WO2021088202A1 - 热泵系统的智能除霜控制方法及系统 - Google Patents

热泵系统的智能除霜控制方法及系统 Download PDF

Info

Publication number
WO2021088202A1
WO2021088202A1 PCT/CN2019/124771 CN2019124771W WO2021088202A1 WO 2021088202 A1 WO2021088202 A1 WO 2021088202A1 CN 2019124771 W CN2019124771 W CN 2019124771W WO 2021088202 A1 WO2021088202 A1 WO 2021088202A1
Authority
WO
WIPO (PCT)
Prior art keywords
subsystems
subsystem
defrosting
power
control
Prior art date
Application number
PCT/CN2019/124771
Other languages
English (en)
French (fr)
Inventor
刘志力
雷朋飞
罗刚
蔡鹏城
潘群
Original Assignee
广东芬尼克兹节能设备有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 广东芬尼克兹节能设备有限公司 filed Critical 广东芬尼克兹节能设备有限公司
Publication of WO2021088202A1 publication Critical patent/WO2021088202A1/zh

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B47/00Arrangements for preventing or removing deposits or corrosion, not provided for in another subclass
    • F25B47/02Defrosting cycles
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B49/00Arrangement or mounting of control or safety devices
    • F25B49/02Arrangement or mounting of control or safety devices for compression type machines, plants or systems

Definitions

  • This application relates to the field of heat pump technology, and in particular to a method and system for intelligent defrosting control of a heat pump system.
  • Ultra-low temperature air source heat pump (hereinafter referred to as low temperature heat pump) is an energy-saving and widely used heating equipment.
  • low temperature heat pump When the surface temperature of the evaporator is lower than the dew point temperature of the air and less than 0°C, the fins of the evaporator will be frosted, resulting in heating The effect is affected and the defrost must be timely.
  • low-temperature heat pumps With the popularization of low-temperature heat pumps, its superior energy-saving effects have been increasingly recognized by the market.
  • the heating effect due to the attenuation of the heating capacity of the unit after frosting, the heating effect is poor, and water needs to be drawn during the defrosting process.
  • the end heat source causes the water temperature to drop, especially in some areas with high moisture content in the air. During the defrosting period, the water temperature fluctuates greatly and it is difficult to meet user requirements, which has always restricted the promotion of low-temperature heat pumps.
  • This application provides an intelligent defrosting control method and system for a heat pump system to solve the existing technical problem of large water temperature fluctuations during defrosting of low-temperature heat pumps.
  • the embodiments of this application can avoid water temperature fluctuations during defrosting and ensure users' water demand And comfort.
  • an embodiment of the present application provides a defrosting control method for a heat pump system.
  • the heat pump system includes two sub-systems sharing a water-side heat exchanger.
  • the defrosting control method includes:
  • the method further includes:
  • the actual value of the output water temperature of the water-side heat exchanger is controlled to be within the normal fluctuation range of the target value of the output water temperature of the water-side heat exchanger.
  • the preset power value corresponding to the target value of the output water temperature of the water-side heat exchanger is used to control the system of the other subsystem as the target power.
  • the steps of heat output power include:
  • the power value corresponding to the target value is the heating output power of another subsystem in the target power control.
  • the compressor of the other subsystem is started, and the preset power value corresponding to the target value of the output water temperature of the water-side heat exchanger is used.
  • the step of target power controlling the heating output power of another subsystem includes:
  • the one of the subsystems When it is detected that the one of the subsystems meets the defrost exit condition, the one of the subsystems is controlled to stand by, and the other one of the subsystems continues to operate in the heating mode.
  • the step of controlling one of the sub-systems to perform a defrosting action specifically includes:
  • the one subsystem is controlled to perform a defrosting action.
  • the method further includes:
  • control the compressor of one of the sub-systems When controlling one of the sub-systems to perform defrosting action, control the compressor of one of the sub-systems to increase the frequency to the second preset frequency, control the four-way valve of one of the sub-systems to energize and turn off the fan, and control
  • the opening degree of the electronic expansion valve of one of the subsystems is to the defrost opening degree.
  • the method further includes :
  • the frequency of the one of the subsystems is reduced to a third preset frequency, the four-way valve of the one of the subsystems is controlled to lose power, and the one of the subsystems is controlled to lose power.
  • the opening degree of the electronic expansion valve of a subsystem is to the heating opening degree to exit the defrosting state;
  • the compressor of the one of the subsystems is controlled to turn off so that the one of the subsystems is on standby, and the other of the subsystems continues to operate in the heating mode.
  • the step of controlling the heating output power of another subsystem in which the value is the target power includes:
  • the one of the subsystems When it is detected that the one of the subsystems meets the defrost exit condition, the one of the subsystems is controlled to re-run the heating mode, and the other one of the subsystems continues to run the heating mode.
  • the step of controlling one of the subsystems to perform a defrosting action specifically includes:
  • the compressor of the other subsystem When the compressor of the other subsystem is up to the fifth preset frequency, control the one of the subsystems to perform the defrosting action, so as to match the preset output water temperature target of the water-side heat exchanger
  • the power value corresponding to the value is the heating output power of the other subsystem in the target power control, wherein the heating output power is equal to the fifth preset frequency
  • the one of the subsystems When it is detected that the one of the subsystems meets the defrost exit condition, the one of the subsystems is controlled to re-run the heating mode, and the other one of the subsystems continues to run the heating mode.
  • the compressor of the other subsystem when the compressor of the other subsystem is increased to a fifth preset frequency, control one of the subsystems to perform a defrosting action, so as to exchange with the water side by a preset
  • the power value corresponding to the target value of the output water temperature of the heater is the target power to control the heating output power of the other subsystem, wherein the step of the heating output power being equal to the fifth preset frequency specifically includes:
  • control the compressor of one of the sub-systems When controlling one of the sub-systems to perform defrosting action, control the compressor of one of the sub-systems to increase the frequency to the sixth preset frequency, control the four-way valve of one of the sub-systems to energize and turn off the fan, and control The opening degree of the electronic expansion valve of one of the subsystems to the defrost opening degree;
  • the step of controlling one of the subsystems to re-run the heating mode and the other one of the subsystems to continue to run the heating mode after detecting that one of the subsystems meets the defrost exit condition Specifically including:
  • the frequency of one of the subsystems is reduced to the seventh preset frequency, the four-way valve of one of the subsystems is controlled to lose power and the fan is restarted, and control The opening degree of the electronic expansion valve of one of the subsystems to the heating opening degree to exit the defrosting state;
  • control one of the subsystems After exiting the defrosting state, control one of the subsystems to re-run the heating mode.
