WO2021088322A1 - 功率控制方法、装置、系统及混合动力内燃动车组 - Google Patents

功率控制方法、装置、系统及混合动力内燃动车组 Download PDF

Info

Publication number
WO2021088322A1
WO2021088322A1 PCT/CN2020/086328 CN2020086328W WO2021088322A1 WO 2021088322 A1 WO2021088322 A1 WO 2021088322A1 CN 2020086328 W CN2020086328 W CN 2020086328W WO 2021088322 A1 WO2021088322 A1 WO 2021088322A1
Authority
WO
WIPO (PCT)
Prior art keywords
power
train
super capacitor
internal electric
speed
Prior art date
Application number
PCT/CN2020/086328
Other languages
English (en)
French (fr)
Inventor
段旭良
李翀
齐彪
喻松
亓保平
Original Assignee
中车株洲电力机车有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中车株洲电力机车有限公司 filed Critical 中车株洲电力机车有限公司
Publication of WO2021088322A1 publication Critical patent/WO2021088322A1/zh

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B61RAILWAYS
    • B61CLOCOMOTIVES; MOTOR RAILCARS
    • B61C7/00Other locomotives or motor railcars characterised by the type of motive power plant used; Locomotives or motor railcars with two or more different kinds or types of motive power
    • B61C7/04Locomotives or motor railcars with two or more different kinds or types of engines, e.g. steam and IC engines
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T30/00Transportation of goods or passengers via railways, e.g. energy recovery or reducing air resistance

