基于终端对应的上行相关信息确定的;
SRS发送单元,配置成基于所述SRS配置信息,向所述网络设备发送SRS信号。
第五方面,本公开实施例提供一种网络设备,包括存储器、处理器及存储在存储器上并可在处理器上运行的程序,所述处理器执行所述程序时实现如下步骤:
基于终端对应的上行相关信息,确定SRS配置信息;
向所述终端下发所述SRS配置信息;
接收所述终端基于所述SRS配置信息发送的SRS信号。
第六方面,本公开实施例提供一种终端,包括存储器、处理器及存储在存储器上并可在处理器上运行的程序,所述处理器执行所述程序时实现如下步骤:
接收网络设备下发的SRS配置信息;所述SRS配置信息是所述网络设备基于终端对应的上行相关信息确定的;
基于所述SRS配置信息,向所述网络设备发送SRS信号。
第七方面,本公开实施例提供一种非暂态计算机可读存储介质,其上存储有计算机程序,该计算机程序被处理器执行时实现如第一方面或第二方面所提供的方法的步骤。
本公开实施例提供的一种SRS传输方法、装置、网络设备、终端和存储介质,基于上行相关信息,确定SRS配置信息,实现了SRS相关参数的动态配置,使得SRS的相关配置能够更好地适应由于卫星快速移动导致的多普勒频移和传输时延的快速变化,从而使得上行时频估计能够对抗快速变化的定时和频率偏差,满足上行时频估计的及时性需求。
附图说明
为了更清楚地说明本公开实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作一简单地介绍,显而易见地,下面描述中的附图是本公开的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1为现有技术中卫星通信的两种工作模式的示意图;
图2为现有技术中卫星的多卫星波束的覆盖示意图;
图3为现有技术中弯管卫星通信多普勒和定时补偿示意图;
图4为本公开实施例提供的SRS传输方法的流程示意图;
图5为本公开实施例提供的SRS符号间隔示意图;
图6为本公开实施例提供的SRS重复发送参数的配置示意图;
图7为本公开实施例提供的SRS和PUSCH的联合发送示意图;
图8为本公开另一实施例提供的SRS传输方法的流程示意图;
图9为本公开实施例提供的SRS传输装置的结构示意图;
图10为本公开另一实施例提供的SRS传输装置的结构示意图;
图11为本公开实施例提供的网络设备的结构示意图;
图12为本发实施例提供的基站的结构示意图。
具体实施方式
为使本公开实施例的目的、技术方案和优点更加清楚,下面将结合本公开实施例中的附图,对本公开实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例是本公开一部分实施例,而不是全部的实施例。基于本公开中的实施例,本领域普通技术人员在没有作出创造性劳动前提下所获得的所有其他实施例,都属于本公开保护的范围。
在低轨卫星通信系统中,卫星的速度高到8km/s,由此导致终端和卫星的传播距离是快速变化的,且多普勒频移也是快速变化的。终端在定位信息或者星历信息不准确的情况下,很难实时补偿定时信息的偏差,会导致上行同步的较大误差。为了能及时捕获上行的定时和频率偏差,需要一种更鲁棒的方法帮助网络设备确定定时和频率偏差。
图1为现有技术中卫星通信的两种工作模式的示意图,如图1所示,一种工作模式为弯管模式,对应于图中标注的透明转发,卫星仅仅透明转发信号,不做任何处理,终端和信关站进行通信;另一种工作模式为再生通信,对应于图中标注的处理转发,此时卫星可以检测出接收信号中的信息,并进行处理转发,完成网络设备的功能,连接终端和信关站。在卫星通信中,终端和卫星的连接称之为用户链路,卫星和信关站的连接是馈电链路。
在实际通信中,一个卫星往往携带多个卫星波束,图2为现有技术中卫星的多卫星波束的覆盖示意图。对每一个卫星波束,网络设备可以基于波束的中心点进行多普勒补偿,比如,在下行发送信号时,网络设备先对小区公共部分进行补偿,剩余的多普勒频移将会变小,有利于终端基于同步信号进行频率同步和跟踪。在上行信号发送时,终端也会补偿剩余的多普勒补偿,由网络设备进行公共上行多普勒补偿,当终端获得位置信息和星历信息时,上行的多普勒频移也可以全部由终端补偿;对于上行定时,终端和网络设备的距离一直在变化,有两种定时补偿方法,一种是终端进行全部的TA(timing advance)补偿,另一种,网络补偿公共TA部分, 终端仅补偿残留TA部分。图3为现有技术中弯管卫星通信多普勒和定时补偿示意图,如图3所示,将波束中心点作为参考点,无论是多普勒补偿和TA补偿,终端仅补偿相对参考点的剩余部分,有利于减少终端的复杂度
在低轨卫星通信系统的上行定时补偿和多普勒补偿中,存在一个较大的问题是卫星的移动速度较快,导致多普勒变化率可以达到8khz/s,定时TA的变化率最大可以达到50us/s。同时终端的移动速度也有较大范围,比如飞机终端,速度是1200km/h,固定终端,速度为0。这些场景设置会导致卫星通信系统设计的参数更加复杂。在传统的上行同步设计中,依赖于PRACH(Physical Random Access Channel,物理随机接入信道)信号和上行SRS信号,一般PRACH信号用于处理较大的时延和频偏,比如初始接入时候,而SRS信号用于处理较小的时延和频偏场景,用于修正上行的时频偏误差,此时终端已处于RRC(Radio Resource Control,无线资源控制层)连接态。
现有的地面5G移动通信系统,网络可以配置SRS发送的相关参数,包括comb(频域子载波间隔数)、符号数、SCS(subcarrier spacing,子载波带宽)以及重复次数等,然而,这些参数不能动态改变,也不能基于上行链路的定时和频率的偏差进行自适应的调整,因此在卫星通信系统中有较大的缺陷。
对此,本公开实施例针对终端处于RRC连接态时的时频偏的问题,提供了一种SRS传输方法。图4为本公开实施例提供的SRS传输方法的流程示意图,如图4所示,该方法的执行主体可以是卫星通信系统中的网络侧设备,例如基站,该方法包括:
步骤410,基于终端对应的上行相关信息,确定SRS配置信息。
具体地,终端可以是卫星通信系统下各种具有无线通信功能的用户设备,例如手持设备、车载设备、可穿戴设备等。终端对应的上行相关信息即与该终端对应的上行链路状态相关联的信息,例如终端自身的移动速度,网络设备通过上行测量得到的上行链路的频偏值、时偏值或者上行链路的信噪比等,本公开实施例对此不作具体限定。其中,终端的移动速度可以是网络通过上行信号估计获得,或者终端上报获得。
SRS配置信息用于指示终端发送SRS信号的相关配置参数,SRS配置信息可以仅用于SRS的相关参数配置,也可以在指示SRS的相关参数配置的同时触发SRS信号的发送,本公开实施例对此不作具体限定。上行相关信息与相关配置参数之间存在映射关系,基于终端对应的上行相关信息可以得到对应的相关配置参数,进而得到SRS配置信息。
步骤420,向终端下发SRS配置信息。
具体地,在基于上行相关信息确定SRS配置信息后,将SRS配置信息下发至终端,使得终端在接收到SRS配置信息后,能够基于SRS配置信息进行SRS的相关参数的配置,并在到达SRS信号的发送周期或者接收到触发信令时,向网络设备发送SRS信号。
步骤430,接收终端基于SRS配置信息发送的SRS信号。
具体地,网络设备对应接收终端基于SRS配置信息发送的SRS信号,并基于接收到的SRS信号及时捕获上行的定时和频率偏差。
本公开实施例提供的方法,基于上行相关信息,确定SRS配置信息,实现了SRS相关参数的动态配置,使得SRS的相关配置能够更好地适应由于卫星快速移动导致的多普勒频移和传输时延的快速变化,从而使得上行时频估计能够对抗快速变化的定时和频率偏差,满足上行时频估计的及时性需求。
基于上述实施例,该方法中,步骤410具体包括:
步骤411,基于终端对应的上行相关信息,确定SRS配置参数;其中,上行相关信息包括终端的移动速度和/或上行链路信息。
进一步地,上行链路信息包括上行频偏、上行时延和信噪比中的至少一种。其中,上行频偏是指上行链路的频偏估计值,上行时延是上行链路的时延,信噪比是指上行链路的信噪比,上述链路信息可以包含上述各种参数中的任意一种或者多种,本公开实施例对此不作具体限定。