  • the method further includes:
  • the present application also provides a defrost control system for a heat pump system, the heat pump system includes two sub-systems sharing a water-side heat exchanger, the control system includes a controller, and the controller is configured to:
  • the controller is further configured to:
  • the actual value of the output water temperature of the water-side heat exchanger is controlled to be within the normal fluctuation range of the target value of the output water temperature of the water-side heat exchanger.
  • the controller is further configured to:
  • the power value corresponding to the target value is the heating output power of another subsystem in the target power control.
  • the controller is further configured to:
  • the one of the sub-systems When it is detected that one of the sub-systems meets the defrost exit condition, the one of the sub-systems is controlled to stand by, and the other one of the sub-systems continues to run the heating mode.
  • the controller is further configured to:
  • the one subsystem is controlled to perform a defrosting action.
  • the controller is further configured to:
  • control the compressor of one of the sub-systems When controlling one of the sub-systems to perform defrosting action, control the compressor of one of the sub-systems to increase the frequency to the second preset frequency, control the four-way valve of one of the sub-systems to energize and turn off the fan, and control
  • the opening degree of the electronic expansion valve of one of the subsystems is to the defrost opening degree.
  • the controller is further configured to:
  • the frequency of the one of the subsystems is reduced to a third preset frequency, the four-way valve of the one of the subsystems is controlled to lose power, and the one of the subsystems is controlled
  • the opening degree of the electronic expansion valve of a subsystem is to the heating opening degree to exit the defrosting state;
  • the compressor of the one of the subsystems is controlled to turn off so that the one of the subsystems is on standby, and the other of the subsystems continues to operate in the heating mode.
  • the controller is further configured to:
  • the one of the subsystems When it is detected that the one of the subsystems meets the defrost exit condition, the one of the subsystems is controlled to re-run the heating mode, and the other one of the subsystems continues to run the heating mode.
  • the controller is further configured to:
  • the compressor of the other subsystem When the compressor of the other subsystem is up to the fifth preset frequency, control the one of the subsystems to perform the defrosting action, so as to match the preset output water temperature target of the water-side heat exchanger
  • the power value corresponding to the value is the heating output power of the other subsystem in the target power control, wherein the heating output power is equal to the fifth preset frequency
  • the one of the subsystems When it is detected that the one of the subsystems meets the defrost exit condition, the one of the subsystems is controlled to re-run the heating mode, and the other one of the subsystems continues to run the heating mode.
  • the controller is further configured to:
  • control the compressor of one of the sub-systems When controlling one of the sub-systems to perform defrosting action, control the compressor of one of the sub-systems to increase the frequency to the sixth preset frequency, control the four-way valve of one of the sub-systems to energize and turn off the fan, and control The opening degree of the electronic expansion valve of one of the subsystems to the defrost opening degree;
  • the controller is further configured to:
  • the frequency of one of the subsystems is reduced to the seventh preset frequency, the four-way valve of one of the subsystems is controlled to lose power and the fan is restarted, and control The opening degree of the electronic expansion valve of one of the subsystems to the heating opening degree to exit the defrosting state;
  • control one of the subsystems After exiting the defrosting state, control one of the subsystems to re-run the heating mode.
  • the controller is further configured to:
  • the present application provides an intelligent defrosting control method and system for a heat pump system, and any embodiment thereof has the following beneficial effects:
  • the heating capacity degradation caused by it will be compensated by the other subsystem, so that one of the subsystems can be defrosted normally. It can also ensure that the output water temperature does not fluctuate during the defrosting process, thereby realizing continuous and uninterrupted operation of the heating mode, improving heating stability, and further ensuring the user's water demand and comfort, which is conducive to the popularization and application of low-temperature heat pumps.
  • both sub-systems can continuously provide a higher-temperature refrigerant for the shared water-side heat exchanger to ensure the heat exchange effect of the water-side heat exchanger, so as to stabilize the hot water on the user side.
  • Supply provides guarantee.
  • the heating mode of the standby subsystem can be activated to make up for the attenuation of heating capacity when one of the subsystems enters the defrosting operation, so that the heat can be effectively maintained.
  • the water output is stable; when both systems are running in heating mode, when one of the subsystems is in defrosting operation, the heating output capacity of the other subsystem is increased to maintain the heat output, so as to avoid fluctuations in water temperature. Ensure the user's water demand and comfort.
  • Fig. 1 is a flow chart of the defrosting control method of the heat pump system according to the first embodiment of the present application
  • FIG. 2 is a flow chart of the defrost control method of the heat pump system according to the first embodiment of the present application
  • FIG. 3 is a flow chart of the defrost control method of the heat pump system according to the second embodiment of the present application.
  • Fig. 4 is a flow chart of the defrosting control method of the heat pump system according to the third embodiment of the present application.
  • the first embodiment of the present application provides a defrost control method for a heat pump system.
  • the heat pump system includes two sub-systems sharing a water-side heat exchanger, and each sub-system has an independent air-side heat exchange.
  • the two systems do not affect each other, that is, the startup and shutdown of any one system will not affect the safe operation of the other system.
  • this embodiment provides a defrosting control method, which includes the steps:
  • the defrosting operation is an important part of the defrosting mode operation.
  • the refrigerant flow path is switched through the four-way valve to perform the heating and defrosting action of the evaporator.
  • the frost action the high-temperature refrigerant of the subsystem will not have a heat exchange effect on the shared water-side heat exchanger.
  • both subsystems can continuously provide a higher temperature refrigerant for the shared water-side heat exchanger to ensure the heat exchange effect of the water-side heat exchanger, thereby providing heat for the user Stable water supply provides guarantee.
  • the heating capacity degradation caused by it will be compensated by the other subsystem, so that one of the subsystems can be defrosted normally, and it can be guaranteed during the defrosting process.
  • the output water temperature does not fluctuate, thereby realizing the continuous and uninterrupted operation of the heating mode, improving the heating stability, and further ensuring the user's water demand and comfort, which is conducive to the popularization and application of low-temperature heat pumps.
  • the defrosting control method further includes the steps:
  • the actual value of the output water temperature of the water-side heat exchanger is also the actual value of the output water temperature of the heat pump system.
  • the other subsystem should be controlled
  • the heating output power of the heat pump system is increased, so that the actual value of the output water temperature of the heat pump system is maintained within the normal fluctuation range of the output water temperature target value (the output water temperature target value ⁇ the set temperature difference).
  • step S1 when controlling one of the subsystems to perform the defrosting operation, use the preset power value corresponding to the target value of the output water temperature of the water-side heat exchanger as the target power
  • steps of controlling the heating output power of another subsystem include:
  • S10 When controlling one of the sub-systems to perform defrosting operation, start the compressor of the other sub-system or increase the frequency of the compressor of the other sub-system, and set the preset frequency with the water-side heat exchanger.
  • the power value corresponding to the target value of the output water temperature is the target power to control the heating output power of another subsystem.