Definitions

  • the invention belongs to the technical field of power control, and in particular relates to a power control method, device, system and hybrid internal combustion EMU.
  • the first object of the present invention is to provide a power control method for solving the power distribution problem of the internal electric power pack and the super capacitor.
  • the second object of the present invention is to provide a power control device.
  • the third object of the present invention is to provide a power control system.
  • the fourth object of the present invention is to provide a hybrid internal combustion EMU.
  • the present invention provides the following solutions:
  • a power control method includes the following steps:
  • Step A Obtain the train speed
  • Step B When the train speed is 0, control the internal electric power pack to charge the super capacitor
  • Step C When the train speed is greater than 0 and the applied power is less than the power corresponding to the inflection point speed, control the internal electric power pack to supply power to the train and control the super capacitor not to output.
  • the inflection point speed refers to The speed at which the train is at the intersection of the constant torque zone and the constant power zone;
  • Step D When the applied power of the train is greater than the power corresponding to the inflection point speed, control the internal electric power pack to supply power to the train with the maximum applied power, and control the super capacitor to supplement the insufficient power demand.
  • the step B includes:
  • Step B1 Obtain the voltage of the super capacitor
  • Step B2 When the voltage of the super capacitor is less than the discharge voltage of the super capacitor, control the internal electric power pack to charge the super capacitor with maximum power;
  • Step B3 When the voltage of the super capacitor is greater than or equal to the discharge voltage of the super capacitor, as the voltage of the super capacitor increases, control the internal electric power pack to charge the super capacitor according to a linear decrease , Until the minimum power value of the inner electric power pack.
  • the formula for the output power of the internal electric power pack in step B3 is:
  • V- the real-time voltage of the supercapacitor.
  • the calculation formula for controlling the power supplied by the internal electric power pack to the train is:
  • the power calculation formula for controlling the super capacitor to supplement the electric energy to the train in the step D is:
  • the calculation formula for controlling the power supplied by the internal electric power pack to the train in the step C is:
  • the train speed is obtained. If the train speed is 0, it means that there is no need to provide electric energy to the train, and the internal electric power pack is directly controlled to charge the super capacitor; if the train speed is greater than 0, and apply If the power is less than the power corresponding to the inflection point speed, it means that the train enters the constant torque zone and only the internal electric power pack supplies power to the train; if the train's requested power is greater than the power corresponding to the inflection point speed, it means that the electric power pack in the train is insufficient. Control the internal electric power package to supply power to the train with the maximum applied power, and control the super capacitor to supplement the electric energy to the train.
  • the power control method provided by the present invention can realize that when the train does not need electric energy, the internal electric power pack charges the super capacitor, and when the electric energy provided by the internal electric power pack to the train is insufficient, the super capacitor supplements the electric energy to the train to realize the internal electric power pack. And the super capacitor power is reasonably distributed.
  • the present invention provides the following solutions:
  • a power control device includes:
  • the receiving unit is used to receive the train speed signal
  • the processing unit generates a first control signal when the train speed is 0, and the first control signal controls the internal electric power pack to charge the super capacitor; when the train speed is greater than 0 and the applied power is less than the power corresponding to the inflection point speed, A second control signal is generated, the second control signal is to control the internal electric power pack to supply power to the train, and to control the super capacitor not to output; when the applied power of the train is greater than the power corresponding to the inflection point speed , Generating a third control signal, the third control signal is to control the internal electric power pack to supply power to the train with maximum power, and at the same time to control the super capacitor to supplement the insufficient power demand, the inflection point speed refers to the The speed of the train at the intersection of the constant torque zone and the constant power zone;
  • the sending unit is configured to send the first control signal, the second control signal, and the third control signal to the corresponding execution device.
  • the receiving unit is also used to receive the voltage of the super capacitor
  • the processing unit generates a fourth control signal when the voltage of the super capacitor is less than the discharge voltage of the super capacitor, and the fourth control signal is for controlling the internal electric power pack to charge the super capacitor with maximum power
  • the processing unit generates a fifth control signal when the voltage of the super capacitor is greater than or equal to the discharge voltage of the super capacitor, and the fifth control signal is for controlling the internal electric power pack to give the power to the power pack according to a linear decrease The charging of supercapacitors.
  • a power control device is used, and the receiving unit of the control device receives the real-time train speed and transmits it to the processing unit.
  • the processing unit When the train speed is 0, the processing unit generates the first control signal to control the internal electricity
  • the power pack charges the super capacitor; when the train speed is greater than 0, it is further judged whether the applied power of the train is less than the power corresponding to the inflection point speed. If the applied power of the train is less than the power corresponding to the inflection point speed, the processing unit generates a second control signal to control only the internal power
  • the power pack supplies power to the train.
  • the processing unit If the applied power of the train is greater than the power corresponding to the inflection point speed, the processing unit generates a third control signal to control the internal electric power pack and the super capacitor to supply power to the train at the same time.
  • the power control device provided by the present invention can realize that when the train does not need electric energy, the internal electric power pack charges the super capacitor, and when the electric energy provided by the internal electric power pack to the train is insufficient, the super capacitor supplements electric energy to the train, thereby realizing the internal electric power pack. And the super capacitor power is reasonably distributed.
  • the present invention provides the following solutions:
  • a power control system including an internal electric power pack and a super capacitor, characterized in that the power control system further includes:
  • Speed sensor used to collect train speed
  • the power control device is used for controlling the internal electric power pack to charge the super capacitor when the train speed is 0; the power control device is used for when the train speed is greater than 0 and the applied power is less than the inflection point speed At the corresponding power, the internal electric power pack is controlled to supply power to the train, and the super capacitor is controlled not to output.
  • the inflection point speed refers to the speed at which the train is at the intersection of the constant torque zone and the constant power zone;
  • the power control device is used to control the internal electric power pack to supply power to the train with the maximum applied power when the applied power of the train is greater than the power corresponding to the inflection point speed, and at the same time control the super capacitor to supplement the insufficient power demand .
  • the system further includes a voltage collector
  • the voltage collector is used to collect the voltage of the super capacitor
  • the power control device is also used for controlling the internal electric power pack to charge the super capacitor with maximum power when the voltage of the super capacitor is less than the discharge voltage of the super capacitor; the power control device is also used for When the voltage of the super capacitor is greater than or equal to the discharge voltage of the super capacitor, the internal electric power pack is controlled to charge the super capacitor according to a linearly decreasing power.
  • the speed sensor collects the train speed and transmits it to the power control device.
  • the power control device controls the internal electric power pack to charge the super capacitor;
  • the speed is greater than 0 and the applied power of the train is greater than the power corresponding to the inflection point speed, control the internal electric power package to supply power to the train with the maximum applied power, and control the super capacitor to supplement power to the train;
  • the train speed is greater than 0 and the applied power is less than the inflection point speed At the corresponding power
  • the internal electric power pack is controlled to supply power to the train.
  • the power control system provided by the present invention can realize that when the train does not need electric energy, the internal electric power pack charges the super capacitor, and when the electric energy provided by the internal electric power pack to the train is insufficient, the super capacitor supplements the electric energy to the train to realize the internal electric power pack. And the super capacitor power is reasonably distributed.
  • the present invention provides the following solutions:
  • a hybrid internal combustion EMU includes the power control system described in any one of the above.
  • the hybrid internal combustion EMU disclosed in the present invention includes the above-mentioned power control system, the beneficial effects of the power control system are all included in the hybrid internal combustion EMU disclosed in the present invention.
  • FIG. 1 is a flowchart of a power control method provided by Embodiment 1 of the present invention
  • Fig. 2 is a flowchart of a power control method provided in the second embodiment of the present invention.
  • the present invention provides a power control method, which is applied to a hybrid internal combustion EMU, and can also be used in other hybrid vehicles.
  • the power control method includes the following steps:
  • Step S1 Obtain the train speed.
  • obtaining and judging the train speed can be achieved by any device, such as a controller, which is connected to the train signal to obtain the train speed.
  • Step S2 Determine whether the train speed is 0, if yes, go to step S3, if not, go to step S4.
  • Step S3 Control the internal electric power pack to charge the super capacitor.
  • the train speed of 0 here means that the speed of the train is 0 when the train is in the starting state.
  • Step S4 Determine whether the applied power of the train is greater than the power corresponding to the inflection point speed, if yes, go to step S5, if not, go to step S6.
  • the inflection point speed refers to the speed at which the train is at the intersection of the constant torque zone and the constant power zone.
  • Step S5 Control the internal electric power pack to supply power to the train, and control the super capacitor to supplement electric energy to the train.
