WO2020233482A1 - 一种传输配置方法、装置、通信节点和通信设备 - Google Patents

一种传输配置方法、装置、通信节点和通信设备 Download PDF

Info

Publication number
WO2020233482A1
WO2020233482A1 PCT/CN2020/090137 CN2020090137W WO2020233482A1 WO 2020233482 A1 WO2020233482 A1 WO 2020233482A1 CN 2020090137 W CN2020090137 W CN 2020090137W WO 2020233482 A1 WO2020233482 A1 WO 2020233482A1
Authority
WO
WIPO (PCT)
Prior art keywords
communication device
correction
transmission
information
downlink signaling
Prior art date
Application number
PCT/CN2020/090137
Other languages
English (en)
French (fr)
Inventor
胡林曦
曹伟
张楠
杨振
窦建武
Original Assignee
中兴通讯股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中兴通讯股份有限公司 filed Critical 中兴通讯股份有限公司
Priority to US17/612,157 priority Critical patent/US20220216912A1/en
Priority to EP20808990.4A priority patent/EP3972152A4/en
Priority to AU2020279263A priority patent/AU2020279263B2/en
Priority to KR1020217041094A priority patent/KR102592499B1/ko
Publication of WO2020233482A1 publication Critical patent/WO2020233482A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/14Relay systems
    • H04B7/15Active relay systems
    • H04B7/185Space-based or airborne stations; Stations for satellite systems
    • H04B7/1851Systems using a satellite or space-based relay
    • H04B7/18519Operations control, administration or maintenance
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/14Relay systems
    • H04B7/15Active relay systems
    • H04B7/185Space-based or airborne stations; Stations for satellite systems
    • H04B7/1853Satellite systems for providing telephony service to a mobile station, i.e. mobile satellite service
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/14Relay systems
    • H04B7/15Active relay systems
    • H04B7/185Space-based or airborne stations; Stations for satellite systems
    • H04B7/1853Satellite systems for providing telephony service to a mobile station, i.e. mobile satellite service
    • H04B7/18545Arrangements for managing station mobility, i.e. for station registration or localisation
    • H04B7/18547Arrangements for managing station mobility, i.e. for station registration or localisation for geolocalisation of a station
    • H04B7/1855Arrangements for managing station mobility, i.e. for station registration or localisation for geolocalisation of a station using a telephonic control signal, e.g. propagation delay variation, Doppler frequency variation, power variation, beam identification
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W56/00Synchronisation arrangements
    • H04W56/0005Synchronisation arrangements synchronizing of arrival of multiple uplinks
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W56/00Synchronisation arrangements
    • H04W56/004Synchronisation arrangements compensating for timing error of reception due to propagation delay
    • H04W56/0045Synchronisation arrangements compensating for timing error of reception due to propagation delay compensating for timing error by altering transmission time
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/20Control channels or signalling for resource management
    • H04W72/23Control channels or signalling for resource management in the downlink direction of a wireless link, i.e. towards a terminal