  • the heating mode of the standby subsystem can be activated to make up for the attenuation of heating capacity when one of the subsystems enters the defrosting operation, so that the heat can be effectively maintained.
  • the water output is stable; when both systems are running in heating mode, when one of the subsystems is in defrosting operation, the heating output capacity of the other subsystem is increased to maintain the heat output, so as to avoid fluctuations in water temperature. Ensure the user's water demand.
  • step S10 one of the subsystems is controlled to perform defrosting.
  • start the compressor of another subsystem and use the preset power value corresponding to the target value of the output water temperature of the water-side heat exchanger to control the heating output power of the other subsystem.
  • the state of the two subsystems is determined according to the load demand.
  • One of the subsystems is in the operating heating mode, and the other subsystem is in the standby state.
  • one of the subsystems should be controlled to perform the defrosting action only after the other one of the subsystems has been activated and compensated for the attenuation of the heating capacity of the one of the subsystems.
  • the defrosting operation is an important link in the operation of the defrosting mode. After the subsystem enters the defrosting preparation state, the refrigerant flow path is switched through the four-way valve to perform the heating and defrosting action of the evaporator. During the defrosting action, The high-temperature refrigerant of the subsystem will not have a heat exchange effect on the shared water-side heat exchanger.
  • This embodiment realizes the alternate operation heating mode and alternate defrosting between the two subsystems.
  • the other subsystem in the standby state will be awakened and activated, and repeat Steps S12 to S14 are executed, and this cycle is repeated.
  • step S13 after controlling one of the sub-systems to enter the defrost preparation state, start the other one of the sub-systems, and use the preset target value of the output water temperature of the water-side heat exchanger.
  • the step of controlling one of the subsystems to perform the defrosting action specifically includes:
  • step S133 when the heating output power of the other subsystem reaches the target power, controlling one of the subsystems to perform a defrosting action, the method further includes:
  • control the compressor of one of the sub-systems When controlling one of the sub-systems to perform defrosting action, control the compressor of one of the sub-systems to increase the frequency to the second preset frequency, control the four-way valve of one of the sub-systems to energize and turn off the fan, and control
  • the opening degree of the electronic expansion valve of one of the subsystems is to the defrost opening degree.
  • step S14 when it is detected that one of the subsystems meets the defrost exit condition, one of the subsystems is controlled to stand by, and the other one of the subsystems continues to operate.
  • the method further includes:
  • the frequency of the one of the subsystems is reduced to a third preset frequency, the four-way valve of the one of the subsystems is controlled to lose power, and the one of the subsystems is controlled
  • the opening degree of the electronic expansion valve of a subsystem is to the heating opening degree to exit the defrosting state;
  • the compressor of the one of the subsystems is controlled to turn off so that the one of the subsystems is on standby, and the other of the subsystems continues to operate in the heating mode.
  • Step 1 The heat pump system is turned on and running, and according to the load demand, it is determined that only the system A is turned on, and the system B is in a standby state.
  • Step 2 System A requests to enter the defrost, computer control system A enters the defrost preparation state, and system B is awakened at the same time.
  • Step 3 After the system A receives and enters the defrost preparation state, the compressor of the system A is reduced to the first preset frequency Fdefstart (Fdefstart is a preset parameter, which is obtained through laboratory test data and needs to meet the requirements of the compressor When operating at this frequency, the compressor discharge pressure-suction pressure ⁇ P, P is a preset threshold, determined according to the pressure difference during safe operation in the compressor specification), and then wait for the system B to be awakened.
  • Fdefstart is a preset parameter, which is obtained through laboratory test data and needs to meet the requirements of the compressor
  • the compressor discharge pressure-suction pressure ⁇ P, P is a preset threshold, determined according to the pressure difference during safe operation in the compressor specification
  • Step 4 After the system B receives the wake-up signal, it immediately starts and outputs according to the target power control capability corresponding to the target value of the output water temperature, which can compensate for the attenuation of the system A's ability after frequency reduction at this time.
  • Step 5 After detecting the successful wake-up of system B, control system A officially enters the defrosting action.
  • Step 6 When the system A enters the defrosting action, the compressor of the system A is increased to the second preset frequency Fdefrun (Fdefrun is a preset parameter, which is obtained through laboratory test data and needs to meet the requirements of the compressor for defrosting. After frost, when running at this frequency, the defrost can defrost cleanly), turn off the fan, the four-way valve is energized, and open the electronic expansion valve to the defrost opening degree.
  • Fdefrun is a preset parameter, which is obtained through laboratory test data and needs to meet the requirements of the compressor for defrosting.
  • frost when running at this frequency, the defrost can defrost cleanly
  • the four-way valve is energized, and open the electronic expansion valve to the defrost opening degree.
  • Step 7 After the system A officially enters the defrost, as the defrost causes the water temperature to drop, the system B will automatically increase the frequency, increase the capacity output, and further compensate for the attenuation of the unit's capacity, so that the water temperature remains constant and does not fluctuate.
  • Step 8 System A enters the defrost exit state after reaching the defrost exit condition.
  • Step 9 The compressor of system A is reduced to the third preset frequency FdefEnd (FdefEnd is a preset parameter, which is obtained through laboratory test data, and needs to meet the requirement of running at this frequency after the compressor exits defrosting.
  • Compressor discharge pressure-suction pressure ⁇ P, P is a preset threshold value, determined according to the pressure difference during safe operation in the compressor specification), the electronic expansion valve returns to the initial opening, and the four-way valve loses power.
  • Step 10 After the system A exits the defrost, the compressor is turned off, leaving only the system B to continue to run in the heating mode.
  • Step 11 When the system B needs to enter the defrost, repeat the above steps to wake up the system A in this cycle.
  • the third embodiment of the present application realizes further optimization.
  • the step of controlling the heating output power of another subsystem of the compressor frequency with the preset power value corresponding to the target value of the output water temperature of the water-side heat exchanger as the target power specifically includes :
  • the state of the two subsystems is judged according to the load demand, and the two subsystems are in the running heating mode.
  • one of the subsystems should be controlled to perform the defrosting action only after the compressor of the other subsystem increases the output power and compensates for the attenuation of the heating capacity of the one subsystem.
  • the defrosting operation is an important link in the operation of the defrosting mode. After the subsystem enters the defrosting preparation state, the refrigerant flow path is switched through the four-way valve to perform the heating and defrosting action of the evaporator. During the defrosting action, The high-temperature refrigerant of the subsystem will not have a heat exchange effect on the shared water-side heat exchanger.
  • This embodiment realizes the simultaneous operation of heating mode and alternate defrosting between the two sub-systems.
  • the other sub-system in operation is immediately increased in frequency and repeated Steps S16 to S18 are executed, and this cycle is repeated.