  • the electric energy provided by the internal electric power pack to the train is insufficient, which cannot meet the performance requirements of the vehicle, and the super capacitor is used for real-time power supplementation.
  • the internal electric power pack provides power to the train with the maximum applied power.
  • Step S6 Control the internal electric power pack to supply power to the train.
  • the train is in the constant torque zone
  • the internal electric power pack can provide enough electric energy for the train
  • the super capacitor has no electric output.
  • the present invention first, obtain the train speed; then, determine whether the train speed is 0, if it is 0, it means that there is no need to provide electric energy to the train, and directly control the internal electric power pack to charge the super capacitor; if the train speed is not 0, it is necessary Further judge whether the applied power of the train is greater than the power corresponding to the inflection point speed: if the applied power of the train is less than the power corresponding to the inflection point speed, only the internal electric power pack will supply power to the train; if the applied power of the train is greater than the power corresponding to the inflection point speed, the internal electric power will be controlled The package supplies power to the train with the maximum applied power, and controls the super capacitor to supplement the electric energy to the train.
  • the power control method provided by the present invention can realize that when the train does not need electric energy, the internal electric power pack charges the super capacitor, and when the electric energy provided by the internal electric power pack to the train is insufficient, the super capacitor supplements the electric energy to the train to realize the internal electric power pack. And the super capacitor power is reasonably distributed.
  • the power control method in this embodiment is similar to the power control method in the first embodiment, and the similarities are not repeated here, and only the differences are introduced.
  • step S2 includes step S21, step S22, and step S23.
  • Step S21 Obtain the voltage of the super capacitor.
  • Step S22 Determine whether the voltage of the super capacitor is less than the discharge voltage of the super capacitor, if yes, go to step S23, if not, go to step S24.
  • the discharge voltage is the inflection point voltage of the supercapacitor charging control strategy.
  • Step S23 Control the internal electric power pack to charge the super capacitor with the maximum power.
  • the internal electric power pack is controlled to charge the super capacitor with the maximum power to realize the fast charging of the super capacitor.
  • Step S24 As the voltage of the super capacitor increases, the internal electric power pack is controlled to charge the super capacitor according to a linear decrease until the minimum power value of the internal electric power pack.
  • the formula for the output power of the internal electric power pack in step S24 is: In the formula, P-the real-time power delivered by the internal electric power pack to the super capacitor, P max -the maximum power output by the internal electric power pack, P min -the minimum power output by the internal electric power pack, and V max -the maximum voltage of the super capacitor, V C -the discharge voltage of the super capacitor, V-the real-time voltage of the super capacitor.
  • the invention has the following advantages: a charging control strategy for the super capacitor when the train is at zero speed; according to the power control mode during train operation, that is, giving priority to the ability of the internal electric power pack, the insufficient power demand is automatically supplemented by the super capacitor.
  • the present invention provides a power control device, wherein the power control device includes a receiving unit, a processing unit, and a sending unit.
  • the receiving unit is used to receive a train speed signal.
  • the processing unit When the train speed is 0, the processing unit generates a first control signal, the first control signal is to control the internal electric power pack to charge the super capacitor; when the train speed is greater than 0, and the train application power is less than the power corresponding to the inflection point, the first control signal is generated.
  • the second control signal the second control signal is to control the internal electric power package to supply power to the train.
  • the inflection point speed refers to the speed at the intersection of the constant torque zone and the constant power zone; when the train speed is greater than 0, and the applied power of the train is greater than the inflection point speed.
  • the third control signal is generated when the power is higher than the power, and the third control signal is to control the internal electric power pack to supply power to the train with the maximum applied power, and to control the super capacitor to supplement electric energy to the train.
  • the sending unit is used to send the first control signal, the second control signal, and the third control signal to the corresponding execution device. Specifically, the first control signal is sent to the internal electric power pack, the second control signal is sent to the internal electric power pack, and the third control signal is sent to the internal electric power pack and the super capacitor.
  • the receiving unit of the control device receives the real-time train speed and transmits it to the processing unit.
  • the processing unit When the train speed is 0, the processing unit generates the first control signal to control the internal electric power pack to charge the super capacitor; When it is not 0, it is further judged whether the applied power of the train is greater than the power corresponding to the inflection point speed. If the applied power of the train is less than the power corresponding to the inflection point speed, the processing unit generates a second control signal and only controls the internal electric power pack to supply power to the train. When the power is greater than the power corresponding to the inflection point speed, the processing unit generates a third control signal to control the internal electric power pack and the super capacitor to supply power to the train at the same time.
  • the power control device provided by the present invention can realize that when the train does not need electric energy, the internal electric power pack charges the super capacitor, and when the electric energy provided by the internal electric power pack to the train is insufficient, the super capacitor supplements electric energy to the train, thereby realizing the internal electric power pack. And the super capacitor power is reasonably distributed.
  • the power control device in this embodiment is similar in structure to the power control device in the third embodiment, and the similarities are not repeated here, and only the differences are introduced.
  • the present invention discloses that the receiving unit is also used to receive the voltage of the super capacitor.
  • the processing unit When the voltage of the super capacitor is lower than the discharge voltage of the super capacitor, the processing unit generates a fourth control signal.
  • the fourth control signal controls the internal electric power pack to charge the super capacitor with the maximum power; the voltage of the processing unit in the super capacitor is greater than or equal to the super capacitor.
  • a fifth control signal is generated, and the fifth control signal is for controlling the internal electric power pack to charge the super capacitor according to the linearly decreasing power.
  • the power control device is specifically a TCMC network control device, and the TCMC network control device is connected to the internal electric power pack and the super capacitor in a network signal. It should be noted that the power control device may also be other types of control devices.
  • the TCMS network control device is used for power management and distribution, and sends the power value to the internal electric power package through the TCN network, and at the same time sends the power control device to the super capacitor;
  • the internal electric power package is used to receive the power value sent by the TCMS network, and according to The power required by the TCMS network exerts its own capabilities;
  • the super capacitor is used to send the device's voltage, current and other parameters to the TCMS system, and exert its own capabilities according to the power required by the TCMS network.
  • the invention provides a power control system, which includes an internal electric power pack, a super capacitor, a speed sensor and a power control device.
  • the speed sensor is used to collect the train speed.
  • the power control device is used to control the internal electric power pack to charge the super capacitor when the train speed is 0; the power control device is used to control the internal electric power pack to charge when the train speed is greater than 0 and the applied power is less than the power corresponding to the inflection point speed.
  • the train is powered, and the super capacitor is controlled not to output.
  • the inflection point speed refers to the speed at the intersection of the constant torque zone and the constant power zone; the power control device is used to control the internal electric power pack when the train applies for a power greater than the power corresponding to the inflection point speed Supply power to the train with the maximum applied power, while controlling the super capacitor to supplement the insufficient power demand.
  • the speed sensor collects the train speed and transmits it to the power control device.
  • the power control device controls the internal electric power pack to charge the super capacitor; when the train speed is greater than 0, and the train application power is greater than the inflection point
  • control the internal electric power pack to supply power to the train with the maximum applied power, and control the super capacitor to supplement power to the train; when the train speed is greater than 0 and the applied power is less than the power corresponding to the inflection point speed, the internal electric power pack is controlled Power the train.
  • the power control system provided by the present invention can realize that when the train does not need electric energy, the internal electric power pack charges the super capacitor, and when the electric energy provided by the internal electric power pack to the train is insufficient, the super capacitor supplements the electric energy to the train to realize the internal electric power pack. And the super capacitor power is reasonably distributed.
  • the power control system in this embodiment is similar in structure to the power control system in the fifth embodiment, and the similarities are not repeated here, and only the differences are introduced.
  • the power control system further includes a voltage collector, and the voltage collector is used to collect the voltage of the super capacitor.
  • the power control device is also used to control the internal electric power pack to charge the super capacitor with maximum power when the voltage of the super capacitor is less than the discharge voltage of the super capacitor; the power control device is also used to discharge the super capacitor when the voltage of the super capacitor is greater than or equal to the discharge voltage of the super capacitor.
  • the internal electric power pack is controlled to charge the super capacitor according to the linearly decreasing power.
  • a hybrid internal combustion EMU includes the power control device in any one of the above embodiments.
  • the hybrid internal combustion EMU disclosed in the present invention includes the above-mentioned power control device, the beneficial effects of the power control device are all included in the hybrid internal combustion EMU disclosed in the present invention.