SRS配置参数即用于SRS配置的参数,例如子载波间隔、一个发送单元连续发生符号数、不同发送单元的重复次数和间隔、comb、序列特征等。
上行相关信息中的任意一种参数,可以预先与SRS配置参数中一种或者多种参数设置关联,通过检测到的上行相关信息中任意一种参数的变化,动态调整SRS中对应的参数,从而更好地适应由于卫星快速移动导致的多 普勒频移和传输时延的快速变化。
步骤412,基于SRS配置参数,确定所述SRS配置信息。
具体地,在实现SRS配置参数的动态调整之后,基于调整后的SRS配置参数,确定对应的SRS配置信息,以指示终端基于SRS配置信息所对应的SRS配置参数,进行SRS的配置。
基于上述任一实施例,该方法中,当上行相关信息包括终端的移动速度时,步骤411具体包括:基于终端的移动速度,确定SRS发送间隔参数;其中,SRS发送间隔参数包括SRS符号间隔和/或SRS发送单元间隔。
具体地,SRS符号间隔为两个相邻的SRS符号的间隔。终端的移动速度与上行频偏之间存在对应关系,而上行频偏与SRS符号间隔之间存在对应关系,因此,可以由此确定终端的移动速度与SRS符号间隔之间的对应的关系,进而根据终端的移动速度,确定对应的SRS符号间隔。
SRS发送单元间隔为两个相邻的SRS发送单元的间隔。同样地,终端的移动速度与SRS发送单元间隔之间也存在类似的对应关系。可以基于终端的移动速度的大小,对应调整SRS发送单元间隔的大小。
基于上述任一实施例,该方法中,当上行相关信息包括上行频偏时,步骤411具体包括:基于终端对应的上行频偏,确定SRS发送间隔参数;其中,SRS发送间隔参数包括SRS符号间隔和/或SRS发送单元间隔。其中,上行频偏包括上行多普勒偏移、上行接收时钟和发送时钟的差异或者器件带来的频率偏移,一般的,在卫星通信系统中,多普勒偏移起主导作用。
具体地,上行频偏与SRS符号间隔之间存在对应关系。例如,符号间的相位偏差φ=2*pi*delta_f*delta_t,其中相邻的两个SRS符号的间隔是delta_t,上行频偏是delta_f。符号间的相位误差是依据两个相邻SRS符号进行相关检测获得。假设SRS符号的间隔delta_t为固定值,则上行频偏delta_f越小,相位偏差φ越小。为了避免相位偏差φ过小影响检测精度,可以在上行频偏delta_f较小时,调大SRS符号的间隔delta_t。
例如,图5为本公开实施例提供的SRS符号间隔示意图,如图5所示,SRS符号为图中填充有斜线的方框,左侧的两个相邻SRS符号间隔delta_t1=6symbols,右侧的两个相邻SRS符号间隔delta_t2=4symbols, 预先设定一个上行频偏阈值,如果上行频偏大于上行频偏阈值,则选择较小的delta_t2作为SRS符号间隔,如果上行频偏小于上行频偏阈值,则选择较大的delta_t1作为SRS符号间隔。
同样地,上行频偏与SRS发送单元间隔之间也存在类似的对应关系。可以基于上行频偏的大小,对应调整SRS发送单元间隔的大小。
基于上述任一实施例,该方法中,当上行相关信息包括上行时延时,步骤411具体包括:基于终端对应的上行时延的变化信息,确定SRS子载波间隔。
具体地,在5G系统设计中,循环前缀CP的长度和子载波间隔是关联的,主要原因在于保持不同的子载波间隔的边界对齐,比如子载波间隔为15khz时,对应的时隙的长度是1ms,子载波间隔为120khz时,对应的时隙长度是0.125ms,两者之间相差8倍。
当循环前缀CP较短时,其对抗时延的能力也很弱,例如子载波间隔为120khz时,对应的CP长度等于0.59us,小于其对抗的定时偏差0.3us。为了提高上行时延偏差的估计能力,需要扩大CP,例如将子载波间隔改为15khz,对应的CP长度可以达到4.6us,此时可以对抗更大的定时偏差。调整CP的长度是为了提高SRS信号的抗时延偏差能力,从而通过SRS信号估计出时延的变化值,并根据变化值通知终端,终端可以据此调整上行信号的TA值。
在对上行时延的监测过程中,可以判断获知上行时延的变化信息,例如上行时延增大或减小,又例如上行时延增大或减小的差值等,基于这些变化信息既可以动态调整SRS的子载波间隔,从而在上行时延急剧变化时,能够提高SRS的时延估计能力,以对抗更大的定时偏差。
基于上述任一实施例,该方法中,当上行相关信息包括信噪比时,步骤411具体包括:基于终端对应的信噪比,确定SRS重复发送参数和/或SRS传输占用的时隙数;其中,SRS重复发送参数包括SRS发送单元的重复次数和/或SRS发送单元内连续发送符号数。
具体地,在信噪比较低时,可以通过增加一个SRS发送单元中包含的SRS符号的数量,增加重复发送SRS发送单元的数量,以及增加SRS传输占用的时隙的数量中的至少一种,保证上行的分集接收能力。
图6为本公开实施例提供的SRS重复发送参数的配置示意图,图6中填充有斜线的方框为SRS单元,一个时隙中可以传输多个SRS单元,且每个SRS单元中可以包含1个或多个SRS符号,通过调节SRS发送单元的重复次数、SRS发送单元内连续发送符号数,以及SRS传输占用的时隙数,均可以达到调节SRS符号重复发送次数的目的,从而保证在信噪比较低时,上行链路也能具备较佳的分集接收能力。
基于上述任一实施例,该方法中,SRS配置信息中携带有SRS配置参数,或SRS配置参数对应的标识。
具体地,网络设备可以通过SRS配置信息显性或者隐性地供终端配置SRS。此处,SRS配置信息中可以直接携带SRS配置参数,从而显性地向终端发送SRS配置参数,以供终端进行SRS相关参数的配置。此外,SRS配置信息中还可以携带SRS配置参数对应的标识,例如SRS配置参数对应的SRS类型,SRS配置参数对应的SRS资源的ID等,从而隐性地供终端进行SRS配置。
例如,可以预先设置多个SRS资源,不同的SRS资源对应不同的SRS配置参数,在基于上行链路信息确定终端对应的SRS配置参数后,可以进一步确定终端对应的SRS资源,并将SRS资源的ID携带在SRS配置信息中发送给终端,使得终端在接收到SRS配置信息后,能够从中提取SRS资源的ID,从而基于ID调用对应的SRS资源以实现SRS信号的发送。另一种方式是定义多种SRS类型,通过类型ID通知终端发送不同的SRS信号。
基于上述任一实施例,该方法中,SRS配置信息包括SRS资源和PUSCH资源之间的映射关系。
具体地,可以预先设置多个SRS资源和多个PUSCH资源,并预先将SRS资源和PUSCH资源相关联,以确定SRS资源和PUSCH资源之间的映射关系。
SRS资源和PUSCH资源的映射关系可以是SRS的时频位置、序列、子载波间隔等任一参数确定的SRS资源标识和一个PUSCH资源对应关系,从而使得在通知PUSCH发送时,通过调度PUSCH传输或者触发SRS传输,终端进行SRS信号和PUSCH的联合发送。
对应地,步骤420之后还包括:向终端下发用于触发SRS和PUSCH联合发送的触发指令,SRS和PUSCH联合发送是指先发送SRS信号,后发送PUSCH信号;接收终端基于触发指令顺序发送的SRS信号和PUSCH信号。
具体地,在终端没有连续发生数据信号时,网络对于终端的上行同步信息存在缺失,导致上行定时或者频率偏差,因此需要终端在发送PUSCH时提前发送SRS信号,以帮助网络获得上行定时和频率的偏差信息,从而帮助PUSCH的解调。
此处,触发指令用于触发SRS和PUSCH的联合发送,即在发送PUSCH信号之前提前发送SRS信号。触发指令可以包含PUSCH资源或PUSCH资源对应的标识,以供终端基于触发指令确定PUSCH资源,并基于SRS配置信息中包含的SRS资源和PUSCH资源之间的映射关系,确定SRS资源,从而基于SRS资源发送SRS信号,基于PUSCH资源发送PUSCH信号。此外,触发指令还可以包含SRS资源或SRS资源对应的标识,以供终端基于触发指令确定SRS资源,并基于SRS配置信息中包含的SRS资源和PUSCH资源之间的映射关系,确定PUSCH资源,从而基于SRS资源发送SRS信号,基于PUSCH资源发送PUSCH信号。
图7为本公开实施例提供的SRS和PUSCH的联合发送示意图,如图7所示,在PUSCH信号之前发送了两次SRS信号,每次均为一个SRS单元。此处,SRS信号的相关特征和配置参数可以是预先通知终端的,例如网络设备可以预先向终端发送SRS配置信息。