  • step S17 after controlling one of the sub-systems to enter the defrost preparation state, increase the compressor frequency of the other one of the sub-systems, and then set the frequency with the water-side heat exchanger at a preset value.
  • the power value corresponding to the target value of the output water temperature is the target power after controlling the heating output power of the other subsystem, and then the step of controlling one of the subsystems to perform a defrosting action specifically includes:
  • step S173 when the compressor of the other sub-system is up to the fifth preset frequency, control one of the sub-systems to perform a defrosting action, thereby pre-
  • the power value corresponding to the target value of the output water temperature of the water-side heat exchanger is assumed to be the target power to control the heating output power of the other subsystem, wherein the heating output power is equal to the fifth preheater
  • the steps to set the frequency include:
  • control the compressor of one of the sub-systems When controlling one of the sub-systems to perform defrosting action, control the compressor of one of the sub-systems to increase the frequency to the sixth preset frequency, control the four-way valve of one of the sub-systems to energize and turn off the fan, and control The opening degree of the electronic expansion valve of one of the subsystems to the defrost opening degree;
  • step S18 when it is detected that one of the sub-systems meets the defrost exit condition, the one sub-system is controlled to re-run the heating mode, and the other sub-system is
  • the steps for the system to continue operating in heating mode include:
  • the frequency of one of the subsystems is reduced to the seventh preset frequency, the four-way valve of one of the subsystems is controlled to lose power and the fan is restarted, and control The opening degree of the electronic expansion valve of one of the subsystems to the heating opening degree to exit the defrosting state;
  • control one of the subsystems After exiting the defrosting state, control one of the subsystems to re-run the heating mode.
  • the method further includes:
  • Step 1 The heat pump system starts up and runs, and according to the load demand, both system A and system B are in running state.
  • Step 2 System A requests to enter the defrosting request, and the computer control system A enters the defrosting preparation state.
  • Step 3 After the system A receives and enters the defrost preparation state, the compressor of the system A is reduced to the fourth preset frequency Fdefstart (Fdefstart is a preset parameter, which is obtained through laboratory test data and needs to meet the compressor operation At this frequency, the compressor discharge pressure-suction pressure ⁇ P, P is a preset threshold, which is determined according to the pressure difference during safe operation in the compressor specification), and the compressor of system A is down-frequency caused by the unit The capacity drops, resulting in a drop in water temperature. At this time, the compressor of system B immediately increases (synchronizes) to the fifth preset frequency, so as to compensate for the decrease in capacity of system A at this time.
  • Fdefstart is a preset parameter, which is obtained through laboratory test data and needs to meet the compressor operation
  • ⁇ P, P is a preset threshold, which is determined according to the pressure difference during safe operation in the compressor specification
  • the compressor of system A is down-frequency caused by the unit The capacity drops, resulting in a drop in water
  • Step 4 After the system B receives the frequency increase of the system A, when the water temperature has been maintained, the system A officially enters the defrosting action.
  • Step 5 System A enters the defrosting action, and the compressor frequency is increased to the sixth preset frequency Fdefrun (Fdefrun is a preset parameter, which is obtained through laboratory test data, and needs to meet the requirements of the compressor after defrosting. At this frequency, the defrost can defrost cleanly), turn off the fan, the four-way valve is energized, and open the electronic expansion valve to the defrost opening degree.
  • Fdefrun is a preset parameter, which is obtained through laboratory test data, and needs to meet the requirements of the compressor after defrosting. At this frequency, the defrost can defrost cleanly), turn off the fan, the four-way valve is energized, and open the electronic expansion valve to the defrost opening degree.
  • Step 6 Assuming that system A is in the defrosting process, before exiting the defrosting process, system B also proposes to enter the defrosting request at this time, the computer saves the defrosting request of system B, but does not respond to the defrosting request of system B, system B Keep running.
  • Step 7 System A enters the defrost exit state after reaching the defrost exit condition.
  • Step 8 Frequency reduction of system A to the seventh preset frequency FdefEnd (FdefEnd is a preset parameter, which is obtained through laboratory test data, and needs to meet the requirement that after the compressor exits defrosting, when the compressor runs at this frequency, the compressor discharge Air pressure-suction pressure ⁇ P, P is a preset threshold, which is determined by the pressure difference during safe operation in the compressor specification), the electronic expansion valve returns to the initial opening, the four-way valve loses power, and the fan restarts.
  • the system A compressor increases the frequency and restarts heating.
  • Step 9 If system B does not send a defrost request, the compressor of system B will automatically reduce the frequency until the water temperature reaches a constant value.
  • Step 10 System B sends a defrost request during the defrosting period of system A. At this time, it responds to the defrost request of system B.
  • the compressor of system B is reduced to Fdefstart (Fdefstart is one).
  • the preset parameter which is obtained through laboratory test data, needs to meet the compressor discharge pressure-suction pressure ⁇ P when the compressor is running at this frequency, and P is a preset threshold value, according to the compressor specification
  • the pressure difference during safe operation is determined), due to the decrease of the unit capacity due to the frequency reduction of the system B, which leads to the decrease of the water temperature.
  • the frequency of the system A immediately increases to compensate for the attenuation of the capacity after the frequency reduction of the system B at this time.
  • Step 11 After the system B reaches the defrost exit condition, it enters the defrost exit state.
  • Step 12 The frequency of system B is reduced to FdefEnd, the electronic expansion valve returns to the initial opening, the four-way valve loses power, and the fan restarts.
  • the system B compressor increases the frequency and restarts heating.
  • System A automatically reduces the frequency until the water temperature reaches a constant level.
  • Step 13 But when the system sends out a defrost request again, repeat the above steps.
  • the present application also provides a defrost control system suitable for the above-mentioned defrost control method.
  • the heat pump system includes a controller and two sub-systems sharing a water-side heat exchanger.
  • the control system includes a controller, and The controller is configured to:
  • the controller is further configured to:
  • the actual value of the output water temperature of the water-side heat exchanger is controlled to be within the normal fluctuation range of the target value of the output water temperature of the water-side heat exchanger.
  • the controller is further configured to:
  • the power value corresponding to the target value is the heating output power of another subsystem in the target power control.
  • the controller is further configured to:
  • the one of the subsystems When it is detected that the one of the subsystems meets the defrost exit condition, the one of the subsystems is controlled to stand by, and the other one of the subsystems continues to operate in the heating mode.
  • the controller is further configured to:
  • the one subsystem is controlled to perform a defrosting action.
  • the controller is further configured to:
  • control the compressor of one of the sub-systems When controlling one of the sub-systems to perform defrosting action, control the compressor of one of the sub-systems to increase the frequency to the second preset frequency, control the four-way valve of one of the sub-systems to energize and turn off the fan, and control
  • the opening degree of the electronic expansion valve of one of the subsystems is to the defrost opening degree.