Definitions

  • This document relates to, but is not limited to, a transmission configuration method, device, communication node, communication device, and computer-readable storage medium.
  • the general consensus is to correct the frequency offset on the satellite base station side. Because the satellite base station operates periodically on a fixed star orbit, for a given beam, the relative speed of the satellite base station relative to the center point of the ground coverage area of the beam can be pre-calculated. Based on this relative speed, the Doppler frequency offset experienced by a stationary user at the center point of the corresponding ground coverage area of the beam can be calculated. Then, according to the calculated Doppler frequency offset, the transmitted downlink signal of the given beam is corrected, as shown in Figure 1.
  • the embodiments of the present disclosure provide a transmission configuration method, device, communication node, communication device, and computer-readable storage medium to alleviate user interference in uplink reception.
  • the embodiment of the present disclosure provides a transmission configuration method, including:
  • the communication node determines a downlink signaling indication used to indicate the transmission configuration of the communication device, where the downlink signaling indication includes transmission status information, and the transmission status information includes correction indication information;
  • the communication node sends the downlink signaling indication.
  • the embodiment of the present disclosure also provides a transmission configuration method, including:
  • the communication device receives a downlink signaling indication sent by a communication node; wherein the downlink signaling indication includes transmission status information, and the transmission status information includes correction indication information;
  • the communication device determines the uplink transmission mode according to the downlink signaling indication.
  • the embodiment of the present disclosure also provides a transmission configuration device, including:
  • the first determining module is configured to determine a downlink signaling indication used to indicate a transmission configuration of a communication device, where the downlink signaling indication includes transmission status information, and the transmission status information includes correction indication information;
  • the sending module is used to send the downlink signaling indication.
  • the embodiment of the present disclosure also provides a transmission configuration device, including:
  • a receiving module configured to receive a downlink signaling indication sent by a communication node; wherein the downlink signaling indication includes transmission status information, and the transmission status information includes correction indication information;
  • the second determining module is configured to determine an uplink transmission mode according to the downlink signaling indication, and the uplink transmission mode includes at least one of whether to perform correction and resource selection.
  • the embodiments of the present disclosure also provide a communication node, including a memory, a processor, and a computer program stored on the memory and capable of running on the processor, and the processor implements the transmission configuration method when the program is executed.
  • the embodiment of the present disclosure also provides a communication device, including a memory, a processor, and a computer program stored on the memory and capable of running on the processor, and the processor implements the transmission configuration method when the program is executed.
  • the embodiments of the present disclosure also provide a computer-readable storage medium that stores computer-executable instructions, and the computer-executable instructions are used to execute the transmission configuration method.
  • the embodiments of the present disclosure include: a communication node determines a downlink signaling indication used to indicate a transmission configuration of a communication device, where the downlink signaling indication includes transmission status information, and the transmission status information includes correction indication information; the communication node sends The downlink signaling indication.
  • the embodiments of the present disclosure carry the transmission status information through the downlink signaling indication, so that the communication device can make corrections according to the downlink signaling indication, thereby alleviating the multi-user interference in the uplink reception or the user's own ICI (Inter-Carrier Interference, Inter-Carrier Interference). Improve uplink receiving performance.
  • Figure 1 is a schematic diagram of downlink Doppler frequency offset correction
  • Figure 2 is a flowchart of a transmission configuration method according to an embodiment of the present disclosure (applied to a communication node);
  • Fig. 3 is a flowchart of a transmission configuration method according to an embodiment of the present disclosure (applied to a communication device);
  • FIG. 4 is a schematic diagram of comparison between no Doppler frequency offset correction and double Doppler frequency offset correction on the communication node side of an embodiment of the present disclosure
  • Fig. 5 is a schematic diagram of a transmission configuration device of an embodiment of the present disclosure (applied to a communication node);
  • Fig. 6 is a schematic diagram of a transmission configuration device of an embodiment of the present disclosure (applied to a communication device);
  • Fig. 7 is a schematic diagram of a communication node according to an embodiment of the present disclosure.
  • Fig. 8 is a schematic diagram of a communication device according to an embodiment of the present disclosure.
  • the Doppler frequency offset caused by the high-speed satellite movement will affect the orthogonality of the sub-carriers in the OFDM (Orthogonal Frequency Division Multiplexing) system, which is important for the reception performance of the uplink base station
  • OFDM Orthogonal Frequency Division Multiplexing
  • the requirements are relatively high.
  • RTT Red-Trip Time, round-trip delay
  • a terminal located at a non-beam center point may still experience a large residual Doppler frequency offset.
  • this residual Doppler frequency offset reaching the base station side during its uplink transmission will cause uplink user self-interference and multi-user interference.
  • the terminal needs to adjust the uplink transmission TA (Time Advance), otherwise it will cause time domain information to overlap and cause interference.
  • the communication node can use a specific transmission configuration to transmit corresponding signaling instructions to the communication device.
  • the communication device can follow the signaling instructions, its own capabilities, etc., when it transmits uplink signals, choose appropriate resources and uplink transmission methods (such as correcting the uplink frequency offset or not correcting the uplink frequency offset, or independently adjusting the uplink transmission TA based on known information).
  • the transmission configuration method of the embodiment of the present disclosure, applied to a communication node includes:
  • Step 101 The communication node determines a downlink signaling indication used to indicate the transmission configuration of the communication device.
  • the downlink signaling indication includes transmission status information
  • the transmission status information includes correction indication information
  • the communication node may be a base station, such as a satellite base station.
  • the downlink signaling indication may be a frequency offset correction signaling indication, a TA adjustment signaling indication, and the like.
  • the correction instruction information includes:
  • the calibration status information is used to indicate one of the following: calibration is needed, calibration is not needed, and whether to calibrate is selected by yourself.
  • the need for correction means that all communication devices that receive the instruction need to estimate and correct the frequency offset/time offset by themselves.
  • No correction means that all communication devices that receive the instruction do not need to estimate and correct the frequency offset/time offset.
  • the self-selection of whether to calibrate means that the communication device receiving the instruction chooses whether to perform frequency offset/time offset self-estimation and correction according to its own situation.
  • the correction status information is indicated by at least one of the following methods:
  • Ceil(log2(N)) number of bits, where Ceil() is a round-up function, and N is equal to the correction value included in the correction state;
  • the correction instruction information may further include: a correction value.
  • the correction value may include a frequency offset correction value and/or a time offset correction value.
  • the correction state information can be configured separately for frequency offset and time offset, or can be shared.
  • the frequency offset correction value may be a preferred frequency offset correction value calculated by the communication node.
  • the time offset correction value may be a TA (common TA) adjustment value common to all communication devices.
  • the correction indication information may also include: correction value type, correction accuracy, and so on.
  • correction value type may correspond to different situations of the communication device, such as position and speed.
  • Correction value types can be classified as follows: correction value calculation reference point, correction value corresponding to the communication device type, correction value confidence level, etc.
  • the correction accuracy can be set according to actual requirements.
  • the transmission status information further includes transmission configuration information.
  • the transmission configuration information includes:
  • the uplink channel configuration information may include: RACH (Random Access Channel, random access channel) configuration information, uplink transmission channel configuration information, and uplink control channel configuration information;
  • RACH Random Access Channel, random access channel
  • the corresponding relationship of the correction indication information may include: the corresponding relationship between the uplink channel configuration information and the correction state, and the corresponding relationship between the uplink channel configuration information and the correction value.
  • the RACH configuration information may include uplink random access preamble format, subcarrier spacing parameters, and so on.
  • the upper channel configuration information is RACH configuration information as an example.
  • the corresponding RACH channel configuration information is configuration A.
  • the corrected status information is When no correction is needed, the corresponding RACH channel configuration information is configuration B.
  • the communication device sends an uplink signal, configuration B is used for transmission; wherein, configuration B may be different from configuration A.
  • the status information of the correction is the self-selection of whether to correct.
  • the communication device selects whether to perform frequency offset/time offset self-estimation and correction according to its own situation, and applies different configurations to send uplink signals on respective designated resources. If correction is selected, configuration A is applied and the uplink signal is sent on its designated resource; if no correction is selected, configuration B is applied and the uplink signal is sent on its designated resource.
  • step 101 includes:
  • the communication node determines the transmission state information according to the geographic location of the communication device.
  • the communication device For example, in the under-satellite spot beam coverage, it is determined that the communication device needs to be corrected.
  • step 101 includes:
  • the communication node determines the transmission state information according to the motion state of the communication device.
  • high-speed mobile communication equipment requires correction.
  • step 101 includes:
  • the communication node determines the transmission state information according to the communication device capability reported by the communication device.
  • the communication device when the communication device reports that it has no correction capability, it is determined that the communication device does not need to be corrected.
  • step 101 includes:
  • the communication node determines the transmission state information according to the identifier of the service network.
  • the identifier of the service network can be used to distinguish whether it is a satellite network or a terrestrial network.
  • step 101 includes:
  • the communication node determines the correction indication information according to the uplink transmission mode and the correction capability of the communication device, and the uplink transmission mode includes whether to perform correction.
  • This step is applicable to the ability information that the communication device has reported correction.
  • the communication node can learn the uplink transmission mode according to the uplink signal sent by the communication device, and the communication node can determine whether the communication device performs correction.
  • Step 102 The communication node sends the downlink signaling indication.
  • the communication node sending the downlink signaling indication may include the following methods:
  • the communication node sends the downlink signaling indication to the service area in a broadcast manner.
  • the communication node instructs the communication device under a specific service range.
  • the downlink signaling indication sent by the communication node may be applied to all users in the entire service area in a broadcast manner.
  • the service area may include a service area corresponding to a beam, a service area corresponding to a cell, and the like.
  • the communication node sends the downlink signaling indication to the communication device in a unicast manner.
  • the communication node may send the downlink signaling indication through dedicated control signaling for a specific communication device.
  • the communication node sends the downlink signaling indication to the communication device group in a multicast manner.
  • the communication node divides the communication device group according to the geographic location of the communication device or the movement state of the communication device.
  • the communication node may send the downlink signaling indication through common control signaling for a specific communication device group (for example, having a similar geographic location or a similar motion state).
  • the sending of the downlink signaling indication by the communication node may include at least one of the following:
  • the communication node separately sends downlink signaling instructions belonging to each target.
  • the communication node combines downlink signaling indications belonging to multiple targets for transmission.
  • the configuration information indicated by the downlink signaling corresponds to the target identifier of the target, wherein the corresponding manner includes at least one of the following:
  • the downlink signaling indicates that the occupied resource location corresponds to the target identifier
  • the downlink signaling indicates that the data scrambling mode corresponds to the target identifier
  • the downlink signaling indication includes a corresponding target identifier
  • the sequence or number indicated by the downlink signaling corresponds to the target identifier.
  • the target can be a cell, beam, etc., so the target identifier (Identity, ID) can be: cell ID, SSB (Synchronization Signal/Physical Broadcast Channel Block, synchronization signal/broadcast channel block) ID, CSI-RS (Channel State Information Reference) Signals, the resource ID of the channel state information reference signal.
  • ID the target identifier
  • SSB Synchronization Signal/Physical Broadcast Channel Block, synchronization signal/broadcast channel block
  • ID Channel State Information Reference