本公开实施例提供的方法,通过SRS和PUSCH的联合发送,能够帮助网络设备获取在解调PUSCH之前获取定时和频率的偏差信息,有助于PUSCH的解调。
基于上述任一实施例,该方法中,顺序发送的SRS信号和PUSCH信号之间存在间隔。
此处间隔的设置是为了防止SRS信号和PUSCH信号的干扰,间隔是预先设定的,可以是一个或多个符号,也可以是一个或多个时隙,本公开实施例对此不作具体限定。
对应地,所述接收终端基于触发指令顺序发送的SRS信号和PUSCH 信号,具体包括:接收终端基于触发指令在先发送的SRS信号,基于SRS信号调整PUSCH的接收定时和频率参考值;接收终端基于触发指令在后发送的PUSCH信号。
具体地,由于终端在联合发送SRS信号和PUSCH信号时,于在先发送的SRS信号和在后发送的PUSCH信号之间设置了间隔,使得网络设备在检测SRS信号后,能够在间隔对应的时间内调整接收PUSCH的接收定时和频率参考值,从而更好地解调随后接收的PUSCH信号。
基于上述任一实施例,该方法中,SRS配置信息为RRC信令、MAC信令和DCI信令中的至少一种;其中,RRC信令用于配置SRS信号,MAC信令和DCI信令用于触发SRS信号发送。
具体地,对于周期性的SRS信号,可以通过RRC信令进行配置,且无需触发;对于半持续SRS信号,采用MAC(Media Access Control,介质访问控制层)信令进行触发;对于非周期SRS信号,采用DCI(Downlink Control Information,下行控制信息)信令触发。
对于RRC信令,包括以下信息:
1)SRS配置的基本参数:包括子载波间隔、一个SRS发送单元内连续发送符号数、不同SRS发送单元的重复次数和间隔、comb、序列特征等;
2)SRS资源和资源集配置信息:一个资源集包含多个SRS资源,不同SRS资源可以分配不同的用户。一个资源集即一个资源池,对应一个频带资源,而且对应不同的SRS参数集。
对于MAC信令和DCI信令,包括以下信息:
SRS配置参数的指示,包括SRS符号间隔,SRS发送单元间隔,SRS发送单元的重复次数,SRS发送单元内连续发送符号数,SRS信号的子载波间隔,以及SRS传输占用的时隙数等;
或者,SRS类型,此处,不同的类型ID对应不同的SRS参数集;
或者,SRS的资源ID或资源集ID。
基于上述任一实施例,图8为本公开另一实施例提供的SRS传输方法的流程示意图,如图8所示,该方法的执行主体为卫星通信系统中的终端,该方法包括:
步骤810,接收网络设备下发的SRS配置信息;SRS配置信息是网络设备基于终端对应的上行相关信息确定的。
具体地,终端对应的上行相关信息即与终端对应的上行链路状态相关联的信息,例如终端自身的移动速度,网络设备通过上行测量得到的上行链路的频偏值、时偏值或者上行链路的信噪比等,本公开实施例对此不作具体限定。SRS配置信息用于指示终端发送SRS信号的相关配置参数,SRS配置信息可以仅用于SRS的相关参数配置,也可以在指示SRS的相关参数配置的同时触发SRS信号的发送,本公开实施例对此不作具体限定。
上行相关信息与相关配置参数之间存在映射关系,网络设备基于终端对应的上行相关信息可以得到对应的相关配置参数,进而得到SRS配置信息并下发给终端,随即终端接收SRS配置信息。
步骤820,基于SRS配置信息,向网络设备发送SRS信号。
具体地,在接收到SRS配置信息后,基于SRS配置信息进行SRS的相关参数的配置,并在到达SRS信号的发送周期或者接收到触发信令时,向网络设备发送SRS信号,以供网络设备基于SRS信号及时捕获上行的定时和频率偏差。
本公开实施例提供的方法,基于上行相关信息,确定SRS配置信息,实现了SRS相关参数的动态配置,使得SRS的相关配置能够更好地适应由于卫星快速移动导致的多普勒频移和传输时延的快速变化,从而使得上行时频估计能够对抗快速变化的定时和频率偏差,满足上行时频估计的及时性需求。
基于上述任一实施例,该方法中,SRS配置信息中携带有SRS配置参数,或SRS配置参数对应的标识;
对应地,步骤820具体包括:
步骤821,基于SRS配置信息,确定SRS配置参数。
具体地,SRS配置参数即用于SRS配置的参数,SRS配置信息中可以直接携带SRS配置参数,使得终端能够从SRS配置信息中直接提取SRS配置参数。此外,SRS配置信息中还可以携带SRS配置参数对应的标识,例如SRS配置参数对应的SRS类型,SRS配置参数对应的SRS资源的ID等,使得终端能够基于SRS配置信息间接确定SRS配置参数。
步骤822,基于SRS配置参数,向网络设备发送SRS信号。
具体地,在确定SRS配置参数后,基于SRS配置参数进行SRS配置,并在到达SRS信号的发送周期或者接收到触发信令时,向网络设备发送SRS信号。
基于上述任一实施例,SRS配置参数包括以下一种或多种:SRS符号间隔,SRS发送单元间隔,SRS发送单元的重复次数,SRS发送单元内连续发送符号数,SRS信号的子载波间隔,以及SRS传输占用的时隙数。
其中,SRS符号间隔和SRS发送单元间隔可以基于终端的移动速度或者上行频偏动态调整;SRS信号的子载波间隔可以基于终端对应的上行时延的变化信息动态调整;SRS发送单元的重复次数,SRS发送单元内连续发送符号数,以及SRS传输占用的时隙数可以基于终端对应的上行链路的信噪比动态调整。
基于上述任一实施例,SRS配置信息包括SRS资源和PUSCH资源之间的映射关系。
具体地,可以预先设置多个SRS资源和多个PUSCH资源,并预先将SRS资源和PUSCH资源相关联,以确定SRS资源和PUSCH资源之间的映射关系。
对应地,步骤810之后还包括:接收网络设备下发的用于触发SRS和PUSCH联合发送的触发指令,SRS和PUSCH联合发送是指先发送SRS信号,后发送PUSCH信号;基于触发指令,顺序发送SRS信号和PUSCH信号。
具体地,触发指令用于触发SRS和PUSCH的联合发送,即在发送PUSCH信号之前提前发送SRS信号。触发指令可以包含PUSCH资源或PUSCH资源对应的标识,终端可以基于触发指令确定PUSCH资源,并基于SRS配置信息中包含的SRS资源和PUSCH资源之间的映射关系,确定SRS资源,从而基于SRS资源发送SRS信号,基于PUSCH资源发送PUSCH信号。此外,触发指令还可以包含SRS资源或SRS资源对应的标识,终端可以基于触发指令确定SRS资源,并基于SRS配置信息中包含的SRS资源和PUSCH资源之间的映射关系,确定PUSCH资源,从而基于SRS资源发送SRS信号,基于PUSCH资源发送PUSCH信号。
本公开实施例提供的方法,通过SRS和PUSCH的联合发送,能够帮助网络设备获取在解调PUSCH之前获取定时和频率的偏差信息,有助于PUSCH的解调。
基于上述任一实施例,所述基于触发指令,顺序SRS信号和PUSCH信号,具体包括:基于触发指令,发送SRS信号,等待预设间隔后,发送PUSCH信号。
此处,预设间隔即预先设定的间隔,其目的在于防止SRS信号和PUSCH信号的干扰,预设间隔可以是一个或多个符号,也可以是一个或多个时隙,本公开实施例对此不作具体限定。
由于在联合发送SRS信号和PUSCH信号时,于在先发送的SRS信号和在后发送的PUSCH信号之间设置了间隔,使得网络设备在检测SRS信号后,能够在预设间隔对应的时间内调整PUSCH的接收定时和频率参考值,从而更好地解调随后接收的PUSCH信号。
基于上述任一实施例,SRS配置信息为RRC信令、MAC信令和DCI信令中的至少一种;其中,RRC信令用于配置SRS信号,MAC信令和DCI信令用于触发SRS信号发送。
基于上述任一实施例,用于触发SRS信号发送的所述MAC信令和所述DCI信令中携带以下SRS参数信息中的一种或多种:
SRS符号间隔,SRS发送单元间隔,SRS发送单元的重复次数,SRS发送单元内连续发送符号数,SRS信号的子载波间隔,以及SRS传输占用的时隙数。
基于上述任一实施例,一种SRS传输方法,具体包括如下步骤:
网络设备基于终端的移动速度、终端上行链路的频偏、上行时延和信噪比中的至少一种确定SRS配置参数,并在RRC配置信令或MAC/DCI触发信令中显性或者隐性地包含SRS配置参数。