  • the controller is further configured to:
  • the frequency of the one of the subsystems is reduced to a third preset frequency, the four-way valve of the one of the subsystems is controlled to lose power, and the one of the subsystems is controlled
  • the opening degree of the electronic expansion valve of a subsystem is to the heating opening degree to exit the defrosting state;
  • the compressor of the one of the subsystems is controlled to turn off so that the one of the subsystems is on standby, and the other of the subsystems continues to operate in the heating mode.
  • the controller is further configured to:
  • the one of the subsystems When it is detected that the one of the subsystems meets the defrost exit condition, the one of the subsystems is controlled to re-run the heating mode, and the other one of the subsystems continues to run the heating mode.
  • the controller is further configured to:
  • the compressor of the other subsystem When the compressor of the other subsystem is up to the fifth preset frequency, control the one of the subsystems to perform the defrosting action, so as to match the preset output water temperature target of the water-side heat exchanger
  • the power value corresponding to the value is the heating output power of the other subsystem in the target power control, wherein the heating output power is equal to the fifth preset frequency
  • the one of the subsystems When it is detected that the one of the subsystems meets the defrost exit condition, the one of the subsystems is controlled to re-run the heating mode, and the other one of the subsystems continues to run the heating mode.
  • the controller is further configured to:
  • control the compressor of one of the sub-systems When controlling one of the sub-systems to perform defrosting action, control the compressor of one of the sub-systems to increase the frequency to the second preset frequency, control the four-way valve of one of the sub-systems to energize and turn off the fan, and control The opening degree of the electronic expansion valve of one of the subsystems to the defrost opening degree;
  • the controller is further configured to:
  • the frequency of the one of the subsystems is reduced to the sixth preset frequency, the four-way valve of the one of the subsystems is controlled to lose power and the fan is restarted, and control The opening degree of the electronic expansion valve of one of the subsystems to the heating opening degree to exit the defrosting state;
  • control one of the subsystems After exiting the defrosting state, control one of the subsystems to re-run the heating mode.
  • the controller is further configured to:
  • This application provides a defrosting control system for a heat pump system.
  • the heating capacity degradation caused by it will be compensated by the other sub-system, so that one of the sub-systems
  • the system can defrost normally, and can ensure that the output water temperature does not fluctuate during the defrosting process, so as to realize the continuous and uninterrupted operation of the heating mode, improve the heating stability, and further ensure the user's water demand and comfort, which is beneficial to Popularization and application of low temperature heat pumps.