  • the target can be a communication device, resources (such as beams) that serve the communication device, etc. Therefore, the target ID can be: user ID, SSB ID, CSI-RS resource ID, SRS (Sounding Reference Signal, sounding reference signal) resource ID .
  • the target can be a specific group, etc., so the target ID can be: communication device group identification
  • the beam refers to a reference signal (such as SSB, CSI-RS, SRS) or resource (space resource, antenna port number), or a quasi co-location relationship.
  • a reference signal such as SSB, CSI-RS, SRS
  • resource space resource, antenna port number
  • the method further includes:
  • the communication node determines the uplink transmission mode of the communication device according to the uplink signal, and the uplink transmission mode includes whether to perform correction.
  • the communication node determining the uplink transmission mode of the communication device according to the uplink signal includes:
  • the communication node determines whether the communication device performs correction according to the uplink channel resources occupied by the uplink signal.
  • the RACH resource occupied by the uplink signal is configuration A, it is determined that the communication device performs correction, and the RACH resource occupied by the uplink signal is configuration B, and it is determined that the communication device does not perform correction.
  • the uplink signal carries the corrected capability information of the communication device, and the method further includes:
  • the communication node determines whether the communication device is capable of performing correction according to the corrected capability information.
  • the communication node determines whether the communication device is capable of performing correction, and determines the correction status information of the communication device according to whether the communication device performs correction, so that it can return to perform steps 101 to 102 to determine and send downlink information. Order instructions.
  • the embodiment of the present disclosure also provides a transmission configuration method applied to a communication device, including:
  • Step 201 The communication device receives a downlink signaling indication sent by the communication node.
  • the downlink signaling indication includes transmission status information
  • the transmission status information includes correction indication information
  • the communication device may be a terminal.
  • the downlink signaling indication may be a frequency offset correction signaling indication, a TA adjustment signaling indication, and the like.
  • the correction instruction information includes:
  • the calibration status information is used to indicate one of the following: calibration is needed, calibration is not needed, and whether to calibrate is selected by yourself.
  • the need for correction means that all communication devices that receive the instruction need to estimate and correct the frequency offset/time offset by themselves.
  • No correction means that all communication devices that receive the instruction do not need to estimate and correct the frequency offset/time offset.
  • the self-selection of whether to calibrate means that the communication device receiving the instruction chooses whether to perform frequency offset/time offset self-estimation and correction according to its own situation.
  • the correction status information is indicated by at least one of the following methods:
  • Ceil(log2(N)) number of bits, where Ceil() is a round-up function, and N is equal to the correction value included in the correction state;
  • the correction instruction information may further include: a correction value.
  • the correction value may include a frequency offset correction value and/or a time offset correction value.
  • the correction state information can be configured separately for frequency offset and time offset, or can be shared.
  • the frequency offset correction value may be a preferred frequency offset correction value calculated by the communication node.
  • the time offset correction value may be a TA (common TA) adjustment value common to all communication devices.
  • the correction indication information may also include: correction value type, correction accuracy, and so on.
  • correction value type may correspond to different situations of the communication device, such as position and speed.
  • Correction value types can be classified as follows: correction value calculation reference point, correction value corresponding to the communication device type, correction value confidence level, etc.
  • the correction accuracy can be set according to actual requirements.
  • the transmission status information further includes transmission configuration information.
  • the transmission configuration information includes:
  • the uplink channel configuration information may include: RACH (Random Access Channel, random access channel) configuration information, uplink transmission channel configuration information, and uplink control channel configuration information;
  • RACH Random Access Channel, random access channel
  • the corresponding relationship of the correction indication information may include: the corresponding relationship between the uplink channel configuration information and the correction state, and the corresponding relationship between the uplink channel configuration information and the correction value.
  • the RACH configuration information may include uplink random access preamble format, subcarrier spacing parameters, and so on.
  • the upper channel configuration information is RACH configuration information as an example.
  • the corresponding RACH channel configuration information is configuration A.
  • the corrected status information is When no correction is needed, the corresponding RACH channel configuration information is configuration B.
  • the communication device sends an uplink signal, configuration B is used for transmission; wherein, configuration B may be different from configuration A.
  • the status information of the correction is the self-selection of whether to correct.
  • the communication device selects whether to perform frequency offset/time offset self-estimation and correction according to its own situation, and applies different configurations to send uplink signals on respective designated resources. If correction is selected, configuration A is applied and the uplink signal is sent on its designated resource; if no correction is selected, configuration B is applied and the uplink signal is sent on its designated resource.
  • Step 202 The communication device determines an uplink transmission mode according to the downlink signaling indication.
  • the uplink transmission mode may include at least one of whether to perform correction and whether to perform resource selection.
  • step 202 includes:
  • the communication device determines the uplink transmission mode according to its own correction capability and the correction instruction information.
  • the communication device performs correction
  • the communication device When the correction status information is that correction is required, and the communication device's own correction capability cannot be corrected, the communication device does not perform correction;
  • the communication device does not perform calibration
  • the communication device can choose to perform or not perform calibration
  • the communication device does not perform calibration.
  • the communication device can use the downlink frequency point received by the SSB to compare with the closest global synchronization grid absolute frequency point to calculate the frequency difference between the two. If the frequency offset estimation is performed, the communication device uses the above frequency Twice the difference is used as the uplink frequency offset correction value to correct the uplink transmission signal so that it is aligned in the frequency domain when it reaches the communication node side. If frequency offset estimation is not performed, frequency offset correction is not performed, and the uplink signal is directly transmitted. The communication device transmits an uplink signal on the corresponding uplink transmission resource according to the three states indicated by the signaling.
  • the method further includes:
  • the communication device determines the uplink transmission resource
  • the communication device transmits the uplink signal through the uplink transmission resource according to the uplink transmission mode.
  • determining the uplink transmission resource by the communication device includes:
  • the downlink signaling indication includes a set of transmission configuration information, and the communication device determines the corresponding uplink transmission resource according to the transmission configuration information;
  • the downlink signaling indication includes multiple sets of transmission configuration information, and the communication device selects one set of transmission configuration information according to the uplink transmission mode, and determines the corresponding uplink transmission resource.
  • the uplink transmission resources may be RACH resources, PUSCH (Physical Uplink Shared Channel, physical uplink shared channel) resources, and PUCCH (Physical Uplink Control Channel, physical uplink control channel) resources.
  • RACH resources Physical Uplink Shared Channel, physical uplink shared channel
  • PUCCH Physical Uplink Control Channel, physical uplink control channel
  • the communication device selects one set of transmission configuration information according to the uplink transmission mode, and determines the corresponding uplink transmission resource, including at least one of the following:
  • the communication device selects a set of transmission configuration information according to the uplink transmission mode and the target identifier
  • the communication device selects the first set of transmission configuration information as the default configuration for uplink transmission.
  • the target identifier may be: cell identifier, SSB identifier, CSI-RS resource identifier, terminal identifier, terminal group identifier, SRS resource identifier, and SRS resource index.
  • the uplink signal carries corrected capability information of the communication device.
  • the corrected capability information can be used by the communication node to determine whether the communication device is capable of performing correction, so as to send subsequent downlink signaling instructions.
  • the embodiments of the present disclosure carry transmission status information through downlink signaling instructions, so that the communication device can make corrections according to the downlink signaling instructions, thereby alleviating multi-user interference in uplink reception or the user's own ICI, and improving uplink reception performance.
  • the frequency offset correction and the time offset correction will be described separately.
  • the satellite base station can calculate the Doppler frequency offset fd experienced by a stationary terminal at the center position of the ground coverage area of the beam.
  • the satellite base station can calculate the Doppler frequency offset fd experienced by a stationary terminal at the center position of the ground coverage area of the beam.
  • the Doppler frequency offset is corrected to zero, while the Doppler frequency offset of the terminal at the edge of the area may still be large.
  • the Doppler frequency offset correction is performed through the above steps, there may still be a large residual frequency offset.
  • the residual frequency offset can be corrected through the following steps:
  • the base station indicates (the downlink signaling indication is the frequency offset correction signaling indication at this time), there are 3 possibilities:
  • the second step, terminal behavior specifically includes two actions.
  • the terminal receives the above three possible signaling instructions and executes, does not execute or selectively executes frequency offset estimation.
  • One feasible method is to use the downlink frequency point received by the SSB to compare with the closest global synchronization grid absolute frequency point to calculate the frequency difference between the two.
  • the terminal uses twice the above frequency difference as the uplink frequency offset correction value to correct the uplink signal so that it is aligned in the frequency domain when it reaches the base station side. If frequency offset estimation is not performed, frequency offset correction is not performed, and the uplink signal is directly transmitted.
  • the terminal should transmit uplink signals on the corresponding RACH resources according to the three states indicated by the signaling (similarly, for PUSCH/PUCCH, it is to transmit uplink signals on PUSCH/PUCCH resources).
  • the base station side can also implement additional protection measures to prevent abnormalities in the terminal uplink frequency offset correction.
  • a feasible method is that if the base station side finds that the uplink frequency offset correction of a terminal is abnormal after receiving measurement, the base station needs to set aside a corresponding frequency domain guard interval when scheduling the terminal to avoid the terminal's uplink signal interference with other terminals.
  • the base station knows whether the terminal has been corrected according to the signaling indication and the resources occupied in the received uplink signal, and transmits a downlink RAR (Random Access Response, random access response).
  • the downlink signaling indication is included in the downlink RAR.
  • the RAR UL grant Uplink grant
  • the base station will assume that the frequency offset has been corrected, and perform operations such as subsequent resource allocation according to the signaling instructions in the RAR UL grant.
  • the base station When a terminal initially accesses a beam, for a certain beam, the base station first transmits a TA adjustment signaling indication through downlink broadcast (in this case, the downlink signaling indication is the TA adjustment signaling indication).
  • the signaling indication requires all terminals to execute, not execute, or Selectively perform time offset correction and common TA adjustment value for all terminals in the beam coverage.
  • the execution of time offset correction refers to self-adjustment based on the common TA adjustment value
  • the non-execution of time offset correction refers to the common TA adjustment value as the TA adjustment value
  • the terminal After receiving the instruction, the terminal can perform one of the following according to its own situation:
  • the factor that affects whether to adjust itself can be whether the terminal has the ability to calculate the difference between its own actual TA adjustment value and the common TA based on the location information, or it can be the terminal that has the ability to calculate the self-adjustment value and judge whether it is an uplink synchronization error. Needs adjustment.
  • the base station After the base station receives the uplink signal of the corresponding terminal, it can know the adjustment capability of the terminal and whether it has adjusted itself.
  • the transmission status may be (based on the common TA as the TA adjustment value) self-TA adjustment is required, no self-TA adjustment is required, and self-TA adjustment is selectively performed. It is also possible that TA adjustment is required, without TA adjustment, and TA adjustment is selectively performed.
  • the former means that the terminal must adjust the TA, but whether to adjust itself on the basis of the common TA is based on the signaling instructions and its own actual situation.
  • the latter means that the terminal does not need to adjust the TA (for example, the common TA may not be compensated) , Whether to adjust TA is determined according to the signaling instructions and the actual situation.
  • the base station can unicast or multicast a downlink signaling instruction to inform the terminal that it needs to adjust the TA itself.
  • the base station can unicast or multicast the downlink signaling instructions to inform the terminal to selectively adjust the self-TA.
  • the base station recalculates the TA adjustment value required by the terminal, unicast or multicast transmits the downlink signaling instructions, and informs the terminal that there is no need to adjust the TA by itself. Use the updated TA adjustment value in the signaling indication.