此处,SRS配置参数包括如下参数中的至少一种:可配置的一个SRS单元内的连续发送符号数,可配置的发送单元之间的符号间隔,可配置的子载波间隔,以及可配置的发送单元重复次数。
其中,针对不同的上行时延,配置不同的SRS的子载波SCS,实现不同的循环前缀长度,或者直接配置不同的CP长度,以抵抗不同的上行时 延偏差。针对不同的移动速度的终端,配置SRS符号的不同间隔,以提高SRS信号的频偏估计能力。针对不同信噪比的终端,配置不同的SRS连续发送符号数,以对抗不同的信道SNR条件。
终端接收网络设备的显性或隐性发送的SRS配置参数,进行SRS配置,并依据触发信令发送相应SRS信号,以帮助网络估计时频偏误差。
本公开实施例提供的方法,能够根据不同用户的移动速度去配置不同的SRS,开销小,设计合理,解决小区中多用户的时频同步需求,以及快速获取上行的时频偏误差的需求。
基于上述任一实施例,SRS传输方法,还包括:网络设备触发SRS和PUSCH的联合发送,其中SRS信号用于提前进行时频估计,SRS信号和PUSCH信号之间可以配置符号或者时隙间隔以消除SRS信号和PUSCH信号的干扰或预留网络设备的时频调整处理间隔。
基于上述任一实施例,图9为本公开实施例提供的SRS传输装置的结构示意图,如图9所示,SRS传输装置包括配置信息确定单元910、配置信息发送单元920以及SRS接收单元930;
其中,配置信息确定单元910被配置成基于终端对应的上行相关信息,确定SRS配置信息;
配置信息发送单元920被配置成向所述终端下发所述SRS配置信息;
SRS接收单元930被配置成接收所述终端基于所述SRS配置信息发送的SRS信号。
本公开实施例提供的SRS传输装置,基于上行相关信息,确定SRS配置信息,实现了SRS相关参数的动态配置,使得SRS的相关配置能够更好地适应由于卫星快速移动导致的多普勒频移和传输时延的快速变化,从而使得上行时频估计能够对抗快速变化的定时和频率偏差,满足上行时频估计的及时性需求。
基于上述任一实施例,所述配置信息确定单元910包括:
参数确定子单元,被配置成基于终端对应的上行相关信息,确定SRS配置参数;其中,所述上行相关信息包括终端的移动速度和/或上行链路信息;
信息确定子单元,被配置成基于SRS配置参数,确定所述SRS配置 信息。
基于上述任一实施例,当所述上行相关信息包括终端的移动速度时,所述参数确定子单元具体用于:
基于终端的移动速度,确定SRS发送间隔参数;其中,所述SRS发送间隔参数包括SRS符号间隔和/或SRS发送单元间隔。
基于上述任一实施例,所述上行链路信息包括上行频偏、上行时延和信噪比中的至少一种;
对应地,当所述上行相关信息包括上行频偏时,所述参数确定子单元具体用于:
基于终端对应的上行频偏,确定SRS发送间隔参数;其中,所述SRS发送间隔参数包括SRS符号间隔和/或SRS发送单元间隔;
当所述上行相关信息包括上行时延时,所述参数确定子单元具体用于:
基于终端对应的上行时延的变化信息,确定SRS子载波间隔;
当所述上行相关信息包括信噪比时,所述参数确定子单元具体用于:
基于终端对应的信噪比,确定SRS重复发送参数和/或SRS传输占用的时隙数;其中,所述SRS重复发送参数包括SRS发送单元的重复次数和/或SRS发送单元内连续发送符号数。
基于上述任一实施例,所述SRS配置信息中携带有所述SRS配置参数,或所述SRS配置参数对应的标识。
基于上述任一实施例,所述SRS配置信息包括SRS资源和PUSCH资源之间的映射关系;
对应地,所述SRS传输装置还包括:
联合触发发送单元,被配置成向所述终端下发用于触发SRS和PUSCH联合发送的触发指令;
联合信号接收单元,被配置成接收所述终端基于所述触发指令顺序发送的SRS信号和PUSCH信号。
基于上述任一实施例,所述顺序发送的SRS信号和PUSCH信号之间存在间隔;
对应地,所述联合信号接收单元具体用于:
接收所述终端基于所述触发指令在先发送的SRS信号,基于所述SRS 信号调整PUSCH的接收定时和频率参考值;
接收所述终端基于所述触发指令在后发送的PUSCH信号。
基于上述任一实施例,所述SRS配置信息为RRC信令、MAC信令和DCI信令中的至少一种;其中,所述RRC信令用于配置所述SRS信号,所述MAC信令和所述DCI信令用于触发所述SRS信号发送。
基于上述任一实施例,用于触发SRS信号发送的所述MAC信令和所述DCI信令中携带以下SRS参数信息中的一种或多种:
SRS符号间隔,SRS发送单元间隔,SRS发送单元的重复次数,SRS发送单元内连续发送符号数,SRS信号的子载波间隔,以及SRS传输占用的时隙数。
基于上述任一实施例,图10为本公开另一实施例提供的SRS传输装置的结构示意图,如图10所示,SRS传输装置包括配置信息接收单元1010和SRS发送单元1020;
其中,配置信息接收单元1010被配置成接收网络设备下发的SRS配置信息;所述SRS配置信息是所述网络设备基于终端对应的上行相关信息确定的;
SRS发送单元1020被配置成基于所述SRS配置信息,向所述网络设备发送SRS信号。
本公开实施例提供的SRS传输装置,基于上行相关信息,确定SRS配置信息,实现了SRS相关参数的动态配置,使得SRS的相关配置能够更好地适应由于卫星快速移动导致的多普勒频移和传输时延的快速变化,从而使得上行时频估计能够对抗快速变化的定时和频率偏差,满足上行时频估计的及时性需求。
基于上述任一实施例,所述SRS配置信息中携带有SRS配置参数,或SRS配置参数对应的标识;
对应地,所述SRS发送单元1020具体用于:
基于所述SRS配置信息,确定所述SRS配置参数;
基于所述SRS配置参数,向所述网络设备发送SRS信号。
基于上述任一实施例,所述SRS配置参数包括以下一种或多种:
SRS符号间隔,SRS发送单元间隔,SRS发送单元的重复次数,SRS 发送单元内连续发送符号数,SRS信号的子载波间隔,以及SRS传输占用的时隙数。
基于上述任一实施例,所述SRS配置信息包括SRS资源和PUSCH资源之间的映射关系;
对应地,所述SRS传输装置还包括:
联合触发接收单元,被配置成接收所述网络设备下发的用于触发SRS和PUSCH联合发送的触发指令;
联合信号发送单元,被配置成基于所述触发指令,顺序发送SRS信号和PUSCH信号。
基于上述任一实施例,所述联合信号发送单元具体用于:
基于所述触发指令,发送SRS信号,等待预设间隔后,发送PUSCH信号。
基于上述任一实施例,所述SRS配置信息为RRC信令、MAC信令和DCI信令中的至少一种;其中,所述RRC信令用于配置所述SRS信号,所述MAC信令和所述DCI信令用于触发所述SRS信号发送。
基于上述任一实施例,用于触发SRS信号发送的所述MAC信令和所述DCI信令中携带以下SRS参数信息中的一种或多种:
SRS符号间隔,SRS发送单元间隔,SRS发送单元的重复次数,SRS发送单元内连续发送符号数,SRS信号的子载波间隔,以及SRS传输占用的时隙数。
图11为本公开实施例提供的网络设备的实体结构示意图,如图11所示,该网络设备可以包括:处理器(processor)1101、通信接口(Communications Interface)1102、存储器(memory)1103和通信总线1104。其中,处理器1101,通信接口1102,存储器1103通过通信总线1104实现相互间的通信。处理器1101可以调用存储在存储器1103上并可在处理器1101上运行的计算机程序,以执行下述步骤:
基于终端对应的上行相关信息,确定SRS配置信息;向所述终端下发所述SRS配置信息;接收所述终端基于所述SRS配置信息发送的SRS信号。
可选地,所述基于终端对应的上行相关信息,确定SRS配置信息,具 体包括:
基于终端对应的上行相关信息,确定SRS配置参数;其中,所述上行相关信息包括终端的移动速度和/或上行链路信息;
基于SRS配置参数,确定所述SRS配置信息。
可选地,当所述上行相关信息包括终端的移动速度时,所述基于终端对应的上行相关信息,确定SRS配置参数,具体包括:
基于终端的移动速度,确定SRS发送间隔参数;其中,所述SRS发送间隔参数包括SRS符号间隔和/或SRS发送单元间隔。