Abstract

一种功率控制方法、装置、系统及混合动力内燃动车组,功率控制方法包括以下步骤:步骤A:获取列车速度;步骤B:在列车速度为0时,控制内电动力包给超级电容充电;步骤C:在列车速度大于0,且申请功率小于拐点速度对应的功率时,控制内电动力包给列车供电,并控制超级电容不输出;拐点速度是指列车处于恒力矩区和恒功率区交叉点的速度;步骤D:在列车申请功率大于拐点速度对应的功率时,控制内电动力包给列车供电,同时不足的功率需求由超级电容补充。

Description

功率控制方法、装置、系统及混合动力内燃动车组
本申请要求于2019年11月06日提交中国专利局、申请号为201911076155.2、发明名称为“功率控制方法、装置、系统及混合动力内燃动车组”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本发明属于功率控制技术领域,尤其涉及一种功率控制方法、装置、系统及混合动力内燃动车组。
背景技术
随着混合动力技术的日益发展,越来越多的混合动力组成方式在轨道交通领域得到了应用,而超级电容作为一种新型的储能设备,在轨道交通领域也得到了广泛应用,由此,内电动力包和超级电容的动力组合,就成为了一个新型的动力系统。
为了充分发挥此系统的性能,如何解决内电动力包和超级电容的功率分配问题成为了本领域技术人员亟待解决的技术问题。
发明内容
有鉴于此,本发明的第一个目的在于提供一种功率控制方法,用于解决内电动力包和超级电容的功率分配问题。
本发明的第二个目的是提供一种功率控制装置。
本发明的第三个目的是提供一种功率控制系统。
本发明的第四个目的是提供一种混合动力内燃动车组。
为了实现上述第一个目的,本发明提供了如下方案:
一种功率控制方法,包括以下步骤:
步骤A:获取列车速度;
步骤B:在所述列车速度为0时,控制内电动力包给超级电容充电;
步骤C:在所述列车速度大于0,且申请功率小于拐点速度对应的功率时,控制所述内电动力包给所述列车供电,并控制所述超级电容不输出,所述拐点速度是指所述列车处于恒力矩区和恒功率区交叉点的速度;
步骤D:在所述列车申请功率大于所述拐点速度对应的功率时,控制所述内电动力包给所述列车以最大申请功率供电,同时控制所述超级电容补充不足的功率需求。
在一个具体实施方案中,所述步骤B包括:
步骤B1:获取所述超级电容的电压;
步骤B2:在所述超级电容的电压小于所述超级电容的放电电压时,控制所述内电动力包以最大功率给所述超级电容充电;
步骤B3:在所述超级电容的电压大于或者等于所述超级电容的放电电压时,随着所述超级电容的电压的升高,按照线性下降控制所述内电动力包给所述超级电容充电,直到所述内电动力包的最小功率值。
在另一个具体实施方案中,所述步骤B3中内电动力包输出功率的公式为:
Figure PCTCN2020086328-appb-000001
式中,P-所述内电动力包输给所述超级电容的实时功率,
P max-所述内电动力包输出的最大功率,
P min-所述内电动力包输出的最小功率,
V max-所述超级电容的最大电压,
V C-所述超级电容的放电电压,
V-所述超级电容的实时电压。
在另一个具体实施方案中,所述步骤D中,控制所述内电动力包给所述列车供电的功率计算公式为:
P=F*v c/3.6
式中,P-所述内电动力包输给所述列车的实时功率,
F-所述列车的力矩值,
v c-所述列车的拐点速度;和/或
所述步骤D中控制所述超级电容给所述列车补充电能的功率计算公式为:
P=F*v/3.6-F*v c/3.6
式中,P-所述超级电容输给所述列车的实时功率,
F-所述列车处于恒功率区的力矩值,
v c-所述列车的拐点速度,
v-所述列车的实时速度。
在另一个具体实施方案中,所述步骤C中控制所述内电动力包给所述列车供电的功率计算公式为:
P=F*v/3.6
式中,P-所述内电动力包输给所述列车的实时功率,
F-所述列车处于恒力矩区的力矩值,
v-所述列车的实时速度。
根据本发明的各个实施方案可以根据需要任意组合,这些组合之后所得的实施方案也在本发明范围内,是本发明具体实施方式的一部分。
在本发明的一个具体实施例中,首先,获取列车速度,若列车速度是0,则说明无需给列车提供电能,直接控制内电动力包给超级电容充电;若列车的速度大于0,且申请功率小于拐点速度对应的功率,则说明列车进入恒力矩区,仅由内电动力包给列车供电;若列车申请功率大于拐点速度对应的功率,则说明列车内电动力包供电不足,此时,控制内电动力包给列车以最大申请功率供电,并控制超级电容给列车补充电能。本发明提供的功率控制方法,能够实现列车无需电能时,内电动力包给超级电容充电,在内电动力包给列车提供的电能不足时,由超级电容给列车补充电能,实现内电动力包和超级电容功率合理分配。
为了实现上述第二个目的,本发明提供了如下方案:
一种功率控制装置,包括:
接收单元,用于接收列车速度信号;
处理单元,在列车速度为0时,产生第一控制信号,所述第一控制信号为控制内电动力包给超级电容充电;在列车速度大于0,且申请功率小于拐点速度对应的功率时,产生第二控制信号,所述第二控制信号为控制所述内电动力包给所述列车供电,并控制所述超级电容不输出;在所述列车申请功率大于所述拐点速度对应的功率时,产生第三控制信号,所述第三控制信号为控制所述内电动力包以最大功率给所述列车供电,同时控制所述超级电容补充不足的功率需求,所述拐点速度是指所述列车处于恒力矩区和恒功率区交叉点的速度;
发送单元,用于将所述第一控制信号、第二控制信号、第三控制信号发送 至相应的执行装置。
在一个具体实施方案中,所述接收单元还用于接收所述超级电容的电压;
所述处理单元在所述超级电容的电压小于所述超级电容的放电电压时,产生第四控制信号,所述第四控制信号为控制所述内电动力包以最大功率给所述超级电容充电;所述处理单元在所述超级电容的电压大于或者等于所述超级电容的放电电压时,产生第五控制信号,所述第五控制信号为控制所述内电动力包按照线性下降功率给所述超级电容充电。
在本发明的一个具体实施例中,使用功率控制装置,控制装置的接收单元接收列车的实时车速,并传递给处理单元,当列车速度为0时,处理单元产生第一控制信号,控制内电动力包给超级电容充电;当列车速度大于0时,进一步判断列车申请功率是否小于拐点速度对应的功率,若列车申请功率小于拐点速度对应的功率,处理单元产生第二控制信号,仅控制内电动力包给列车供电,若列车申请功率大于拐点速度对应的功率时,处理单元产生第三控制信号,控制内电动力包和超级电容同时给列车供电。本发明提供的功率控制装置,能够实现列车无需电能时,内电动力包给超级电容充电,在内电动力包给列车提供的电能不足时,由超级电容给列车补充电能,实现内电动力包和超级电容功率合理分配。
为了实现上述第三个目的,本发明提供了如下方案:
一种功率控制系统,包括内电动力包和超级电容,其特征在于,所述功率控制系统还包括:
速度传感器,用于采集列车速度;
功率控制装置,用于在所述列车速度为0时,控制所述内电动力包给所述超级电容充电;所述功率控制装置用于在所述列车速度大于0,且申请功率小于拐点速度对应的功率时,控制所述内电动力包给所述列车供电,并控制所述超级电容不输出,所述拐点速度是指所述列车处于恒力矩区和恒功率区交叉点的速度;所述功率控制装置用于在所述列车申请功率大于所述拐点速度对应的功率时,控制所述内电动力包给所述列车以最大申请功率供电,同时控制所述超级电容补充不足的功率需求。
在一个具体实施方案中,所述的系统还包括电压采集器;
所述电压采集器用于采集所述超级电容的电压;
所述功率控制装置还用于在所述超级电容的电压小于所述超级电容的放电电压时,控制所述内电动力包以最大功率给所述超级电容充电;所述功率控制装置还用于在所述超级电容的电压大于或者等于所述超级电容的放电电压时,控制内电动力包按照线性下降功率给超级电容充电。
在本发明的一个具体实施例中,使用功率控制系统时,速度传感器采集列车速度,传递给功率控制装置,功率控制装置在列车速度为0时,控制内电动力包给超级电容充电;在列车速度大于0,且列车申请功率大于拐点速度对应的功率时,控制内电动力包给列车以最大申请功率供电,并控制超级电容给列车补充电能;在列车速度大于0,且申请功率小于拐点速度对应的功率时,控制内电动力包给列车供电。本发明提供的功率控制系统,能够实现列车无需电能时,内电动力包给超级电容充电,在内电动力包给列车提供的电能不足时,由超级电容给列车补充电能,实现内电动力包和超级电容功率合理分配。
为了实现上述第四个目的,本发明提供了如下方案:
一种混合动力内燃动车组,包括上述任意一项所述的功率控制系统。
由于本发明公开的混合动力内燃动车组包括上述中的功率控制系统,因此,功率控制系统所具有的有益效果均是本发明公开的混合动力内燃动车组所包含的。
附图说明
为了更清楚地说明本发明实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1是本发明实施例一提供的功率控制方法的流程图;
图2是本发明实施例二提供的功率控制方法的流程图。
具体实施方式
下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本申请一部分实施例,而不是 全部的实施例。基于本申请中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本申请保护的范围。
实施例一
如图1所示,本发明提供了一种功率控制方法,应用于混合动力内燃动车组,也可以用于其它混合动力车辆中。
具体地,功率控制方法包括以下步骤:
步骤S1:获取列车速度。
这里需要说明的是,获取并判断列车速度可以通过任意装置实现,例如控制器,控制器与列车信号连接,能够获取出列车的速度。
步骤S2:判断列车速度是否为0,若是,则转步骤S3,若否,则转步骤S4。
步骤S3:控制内电动力包给超级电容充电。
当列车的速度为0时,控制内电动力包给超级电容充电。这里的列车速度为0是指列车处于启动状态时的速度为0。
步骤S4:判断列车申请功率是否大于拐点速度对应的功率,若是,则转步骤S5,若否,则转步骤S6。
当列车的速度不为0时,需要进一步判断列车速度处于恒力矩区和恒功率区的哪个区间,这两个区间的拐点用列车的速度进行区分。当列车的速度不大于拐点速度时,列车处于恒力矩区,在恒力矩区,由于车辆的加速度不同,车辆发挥的力矩不同,根据F=m*a,当前时刻的车辆质量不变,因此F只跟a有关,即加速度a为司机牵引手柄的百分比,即0到100%。当列车的实时速 度大于拐点速度,车辆将进入恒功率区。
拐点速度是指列车处于恒力矩区和恒功率区交叉点的速度。
步骤S5:控制内电动力包给列车供电,并控制超级电容给列车补充电能。
此时,内电动力包提供给列车的电能不足,不能满足车辆的性能需求,由超级电容进行实时的功率补充。内电动力包给列车以最大申请功率供电。
步骤S6:控制内电动力包给列车供电。
此时,列车处于恒力矩区,内电动力包能够给列车提供足够的电能,超级电容无电能的输出。
本发明中,首先,获取列车速度;接着,判断列车速度是否为0,若是0,则说明无需给列车提供电能,直接控制内电动力包给超级电容充电;若列车速度不为0,则需进一步判断列车申请功率是否大于拐点速度对应的功率:若列车申请功率小于拐点速度对应的功率,仅由内电动力包给列车供电;若列车申请功率大于拐点速度对应的功率,则控制内电动力包给列车以最大申请功率供电,并控制超级电容给列车补充电能。本发明提供的功率控制方法,能够实现列车无需电能时,内电动力包给超级电容充电,在内电动力包给列车提供的电能不足时,由超级电容给列车补充电能,实现内电动力包和超级电容功率合理分配。
实施例二
在本发明提供的第二实施例中,本实施例中的功率控制方法和实施例一中的功率控制方法类似,对相同之处就不再赘述了,仅介绍不同之处。
如图2所示,在本实施例中,本发明具体公开了步骤S2包括步骤S21、步骤S22和步骤S23。
步骤S21:获取超级电容的电压。
步骤S22:判断超级电容的电压是否小于超级电容的放电电压,若是,转步骤S23,若否,转步骤S24。
放电电压为超级电容的充电控制策略的拐点电压。
步骤S23:控制内电动力包以最大功率给超级电容充电。
当超级电容的电压小于超级电容的放电电压,说明超级电容自身存储的电能不足,此时,控制内电动力包以最大功率给超级电容充电,以实现超级电容的快速充电。
步骤S24:随着超级电容的电压的升高,按照线性下降控制内电动力包给超级电容充电,直到内电动力包的最小功率值。
当超级电容的电压大于或者等于超级电容的放电电压,随着电压的升高,内电动力包输出给超级电容的功率将减少。
具体地,步骤S24中内电动力包输出功率的公式为:
Figure PCTCN2020086328-appb-000002
式中,P-内电动力包输给超级电容的实时功率,P max-内电动力包输出的最大功率,P min-内电动力包输出的最小功率,V max-超级电容的最大电压,V C-超级电容的放电电压,V-超级电容的实时电压。
进一步地,本发明公开了步骤S5中控制内电动力包给列车供电的功率计算公式为:P=F*v c/3.6,式中,P-内电动力包输给列车的实时功率,F-列车的力矩值,v c-列车的拐点速度。
进一步地,本发明公开了步骤S5中控制超级电容给列车补充电能的功率 计算公式为:P=F*v/3.6-F*v c/3.6,式中,P-超级电容输给列车的实时功率,F-列车处于恒功率区的力矩值,v c-列车的拐点速度,v-列车的实时速度。