  • the device embodiments described above are only illustrative, and the units described as separate components may or may not be physically separated, and the components displayed as units may or may not be physically separate. Units can be located in one place or distributed to multiple network units. Some or all of the modules can be selected according to actual needs to achieve the objectives of the solutions of the embodiments.
  • the connection relationship between the modules indicates that they have a communication connection between them, which can be specifically implemented as one or more communication buses or signal lines. Those of ordinary skill in the art can understand and implement it without creative work.

Abstract

一种热泵系统的除霜控制方法和控制系统,热泵系统包括两个子系统,两个子系统共用水侧换热器,在控制其中一子系统进行除霜操作时,以预设的与水侧换热器的输出水温目标值对应的功率值为目标功率控制另一子系统的制热输出功率,由此能避免除霜期间的水温波动,保证用户的用水需求和舒适度。

Description

热泵系统的智能除霜控制方法及系统
相关申请的交叉引用
本申请要求于2019年11月8日提交中国专利局的申请号为CN201911086403.1、名称为“热泵系统的智能除霜控制方法及系统”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及热泵技术领域,尤其是涉及热泵系统的智能除霜控制方法及系统。
背景技术
超低温空气源热泵(以下简称低温热泵)是一种节能且应用广泛的供热设备,在蒸发器表面温度低于空气露点温度且小于0℃时,蒸发器的翅片会结霜,导致供热效果受到影响,须及时地除霜。近年来,随着低温热泵使用的普及,其优越的节能效果越来越受到市场认可,然而由于结霜后的机组制热能力衰减,导致制热效果差,而且在除霜过程中需要吸取供水端热源,造成水温下降,尤其是在一些空气中含湿量较高的地区,除霜期间导致水温波动较大而难以满足用户要求,一直制约着低温热泵的推广。
发明内容
本申请提供热泵系统的智能除霜控制方法及系统,以解决现有的低温热泵除霜期间水温波动较大的技术问题,本申请实施例能够避免除霜期间的水温波动,保证用户的用水需求和舒适度。
为了解决上述技术问题,本申请实施例提供了一种热泵系统的除霜控制方法,所述热泵系统包括共用一水侧换热器的二子系统,所述除霜控制方法包括:
在控制其中一子系统进行除霜操作时,以预设的与所述水侧换热器的输出水温目标值对应的功率值为目标功率控制其中另一子系统的制热输出功率。
作为优选方案,所述方法还包括:
控制所述水侧换热器的输出水温实际值在所述水侧换热器的输出水温目标值的正常波动范围内。
作为优选方案,所述在控制其中一子系统进行除霜操作时,以预设的与所述水侧换热器的输出水温目标值对应的功率值为目标功率控制其中另一子系统的制热输出功率的步骤,具体包括:
在控制其中一子系统进行除霜操作时,启动其中另一子系统的压缩机或升高其中另一子系统的压缩机频率,并以预设的与所述水侧换热器的输出水温目标值对应的功率值为目标功率控制其中另一子系统的制热输出功率。
作为优选方案,所述在控制其中一子系统进行除霜操作时,启动其中另一子系统的压缩机,以预设的与所述水侧换热器的输出水温目标值对应的功率值为目标功率控制其中另一子系统的制热输出功率的步骤,具体包括:
在所述热泵系统运行时,控制其中一子系统运行制热模式,而其中另一子系统待机;
当接收到所述其中一子系统发出的除霜请求时,则控制所述其中一子系统运行除霜模式;
在控制所述其中一子系统进入除霜准备状态后,启动所述其中另一子系统,在以预设的与所述水侧换热器的输出水温目标值对应的功率值为目标功率控制所述其中另一子系统的制热输出功率后,控制所述其中一子系统进行除霜动作;
当检测到所述其中一子系统满足除霜退出条件后,控制所述其中一子系统待机,而所述其中另一子系统继续运行制热模式。
作为优选方案,所述在控制所述其中一子系统进入除霜准备状态后,启动所述其中另一子系统,在以预设的与所述水侧换热器的输出水温目标值对应的功率值为目标功率控制所述其中另一子系统的制热输出功率后,控制所述其中一子系统进行除霜动作的步骤,具体包括:
根据所述其中一子系统发出的除霜请求控制所述其中一子系统进入除霜准备状态,并唤醒所述其中另一子系统;
在控制所述其中一子系统进入除霜准备状态后,控制所述其中一子系统的压缩机降频至第一预设频率,并控制所述其中另一子系统的压缩机升频以使所述其中另一子系统的制热输出功率达到与所述水侧换热器的输出水温目标值对应的功率值;
当所述其中另一子系统的制热输出功率达到所述目标功率时,控制所述其中一子系统进行除霜动作。
作为优选方案,所述当所述其中另一子系统的制热输出功率达到所述目标功率时,控制所述其中一子系统进行除霜动作,所述方法还包括:
当控制所述其中一子系统进行除霜动作时,控制所述其中一子系统的压缩机升频至第二预设频率,控制所述其中一子系统的四通阀通电并关闭风机,控制所述其中一子系统的电子膨胀阀的开度至除霜开度。
作为优选方案,所述当检测到所述其中一子系统满足除霜退出条件后,控制所述其中一子系统待机,而所述其中另一子系统继续运行制热模式,所述方法还包括:
当检测到所述其中一子系统满足除霜退出条件后,控制所述其中一子系统降频至第三预设频率,控制所述其中一子系统的四通阀失电,控制所述其中一子系统的电子膨胀阀的开度至制热开度,以退出除霜状态;
在退出所述除霜状态后,控制所述其中一子系统的压缩机关闭以使所述其中一子系统待机,而所述其中另一子系统继续运行制热模式。
作为优选方案,所述在控制其中一子系统进行除霜操作时,升高其中另一子系统的压缩机频率,以预设的与所述水侧换热器的输出水温目标值对应的功率值为目标功率控制其中另一子系统的制热输出功率的步骤,具体包括:
在所述热泵系统运行时,控制其中一子系统、其中另一子系统运行制热模式;
当接收到所述其中一子系统发出的除霜请求时,则控制所述其中一子系统运行除霜模式;
在控制所述其中一子系统进入除霜准备状态后,升高所述其中另一子系统的压缩机频率,在以预设的与所述水侧换热器的输出水温目标值对应的功率值为目标功率控制所述其中另一子系统的制热输出功率后,控制所述其中一子系统进行除霜动作;
当检测到所述其中一子系统满足除霜退出条件后,控制所述其中一子系统重新运行制热模式,而所述其中另一子系统继续运行制热模式。
作为优选方案,所述在控制所述其中一子系统进入除霜准备状态后,升高所述其中另一子系统的压缩机频率,在以预设的与所述水侧换热器的输出水温目标值对应的功率值为目标功率控制所述其中另一子系统的制热输出功率后,控制所述其中一子系统进行除霜动作的步骤,具体包括:
根据所述其中一子系统发出的除霜请求控制所述其中一子系统进入除霜准备状态;
在控制所述其中一子系统进入除霜准备状态后,控制所述其中一子系统的压缩机降频至第四预设频率,同时控制所述其中另一子系统的压缩机升频至第五预设频率;
当所述其中另一子系统的压缩机升频至第五预设频率时,控制所述其中一子系统进行除霜动作,从而以预设的与所述水侧换热器的输出水温目标值对应的功率值为目标功率控制所述其中另一子系统的制热输出功率,其中,所述制热输出功率等于所述第五预设频率;