可选地,所述上行链路信息包括上行频偏、上行时延和信噪比中的至少一种;
当所述上行相关信息包括上行频偏时,所述基于终端对应的上行相关信息,确定SRS配置参数,具体包括:
基于终端对应的上行频偏,确定SRS发送间隔参数;其中,所述SRS发送间隔参数包括SRS符号间隔和/或SRS发送单元间隔;
当所述上行相关信息包括上行时延时,所述基于终端对应的上行相关信息,确定SRS配置参数,具体包括:
基于终端对应的上行时延的变化信息,确定SRS子载波间隔;
当所述上行相关信息包括信噪比时,所述基于终端对应的上行相关信息,确定SRS配置参数,具体包括:
基于终端对应的信噪比,确定SRS重复发送参数和/或SRS传输占用的时隙数;其中,所述SRS重复发送参数包括SRS发送单元的重复次数和/或SRS发送单元内连续发送符号数。
可选地,所述SRS配置信息中携带有所述SRS配置参数,或所述SRS配置参数对应的标识。
可选地,所述SRS配置信息包括SRS资源和PUSCH资源之间的映射关系;
所述向所述终端下发所述SRS配置信息之后,所述处理器执行所述程序时还实现如下步骤:
向所述终端下发用于触发SRS和PUSCH联合发送的触发指令;所述SRS和PUSCH联合发送是指在先发送SRS信号,后发送PUSCH信号;
接收所述终端基于所述触发指令顺序发送的SRS信号和PUSCH信号。
可选地,所述顺序发送的SRS信号和PUSCH信号之间存在间隔;
所述接收所述终端基于所述触发指令顺序发送的SRS信号和PUSCH信号,具体包括:
接收所述终端基于所述触发指令在先发送的SRS信号,基于所述SRS信号调整PUSCH的接收定时和频率参考值;
接收所述终端基于所述触发指令在后发送的PUSCH信号。
可选地,所述SRS配置信息为RRC信令、MAC信令和DCI信令中的至少一种;其中,所述RRC信令用于配置所述SRS信号,所述MAC信令和所述DCI信令用于触发所述SRS信号发送。
可选地,用于触发SRS信号发送的所述MAC信令和所述DCI信令中携带以下SRS参数信息中的一种或多种:
SRS符号间隔,SRS发送单元间隔,SRS发送单元的重复次数,SRS发送单元内连续发送符号数,SRS信号的子载波间隔,以及SRS传输占用的时隙数。
在此需要说明的是,本实施例中的网络设备能够实现上述方法实施例中的所有方法步骤,并能够达到相同的技术效果,在此不再对本实施例中与方法实施例中的相同部分以及相同技术效果进行赘述。
此外,上述的存储器1103中的逻辑指令可以通过软件功能单元的形式实现并作为独立的产品销售或使用时,可以存储在一个计算机可读取存储介质中。由此,本公开的实施例提供一种计算机软件产品,该计算机软件产品存储在一个存储介质中,包括若干指令用以使得一台计算机设备(例如,个人计算机,服务器,或者网络设备等)执行本公开各个实施例所述方法的全部或部分步骤。而前述的存储介质包括:U盘、移动硬盘、只读存储器(ROM,Read-Only Memory)、随机存取存储器(RAM,Random Access Memory)、磁碟或者光盘等各种可以存储程序代码的介质。
图12为本公开实施例提供的终端的实体结构示意图,如图12所示,该终端可以包括:处理器(processor)1201、通信接口(Communications Interface)1202、存储器(memory)1203和通信总线1204,其中,处理器1201,通信接口1202,存储器1203通过通信总线1204完成相互间的 通信。处理器1201可以调用存储在存储器1203上并可在处理器1201上运行的计算机程序,以执行下述步骤:
接收网络设备下发的SRS配置信息;所述SRS配置信息是所述网络设备基于终端对应的上行相关信息确定的;
基于所述SRS配置信息,向所述网络设备发送SRS信号。
可选地,所述SRS配置信息中携带有SRS配置参数,或SRS配置参数对应的标识;
所述基于所述SRS配置信息,向所述网络设备发送SRS信号,具体包括:
基于所述SRS配置信息,确定所述SRS配置参数;
基于所述SRS配置参数,向所述网络设备发送SRS信号。
可选地,所述SRS配置参数包括以下一种或多种:
SRS符号间隔,SRS发送单元间隔,SRS发送单元的重复次数,SRS发送单元内连续发送符号数,SRS信号的子载波间隔,以及SRS传输占用的时隙数。
可选地,所述SRS配置信息包括SRS资源和PUSCH资源之间的映射关系;
所述接收网络设备下发的SRS配置信息之后,所述处理器执行所述程序时还实现如下步骤:
接收所述网络设备下发的用于触发SRS和PUSCH联合发送的触发指令;所述SRS和PUSCH联合发送是指先发送SRS信号,后发送PUSCH信号;
基于所述触发指令,顺序发送SRS信号和PUSCH信号。
可选地,所述基于所述触发指令,顺序发送SRS信号和PUSCH信号,具体包括:
基于所述触发指令,发送SRS信号,等待预设间隔后,发送PUSCH信号。
可选地,所述SRS配置信息为RRC信令、MAC信令和DCI信令中的至少一种;其中,所述RRC信令用于配置所述SRS信号,所述MAC信令和所述DCI信令用于触发所述SRS信号发送。
可选地,用于触发SRS信号发送的所述MAC信令和所述DCI信令中携带以下SRS参数信息中的一种或多种:
SRS符号间隔,SRS发送单元间隔,SRS发送单元的重复次数,SRS发送单元内连续发送符号数,SRS信号的子载波间隔,以及SRS传输占用的时隙数。
在此需要说明的是,本实施例中的终端能够实现上述方法实施例中的所有方法步骤,并能够达到相同的技术效果,在此不再对本实施例中与方法实施例中的相同部分以及相同技术效果进行赘述。
此外,上述的存储器1203中的逻辑指令可以通过软件功能单元的形式实现并作为独立的产品销售或使用时,可以存储在一个计算机可读取存储介质中。由此,本公开的实施例提供一种计算机软件产品,该计算机软件产品存储在一个存储介质中,包括若干指令用以使得一台计算机设备(可以是个人计算机,服务器,或者网络设备等)执行本公开各个实施例所述方法的全部或部分步骤。而前述的存储介质包括:U盘、移动硬盘、只读存储器(ROM,Read-Only Memory)、随机存取存储器(RAM,Random Access Memory)、磁碟或者光盘等各种可以存储程序代码的介质。
本公开实施例还提供一种非暂态计算机可读存储介质,其上存储有计算机程序,该计算机程序被处理器执行时实现上述各实施例提供的SRS传输方法,例如包括:基于终端对应的上行相关信息,确定SRS配置信息;向所述终端下发所述SRS配置信息;接收所述终端基于所述SRS配置信息发送的SRS信号。
本公开实施例还提供一种非暂态计算机可读存储介质,其上存储有计算机程序,该计算机程序被处理器执行时实现上述各实施例提供的SRS传输方法,例如包括:接收网络设备下发的SRS配置信息;所述SRS配置信息是所述网络设备基于终端对应的上行相关信息确定的;基于所述SRS配置信息,向所述网络设备发送SRS信号。
以上所描述的装置实施例仅仅是示意性的,其中所述作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个位置,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部模块来实现 本实施例方案的目的。本领域普通技术人员在不付出创造性的劳动的情况下,即可以理解并实施。
通过以上的实施方式的描述,本领域的技术人员可以清楚地了解到各实施方式可借助软件加必需的通用硬件平台的方式来实现,当然也可以通过硬件。由此,本公开的实施例提供一种计算机软件产品,该计算机软件产品可以存储在计算机可读存储介质中,如ROM/RAM、磁碟、光盘等,包括若干指令用以使得一台计算机设备(可以是个人计算机,服务器,或者网络设备等)执行各个实施例或者实施例的某些部分所述的方法。
最后应说明的是:以上实施例仅用以说明本公开的技术方案,而非对其限制;尽管参照前述实施例对本公开进行了详细的说明,本领域的普通技术人员应当理解:其依然可以对前述各实施例所记载的技术方案进行修改,或者对其中部分技术特征进行等同替换;而这些修改或者替换,并不使相应技术方案的本质脱离本公开各实施例技术方案的精神和范围。