进一步地,本发明公开了步骤S6中控制内电动力包给列车供电的功率计算公式为:P=F*v/3.6,式中,P-内电动力包输给列车的实时功率,F-列车处于恒力矩区的力矩值,v-列车的实时速度。
本发明具有如下优点:列车零速时对超级电容的充电控制策略;列车运行过程中根据功率控制方式,即优先发挥内电动力包的能力,不足的功率需求由超级电容自动补充。
实施例三
本发明提供了一种功率控制装置,其中,功率控制装置包括接收单元、处理单元和发送单元。
具体地,接收单元用于接收列车速度信号。
处理单元在列车速度为0时,产生第一控制信号,第一控制信号为控制内电动力包给超级电容充电;在列车速度大于0,且列车申请功率小于拐点速度对应的功率时,产生第二控制信号,第二控制信号为控制内电动力包给列车供电,拐点速度是指列车处于恒力矩区和恒功率区交叉点的速度;在列车速度大于0,且列车申请功率大于拐点速度对应的功率时,产生第三控制信号,第三控制信号为控制内电动力包给列车以最大申请功率供电,并控制超级电容给列车补充电能。
发送单元用于将第一控制信号、第二控制信号、第三控制信号发送至相应 的执行装置。具体地,第一控制信号发给内电动力包,第二控制信号发送给内电动力包,第三控制信号发给内电动力包和超级电容。
本发明使用时,控制装置的接收单元接收列车的实时车速,并传递给处理单元,当列车速度为0时,处理单元产生第一控制信号,控制内电动力包给超级电容充电;当列车速度不为0时,进一步判断列车申请功率是否大于拐点速度对应的功率,若列车申请功率小于拐点速度对应的功率,处理单元产生第二控制信号,仅控制内电动力包给列车供电,若列车申请功率大于拐点速度对应的功率时,处理单元产生第三控制信号,控制内电动力包和超级电容同时给列车供电。本发明提供的功率控制装置,能够实现列车无需电能时,内电动力包给超级电容充电,在内电动力包给列车提供的电能不足时,由超级电容给列车补充电能,实现内电动力包和超级电容功率合理分配。
实施例四
在本发明提供的第四实施例中,本实施例中的功率控制装置和实施例三中的功率控制装置结构类似,对相同之处就不再赘述了,仅介绍不同之处。
在本实施例中,本发明公开了接收单元还用于接收超级电容的电压。
处理单元在超级电容的电压小于超级电容的放电电压时,产生第四控制信号,第四控制信号为控制内电动力包以最大功率给超级电容充电;处理单元在超级电容的电压大于或者等于超级电容的放电电压时,产生第五控制信号,第五控制信号为控制内电动力包按照线性下降功率给超级电容充电。
进一步地,本发明公开了功率控制装置具体为TCMC网络控制装置, TCMC网络控制装置与内电动力包及超级电容均网络信号连接。需要说明的是,功率控制装置也可以为其它类型的控制装置。TCMS网络控制装置用于功率管理和分配,并通过TCN网络将功率值发送给内电动力包,同时发送功率控制装置给超级电容;内电动力包用于接收TCMS网络发送的功率值,并根据TCMS网络要求的功率发挥自身的能力;超级电容用于将设备的电压,电流等参数发送给TCMS系统,并根据TCMS网络要求的功率发挥自身的能力。
实施例五
本发明提供了一种功率控制系统,包括内电动力包、超级电容、速度传感器和功率控制装置。
速度传感器用于采集列车速度。
功率控制装置用于在列车速度为0时,控制内电动力包给超级电容充电;功率控制装置用于在列车速度大于0,且申请功率小于拐点速度对应的功率时,控制内电动力包给列车供电,并控制超级电容不输出,拐点速度是指列车处于恒力矩区和恒功率区交叉点的速度;功率控制装置用于在列车申请功率大于拐点速度对应的功率时,控制内电动力包给列车以最大申请功率供电,同时控制超级电容补充不足的功率需求。
使用功率控制系统时,速度传感器采集列车速度,传递给功率控制装置,功率控制装置在列车速度为0时,控制内电动力包给超级电容充电;在列车速度大于0,且列车申请功率大于拐点速度对应的功率时,控制内电动力包给列车以最大申请功率供电,并控制超级电容给列车补充电能;在列车速度大于0, 且申请功率小于拐点速度对应的功率时,控制内电动力包给列车供电。本发明提供的功率控制系统,能够实现列车无需电能时,内电动力包给超级电容充电,在内电动力包给列车提供的电能不足时,由超级电容给列车补充电能,实现内电动力包和超级电容功率合理分配。
实施例六
在本发明提供的第六实施例中,本实施例中的功率控制系统和实施例五中的功率控制系统结构类似,对相同之处就不再赘述了,仅介绍不同之处。
本实施例中,具体公开了功率控制系统还包括电压采集器,电压采集器用于采集超级电容的电压。
功率控制装置还用于在超级电容的电压小于超级电容的放电电压时,控制内电动力包以最大功率给超级电容充电;功率控制装置还用于在超级电容的电压大于或者等于超级电容的放电电压时,控制内电动力包按照线性下降功率给超级电容充电。
实施例五
一种混合动力内燃动车组,包括上述任意一项实施例中的功率控制装置。
由于本发明公开的混合动力内燃动车组包括上述中的功率控制装置,因此,功率控制装置所具有的有益效果均是本发明公开的混合动力内燃动车组所包含的。
对于前述的各方法实施例,为了简单描述,故将其都表述为一系列的动作组合,但是本领域技术人员应该知悉,本发明并不受所描述的动作顺序的限制,因为依据本发明,某些步骤可以采用其他顺序或者同时进行。其次,本领域技术人员也应该知悉,说明书中所描述的实施例均属于优选实施例,所涉及的动作和模块并不一定是本发明所必须的。
需要说明的是,本说明书中的各个实施例均采用递进的方式描述,每个实施例重点说明的都是与其他实施例的不同之处,各个实施例之间相同相似的部分互相参见即可。对于装置类实施例而言,由于其与方法实施例基本相似,所以描述的比较简单,相关之处参见方法实施例的部分说明即可。
最后,还需要说明的是,在本文中,诸如第一和第二等之类的关系术语仅仅用来将一个实体或者操作与另一个实体或操作区分开来,而不一定要求或者暗示这些实体或操作之间存在任何这种实际的关系或者顺序。而且,术语“包括”、“包含”或者其任何其他变体意在涵盖非排他性的包含,从而使得包括一系列要素的过程、方法、物品或者设备不仅包括那些要素,而且还包括没有明确列出的其他要素,或者是还包括为这种过程、方法、物品或者设备所固有的要素。在没有更多限制的情况下,由语句“包括一个……”限定的要素,并不排除在包括要素的过程、方法、物品或者设备中还存在另外的相同要素。
对所公开的实施例的上述说明,使本领域技术人员能够实现或使用本发明。对这些实施例的多种修改对本领域技术人员来说将是显而易见的,本文中所定义的一般原理可以在不脱离本发明的精神或范围的情况下,在其它实施例 中实现。因此,本发明将不会被限制于本文所示的这些实施例,而是要符合与本文所公开的原理和新颖特点相一致的最宽的范围。
以上所述仅是本发明的优选实施方式,应当指出,对于本技术领域的普通技术人员来说,在不脱离本发明原理的前提下,还可以做出若干改进和润饰,这些改进和润饰也应视为本发明的保护范围。