当检测到所述其中一子系统满足除霜退出条件后,控制所述其中一子系统重新运行制热模式,而所述其中另一子系统继续运行制热模式。
作为优选方案,所述当所述其中另一子系统的压缩机升频至第五预设频率时,控制所述其中一子系统进行除霜动作,从而以预设的与所述水侧换热器的输出水温目标值对应的功率值为目标功率控制所述其中另一子系统的制热输出功率,其中,所述制热输出功率等于所述第五预设频率的步骤,具体包括:
当所述其中另一子系统的压缩机升频至第五预设频率时,控制所述其中一子系统进行除霜动作;
当控制所述其中一子系统进行除霜动作时,控制所述其中一子系统的压缩机升频至第 六预设频率,控制所述其中一子系统的四通阀通电并关闭风机,控制所述其中一子系统的电子膨胀阀的开度至除霜开度;
以预设的与所述水侧换热器的输出水温目标值对应的功率值为目标功率控制所述其中另一子系统的制热输出功率,所述制热输出功率等于所述第五预设频率。
作为优选方案,所述当检测到所述其中一子系统满足除霜退出条件后,控制所述其中一子系统重新运行制热模式,而所述其中另一子系统继续运行制热模式的步骤,具体包括:
当检测到所述其中一子系统满足除霜退出条件后,控制所述其中一子系统降频至第七预设频率,控制所述其中一子系统的四通阀失电并重启风机,控制所述其中一子系统的电子膨胀阀的开度至制热开度,以退出除霜状态;
在退出所述除霜状态后,控制所述其中一子系统重新运行制热模式。
作为优选方案,所述方法还包括:
在控制所述其中一子系统进行除霜动作且不满足除霜退出条件时,当接收到所述其中另一子系统发出的除霜请求时,保存却不响应所述其中另一子系统的除霜请求。
本申请还提供了一种热泵系统的除霜控制系统,所述热泵系统包括共用一水侧换热器的二子系统,所述控制系统包括控制器,所述控制器被配置成:
在控制其中一子系统进行除霜操作时,以预设的与所述水侧换热器的输出水温目标值对应的功率值为目标功率控制其中另一子系统的制热输出功率。
作为优选方案,所述控制器还被配置成:
控制所述水侧换热器的输出水温实际值在所述水侧换热器的输出水温目标值的正常波动范围内。
作为优选方案,所述控制器还被配置成:
在控制其中一子系统进行除霜操作时,启动其中另一子系统的压缩机或升高其中另一子系统的压缩机频率,并以预设的与所述水侧换热器的输出水温目标值对应的功率值为目标功率控制其中另一子系统的制热输出功率。
作为优选方案,所述控制器还被配置成:
在所述热泵系统运行时,控制其中一子系统运行制热模式,而其中另一子系统待机;
当接收到所述其中一子系统发出的除霜请求时,则控制所述其中一子系统运行除霜模式;
在控制所述其中一子系统进入除霜准备状态后,启动所述其中另一子系统,在以预设的与所述水侧换热器的输出水温目标值对应的功率值为目标功率控制所述其中另一子系统的制热输出功率后,控制所述其中一子系统进行除霜动作;
当检测到所述其中一子系统满足除霜退出条件后,控制所述其中一子系统待机,而所 述其中另一子系统继续运行制热模式。
作为优选方案,所述控制器还被配置成:
根据所述其中一子系统发出的除霜请求控制所述其中一子系统进入除霜准备状态,并唤醒所述其中另一子系统;
在控制所述其中一子系统进入除霜准备状态后,控制所述其中一子系统的压缩机降频至第一预设频率,并控制所述其中另一子系统的压缩机升频以使所述其中另一子系统的制热输出功率达到与所述水侧换热器的输出水温目标值对应的功率值;
当所述其中另一子系统的制热输出功率达到所述目标功率时,控制所述其中一子系统进行除霜动作。
作为优选方案,所述控制器还被配置成:
当控制所述其中一子系统进行除霜动作时,控制所述其中一子系统的压缩机升频至第二预设频率,控制所述其中一子系统的四通阀通电并关闭风机,控制所述其中一子系统的电子膨胀阀的开度至除霜开度。
作为优选方案,所述控制器还被配置成:
当检测到所述其中一子系统满足除霜退出条件后,控制所述其中一子系统降频至第三预设频率,控制所述其中一子系统的四通阀失电,控制所述其中一子系统的电子膨胀阀的开度至制热开度,以退出除霜状态;
在退出所述除霜状态后,控制所述其中一子系统的压缩机关闭以使所述其中一子系统待机,而所述其中另一子系统继续运行制热模式。
作为优选方案,所述控制器还被配置成:
在所述热泵系统运行时,控制其中一子系统、其中另一子系统运行制热模式;
当接收到所述其中一子系统发出的除霜请求时,则控制所述其中一子系统运行除霜模式;
在控制所述其中一子系统进入除霜准备状态后,升高所述其中另一子系统的压缩机频率,在以预设的与所述水侧换热器的输出水温目标值对应的功率值为目标功率控制所述其中另一子系统的制热输出功率后,控制所述其中一子系统进行除霜动作;
当检测到所述其中一子系统满足除霜退出条件后,控制所述其中一子系统重新运行制热模式,而所述其中另一子系统继续运行制热模式。
作为优选方案,所述控制器还被配置成:
根据所述其中一子系统发出的除霜请求控制所述其中一子系统进入除霜准备状态;
在控制所述其中一子系统进入除霜准备状态后,控制所述其中一子系统的压缩机降频至第四预设频率,同时控制所述其中另一子系统的压缩机升频至第五预设频率;
当所述其中另一子系统的压缩机升频至第五预设频率时,控制所述其中一子系统进行除霜动作,从而以预设的与所述水侧换热器的输出水温目标值对应的功率值为目标功率控制所述其中另一子系统的制热输出功率,其中,所述制热输出功率等于所述第五预设频率;
当检测到所述其中一子系统满足除霜退出条件后,控制所述其中一子系统重新运行制热模式,而所述其中另一子系统继续运行制热模式。
作为优选方案,所述控制器还被配置成:
当所述其中另一子系统的压缩机升频至第五预设频率时,控制所述其中一子系统进行除霜动作;
当控制所述其中一子系统进行除霜动作时,控制所述其中一子系统的压缩机升频至第六预设频率,控制所述其中一子系统的四通阀通电并关闭风机,控制所述其中一子系统的电子膨胀阀的开度至除霜开度;
以预设的与所述水侧换热器的输出水温目标值对应的功率值为目标功率控制所述其中另一子系统的制热输出功率,所述制热输出功率等于所述第五预设频率。
作为优选方案,所述控制器还被配置成:
当检测到所述其中一子系统满足除霜退出条件后,控制所述其中一子系统降频至第七预设频率,控制所述其中一子系统的四通阀失电并重启风机,控制所述其中一子系统的电子膨胀阀的开度至制热开度,以退出除霜状态;
在退出所述除霜状态后,控制所述其中一子系统重新运行制热模式。
作为优选方案,所述控制器还被配置成:
在控制所述其中一子系统进行除霜动作且不满足除霜退出条件时,当接收到所述其中另一子系统发出的除霜请求时,保存却不响应所述其中另一子系统的除霜请求。
综上,本申请提供了热泵系统的智能除霜控制方法及系统,其任一实施例具有如下有益效果:
在双系统的热泵系统中,当其中一子系统进行除霜操作时,其带来的制热能力衰减将通过其中另一子系统进行弥补,从而既可以使其中一子系统进行正常除霜,又可以在除霜过程中保证输出的水温不波动,进而实现制热模式的持续不间断运行,提高制热稳定性,进而进一步保证用户的用水需求和舒适度,有利于低温热泵的推广应用。
其中,在所述热泵系统运行时,两个子系统均能为共用的水侧换热器持续提供温度较高的冷媒,以保证水侧换热器的热交换作用,从而为用户端的热水稳定供应提供了保障。
在其中一子系统运行而另一子系统待机时,通过启动待机的子系统运行制热模式以及时地弥补其中一子系统进入除霜操作时将产生的制热能力衰减,从而能够有效维持热水输出稳定;而在两个系统均运行制热模式时,当其中一子系统进行除霜操作时,则通过提高 另一子系统的制热输出能力以维持热量输出,从而避免水温产生波动,保证用户的用水需求和舒适度。
附图说明
为了更清楚地说明本申请的技术方案,下面将对实施方式中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本申请的一些实施方式,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1是本申请第一实施例的热泵系统的除霜控制方法的流程步骤图;