Claims (35)

  1. 一种SRS传输方法,其特征在于,包括:
    基于终端对应的上行相关信息,确定SRS配置信息;
    向所述终端下发所述SRS配置信息;
    接收所述终端基于所述SRS配置信息发送的SRS信号。
  2. 根据权利要求1所述的SRS传输方法,其特征在于,所述基于终端对应的上行相关信息,确定SRS配置信息,具体包括:
    基于终端对应的上行相关信息,确定SRS配置参数;其中,所述上行相关信息包括终端的移动速度和/或上行链路信息;
    基于SRS配置参数,确定所述SRS配置信息。
  3. 根据权利要求2所述的SRS传输方法,其特征在于,当所述上行相关信息包括终端的移动速度时,所述基于终端对应的上行相关信息,确定SRS配置参数,具体包括:
    基于终端的移动速度,确定SRS发送间隔参数;其中,所述SRS发送间隔参数包括SRS符号间隔和/或SRS发送单元间隔。
  4. 根据权利要求2所述的SRS传输方法,其特征在于,所述上行链路信息包括上行频偏、上行时延和信噪比中的至少一种;
    当所述上行相关信息包括上行频偏时,所述基于终端对应的上行相关信息,确定SRS配置参数,具体包括:
    基于终端对应的上行频偏,确定SRS发送间隔参数;其中,所述SRS发送间隔参数包括SRS符号间隔和/或SRS发送单元间隔;
    当所述上行相关信息包括上行时延时,所述基于终端对应的上行相关信息,确定SRS配置参数,具体包括:
    基于终端对应的上行时延的变化信息,确定SRS子载波间隔;
    当所述上行相关信息包括信噪比时,所述基于终端对应的上行相关信息,确定SRS配置参数,具体包括:
    基于终端对应的信噪比,确定SRS重复发送参数和/或SRS传输占用的时隙数;其中,所述SRS重复发送参数包括SRS发送单元的重复次数和/或SRS发送单元内连续发送符号数。
  5. 根据权利要求2至4中任一项所述的SRS传输方法,其特征在于, 所述SRS配置信息中携带有所述SRS配置参数,或所述SRS配置参数对应的标识。
  6. 根据权利要求1所述的SRS传输方法,其特征在于,所述SRS配置信息包括SRS资源和PUSCH资源之间的映射关系;
    所述向所述终端下发所述SRS配置信息,之后还包括:
    向所述终端下发用于触发SRS和PUSCH联合发送的触发指令;所述SRS和PUSCH联合发送是指先发送SRS信号,后发送PUSCH信号;
    接收所述终端基于所述触发指令顺序发送的SRS信号和PUSCH信号。
  7. 根据权利要求6所述的SRS传输方法,其特征在于,所述顺序发送的SRS信号和PUSCH信号之间存在间隔;
    所述接收所述终端基于所述触发指令顺序发送的SRS信号和PUSCH信号,具体包括:
    接收所述终端基于所述触发指令在先发送的SRS信号,基于所述SRS信号调整PUSCH的接收定时和频率参考值;
    接收所述终端基于所述触发指令在后发送的PUSCH信号。
  8. 根据权利要求1所述的SRS传输方法,其特征在于,所述SRS配置信息为RRC信令、MAC信令和DCI信令中的至少一种;其中,所述RRC信令用于配置所述SRS信号,所述MAC信令和所述DCI信令用于触发所述SRS信号发送。
  9. 根据权利要求8所述的SRS传输方法,其特征在于,用于触发SRS信号发送的所述MAC信令和所述DCI信令中携带以下SRS参数信息中的一种或多种:
    SRS符号间隔,SRS发送单元间隔,SRS发送单元的重复次数,SRS发送单元内连续发送符号数,SRS信号的子载波间隔,以及SRS传输占用的时隙数。
  10. 一种SRS传输方法,其特征在于,包括:
    接收网络设备下发的SRS配置信息;所述SRS配置信息是所述网络设备基于终端对应的上行相关信息确定的;
    基于所述SRS配置信息,向所述网络设备发送SRS信号。
  11. 根据权利要求10所述的SRS传输方法,其特征在于,所述SRS 配置信息中携带有SRS配置参数,或SRS配置参数对应的标识;
    所述基于所述SRS配置信息,向所述网络设备发送SRS信号,具体包括:
    基于所述SRS配置信息,确定所述SRS配置参数;
    基于所述SRS配置参数,向所述网络设备发送SRS信号。
  12. 根据权利要求11所述的SRS传输方法,其特征在于,所述SRS配置参数包括以下一种或多种:
    SRS符号间隔,SRS发送单元间隔,SRS发送单元的重复次数,SRS发送单元内连续发送符号数,SRS信号的子载波间隔,以及SRS传输占用的时隙数。
  13. 根据权利要求10所述的SRS传输方法,其特征在于,所述SRS配置信息包括SRS资源和PUSCH资源之间的映射关系;
    所述接收网络设备下发的SRS配置信息,之后还包括:
    接收所述网络设备下发的用于触发SRS和PUSCH联合发送的触发指令;所述SRS和PUSCH联合发送是指先发送SRS信号,后发送PUSCH信号;
    基于所述触发指令,顺序发送SRS信号和PUSCH信号。
  14. 根据权利要求13所述的SRS传输方法,其特征在于,所述基于所述触发指令,顺序发送SRS信号和PUSCH信号,具体包括:
    基于所述触发指令,发送SRS信号,等待预设间隔后,发送PUSCH信号。
  15. 根据权利要求10至14中任一项所述的SRS传输方法,其特征在于,所述SRS配置信息为RRC信令、MAC信令和DCI信令中的至少一种;其中,所述RRC信令用于配置所述SRS信号,所述MAC信令和所述DCI信令用于触发所述SRS信号发送。
  16. 根据权利要求15所述的SRS传输方法,其特征在于,用于触发SRS信号发送的所述MAC信令和所述DCI信令中携带以下SRS参数信息中的一种或多种:
    SRS符号间隔,SRS发送单元间隔,SRS发送单元的重复次数,SRS发送单元内连续发送符号数,SRS信号的子载波间隔,以及SRS传输占用 的时隙数。
  17. 一种SRS传输装置,其特征在于,包括:
    配置信息确定单元,配置成基于终端对应的上行相关信息,确定SRS配置信息;
    配置信息发送单元,配置成向所述终端下发所述SRS配置信息;
    SRS接收单元,配置成接收所述终端基于所述SRS配置信息发送的SRS信号。
  18. 一种SRS传输装置,其特征在于,包括:
    配置信息接收单元,配置成接收网络设备下发的SRS配置信息;所述SRS配置信息是所述网络设备基于终端对应的上行相关信息确定的;
    SRS发送单元,配置成基于所述SRS配置信息,向所述网络设备发送SRS信号。
  19. 一种网络设备,包括存储器、处理器及存储在存储器上并可在处理器上运行的程序,其特征在于,所述处理器执行所述程序时实现如下步骤:
    基于终端对应的上行相关信息,确定SRS配置信息;
    向所述终端下发所述SRS配置信息;
    接收所述终端基于所述SRS配置信息发送的SRS信号。