  • the base station can unicast or multicast the downlink signaling instructions to inform the terminal that there is no need to adjust the TA itself.
  • the base station can perform the above operations according to known terminal capabilities and terminal synchronization conditions, and transmit corresponding signaling instructions in the downlink.
  • the common TA adjustment value of all terminals in the downlink signaling indication is not necessary.
  • the base station can also instruct the terminal not to adjust the common TA adjustment value.
  • the method of transmitting the downlink signaling indication by the base station can be through broadcast, unicast or group Way of broadcasting.
  • the base station side takes corresponding measures according to the situation, such as choosing to delay the receiving time window when receiving.
  • satellite beam direction control There are currently two methods for satellite beam direction control: moving beam and steering beam.
  • the beam direction In the mobile beam mode, the beam direction is stationary relative to the satellite, and its coverage area moves accordingly with the movement of the satellite; under the gaze beam, its coverage area is stationary relative to the ground or mobile terminal group, and the beam direction follows the movement of the satellite And change.
  • Application example 1 Low-speed terminal, non-geostationary orbit satellite base station, mobile beam
  • the Doppler frequency offset is mainly caused by the movement of the satellite.
  • the maximum residual Doppler frequency offset is at the edge of the sub-satellite spot beam. Therefore, the situation of the sub-satellite spot beam is considered below. Puller frequency offset can be corrected, and it can be corrected in other cases.
  • the Doppler frequency offset correction on the base station side is 0, while the Doppler frequency offset experienced by the terminal at the edge of the coverage area is still large. Table 1 shows the difference The maximum Doppler frequency deviation of the spot beam under the satellite.
  • Table 1 The maximum Doppler frequency deviation of the sub-satellite spot beam under different conditions
  • the worst case under-satellite spot beam edge terminal in Figure 1
  • the downlink broadcast signal of the satellite base station can be added to the frequency offset correction signaling indication based on the beam, and the status is "frequency offset correction required" to inform the coverage of this beam
  • All terminals perform frequency offset estimation and uplink frequency offset correction, and apply configuration A to transmit an uplink RACH signal (similarly, for PUSCH/PUCCH, it is a PUSCH/PUCCH signal).
  • the satellite base station side receives the RACH signal on the resource specified by configuration A. If the uplink signal is monitored on the corresponding resource, the signaling in the RAR UL grant instructs the terminal to perform frequency offset correction.
  • the frequency interval between the frequency points of the global synchronization grid is at least 50kHz, when the frequency range is 3GHz-24.25GHz, the frequency interval is 1.44MHz, and when the frequency range is 24.25GHz-100GHz, The frequency interval is 1.72MHz, and the maximum residual Doppler frequency offset is 7.68kHz. Therefore, the residual frequency offset can be calculated by comparing the downlink frequency point received by the SSB and the nearest global synchronization grid to perform the uplink frequency offset correction.
  • Application example 2 Stationary terminal, non-geostationary orbit satellite base station, staring beam
  • the satellite base station can transmit selective frequency offset correction instructions in the downlink, and the following three methods can be used to perform the uplink frequency offset correction instructions.
  • a beam-based frequency offset correction signaling indication can be added to the downlink broadcast signaling of the satellite base station to inform all terminals within the coverage of this beam to selectively perform frequency offset estimation and uplink frequency offset correction. If correction is performed, configuration A is applied and the uplink RACH signal is transmitted on its designated resource (similarly, for PUSCH/PUCCH, it is PUSCH/PUCCH signal); if correction is not performed, configuration B is applied and specified in it The uplink RACH signal is transmitted on the resource.
  • the terminal-based frequency offset correction signaling instruction can be added to the dedicated downlink control signaling of the satellite base station.
  • the terminal is required to selectively perform frequency offset estimation and uplink frequency offset correction. If correction is performed, configuration A is applied and the uplink signal is transmitted on resource A; if correction is not performed, configuration B is applied and the uplink signal is transmitted on resource B.
  • the satellite base station can group the terminals based on the geographic location. Add a terminal group-based frequency offset correction signaling instruction to the public downlink control signaling of the satellite base station. For a certain group of terminals (such as the geographical location is close, the residual frequency offset may be large) transmit downlink control signaling, requiring all terminals in the terminal group to selectively perform frequency offset estimation and uplink frequency offset correction. If correction is performed, configuration A is applied and uplink signals are transmitted on its designated resources; if correction is not performed, configuration B is applied and uplink signals are transmitted on its designated resources.
  • the above-mentioned correction instruction information can be determined by the terminal motion state being static, the beam direction control mode being the staring beam, and the service network being the NTN network.
  • the target identifier corresponding to the foregoing transmission configuration may be a cell identifier, terminal identifier, terminal group identifier, synchronization signal block SSB identifier, SRS resource identifier, and so on.
  • the satellite base station side receives separately on different designated resources. If the uplink signal is monitored on the corresponding resource, the signaling in the RAR UL grant instructs the terminal to perform or not perform frequency offset correction.
  • the terminal frequency offset estimation and uplink frequency offset correction methods are the same as application example 1.
  • Application example 3 High-speed terminal (1000km/s), non-geostationary orbit satellite base station, moving beam or staring beam
  • the Doppler frequency offset caused by its own motion also needs to be considered.
  • the residual Doppler frequency offset is caused by the joint movement of the terminal and the satellite base station.
  • the signaling indication status of the downlink transmission of the satellite base station should be "frequency offset correction required", and the following two methods can be used to perform the uplink frequency offset correction indication.
  • the terminal-based frequency offset correction signaling instruction can be added to the dedicated downlink control signaling of the satellite base station.
  • the terminal is required to perform frequency offset estimation and uplink frequency offset correction, and configuration A is applied to transmit uplink signals.
  • the satellite base station can group the terminals based on the terminal motion state. Add a terminal group-based frequency offset correction signaling instruction to the public downlink control signaling of the satellite base station. Transmit downlink control signaling for a certain group of terminals (such as the speed is close, the residual frequency offset may be large), require all terminals in the terminal group to perform frequency offset estimation and uplink frequency offset correction, and apply configuration A to transmit on its designated resources Uplink signal.
  • the terminal motion state for example, the speed
  • Add a terminal group-based frequency offset correction signaling instruction to the public downlink control signaling of the satellite base station. Transmit downlink control signaling for a certain group of terminals (such as the speed is close, the residual frequency offset may be large), require all terminals in the terminal group to perform frequency offset estimation and uplink frequency offset correction, and apply configuration A to transmit on its designated resources Uplink signal.
  • the satellite base station side receives the RACH signal on the resource specified by configuration A (similarly, for PUSCH/PUCCH, it is the PUSCH/PUCCH signal), if the uplink signal is monitored on the corresponding resource, the signaling indication in the RAR UL grant
  • the terminal performs frequency offset correction.
  • the terminal frequency offset estimation and uplink frequency offset correction methods are the same as application example 1.
  • Application example 4 Coexistence of terminals with large height differences (such as ground terminals and high-altitude terminals (10km))
  • the base station can include two common TA (common TA) adjustment values in the downlink signaling indication.
  • the two TA adjustment values mark the corresponding time offset correction value types.
  • the terminal selects the corresponding common TA adjustment value according to its own situation, and whether to adjust itself based on the common TA adjustment value, and transmits the uplink RACH signal on the corresponding resource (similar to Yes, for PUSCH/PUCCH, it is PUSCH/PUCCH signal), and report whether it has the ability to adjust itself.
  • the base station can know the type of time offset correction value corresponding to the TA adjustment value of the terminal, whether the terminal has the self-adjustment ability of the TA adjustment value, and whether the self-adjustment has been made.
  • the base station performs one of the following according to the synchronization error:
  • the downlink signaling indication is transmitted through unicast or multicast to inform the terminal that it does not need to adjust itself, and directly uses the common TA adjustment value.
  • the base station can perform the above operations according to known terminal capabilities and terminal synchronization conditions, and transmit corresponding signaling instructions in the downlink.
  • an embodiment of the present disclosure also provides a transmission configuration device applied to a communication node, including:
  • the first determining module 31 is configured to determine a downlink signaling indication used to indicate a transmission configuration of a communication device, where the downlink signaling indication includes transmission status information, and the transmission status information includes correction indication information;
  • the sending module 32 is configured to send the downlink signaling indication.
  • the correction instruction information includes:
  • the correction instruction information further includes:
  • the transmission status information further includes transmission configuration information.
  • the transmission configuration information includes:
  • the first determining module 31 is configured to:
  • the transmission state information is determined according to the geographic location of the communication device.
  • the first determining module 31 is configured to:
  • the transmission state information is determined according to the movement state of the communication device.
  • the first determining module 31 is configured to:
  • the transmission state information is determined according to the communication device capability reported by the communication device.
  • the first determining module 31 is configured to:
  • the transmission status information is determined according to the identifier of the service network.
  • the first determining module 31 is configured to:
  • the correction indication information is determined according to the uplink transmission mode and the correction capability of the communication device, and the uplink transmission mode includes whether to perform correction.
  • the sending module 32 is configured to:
  • the sending module 32 is configured to:
  • the communication node sends the downlink signaling indication to the communication device in a unicast manner.
  • the sending module 32 is configured to:
  • the device further includes:
  • a receiving module configured to receive an uplink signal sent by the communication device
  • the first determining module 31 is further configured to determine the uplink transmission mode of the communication device according to the uplink signal, and the uplink transmission mode includes whether to perform correction.
  • the first determining module 31 is configured to:
  • the first determining module 31 is also used for
  • the communication node determines whether the communication device is capable of performing correction according to the corrected capability information.
  • an embodiment of the present disclosure also provides a transmission configuration method applied to a communication device, including:
  • the receiving module 41 is configured to receive a downlink signaling indication sent by a communication node; wherein the downlink signaling indication includes transmission status information, and the transmission status information includes correction indication information;
  • the second determining module 42 is configured to determine an uplink transmission mode according to the downlink signaling indication.
  • the correction instruction information includes:
  • the correction indication information further includes: a correction value.
  • the transmission status information further includes transmission configuration information.
  • the transmission configuration information includes:
  • the second determining module 42 is configured to:
  • the second determining module 42 is further configured to: determine uplink transmission resources
  • the device further includes: a transmission module, configured to transmit an uplink signal through the uplink transmission resource according to an uplink transmission mode.
  • the uplink signal carries corrected capability information of the communication device.
  • an embodiment of the present disclosure also provides a communication node, including: a memory 51, a processor 52, and a computer program 53 stored on the memory 51 and running on the processor 52, and the processor 52 executes The program implements the transmission configuration method.
  • an embodiment of the present disclosure also provides a communication device, including: a memory 61, a processor 62, and a computer program 63 stored on the memory 61 and running on the processor 62, and the processor 62 executes The program implements the transmission configuration method.
  • the embodiments of the present disclosure also provide a computer-readable storage medium that stores computer-executable instructions, and the computer-executable instructions are used to execute the transmission configuration method.
  • the foregoing storage medium may include, but is not limited to: U disk, Read-Only Memory (ROM), Random Access Memory (RAM, Random Access Memory), mobile hard disk, magnetic disk or optical disk, etc.
  • U disk Read-Only Memory
  • RAM Random Access Memory
  • RAM Random Access Memory
  • mobile hard disk magnetic disk or optical disk, etc.
  • Such software may be distributed on a computer-readable medium, and the computer-readable medium may include a computer storage medium (or a non-transitory medium) and a communication medium (or a transitory medium).
  • the term computer storage medium includes volatile and non-volatile memory implemented in any method or technology for storing information (such as computer-readable instructions, data structures, program modules, or other data). Sexual, removable and non-removable media.
  • Computer storage media include but are not limited to RAM, ROM, EEPROM, flash memory or other memory technology, CD-ROM, digital versatile disk (DVD) or other optical disk storage, magnetic cassette, tape, magnetic disk storage or other magnetic storage device, or Any other medium used to store desired information and that can be accessed by a computer.
  • communication media usually contain computer-readable instructions, data structures, program modules, or other data in a modulated data signal such as carrier waves or other transmission mechanisms, and may include any information delivery media .