Claims (10)

  1. 一种功率控制方法,其特征在于,包括以下步骤:
    步骤A:获取列车速度;
    步骤B:在所述列车速度为0时,控制内电动力包给超级电容充电;
    步骤C:在所述列车速度大于0,且申请功率小于拐点速度对应的功率时,控制所述内电动力包给所述列车供电,并控制所述超级电容不输出,所述拐点速度是指所述列车处于恒力矩区和恒功率区交叉点的速度;
    步骤D:在所述列车申请功率大于所述拐点速度对应的功率时,控制所述内电动力包给所述列车以最大申请功率供电,同时控制所述超级电容补充不足的功率需求。
  2. 根据权利要求1所述的方法,其特征在于,所述步骤B包括:
    步骤B1:获取所述超级电容的电压;
    步骤B2:在所述超级电容的电压小于所述超级电容的放电电压时,控制所述内电动力包以最大功率给所述超级电容充电;
    步骤B3:在所述超级电容的电压大于或者等于所述超级电容的放电电压时,随着所述超级电容的电压的升高,按照线性下降控制所述内电动力包给所述超级电容充电,直到所述内电动力包的最小功率值。
  3. 根据权利要求2所述的方法,其特征在于,所述步骤B3中内电动力包输出功率的公式为:
    Figure PCTCN2020086328-appb-100001
    式中,P-所述内电动力包输给所述超级电容的实时功率,
    P max-所述内电动力包输出的最大功率,
    P min-所述内电动力包输出的最小功率,
    V max-所述超级电容的最大电压,
    V C-所述超级电容的放电电压,
    V-所述超级电容的实时电压。
  4. 根据权利要求1所述的方法,其特征在于,所述步骤D中,控制所述内电动力包给所述列车供电的功率计算公式为:
    P=F*v c/3.6
    式中,P-所述内电动力包输给所述列车的实时功率,
    F-所述列车的力矩值,
    v c-所述列车的拐点速度;和/或
    所述步骤D中控制所述超级电容给所述列车补充电能的功率计算公式为:
    P=F*v/3.6-F*v c/3.6
    式中,P-所述超级电容输给所述列车的实时功率,
    F-所述列车处于恒功率区的力矩值,
    v c-所述列车的拐点速度,v-所述列车的实时速度。
  5. 根据权利要求1-4任意一项所述的方法,其特征在于,所述步骤C中控制所述内电动力包给所述列车供电的功率计算公式为:
    P=F*v/3.6
    式中,P-所述内电动力包输给所述列车的实时功率,
    F-所述列车处于恒力矩区的力矩值,
    v-所述列车的实时速度。
  6. 一种功率控制装置,其特征在于,包括:
    接收单元,用于接收列车速度信号;
    处理单元,在列车速度为0时,产生第一控制信号,所述第一控制信号为控制内电动力包给超级电容充电;在列车速度大于0,且申请功率小于拐点速度对应的功率时,产生第二控制信号,所述第二控制信号为控制所述内电动力包给所述列车供电,并控制所述超级电容不输出;在所述列车申请功率大于所述拐点速度对应的功率时,产生第三控制信号,所述第三控制信号为控制所述内电动力包给所述列车以最大申请功率供电,同时所述超级电容补充不足的功率需求,所述拐点速度是指所述列车处于恒力矩区和恒功率区交叉点的速度;
    发送单元,用于将所述第一控制信号、第二控制信号、第三控制信号发送至相应的执行装置。
  7. 根据权利要求6所述的装置,其特征在于,所述接收单元还用于接收所述超级电容的电压;
    所述处理单元在所述超级电容的电压小于所述超级电容的放电电压时,产生第四控制信号,所述第四控制信号为控制所述内电动力包以最大功率给所述超级电容充电;所述处理单元在所述超级电容的电压大于或者等于所述超级电容的放电电压时,产生第五控制信号,所述第五控制信号为控制所述内电动力包按照线性下降功率给所述超级电容充电。
  8. 一种功率控制系统,包括内电动力包和超级电容,其特征在于,所述功率控制系统还包括:
    速度传感器,用于采集列车速度;
    功率控制装置,用于在所述列车速度为0时,控制所述内电动力包给所述 超级电容充电;所述功率控制装置用于在所述列车速度大于0,且申请功率小于拐点速度对应的功率时,控制所述内电动力包给所述列车供电,并控制所述超级电容不输出,所述拐点速度是指所述列车处于恒力矩区和恒功率区交叉点的速度;所述功率控制装置用于在所述列车申请功率大于所述拐点速度对应的功率时,控制所述内电动力包给所述列车以最大申请功率供电,同时控制所述超级电容补充不足的功率需求。
  9. 根据权利要求8所述的系统,其特征在于,还包括电压采集器;
    所述电压采集器用于采集所述超级电容的电压;
    所述功率控制装置还用于在所述超级电容的电压小于所述超级电容的放电电压时,控制所述内电动力包以最大功率给所述超级电容充电;所述功率控制装置还用于在所述超级电容的电压大于或者等于所述超级电容的放电电压时,控制所述内电动力包按照线性下降功率给所述超级电容充电。
  10. 一种混合动力内燃动车组,其特征在于,包括如权利要求8或9所述的功率控制系统。
PCT/CN2020/086328 2019-11-06 2020-04-23 功率控制方法、装置、系统及混合动力内燃动车组 WO2021088322A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201911076155.2 2019-11-06
CN201911076155.2A CN110641485B (zh) 2019-11-06 2019-11-06 功率控制方法、装置、系统及混合动力内燃动车组