  20. 根据权利要求19所述的网络设备,其特征在于,所述基于终端对应的上行相关信息,确定SRS配置信息,具体包括:
    基于终端对应的上行相关信息,确定SRS配置参数;其中,所述上行相关信息包括终端的移动速度和/或上行链路信息;
    基于SRS配置参数,确定所述SRS配置信息。
  21. 根据权利要求20所述的网络设备,其特征在于,当所述上行相关信息包括终端的移动速度时,所述基于终端对应的上行相关信息,确定SRS配置参数,具体包括:
    基于终端的移动速度,确定SRS发送间隔参数;其中,所述SRS发送间隔参数包括SRS符号间隔和/或SRS发送单元间隔。
  22. 根据权利要求20所述的网络设备,其特征在于,所述上行链路信息包括上行频偏、上行时延和信噪比中的至少一种;
    当所述上行相关信息包括上行频偏时,所述基于终端对应的上行相关信息,确定SRS配置参数,具体包括:
    基于终端对应的上行频偏,确定SRS发送间隔参数;其中,所述SRS发送间隔参数包括SRS符号间隔和/或SRS发送单元间隔;
    当所述上行相关信息包括上行时延时,所述基于终端对应的上行相关信息,确定SRS配置参数,具体包括:
    基于终端对应的上行时延的变化信息,确定SRS子载波间隔;
    当所述上行相关信息包括信噪比时,所述基于终端对应的上行相关信息,确定SRS配置参数,具体包括:
    基于终端对应的信噪比,确定SRS重复发送参数和/或SRS传输占用的时隙数;其中,所述SRS重复发送参数包括SRS发送单元的重复次数和/或SRS发送单元内连续发送符号数。
  23. 根据权利要求20至22中任一项所述的网络设备,其特征在于,所述SRS配置信息中携带有所述SRS配置参数,或所述SRS配置参数对应的标识。
  24. 根据权利要求19所述的网络设备,其特征在于,所述SRS配置信息包括SRS资源和PUSCH资源之间的映射关系;
    所述向所述终端下发所述SRS配置信息之后,所述处理器执行所述程序时还实现如下步骤:
    向所述终端下发用于触发SRS和PUSCH联合发送的触发指令;所述SRS和PUSCH联合发送是指在先发送SRS信号,后发送PUSCH信号;
    接收所述终端基于所述触发指令顺序发送的SRS信号和PUSCH信号。
  25. 根据权利要求24所述的网络设备,其特征在于,所述顺序发送的SRS信号和PUSCH信号之间存在间隔;
    所述接收所述终端基于所述触发指令顺序发送的SRS信号和PUSCH信号,具体包括:
    接收所述终端基于所述触发指令在先发送的SRS信号,基于所述SRS信号调整PUSCH的接收定时和频率参考值;
    接收所述终端基于所述触发指令在后发送的PUSCH信号。
  26. 根据权利要求19所述的网络设备,其特征在于,所述SRS配置 信息为RRC信令、MAC信令和DCI信令中的至少一种;其中,所述RRC信令用于配置所述SRS信号,所述MAC信令和所述DCI信令用于触发所述SRS信号发送。
  27. 根据权利要求26所述的网络设备,其特征在于,用于触发SRS信号发送的所述MAC信令和所述DCI信令中携带以下SRS参数信息中的一种或多种:
    SRS符号间隔,SRS发送单元间隔,SRS发送单元的重复次数,SRS发送单元内连续发送符号数,SRS信号的子载波间隔,以及SRS传输占用的时隙数。
  28. 一种终端,包括存储器、处理器及存储在存储器上并可在处理器上运行的程序,其特征在于,所述处理器执行所述程序时实现如下步骤:
    接收网络设备下发的SRS配置信息;所述SRS配置信息是所述网络设备基于终端对应的上行相关信息确定的;
    基于所述SRS配置信息,向所述网络设备发送SRS信号。
  29. 根据权利要求28所述的终端,其特征在于,所述SRS配置信息中携带有SRS配置参数,或SRS配置参数对应的标识;
    所述基于所述SRS配置信息,向所述网络设备发送SRS信号,具体包括:
    基于所述SRS配置信息,确定所述SRS配置参数;
    基于所述SRS配置参数,向所述网络设备发送SRS信号。
  30. 根据权利要求29所述的终端,其特征在于,所述SRS配置参数包括以下一种或多种:
    SRS符号间隔,SRS发送单元间隔,SRS发送单元的重复次数,SRS发送单元内连续发送符号数,SRS信号的子载波间隔,以及SRS传输占用的时隙数。
  31. 根据权利要求28所述的终端,其特征在于,所述SRS配置信息包括SRS资源和PUSCH资源之间的映射关系;
    所述接收网络设备下发的SRS配置信息之后,所述处理器执行所述程序时还实现如下步骤:
    接收所述网络设备下发的用于触发SRS和PUSCH联合发送的触发指 令;所述SRS和PUSCH联合发送是指先发送SRS信号,后发送PUSCH信号;
    基于所述触发指令,顺序发送SRS信号和PUSCH信号。
  32. 根据权利要求31所述的终端,其特征在于,所述基于所述触发指令,顺序发送SRS信号和PUSCH信号,具体包括:
    基于所述触发指令,发送SRS信号,等待预设间隔后,发送PUSCH信号。
  33. 根据权利要求28至32中任一项所述的终端,其特征在于,所述SRS配置信息为RRC信令、MAC信令和DCI信令中的至少一种;其中,所述RRC信令用于配置所述SRS信号,所述MAC信令和所述DCI信令用于触发所述SRS信号发送。
  34. 根据权利要求33所述的终端,其特征在于,用于触发SRS信号发送的所述MAC信令和所述DCI信令中携带以下SRS参数信息中的一种或多种:
    SRS符号间隔,SRS发送单元间隔,SRS发送单元的重复次数,SRS发送单元内连续发送符号数,SRS信号的子载波间隔,以及SRS传输占用的时隙数。
  35. 一种非暂态计算机可读存储介质,其上存储有计算机程序,其特征在于,该计算机程序被处理器执行时实现如权利要求1至16中任一项所述的SRS传输方法的步骤。
PCT/CN2020/111414 2019-11-06 2020-08-26 Srs传输方法、装置、网络设备、终端和存储介质 WO2021088480A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US17/774,869 US20220407650A1 (en) 2019-11-06 2020-08-26 Srs transmission method and apparatus, network device, terminal and storage medium
EP20885153.5A EP4057740A4 (en) 2019-11-06 2020-08-26 SRS TRANSMISSION METHOD AND APPARATUS, NETWORK DEVICE, TERMINAL AND STORAGE MEDIUM