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Physics & Mathematics (AREA)
  • Astronomy & Astrophysics (AREA)
  • Aviation & Aerospace Engineering (AREA)
  • General Physics & Mathematics (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

一种传输配置方法、装置、通信节点、通信设备和计算机可读存储介质,其中,所述方法包括:通信节点确定用于指示通信设备传输配置的下行信令指示,其中,所述下行信令指示包括传输状态信息,所述传输状态信息包括校正指示信息;所述通信节点发送所述下行信令指示。本公开实施例通过下行信令指示携带传输状态信息,使得通信设备可以根据下行信令指示进行校正,从而缓解上行接收中的多用户干扰或用户自身ICI,提升上行接收性能。

Description

一种传输配置方法、装置、通信节点和通信设备
本申请要求在2019年5月17日提交中国专利局、申请号为201910413433.2的中国专利申请的优先权,该申请的全部内容通过引用结合在本申请中。
技术领域
本文涉及但不限于一种传输配置方法、装置、通信节点、通信设备和计算机可读存储介质。
背景技术
在卫星通信场景中,由于LEO(Low Earth Orbiting,低地球轨道)卫星基站相对地球快速移动,即使地面终端保持静止,也会经历由于卫星移动性引起的多普勒频偏。
在当前3GPP NTN SI(3rd Generation Partnership Project Non Terrestrial Networks Study Item,第三代合作伙伴计划非陆地网络研究项目)讨论中,普遍共识是在卫星基站侧对于频偏进行校正。因为卫星基站是在固定星轨上周期性运行,因此对于一个给定波束,卫星基站相对于该波束地面覆盖区域中心点的相对速度可预先计算。根据此相对速度可以计算该波束相应地面覆盖区域中心点位置上,一个静止用户经历的多普勒频偏。然后根据所算得的多普勒频偏,校正该给定波束的发射下行信号,如图1所示。
但是,即使基站在发射下行信号时进行了上述多普勒频偏校正,处于非波束中心点的用户仍可能经历较大的残余多普勒频偏,此残余多普勒频偏在其上行发射中到达基站侧可能会造成上行用户干扰。而且由于卫星基站到终端的传输距离很远,导致时延过大,因此终端需要调整上行发射TA(Time Advance,时间提前),否则会导致时域信息重叠,产生干扰。
发明内容
以下是对本文详细描述的主题的概述。本概述并非是为了限制权利要求的保护范围。
本公开实施例提供了一种传输配置方法、装置、通信节点、通信设备和计算机可读存储介质,以缓解上行接收中的用户干扰。
本公开实施例提供了一种传输配置方法,包括:
通信节点确定用于指示通信设备传输配置的下行信令指示,其中,所述下行信令指示包括传输状态信息,所述传输状态信息包括校正指示信息;
所述通信节点发送所述下行信令指示。
本公开实施例还提供一种传输配置方法,包括:
通信设备接收通信节点发送的下行信令指示;其中,所述下行信令指示包括传输状态信息,所述传输状态信息包括校正指示信息;
所述通信设备根据所述下行信令指示确定上行传输方式。
本公开实施例还提供一种传输配置装置,包括:
第一确定模块,用于确定用于指示通信设备传输配置的下行信令指示,其中,所述下行信令指示包括传输状态信息,所述传输状态信息包括校正指示信息;
发送模块,用于发送所述下行信令指示。
本公开实施例还提供一种传输配置装置,包括:
接收模块,用于接收通信节点发送的下行信令指示;其中,所述下行信令指示包括传输状态信息,所述传输状态信息包括校正指示信息;
第二确定模块,用于根据所述下行信令指示确定上行传输方式,所述上行传输方式至少包括是否执行校正和资源选择中的至少之一。
本公开实施例还提供一种通信节点,包括:存储器、处理器及存储在存储器上并可在处理器上运行的计算机程序,所述处理器执行所述程序时实现所述传输配置方法。
本公开实施例还提供一种通信设备,包括:存储器、处理器及存储在存储器上并可在处理器上运行的计算机程序,所述处理器执行所述程序时实现所述传输配置方法。
本公开实施例还提供一种计算机可读存储介质,存储有计算机可执行指令,所述计算机可执行指令用于执行所述传输配置方法。
本公开实施例包括:通信节点确定用于指示通信设备传输配置的下行信令指示,其中,所述下行信令指示包括传输状态信息,所述传输状态信息包括校正指示信息;所述通信节点发送所述下行信令指示。本公开实施例通过下行信令指示携带传输状态信息,使得通信设备可以根据下行信令指示进行校正,从而缓解上行接收中的多用户干扰或用户自身ICI(Inter-Carrier Interference,载波 间干扰),提升上行接收性能。
在阅读并理解了附图和详细描述后,可以明白其他方面。
附图说明
图1是下行多普勒频偏校正示意图;
图2是本公开实施例的传输配置方法的流程图(应用于通信节点);
图3是本公开实施例的传输配置方法的流程图(应用于通信设备);
图4是本公开实施例的通信节点侧无多普勒频偏校正和有双倍多普勒频偏校正的对比示意图;
图5是本公开实施例的传输配置装置的示意图(应用于通信节点);
图6是本公开实施例的传输配置装置的示意图(应用于通信设备);
图7是本公开实施例的通信节点的示意图;
图8是本公开实施例的通信设备的示意图。
具体实施方式
下文中将结合附图对本公开的实施例进行详细说明。
在附图的流程图示出的步骤可以在诸如一组计算机可执行指令的计算机系统中执行。并且,虽然在流程图中示出了逻辑顺序,但是在某些情况下,可以以不同于此处的顺序执行所示出或描述的步骤。
在低轨卫星通信系统中,由于卫星高速运动导致的多普勒频偏会影响OFDM(Orthogonal Frequency Division Multiplexing,正交频分复用)系统中子载波的正交性,这对于上行基站接收性能要求比较高。此外,大的RTT(Round-Trip Time,往返时延)下,对系统调度也会产生影响。
即使基站在发射下行信号时进行了多普勒频偏校正,处于非波束中心点的终端仍可能经历较大的残余多普勒频偏。尤其对于星下点波束覆盖范围内终端以及高速移动的终端而言,此残余多普勒频偏在其上行发射中到达基站侧会造成上行用户自干扰和多用户间干扰。而且由于卫星基站到终端的传输距离很远,导致时延过大,因此终端需要调整上行发射TA(Time Advance,时间提前),否则会导致时域信息重叠,产生干扰。
本公开实施例中,通信节点可以使用特定的传输配置发射相应的信令指示 给通信设备,通信设备在获取该指示时,可以依照该信令指示,自身能力等,在其发射上行信号时,选择合适的资源和上行传输方式(如校正上行频偏或不校正上行频偏,或者基于已知信息自主调整上行发射TA)。
如图2所示,本公开实施例的传输配置方法,应用于通信节点,包括:
步骤101,通信节点确定用于指示通信设备传输配置的下行信令指示。
其中,所述下行信令指示包括传输状态信息,所述传输状态信息包括校正指示信息。
所述通信节点可以是基站,例如卫星基站。
所述下行信令指示可以是频偏校正信令指示、TA调整信令指示等。
在一实施例中,所述校正指示信息包括:
校正状态信息,用于指示如下之一:需要校正、无需校正和自行选择是否校正。其中,需要校正是指:接到该指示的所有通信设备都需进行频偏/时偏自行估计和校正。
无需校正是指:接到该指示的所有通信设备都无需进行频偏/时偏自行估计和校正。
自行选择是否校正是指:接到该指示的通信设备根据自身情况,选择是否进行频偏/时偏自行估计和校正。
在一实施例中,所述校正状态信息通过如下方式中的至少之一指示:
比特图;
Ceil(log2(N))比特数,其中Ceil()为向上取整函数,N等于校正状态包含的校正值;
状态索引。
所述校正指示信息还可以包括:校正值。
所述校正值可以包括频偏校正值和/或时偏校正值。
当传输状态既包含频偏校正又包含时偏校正时,所述校正状态信息可以为频偏、时偏分别配置,也可以共用。
所述频偏校正值可以是通信节点计算得到的优选的频偏校正值。
所述时偏校正值可以是所有通信设备共同的TA(common TA)调整值。
所述校正指示信息还可以包括:校正值类型、校正精度等。
所述校正值类型可以对应通信设备的不同情况,例如位置、速度等。校正值类型可以按照如下分类:校正值计算参考点、校正值对应通信设备类型、校正值置信度等。
所述校正精度可以根据实际要求进行设置。
在一实施例中,所述传输状态信息还包括传输配置信息。
在一实施例中,所述传输配置信息包括:
上行信道配置信息、所述上行信道配置信息和所述校正指示信息的对应关系。
其中,上行信道配置信息可以包括:RACH(Random Access Channel,随机接入信道)配置信息、上行传输信道配置信息,上行控制信道配置信息;
所述校正指示信息的对应关系可以包括:上行信道配置信息与校正状态的对应关系、上行信道配置信息与校正值的对应关系。
其中,RACH配置信息可以包括上行随机接入前导(preamble)格式,子载波间隔参数等。
以上行信道配置信息为RACH配置信息为例,校正的状态信息为需要校正时,对应RACH信道配置信息为配置A,相应地,通信设备发送上行信号时采用配置A进行发送;校正的状态信息为无需校正时,对应RACH信道配置信息为配置B,相应地,通信设备发送上行信号时采用配置B进行发送;其中,配置B可以不同于配置A。校正的状态信息为自行选择是否校正,相应地,通信设备根据自身情况,选择是否进行频偏/时偏自行估计和校正,并且应用不同的配置在各自指定的资源上发送上行信号。若选择进行校正,则应用配置A,且在其指定资源上发送上行信号;若选择不进行校正,则应用配置B,且在其指定资源上发送上行信号。
在一实施例中,步骤101包括:
所述通信节点根据所述通信设备所在地理位置确定所述传输状态信息。
例如,在星下点波束覆盖范围确定通信设备需要校正。
在一实施例中,步骤101包括:
所述通信节点根据所述通信设备的运动状态确定所述传输状态信息。
例如,高速移动的通信设备需要校正。
在一实施例中,步骤101包括:
所述通信节点根据所述通信设备上报的通信设备能力确定所述传输状态信息。
例如,在通信设备上报没有校正能力时,确定通信设备无需校正。
在一实施例中,步骤101包括:
所述通信节点根据服务网络的标识确定所述传输状态信息。
所述服务网络的标识可以用于区分是否是卫星网络还是地面网络。
在一实施例中,步骤101包括:
所述通信节点根据所述通信设备的上行传输方式和校正的能力,确定所述校正指示信息,所述上行传输方式包括是否执行校正。
本步骤适用于通信设备已经上报了校正的能力信息,通信节点可以根据所述通信设备发送的上行信号获知上行传输方式,则通信节点可以确定所述通信设备是否进行校正。
步骤102,所述通信节点发送所述下行信令指示。
其中,通信节点发送所述下行信令指示可以包括如下几种方式:
方式一:广播的方式
通信节点通过广播的方式,向服务区域发送所述下行信令指示。
该方式中,通信节点针对特定服务范围下的通信设备进行指示。通信节点发送所述下行信令指示可以通过广播方式,应用于整个服务区域内的所有用户。
所述服务区域可以包括波束对应的服务区域、小区对应的服务区域等。
方式二:单播的方式
通信节点通过单播的方式,向通信设备发送所述下行信令指示。
其中,通信节点可通过针对特定通信设备的专用控制信令发送所述下行信 令指示。
方式三:组播的方式
该方式中,所述通信节点通过组播的方式,向通信设备组发送所述下行信令指示。
在一实施例中,所述通信节点按照通信设备所在地理位置或通信设备的运动状态划分所述通信设备组。
通信节点可通过针对特定通信设备组(例如具有相近地理位置或类似运动状态)的公共控制信令发送所述下行信令指示。
在一实施例中,所述通信节点发送所述下行信令指示,可包括如下至少之一:
1、所述通信节点单独发送归属于每个目标的下行信令指示。
2、所述通信节点将归属于多个目标的下行信令指示组合起来进行发送。
在一实施例中,所述下行信令指示的配置信息与所述目标的目标标识对应,其中,对应方式包括如下至少之一:
所述下行信令指示所占资源位置与目标标识对应;
所述下行信令指示数据加扰方式与目标标识对应;
所述下行信令指示中包含对应的目标标识;
下行信令指示的顺序或编号与目标标识对应。
对于广播方式:
该目标可以为小区,波束等,因此目标标识(Identity,ID)可以为:小区ID,SSB(Synchronization Signal/Physical Broadcast Channel Block,同步信号/广播信道块)ID,CSI-RS(Channel State Information Reference Signals,信道状态信息参考信号)的资源ID。
对于单播方式:
该目标可以为通信设备,服务该通信设备的资源(如波束)等,因此目标ID可以为:用户ID,SSB ID,CSI-RS的资源ID,SRS(Sounding Reference Signal,探测参考信号)资源ID。
对于组播方式:
该目标可以为特定分组等,因此目标ID可以为:通信设备组标识
波束指的是一种参考信号(如SSB,CSI-RS,SRS)或者资源(空域资源,天线端口号),或者准共位置关系。
在一实施例中,所述通信节点发送所述下行信令指示之后,所述方法还包括:
所述通信节点接收所述通信设备发送的上行信号;
所述通信节点根据所述上行信号,确定所述通信设备的所述上行传输方式,所述上行传输方式包括是否执行校正。
在一实施例中,所述通信节点根据所述上行信号,确定所述通信设备的所述上行传输方式,包括:
所述通信节点根据所述上行信号占用的上行信道资源,确定所述通信设备是否执行校正。
例如,所述上行信号占用的RACH资源为配置A,确定所述通信设备执行校正,所述上行信号占用的RACH资源为配置B,确定所述通信设备没有执行校正。
在一实施例中,所述上行信号携带所述通信设备的校正的能力信息,所述方法还包括:
所述通信节点根据所述校正的能力信息,确定所述通信设备是否有能力执行校正。
其中,所述通信节点确定所述通信设备是否有能力执行校正,以及根据所述通信设备是否执行校正,确定通信设备的校正的状态信息,从而可以返回执行步骤101~102,确定和发送下行信令指示。
本公开实施例还提供一种传输配置方法,应用于通信设备,包括:
步骤201,通信设备接收通信节点发送的下行信令指示。
其中,所述下行信令指示包括传输状态信息,所述传输状态信息包括校正 指示信息。
所述通信设备可以是终端。
所述下行信令指示可以是频偏校正信令指示、TA调整信令指示等。
在一实施例中,所述校正指示信息包括:
校正状态信息,用于指示如下之一:需要校正、无需校正和自行选择是否校正。
其中,需要校正是指:接到该指示的所有通信设备都需进行频偏/时偏自行估计和校正。
无需校正是指:接到该指示的所有通信设备都无需进行频偏/时偏自行估计和校正。
自行选择是否校正是指:接到该指示的通信设备根据自身情况,选择是否进行频偏/时偏自行估计和校正。
在一实施例中,所述校正状态信息通过如下方式中的至少之一指示:
比特图;
Ceil(log2(N))比特数,其中Ceil()为向上取整函数,N等于校正状态包含的校正值;
状态索引。
所述校正指示信息还可以包括:校正值。
所述校正值可以包括频偏校正值和/或时偏校正值。
当传输状态既包含频偏校正又包含时偏校正时,所述校正状态信息可以为频偏、时偏分别配置,也可以共用。
所述频偏校正值可以是通信节点计算得到的优选的频偏校正值。
所述时偏校正值可以是所有通信设备共同的TA(common TA)调整值。
所述校正指示信息还可以包括:校正值类型、校正精度等。
所述校正值类型可以对应通信设备的不同情况,例如位置、速度等。校正值类型可以按照如下分类:校正值计算参考点、校正值对应通信设备类型、校 正值置信度等。
所述校正精度可以根据实际要求进行设置。
在一实施例中,所述传输状态信息还包括传输配置信息。
在一实施例中,所述传输配置信息包括:
上行信道配置信息、所述上行信道配置信息和所述校正指示信息的对应关系。其中,上行信道配置信息可以包括:RACH(Random Access Channel,随机接入信道)配置信息、上行传输信道配置信息,上行控制信道配置信息;
所述校正指示信息的对应关系可以包括:上行信道配置信息与校正状态的对应关系、上行信道配置信息与校正值的对应关系。
其中,RACH配置信息可以包括上行随机接入前导(preamble)格式,子载波间隔参数等。
以上行信道配置信息为RACH配置信息为例,校正的状态信息为需要校正时,对应RACH信道配置信息为配置A,相应地,通信设备发送上行信号时采用配置A进行发送;校正的状态信息为无需校正时,对应RACH信道配置信息为配置B,相应地,通信设备发送上行信号时采用配置B进行发送;其中,配置B可以不同于配置A。校正的状态信息为自行选择是否校正,相应地,通信设备根据自身情况,选择是否进行频偏/时偏自行估计和校正,并且应用不同的配置在各自指定的资源上发送上行信号。若选择进行校正,则应用配置A,且在其指定资源上发送上行信号;若选择不进行校正,则应用配置B,且在其指定资源上发送上行信号。
步骤202,所述通信设备根据所述下行信令指示确定上行传输方式。
其中,所述上行传输方式可包括是否执行校正和是否执行资源选择中的至少之一。
在一实施例中,步骤202包括:
所述通信设备根据自身校正的能力和所述校正指示信息,确定上行传输方式。
例如,在校正状态信息为需要校正,且通信设备的自身校正的能力可以进行校正时,通信设备执行校正;
在校正状态信息为需要校正,且通信设备的自身校正的能力不能进行校正时,通信设备不执行校正;
在校正状态信息为无需校正,通信设备不执行校正;
在校正状态信息为自行选择是否校正,且通信设备的自身校正的能力可以进行校正时,通信设备可选执行或不执行校正;
在校正状态信息为自行选择是否校正,且通信设备的自身校正的能力不能进行校正时,通信设备不执行校正。
对于频偏校正,通信设备可以利用SSB收到的下行频点,与最接近的全局同步栅格绝对频点进行对比,计算两者之间频率差异,若执行频偏估计,通信设备以上述频率差异的两倍作为上行频偏校正值,校正上行发射信号,使其到达通信节点侧时在频域对齐。若不执行频偏估计,则不进行频偏校正,直接发射上行信号。通信设备根据信令指示的三种状态在相应上行传输资源上发射上行信号。
在一实施例中,所述方法还包括:
所述通信设备确定上行传输资源;
所述通信设备按照上行传输方式,通过所述上行传输资源传输上行信号。
在一实施例中,所述通信设备确定上行传输资源,包括:
所述下行信令指示包括一套传输配置信息,所述通信设备按照所述传输配置信息确定对应的上行传输资源;
所述下行信令指示包括多套传输配置信息,所述通信设备按照所述上行传输方式选择其中一套传输配置信息,确定对应的上行传输资源。
所述上行传输资源可以是RACH资源,也可以是PUSCH(Physical Uplink Shared Channel,物理上行共享信道)资源、PUCCH(Physical Uplink Control Channel,物理上行链路控制信道)资源。
在一实施例中,所述通信设备按照所述上行传输方式选择其中一套传输配置信息,确定对应的上行传输资源,包括如下至少之一:
所述通信设备按照所述上行传输方式和目标标识选择一套传输配置信息;
所述通信设备选择第一套传输配置信息作为上行传输的默认配置。
其中,所述目标标识(ID)可以为:小区标识、SSB标识、CSI-RS的资源标识、终端标识、终端组标识、SRS资源标识、SRS资源索引。在一实施例中,所述上行信号携带所述通信设备的校正的能力信息。
校正的能力信息可用于通信节点确定所述通信设备是否有能力执行校正,从而发送后续的下行信令指示。
本公开实施例通过下行信令指示携带传输状态信息,使得通信设备可以根据下行信令指示进行校正,从而缓解上行接收中的多用户干扰或用户自身ICI,提升上行接收性能。
下面以通信节点为卫星基站,通信设备为终端为例,分别针对频偏校正和时偏校正进行说明。
一、频偏校正
对一个给定波束,卫星基站可计算得到该波束地面覆盖区域的中心位置上,一个静止终端所经历的多普勒频偏fd,在发射下行信号时,对该波束下所有下行信号进行2*fd的多普勒频偏校正。
由图4可知,经过2*fd的下行多普勒频偏校正,对于给定波束覆盖范围中心点上的静止终端,基站上行接收频率中消除了多普勒频偏的影响。
对于星下点波束覆盖范围内的终端,多普勒频偏校正为零,而该区域边缘终端的多普勒频偏仍有可能较大。对于仰角较大的其他波束,或对于高速移动终端(例如飞机终端),经过上述步骤进行多普勒频偏校正之后,仍然可能存在较大的残余频偏。通过本公开实施例,残余频偏可以通过如下步骤得到校正:
第一步,基站指示(此时下行信令指示为频偏校正信令指示),有3种可能:
1、在卫星基站的下行广播信号中加入基于波束的频偏校正信令指示,告知此波束覆盖内的所有终端,要求所有终端执行、不执行或选择性执行频偏估计和上行频偏校正。
2、在卫星基站的专用下行控制信令中加入基于终端的频偏校正信令指示。 针对该终端发射下行控制信令,要求该终端执行、不执行或选择性执行频偏估计和上行频偏校正。
3、在卫星基站的公共下行控制信令中加入基于终端组的频偏校正信令指示。针对某一组终端发射下行控制信令,要求该终端组内所有终端执行、不执行或选择性执行频偏估计和上行频偏校正。
第二步,终端行为,具体包括2个动作。
1、终端接收上述3种可能的信令指示,执行、不执行或选择性执行频偏估计。一种可行方法是,利用SSB收到的下行频点,与最接近的全局同步栅格绝对频点进行对比,计算两者之间频率差异。
2、若执行频偏估计,终端以上述频率差异的两倍作为上行频偏校正值,校正上行信号,使其到达基站侧时在频域对齐。若不执行频偏估计,则不进行频偏校正,直接发射上行信号。终端应根据信令指示的三种状态在相应RACH资源上发射上行信号(类似的,对PUSCH/PUCCH而言,则为在PUSCH/PUCCH资源上发射上行信号)。
基站侧还可执行额外的保护措施,以防止终端上行频偏校正出现异常。一个可行的方法是,若基站侧经过接收测量,发现某终端上行频偏校正异常,则基站在调度该终端时需留出相应频域保护间隔,以规避该终端对于其他终端的上行信号干扰。
第三步,基站根据信令指示及收到的上行信号中占用的资源情况,可知终端是否进行了校正,并发射下行RAR(Random Access Response,随机接入响应)。此时下行信令指示包含在下行RAR中。若在对应资源上监测到上行信号,则下行信令指示的RAR UL grant(Uplink grant,上行授权)中指示终端执行或不执行频偏校正,信令内容可以包括校正值参数。终端在非初始接入时,基站会假设频偏都已校正,并根据RAR UL grant中的信令指示进行后续资源分配等操作。
二、时偏校正
终端初始接入时,对某一波束,基站首先通过下行广播发射一个TA调整信令指示(此时下行信令指示为TA调整信令指示),信令指示中要求所有终端执行、不执行或选择性执行时偏校正以及波束覆盖范围内所有终端共同TA (common TA)调整值。
其中,执行时偏校正是指在共同TA调整值的基础上再自行调整,不执行时偏校正是指将共同TA调整值作为TA调整值。
终端收到指示后,根据自身情况可以执行如下之一:
1、选择直接将共同TA调整值作为TA调整值,并应用配置B在对应资源上发射上行RACH信号,并上报是否具有自行调整能力,其中配置B对应不执行校正。
2、选择在共同TA调整值的基础上再自行调整,并应用配置A在对应资源上发射上行RACH信号,并且上报是否具有自行调整能力,其中配置A对应执行校正。
影响是否自行调整的因素,可以是终端是否有能力根据位置信息计算出自身实际TA调整值与共同TA的差值,也可以是有能力计算自行调整值的终端对上行同步误差预估后判断是否需要调整。
基站接收到对应终端的上行信号后,可知终端的调整能力以及是否进行了自行调整。
传输状态,可以是(将共同TA作为TA调整值的基础上)需进行自行TA调整,无需进行自行TA调整,选择性进行自行TA调整。也可以是需进行TA调整,无需进行TA调整,选择性进行TA调整。前者是指终端必须进行TA调整,但是否在共同TA基础上再自行调整则根据信令指示和自身实际情况,后者是指终端不一定要进行TA调整(比如共同TA也可以不进行补偿),是否进行TA调整则根据信令指示和自身实际情况决定。
1、对于具有自行调整能力的终端,且公共TA不能满足上行同步误差要求时,基站可单播或组播发射下行信令指示,告知终端需进行自行TA调整。
2、对于具有自行调整能力的终端,且公共TA能满足上行同步误差要求时,基站可单播或组播发射下行信令指示,告知终端选择性进行自行TA调整。
3、对于没有自行调整能力的终端,且公共TA不能满足上行同步误差要求时,基站重新计算终端所需的TA调整值,单播或组播发射下行信令指示,告知终端无需自行调整TA并使用信令指示中更新后的TA调整值。
4、对于没有自行调整能力的终端,且公共TA能满足同步误差要求时,基站可单播或组播发射下行信令指示,告知终端无需进行自行TA调整。