Publications (1)

Publication Number Publication Date
WO2021088322A1 true WO2021088322A1 (zh) 2021-05-14

Family

ID=69014360

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/086328 WO2021088322A1 (zh) 2019-11-06 2020-04-23 功率控制方法、装置、系统及混合动力内燃动车组

Country Status (2)

Country Link
CN (1) CN110641485B (zh)
WO (1) WO2021088322A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114954541A (zh) * 2022-04-29 2022-08-30 中车工业研究院有限公司 车辆的功率分配和跟踪速度的协同方法及装置

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110641485B (zh) * 2019-11-06 2022-01-18 中车株洲电力机车有限公司 功率控制方法、装置、系统及混合动力内燃动车组
CN114000953B (zh) * 2021-11-25 2023-05-02 中车大连机车车辆有限公司 一种适用于内电双源动车组的柴油机转速控制方法
CN115230748B (zh) * 2022-09-01 2024-03-29 中车大连机车车辆有限公司 基于网络控制的动力分散内燃动车负载控制系统和方法

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101274594A (zh) * 2007-03-30 2008-10-01 南车成都机车车辆有限公司 轨道混合动力机车
FR2970455A1 (fr) * 2011-01-13 2012-07-20 Sncf Engin ferroviaire hybride.
CN102832718A (zh) * 2011-06-17 2012-12-19 同济大学 一种用于城轨交通车载超级电容储能系统的控制方法
CN105313709A (zh) * 2015-04-15 2016-02-10 西南交通大学 一种用于混合动力有轨电车的能量管理系统
CN106183898A (zh) * 2016-07-10 2016-12-07 安庆新景技电子科技有限公司 车载超级电容控制装置
CN108032862A (zh) * 2017-12-08 2018-05-15 中车株洲电力机车有限公司 一种内燃动车组混合供电动力系统及供电方法
CN110641485A (zh) * 2019-11-06 2020-01-03 中车株洲电力机车有限公司 功率控制方法、装置、系统及混合动力内燃动车组

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN201592649U (zh) * 2009-12-04 2010-09-29 永济新时速电机电器有限责任公司 电动公交车混合动力装置

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101274594A (zh) * 2007-03-30 2008-10-01 南车成都机车车辆有限公司 轨道混合动力机车
FR2970455A1 (fr) * 2011-01-13 2012-07-20 Sncf Engin ferroviaire hybride.
CN102832718A (zh) * 2011-06-17 2012-12-19 同济大学 一种用于城轨交通车载超级电容储能系统的控制方法
CN105313709A (zh) * 2015-04-15 2016-02-10 西南交通大学 一种用于混合动力有轨电车的能量管理系统
CN106183898A (zh) * 2016-07-10 2016-12-07 安庆新景技电子科技有限公司 车载超级电容控制装置
CN108032862A (zh) * 2017-12-08 2018-05-15 中车株洲电力机车有限公司 一种内燃动车组混合供电动力系统及供电方法
CN110641485A (zh) * 2019-11-06 2020-01-03 中车株洲电力机车有限公司 功率控制方法、装置、系统及混合动力内燃动车组

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114954541A (zh) * 2022-04-29 2022-08-30 中车工业研究院有限公司 车辆的功率分配和跟踪速度的协同方法及装置
CN114954541B (zh) * 2022-04-29 2023-08-18 中车工业研究院有限公司 车辆的功率分配和跟踪速度的协同方法及装置

Also Published As

Publication number Publication date
CN110641485B (zh) 2022-01-18
CN110641485A (zh) 2020-01-03

Similar Documents

Publication Publication Date Title
WO2021088322A1 (zh) 功率控制方法、装置、系统及混合动力内燃动车组
Cao et al. A new battery/ultracapacitor hybrid energy storage system for electric, hybrid, and plug-in hybrid electric vehicles
JP4179351B2 (ja) 電源システムおよびそれを備えた車両、電源システムの制御方法、ならびに電源システムの制御をコンピュータに実行させるためのプログラムを記録したコンピュータ読取可能な記録媒体
US20080215199A1 (en) Vehicle-use dual voltage type power supply apparatus
US20160082844A1 (en) Methods and systems for multiple source energy storage, management, and control
JP5811107B2 (ja) ハイブリッド車両の制御装置およびそれを備えるハイブリッド車両、ならびにハイブリッド車両の制御方法
JP6410757B2 (ja) 動力システム及び輸送機器、並びに、電力伝送方法
JP2017501936A (ja) ハイブリッド車両のエネルギーを管理する方法および装置
JP5580914B1 (ja) 電源制御装置
JP2017184405A (ja) 電力供給システム及び輸送機器、並びに、電力伝送方法
US9252630B2 (en) Battery charge control apparatus
WO2020057279A1 (zh) 一种干线混合动力机车组控制系统及方法
WO2024045321A1 (zh) 一种面向增程式电传动矿用卡车的能量输出控制方法及系统
KR20240040766A (ko) 배터리 전력공급형 전기 모터들에 대한 시스템 효율을 최적화시키는 방법
JP6122958B2 (ja) 発電制御装置及び発電制御方法
JP6412522B2 (ja) 動力システム及び輸送機器、並びに、電力伝送方法
JP6164090B2 (ja) 車両
Xiong et al. Methodology for optimal sizing of hybrid power system usingparticle swarm optimization and dynamic programming
CN107891864B (zh) 并联混合动力系统的等效油电折算系数获取方法及装置
CN114132302A (zh) 一种车辆控制方法、装置、系统及存储介质
JP6348929B2 (ja) 動力システム及び輸送機器、並びに、電力伝送方法
WO2021003881A1 (zh) 一种混合动力有轨电车电制动功率分配方法、装置和介质
JP2017184406A (ja) 電力供給システム及び輸送機器、並びに、電力供給システムの制御方法
US20170166060A1 (en) Energy charge controller, energy charge controlling system and method thereof
JP5949264B2 (ja) 電源装置およびそれを備える車両ならびに電源装置の制御方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20884577

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20884577

Country of ref document: EP

Kind code of ref document: A1