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201911078524.1 2019-11-06
CN201911078524.1A CN112788750B (zh) 2019-11-06 2019-11-06 Srs传输方法、装置、网络设备、终端和存储介质

Publications (1)

Publication Number Publication Date
WO2021088480A1 true WO2021088480A1 (zh) 2021-05-14

Family

ID=75747632

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/111414 WO2021088480A1 (zh) 2019-11-06 2020-08-26 Srs传输方法、装置、网络设备、终端和存储介质

Country Status (4)

Country Link
US (1) US20220407650A1 (zh)
EP (1) EP4057740A4 (zh)
CN (1) CN112788750B (zh)
WO (1) WO2021088480A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115715003B (zh) * 2023-01-09 2023-04-11 四川创智联恒科技有限公司 一种高速移动通信系统的时偏调整方法及系统

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101572896A (zh) * 2008-04-29 2009-11-04 大唐移动通信设备有限公司 一种配置上行探测参考信号的方法和装置
WO2010077041A2 (en) * 2008-12-29 2010-07-08 Samsung Electronics Co., Ltd. Method and apparatus for transmission of sounding reference signal in uplink wireless communication system with muti-carrier transmission scheme
CN102427608A (zh) * 2011-12-06 2012-04-25 电信科学技术研究院 一种发送srs和指示srs发送的方法及设备
CN105981316A (zh) * 2014-02-13 2016-09-28 Lg电子株式会社 在支持机器型通信的无线接入系统中发送探测参考信号的方法和设备
CN107370590A (zh) * 2016-05-13 2017-11-21 中兴通讯股份有限公司 Srs的发送处理方法及装置和发送方法、装置及系统
CN107431888A (zh) * 2015-04-10 2017-12-01 Lg电子株式会社 用于在支持机器类型通信的无线接入系统中控制探测参考信号的发送的方法和装置

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9143984B2 (en) * 2012-04-13 2015-09-22 Intel Corporation Mapping of enhanced physical downlink control channels in a wireless communication network
US20150036666A1 (en) * 2013-07-30 2015-02-05 Blackberry Limited Timing Advance Group in LTE Small Cell Enhancement
KR101874083B1 (ko) * 2016-04-27 2018-07-04 한국전자통신연구원 고속 단말을 위한 상향링크 제어 채널 전송 방법 및 그 장치
WO2017197086A1 (en) * 2016-05-13 2017-11-16 Intel IP Corporation Enabling sounding reference signal component carrier-based switching in wireless communication
CN109921887A (zh) * 2017-12-12 2019-06-21 成都鼎桥通信技术有限公司 信道探测参考信号的发送方法和系统
US11234262B2 (en) * 2018-02-15 2022-01-25 Qualcomm Incorporated Configuration of aperiodic sounding reference signal transmission and triggering

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101572896A (zh) * 2008-04-29 2009-11-04 大唐移动通信设备有限公司 一种配置上行探测参考信号的方法和装置
WO2010077041A2 (en) * 2008-12-29 2010-07-08 Samsung Electronics Co., Ltd. Method and apparatus for transmission of sounding reference signal in uplink wireless communication system with muti-carrier transmission scheme
CN102427608A (zh) * 2011-12-06 2012-04-25 电信科学技术研究院 一种发送srs和指示srs发送的方法及设备
CN105981316A (zh) * 2014-02-13 2016-09-28 Lg电子株式会社 在支持机器型通信的无线接入系统中发送探测参考信号的方法和设备
CN107431888A (zh) * 2015-04-10 2017-12-01 Lg电子株式会社 用于在支持机器类型通信的无线接入系统中控制探测参考信号的发送的方法和装置
CN107370590A (zh) * 2016-05-13 2017-11-21 中兴通讯股份有限公司 Srs的发送处理方法及装置和发送方法、装置及系统

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
See also references of EP4057740A4 *
ZTE ET AL.: "Discussion on SRS design for NR", 3GPP TSG RAN WG1 MEETING NR#3 R1-1715451, 21 September 2017 (2017-09-21), XP051338919 *

Also Published As

Publication number Publication date
CN112788750A (zh) 2021-05-11
EP4057740A1 (en) 2022-09-14
US20220407650A1 (en) 2022-12-22
CN112788750B (zh) 2023-09-29
EP4057740A4 (en) 2023-11-29

Similar Documents

Publication Publication Date Title
US20230057591A1 (en) Autonomous timing adjustment for a wireless device
US11659511B2 (en) Methods and arrangements in a telecommunications network
US20220369374A1 (en) Random access in a non-terrestrial network
US20200187190A1 (en) Synchronization Method and Apparatus
CN103037498B (zh) 用于多点协作传输中定时提前调整的方法和设备
WO2018175721A1 (en) Delayed handover execution in wireless networks based on a trigger condition
CN111165032B (zh) 新无线电中的定时提前范围适配
US20140023043A1 (en) Method of handover in carrier aggregation scenarios
WO2020233482A1 (zh) 一种传输配置方法、装置、通信节点和通信设备
EP4039047A1 (en) Joint communication and sensing aided random access channel
US8937938B2 (en) Method and apparatus for acquiring uplink and downlink synchronization between a plurality of base stations and a terminal in a cooperative communication network
WO2022135587A1 (zh) 导频传输方法、装置、设备及存储介质
WO2021088480A1 (zh) Srs传输方法、装置、网络设备、终端和存储介质
CN108834211B (zh) 一种基于5g通信网络的定时调整方法及系统
CA3235386A1 (en) Adapting mobility under discontinuous coverage
WO2022077354A1 (en) Resource configuration using the burst spread parameter for wireless communication systems
CN112910615B (zh) 一种被用于无线通信的节点中的方法和装置
CN117356139A (zh) 非地面网络中的定时提前预补偿信息报告
WO2023212308A1 (en) Methods, apparatus, and systems for delay spread measurement, reporting, and cyclic prefix determination
KR20240040109A (ko) 전파 지연 보상 수행
CN117119576A (zh) 针对时间提前量ta的处理方法及装置
JP2011217210A (ja) デジタル無線通信システム

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20885153

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2020885153

Country of ref document: EP

Effective date: 20220607