非初始接入时,基站可根据已知的终端能力以及终端同步情况执行上述操作,下行发射对应的信令指示。
需要说明的是,下行信令指示中所有终端共同TA调整值并不是必须的,基站也可以指示终端不调整共同TA调整值,基站发射下行信令指示的方式可以是通过广播、单播或组播的方式。基站侧根据情况采取相应的措施,例如选择在接收时将接收时间窗延后等。
下面以一些应用实例进行说明。
卫星波束方向控制,目前有两种方式:移动波束(moving beam)和凝视波束(steering beam)。移动波束方式下,波束方向相对卫星是静止的,其覆盖区域随卫星的移动而做相应移动;凝视波束下,其覆盖区域相对地面或移动中的终端群是静止的,波束方向随卫星的移动而改变。针对不同的波束类型,可以选择适用的信令指示方式。
应用实例1:低速终端,非地球静止轨道卫星基站,移动波束
对于低速终端而言,多普勒频偏主要由卫星的运动引起。基站下行发射信号经过2*fd的多普勒频偏校正之后,残余多普勒频偏最大值在星下点波束的边缘处,故下面考虑星下点波束的情况,若该情况的残余多普勒频偏可以得到校正,则其他情况下均可以得到校正。针对图1中星下点波束覆盖区域而言,基站侧的多普勒频偏校正为0,而该覆盖区域边缘的终端所经历的多普勒频偏仍然较大,表1给出了不同情况下的星下点波束最大多普勒频偏。
表1不同情况下星下点波束的最大多普勒频偏
Figure PCTCN2020090137-appb-000001
从表中可以看出,若卫星基站选择LEO-600,载波为2GHz,子载波间隔选择为5kHz时,最坏情况下(图1中星下点波束边缘终端),卫星基站接收到的上行信号频率会包含频偏为2.68*2=5.32kHz,因此会造成子载波错位,严重影响上行接收性能。
由于移动波束情况下,星下点波束方向保持不变,故卫星基站的下行广播信号中可加入基于波束的频偏校正信令指示,状态为“需要频偏校正”,告知此波束覆盖内的所有终端,执行频偏估计和上行频偏校正,并应用配置A发射上行RACH信号(类似的,对PUSCH/PUCCH而言,则为PUSCH/PUCCH信号)。卫星基站侧在配置A指定的资源上接收RACH信号,若在对应资源上监测到上行信号,则RAR UL grant中信令指示终端执行频偏校正。
在频率范围为3GHz以下时,全局同步栅格各频点之间的频率间隔为最小50kHz,在频率范围为3GHz-24.25GHz时,频率间隔为1.44MHz,在频率范围为24.25GHz-100GHz时,频率间隔为1.72MHz,而残余多普勒频偏最大为7.68kHz,因此对比SSB接收的下行频点和最近的全局同步栅格即可计算出残余频偏,从而进行上行频偏校正。
应用实例2:静止终端,非地球静止轨道卫星基站,凝视波束
对于凝视波束覆盖范围内的静止终端,由于波束覆盖区域相对地面不变,因此该波束的仰角随着卫星的移动而逐渐变化。则在卫星基站侧执行下行多普勒频偏校正后,仍可能有较大的残余频偏。因此卫星基站可下行发射选择性频偏校正指示,可以采用如下3种方式进行上行频偏校正指示。
a、卫星基站的下行广播信令中可加入基于波束的频偏校正信令指示,告知此波束覆盖内的所有终端,选择性执行频偏估计和上行频偏校正。若执行校正,则应用配置A并在其指定资源上发射上行RACH信号(类似的,对PUSCH/PUCCH而言,则为PUSCH/PUCCH信号);若不执行校正,则应用配置B并在其指定资源上发射上行RACH信号。
b、假如卫星基站以窄波束(点波束)进行针对单终端的数据传输,则可在卫星基站的专用下行控制信令中加入基于终端的频偏校正信令指示。针对该终端发射下行控制信令,要求该终端选择性执行频偏估计和上行频偏校正。若执行校正,则应用配置A并在资源A上发射上行信号;若不执行校正,则应用配 置B并在资源B上发射上行信号。
c、假如卫星基站已知终端地理位置,则卫星基站可基于地理位置将终端进行分组。在卫星基站的公共下行控制信令中加入基于终端组的频偏校正信令指示。针对某一组终端(如地理位置接近,残余频偏可能较大)发射下行控制信令,要求该终端组内所有终端选择性执行频偏估计和上行频偏校正。若执行校正,则应用配置A并在其指定资源上发射上行信号;若不执行校正,则应用配置B并在其指定资源上发射上行信号。
上述校正指示信息可以通过终端运动状态为静止,波束方向控制方式为凝视波束,服务网络为NTN网络来确定。上述传输配置对应的目标标识可以为小区标识,终端标识,终端组标识,同步信号块SSB标识,SRS资源标识等。
卫星基站侧在不同指定资源上分别接收,若在对应资源上监测到上行信号,则RAR UL grant中信令指示终端执行或不执行频偏校正。
终端频偏估计和上行频偏校正方法同应用实例1。
应用实例3:高速终端(1000km/s),非地球静止轨道卫星基站,移动波束或凝视波束
对于高速终端而言,不论处于移动波束覆盖范围下还是凝视波束覆盖范围下,除了考虑由卫星基站运动引起的多普勒频偏以外,其自身运动引起的多普勒频偏也需要考虑。在卫星基站侧经过2*fd的多普勒频偏校正之后,残余多普勒频偏由终端和卫星基站的共同运动引起。
卫星基站下行发射的信令指示状态应为“需要频偏校正”,可以采用如下2种方式进行上行频偏校正指示。
a、假如卫星基站以窄波束(点波束)进行针对单终端的数据传输,则可在卫星基站的专用下行控制信令中加入基于终端的频偏校正信令指示。针对该终端发射下行控制信令,要求该终端执行频偏估计和上行频偏校正,且应用配置A发射上行信号。
b、假如卫星基站已知终端运动状态(例如速度),则卫星基站可基于终端运动状态将终端进行分组。在卫星基站的公共下行控制信令中加入基于终端组的频偏校正信令指示。针对某一组终端(如速度接近,残余频偏可能较大)发射下行控制信令,要求该终端组内所有终端执行频偏估计和上行频偏校正,且 应用配置A在其指定资源上发射上行信号。
卫星基站侧在配置A指定的资源上接收RACH信号(类似的,对PUSCH/PUCCH而言,则为PUSCH/PUCCH信号),若在对应资源上监测到上行信号,则RAR UL grant中信令指示终端执行频偏校正。
终端频偏估计和上行频偏校正方法同应用实例1。
应用实例4:高度相差较大(如地面终端和高空终端(10km))的终端共存
对于地面终端和高空终端而言,由于高度不同,相对卫星基站的时延也不同,因此初始接入时,基站可以在下行信令指示中包含两个共同TA(common TA)调整值,且对两个TA调整值标记对应的时偏校正值类型,终端根据自身情况选择对应的共同TA调整值,以及是否在共同TA调整值的基础上进行自行调整,在对应资源上发射上行RACH信号(类似的,对PUSCH/PUCCH而言,则为PUSCH/PUCCH信号),并上报是否具有自行调整能力。
基站根据终端的上行信号可知终端TA调整值对应的时偏校正值类型、终端是否有TA调整值的自行调整能力,以及是否进行了自行调整。基站根据同步误差情况执行如下之一:
a)对误差超过阈值,且有自行调整能力的终端通过单播或组播方式发射下行信令指示,告知终端在共同TA调整值上进行自行调整;
b)对误差超过阈值,且没有自行调整能力的终端,通过单播或组播方式发射下行信令指示,告知终端无需自行调整,并使用基站更新后的TA调整值;
c)对误差未超过阈值的终端,通过单播或组播方式发射下行信令指示,告知终端无需自行调整,直接使用共同TA调整值。
非初始接入时,基站可根据已知的终端能力以及终端同步情况执行上述操作,下行发射对应的信令指示。
如图5所示,本公开实施例还提供一种传输配置装置,应用于通信节点,包括:
第一确定模块31,用于确定用于指示通信设备传输配置的下行信令指示, 其中,所述下行信令指示包括传输状态信息,所述传输状态信息包括校正指示信息;
发送模块32,用于发送所述下行信令指示。
在一实施例中,所述校正指示信息包括:
校正状态信息。
在一实施例中,所述校正指示信息还包括:
校正值。
在一实施例中,所述传输状态信息还包括传输配置信息。
在一实施例中,所述传输配置信息包括:
上行信道配置信息、所述上行信道配置信息和所述校正指示信息的对应关系。
在一实施例中,第一确定模块31,用于:
根据所述通信设备所在地理位置确定所述传输状态信息。
在一实施例中,第一确定模块31,用于:
根据所述通信设备的运动状态确定所述传输状态信息。
在一实施例中,第一确定模块31,用于:
根据所述通信设备上报的通信设备能力确定所述传输状态信息。
在一实施例中,第一确定模块31,用于:
根据服务网络的标识确定所述传输状态信息。
在一实施例中,第一确定模块31,用于:
根据所述通信设备的上行传输方式和校正的能力,确定所述校正指示信息,所述上行传输方式包括是否执行校正。
在一实施例中,所述发送模块32,用于:
通过广播的方式,向服务区域发送所述下行信令指示。
在一实施例中,所述发送模块32,用于:
所述通信节点通过单播的方式,向通信设备发送所述下行信令指示。
在一实施例中,所述发送模块32,用于:
通过组播的方式,向通信设备组发送所述下行信令指示。
在一实施例中,所述装置还包括:
接收模块,用于接收所述通信设备发送的上行信号;
所述第一确定模块31,还用于根据所述上行信号,确定所述通信设备的所述上行传输方式,所述上行传输方式包括是否执行校正。
在一实施例中,第一确定模块31,用于:
根据所述上行信号占用的上行信道资源,确定所述通信设备是否执行校正。
在一实施例中,所述第一确定模块31,还用于
所述通信节点根据所述校正的能力信息,确定所述通信设备是否有能力执行校正。
如图6所示,本公开实施例还提供一种传输配置方法,应用于通信设备,包括:
接收模块41,用于接收通信节点发送的下行信令指示;其中,所述下行信令指示包括传输状态信息,所述传输状态信息包括校正指示信息;
第二确定模块42,用于根据所述下行信令指示确定上行传输方式。
在一实施例中,所述校正指示信息包括:
校正状态信息。
在一实施例中,所述校正指示信息还包括:校正值。
在一实施例中,所述传输状态信息还包括传输配置信息。
在一实施例中,所述传输配置信息包括:
上行信道配置信息、所述上行信道配置信息和所述校正指示信息的对应关系。
在一实施例中,所述第二确定模块42,用于:
根据自身校正的能力和所述校正指示信息,确定上行传输方式。
在一实施例中,所述第二确定模块42,还用于:确定上行传输资源;
所述装置还包括:传输模块,用于按照上行传输方式,通过所述上行传输资源传输上行信号。
在一实施例中,所述上行信号携带所述通信设备的校正的能力信息。
如图7所示,本公开实施例还提供一种通信节点,包括:存储器51、处理器52及存储在存储器51上并可在处理器52上运行的计算机程序53,所述处理器52执行所述程序时实现所述传输配置方法。
如图8所示,本公开实施例还提供一种通信设备,包括:存储器61、处理器62及存储在存储器61上并可在处理器62上运行的计算机程序63,所述处理器62执行所述程序时实现所述传输配置方法。
本公开实施例还提供一种计算机可读存储介质,存储有计算机可执行指令,所述计算机可执行指令用于执行所述传输配置方法。
在本实施例中,上述存储介质可以包括但不限于:U盘、只读存储器(ROM,Read-Only Memory)、随机存取存储器(RAM,Random Access Memory)、移动硬盘、磁碟或者光盘等各种可以存储程序代码的介质。
本领域普通技术人员可以理解,上文中所公开方法中的全部或某些步骤、系统、装置中的功能模块/单元可以被实施为软件、固件、硬件及其适当的组合。在硬件实施方式中,在以上描述中提及的功能模块/单元之间的划分不一定对应于物理组件的划分;例如,一个物理组件可以具有多个功能,或者一个功能或步骤可以由若干物理组件合作执行。某些组件或所有组件可以被实施为由处理器,如数字信号处理器或微处理器执行的软件,或者被实施为硬件,或者被实施为集成电路,如专用集成电路。这样的软件可以分布在计算机可读介质上,计算机可读介质可以包括计算机存储介质(或非暂时性介质)和通信介质(或暂时性介质)。如本领域普通技术人员公知的,术语计算机存储介质包括在用于存储信息(诸如计算机可读指令、数据结构、程序模块或其他数据)的任何方法或技术中实施的易失性和非易失性、可移除和不可移除介质。计算机存储介质包括但不限于RAM、ROM、EEPROM、闪存或其他存储器技术、CD-ROM、数字多功能盘(DVD)或其他光盘存储、磁盒、磁带、磁盘存储或其他磁存储装置、或者可以用于存储期望的信息并且可以被计算机访问的任何其他的介质。 此外,本领域普通技术人员公知的是,通信介质通常包含计算机可读指令、数据结构、程序模块或者诸如载波或其他传输机制之类的调制数据信号中的其他数据,并且可包括任何信息递送介质。

Claims (29)

  1. 一种传输配置方法,包括:
    通信节点确定用于指示通信设备传输配置的下行信令指示,其中,所述下行信令指示包括传输状态信息,所述传输状态信息包括校正指示信息;
    所述通信节点发送所述下行信令指示。
  2. 如权利要求1所述的方法,其中,所述校正指示信息包括:
    校正状态信息。
  3. 如权利要求2所述的方法,其中,所述校正指示信息还包括:
    校正值。
  4. 如权利要求1所述的方法,其中,所述传输状态信息还包括传输配置信息。
  5. 如权利要求4所述的方法,其中,所述传输配置信息包括:
    上行信道配置信息、所述上行信道配置信息和所述校正指示信息的对应关系。
  6. 如权利要求1所述的方法,其中,所述通信节点确定用于指示通信设备传输配置的下行信令指示,包括:
    所述通信节点根据所述通信设备所在地理位置确定所述传输状态信息。
  7. 如权利要求1所述的方法,其中,所述通信节点确定用于指示通信设备传输配置的下行信令指示,包括:
    所述通信节点根据所述通信设备的运动状态确定所述传输状态信息。
  8. 如权利要求1所述的方法,其中,所述通信节点确定用于指示通信设备传输配置的下行信令指示,包括:
    所述通信节点根据所述通信设备上报的通信设备能力确定所述传输状态信息。
  9. 如权利要求1所述的方法,其中,所述通信节点确定用于指示通信设备传输配置的下行信令指示,包括:
    所述通信节点根据服务网络的标识确定所述传输状态信息。
  10. 如权利要求1所述的方法,其中,所述通信节点确定用于指示通信设备传输配置的下行信令指示,包括:
    所述通信节点根据所述通信设备的上行传输方式和校正的能力,确定所述校正指示信息,所述上行传输方式包括是否执行校正。
  11. 如权利要求1所述的方法,其中,所述通信节点发送所述下行信令指 示,包括:
    所述通信节点通过广播的方式,向服务区域发送所述下行信令指示。
  12. 如权利要求1所述的方法,其中,所述通信节点发送所述下行信令指示,包括:
    所述通信节点通过单播的方式,向所述通信设备发送所述下行信令指示。
  13. 如权利要求1所述的方法,其中,所述通信节点发送所述下行信令指示,包括:
    所述通信节点通过组播的方式,向通信设备组发送所述下行信令指示。
  14. 如权利要求1所述的方法,所述通信节点发送所述下行信令指示之后,还包括:
    所述通信节点接收所述通信设备发送的上行信号;
    所述通信节点根据所述上行信号,确定所述通信设备的上行传输方式,所述上行传输方式包括是否执行校正。
  15. 如权利要求14所述的方法,其中,所述通信节点根据所述上行信号,确定所述通信设备的上行传输方式,包括:
    所述通信节点根据所述上行信号占用的上行信道资源,确定所述通信设备是否执行校正。
  16. 如权利要求14所述的方法,所述上行信号携带所述通信设备的校正的能力信息,所述方法还包括:
    所述通信节点根据所述校正的能力信息,确定所述通信设备是否有能力执行校正。
  17. 一种传输配置方法,包括:
    通信设备接收通信节点发送的下行信令指示;其中,所述下行信令指示包括传输状态信息,所述传输状态信息包括校正指示信息;
    所述通信设备根据所述下行信令指示确定上行传输方式。
  18. 如权利要求17所述的方法,其中,所述校正指示信息包括:
    校正状态信息。
  19. 如权利要求18所述的方法,其中,所述校正指示信息还包括:校正值。
  20. 如权利要求17所述的方法,其中,所述传输状态信息还包括传输配置信息。
  21. 如权利要求20所述的方法,其中,所述传输配置信息包括:
    上行信道配置信息、所述上行信道配置信息和所述校正指示信息的对应关系。
  22. 如权利要求17所述的方法,其中,所述通信设备根据所述下行信令指示确定上行传输方式,包括:
    所述通信设备根据自身校正的能力和所述校正指示信息,确定所述上行传输方式。
  23. 如权利要求22所述的方法,还包括:
    所述通信设备确定上行传输资源;
    所述通信设备按照所述上行传输方式,通过所述上行传输资源传输上行信号。
  24. 如权利要求23所述的方法,其中,
    所述上行信号携带所述通信设备的校正的能力信息。
  25. 一种传输配置装置,包括:
    第一确定模块,设置为确定用于指示通信设备传输配置的下行信令指示,其中,所述下行信令指示包括传输状态信息,所述传输状态信息包括校正指示信息;
    发送模块,设置为发送所述下行信令指示。
  26. 一种传输配置装置,包括:
    接收模块,设置为接收通信节点发送的下行信令指示;其中,所述下行信令指示包括传输状态信息,所述传输状态信息包括校正指示信息;
    第二确定模块,设置为根据所述下行信令指示确定上行传输方式,所述上行传输方式至少包括是否执行校正和是否执行资源选择中的至少之一。
  27. 一种通信节点,包括:存储器、处理器及存储在存储器上并可在处理器上运行的计算机程序,所述处理器执行所述程序时,实现如权利要求1~16中任意一项所述传输配置方法。
  28. 一种通信设备,包括:存储器、处理器及存储在存储器上并可在处理器上运行的计算机程序,所述处理器执行所述程序时实现如权利要求17~24中任意一项所述传输配置方法。
  29. 一种计算机可读存储介质,所述计算机可读存储介质存储有计算机可执行指令,所述计算机可执行指令用于执行权利要求1~24中任意一项所述传输配置方法。
PCT/CN2020/090137 2019-05-17 2020-05-14 一种传输配置方法、装置、通信节点和通信设备 WO2020233482A1 (zh)

Priority Applications (4)

Application Number Priority Date Filing Date Title
US17/612,157 US20220216912A1 (en) 2019-05-17 2020-05-14 Transmission configuration method and apparatus, communication node and communication device
EP20808990.4A EP3972152A4 (en) 2019-05-17 2020-05-14 TRANSMISSION CONFIGURATION METHOD AND APPARATUS, COMMUNICATION NODE AND COMMUNICATION DEVICE
AU2020279263A AU2020279263B2 (en) 2019-05-17 2020-05-14 Transmission configuration method and apparatus, communication node and communication device
KR1020217041094A KR102592499B1 (ko) 2019-05-17 2020-05-14 전송 구성 방법, 장치, 통신 노드 및 통신 설비

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201910413433.2 2019-05-17
CN201910413433.2A CN111953396B (zh) 2019-05-17 2019-05-17 一种传输配置方法、装置、通信节点和通信设备

Publications (1)

Publication Number Publication Date
WO2020233482A1 true WO2020233482A1 (zh) 2020-11-26

Family

ID=73336772

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/090137 WO2020233482A1 (zh) 2019-05-17 2020-05-14 一种传输配置方法、装置、通信节点和通信设备

Country Status (6)

Country Link
US (1) US20220216912A1 (zh)
EP (1) EP3972152A4 (zh)
KR (1) KR102592499B1 (zh)
CN (1) CN111953396B (zh)
AU (1) AU2020279263B2 (zh)
WO (1) WO2020233482A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023134510A1 (zh) * 2022-01-14 2023-07-20 华为技术有限公司 一种通信方法、装置及计算机可读存储介质

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20220038214A1 (en) * 2020-07-30 2022-02-03 Qualcomm Incorporated Hybrid automatic repeat request feedback in network
US20220046669A1 (en) * 2020-08-05 2022-02-10 Qualcomm Incorporated Configuration of uplink hybrid automatic repeat request processes and process types
CN114520984A (zh) * 2020-11-20 2022-05-20 中国移动通信有限公司研究院 一种传输处理方法、装置及设备
US11799710B2 (en) * 2020-12-10 2023-10-24 Qualcomm Incorporated Techniques for signaling a source of dominant noise at a user equipment

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107197517A (zh) * 2017-08-02 2017-09-22 电子科技大学 基于ta分组的lte卫星上行链路同步方法
CN107333241A (zh) * 2017-08-02 2017-11-07 电子科技大学 基于lte体制的卫星移动通信上行发射端定时调整方法
CN109120561A (zh) * 2018-06-27 2019-01-01 东南大学 低轨卫星移动通信系统中频偏校正方法
WO2019038294A1 (en) * 2017-08-22 2019-02-28 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. WIRELESS COMMUNICATION SYSTEM, BASE STATION, AND USER SIDE DEVICE

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102932892B (zh) * 2011-08-12 2018-03-23 中兴通讯股份有限公司 一种功率控制方法及装置
CN104160757B (zh) * 2012-03-06 2018-09-25 交互数字专利控股公司 用于在无线局域网络中节省功率的方法和装置
US10136402B2 (en) * 2015-03-31 2018-11-20 Huawei Technologies Co., Ltd. Efficient uplink timing synchronization for fixed-location M2M terminals
WO2017162903A1 (en) * 2016-03-23 2017-09-28 Nokia Technologies Oy Common phase error and/or inter-carrier interference
US10568012B2 (en) * 2016-04-08 2020-02-18 Htc Corporation Device and method of handling mobility management
CN109644493A (zh) * 2016-06-15 2019-04-16 康维达无线有限责任公司 无许可操作
CN109792417B (zh) * 2016-09-26 2022-07-05 瑞典爱立信有限公司 高速lte部署的频率调整
CN107995636B (zh) * 2016-10-26 2021-08-13 华为技术有限公司 免授权传输的方法、终端设备和网络设备
US11064401B2 (en) * 2017-04-01 2021-07-13 Samsung Electronics Co., Ltd. Random access method, network node and user equipment
CN114124635A (zh) * 2017-04-27 2022-03-01 上海朗帛通信技术有限公司 一种被用于无线通信的用户设备、基站中的方法和装置
CN109005135B (zh) * 2017-06-06 2022-06-17 中兴通讯股份有限公司 一种处理通信系统上行链路频偏的方法与装置

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107197517A (zh) * 2017-08-02 2017-09-22 电子科技大学 基于ta分组的lte卫星上行链路同步方法
CN107333241A (zh) * 2017-08-02 2017-11-07 电子科技大学 基于lte体制的卫星移动通信上行发射端定时调整方法
WO2019038294A1 (en) * 2017-08-22 2019-02-28 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. WIRELESS COMMUNICATION SYSTEM, BASE STATION, AND USER SIDE DEVICE
CN109120561A (zh) * 2018-06-27 2019-01-01 东南大学 低轨卫星移动通信系统中频偏校正方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
ZTE: "Discussison on the TA and PRACH for NTN", 3GPP TSG RAN WG1 #96BIS, R1-1904767, 12 April 2019 (2019-04-12), XP051699944, DOI: 20200803091113X *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023134510A1 (zh) * 2022-01-14 2023-07-20 华为技术有限公司 一种通信方法、装置及计算机可读存储介质

Also Published As

Publication number Publication date
US20220216912A1 (en) 2022-07-07
KR102592499B1 (ko) 2023-10-23
CN111953396B (zh) 2023-12-29
KR20220008896A (ko) 2022-01-21
AU2020279263B2 (en) 2023-04-06
CN111953396A (zh) 2020-11-17
EP3972152A4 (en) 2023-01-25
AU2020279263A1 (en) 2022-01-20
EP3972152A1 (en) 2022-03-23

Similar Documents

Publication Publication Date Title
WO2020233482A1 (zh) 一种传输配置方法、装置、通信节点和通信设备
CN107197517B (zh) 基于ta分组的lte卫星上行链路同步方法
US20210345281A1 (en) Timing advance adjustment schemes in wireless communication
JP7289189B2 (ja) 端末装置、ロケーションサーバー及び方法
US20230057591A1 (en) Autonomous timing adjustment for a wireless device
AU2016347539B2 (en) Mobile satellite communication system
US11129036B2 (en) Method and apparatus for estimating pathloss of PUSCH in a wireless communication system
JP6573874B2 (ja) 時分割ロングタームエボリューション(td−lte)フレーム構造の修正
CN114902761A (zh) 用于ntn中不同参数集的传输定时增强的方法和装置
KR20210005004A (ko) 비-지상 네트워크 통신에 대한 타이밍 어드밴스
KR20210119531A (ko) 랜덤 액세스를 위한 방법 및 장치
US11968640B2 (en) Timing advance update method, terminal, and base station
KR20230008919A (ko) 새로운 무선 (nr) 시스템에서 전력 제어를 수행하는 방법
US20180359653A1 (en) Measurement-based random access configuration
WO2015096102A1 (zh) 一种基站间互易性校正的方法及装置
CN115516933A (zh) 通信系统中关于时间和频率偏移的指令的方法和装置
KR20240066251A (ko) 플렉시블 랜덤 액세스 채널 구성들
CN113273262B (zh) 用于无线系统中的数据传输的定时调节
WO2021088480A1 (zh) Srs传输方法、装置、网络设备、终端和存储介质
EP3573385B1 (en) Wireless communication method, control device, node, and terminal device
WO2023109860A1 (zh) 交叉干扰定位方法、基站、协同装置、计算机设备和计算机可读存储介质
WO2021092766A1 (en) Enhanced handover and timing advance alignment
JP2020043458A (ja) 基地局、通信システム及び干渉制御方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20808990

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20217041094

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 2020808990

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2020279263

Country of ref document: AU

Date of ref document: 20200514

Kind code of ref document: A