图2是本申请第一实施例的热泵系统的除霜控制方法的流程步骤图;
图3是本申请第二实施例的热泵系统的除霜控制方法的流程步骤图;
图4是本申请第三实施例的热泵系统的除霜控制方法的流程步骤图。
具体实施方式
在本说明书的描述中,参考术语“一个实施例”、“一些实施例”、“示例”、“具体示例”、或“第一实施例”等的描述意指结合该实施例或示例描述的具体特征、结构、材料或者特点包含于本申请的至少一个实施例或示例中。而且,描述的具体特征、结构、材料或者特点可以在任一个或多个实施例或示例中以合适的方式结合。此外,在不相互矛盾的情况下,本领域的技术人员可以将本说明书中描述的不同实施例或示例以及不同实施例或示例的特征进行结合和组合。
下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本申请一部分实施例,而不是全部的实施例。基于本申请中的实施例,本领域普通技术人员在没有作出创造性劳动前提下所获得的所有其他实施例,都属于本申请保护的范围。
第一实施例:
请参见图1,本申请第一实施例提供了一种热泵系统的除霜控制方法,所述热泵系统包括共用一水侧换热器的二子系统,每一子系统拥有独立的空气侧换热器,在运行时二系统互不影响,即任意一系统启动和关闭不会影响另外一个系统的安全运行。
基于上述热泵系统,本实施例提供了一种除霜控制方法,包括步骤:
S1,在控制其中一子系统进行除霜操作时,以预设的与所述水侧换热器的输出水温目标值对应的功率值为目标功率控制其中另一子系统的制热输出功率。
在本实施例中,所述除霜操作是除霜模式运行中的重要环节,为子系统进入除霜准备状态后通过四通阀切换冷媒流路以进行蒸发器的升温除霜动作,在除霜动作时,该子系统的高温冷媒将不会对共用的水侧换热器产生热交换作用。
本实施例的双系统热泵机组在运行时,两个子系统均能为共用的水侧换热器持续提供 温度较高的冷媒,以保证水侧换热器的热交换作用,从而为用户端的热水稳定供应提供了保障。
当其中一子系统进行除霜操作时,其带来的制热能力衰减将通过其中另一子系统进行弥补,从而既可以使其中一子系统进行正常除霜,又可以在除霜过程中保证输出的水温不波动,进而实现制热模式的持续不间断运行,提高制热稳定性,进而进一步保证用户的用水需求和舒适度,有利于低温热泵的推广应用。
请参见图2,在其中一种优选实施例中,所述除霜控制方法还包括步骤:
S2,控制所述水侧换热器的输出水温实际值在所述水侧换热器的输出水温目标值的正常波动范围内。
在本实施例中,所述水侧换热器的输出水温实际值也即所述热泵系统的输出水温实际值,当控制其中一子系统进行除霜操作时,则应当控制其中另一子系统的制热输出功率升高,以使所述热泵系统的输出水温实际值维持在所述输出水温目标值的正常波动范围(输出水温目标值±设定温差)。
在其中一种优选实施例中,所述步骤S1,在控制其中一子系统进行除霜操作时,以预设的与所述水侧换热器的输出水温目标值对应的功率值为目标功率控制其中另一子系统的制热输出功率的步骤,具体包括:
S10,在控制其中一子系统进行除霜操作时,启动其中另一子系统的压缩机或升高其中另一子系统的压缩机频率,并以预设的与所述水侧换热器的输出水温目标值对应的功率值为目标功率控制其中另一子系统的制热输出功率。
在其中一子系统运行而另一子系统待机时,通过启动待机的子系统运行制热模式以及时地弥补其中一子系统进入除霜操作时将产生的制热能力衰减,从而能够有效维持热水输出稳定;而在两个系统均运行制热模式时,当其中一子系统进行除霜操作时,则通过提高另一子系统的制热输出能力以维持热量输出,从而避免水温产生波动,保证用户的用水需求。
本实施例通过第二实施例和第三实施例进行具体说明。
第二实施例:
基于第一实施例的两个子系统只有一个子系统开机运行而另一子系统处于待机状态的情况,本申请第二实施例实现进一步优化,所述步骤S10,在控制其中一子系统进行除霜操作时,启动其中另一子系统的压缩机,以预设的与所述水侧换热器的输出水温目标值对应的功率值为目标功率控制其中另一子系统的制热输出功率的步骤,如图3所示,具体包括:
S11,在所述热泵系统运行时,控制其中一子系统运行制热模式,而其中另一子系统待 机;
在本实施例中,当所述热泵系统上电运行后,按照负载需求判断二子系统的状态,其中一子系统为运行制热模式,而另一子系统处于待机状态。
S12,当接收到所述其中一子系统发出的除霜请求时,则控制所述其中一子系统运行除霜模式;
S13,在控制所述其中一子系统进入除霜准备状态后,启动所述其中另一子系统,在以预设的与所述水侧换热器的输出水温目标值对应的功率值为目标功率控制所述其中另一子系统的制热输出功率后,控制所述其中一子系统进行除霜动作;
在本实施例中,应当在所述其中另一子系统启动并弥补了所述其中一子系统的制热能力衰减后,才控制所述其中一系统进行除霜动作。其中,所述除霜操作是除霜模式运行中的重要环节,为子系统进入除霜准备状态后通过四通阀切换冷媒流路以进行蒸发器的升温除霜动作,在除霜动作时,该子系统的高温冷媒将不会对共用的水侧换热器产生热交换作用。
S14,当检测到所述其中一子系统满足除霜退出条件后,控制所述其中一子系统待机,而所述其中另一子系统继续运行制热模式。
本实施例实现二子系统之间的交替运行制热模式以及交替进行除霜,当运行中的所述其中一子系统进行除霜时,则唤醒并启动待机状态中的其中另一子系统,重复执行步骤S12~S14,以此循环。
优选地,所述步骤S13,在控制所述其中一子系统进入除霜准备状态后,启动所述其中另一子系统,在以预设的与所述水侧换热器的输出水温目标值对应的功率值为目标功率控制所述其中另一子系统的制热输出功率后,控制所述其中一子系统进行除霜动作的步骤,具体包括:
S131,根据所述其中一子系统发出的除霜请求控制所述其中一子系统进入除霜准备状态,并唤醒所述其中另一子系统;
S132,在控制所述其中一子系统进入除霜准备状态后,控制所述其中一子系统的压缩机降频至第一预设频率,并控制所述其中另一子系统的压缩机升频以使所述其中另一子系统的制热输出功率达到与所述水侧换热器的输出水温目标值对应的功率值;
S133,当所述其中另一子系统的制热输出功率达到所述目标功率时,控制所述其中一子系统进行除霜动作。
优选地,所述步骤S133,当所述其中另一子系统的制热输出功率达到所述目标功率时,控制所述其中一子系统进行除霜动作,所述方法还包括:
当控制所述其中一子系统进行除霜动作时,控制所述其中一子系统的压缩机升频至第 二预设频率,控制所述其中一子系统的四通阀通电并关闭风机,控制所述其中一子系统的电子膨胀阀的开度至除霜开度。
在其中一种优选实施例中,所述步骤S14,当检测到所述其中一子系统满足除霜退出条件后,控制所述其中一子系统待机,而所述其中另一子系统继续运行制热模式,所述方法还包括:
当检测到所述其中一子系统满足除霜退出条件后,控制所述其中一子系统降频至第三预设频率,控制所述其中一子系统的四通阀失电,控制所述其中一子系统的电子膨胀阀的开度至制热开度,以退出除霜状态;
在退出所述除霜状态后,控制所述其中一子系统的压缩机关闭以使所述其中一子系统待机,而所述其中另一子系统继续运行制热模式。
示例性地,为便于理解,以下是本申请第二实施例的其中一种详细步骤:
当两个子系统只有一个子系统在开机运行,另一子系统在待机状态的情况下,此时运行中的子系统需要进行除霜,定义所述其中一子系统为系统A,所述其中另一子系统为系统B。
步骤一:所述热泵系统开机运行,按照负载需求,判断只开启系统A,系统B处于待机状态。
步骤二:系统A提出需要进入除霜请求,计算机控制系统A进入除霜准备状态,同时唤醒系统B。
步骤三:在系统A接收进入除霜准备状态后,系统A的压缩机降频至第一预设频率Fdefstart(Fdefstart为一预设参数,该参数通过实验室测试数据得出,需满足压缩机运行在该频率时,压缩机排气压力-吸气压力≥P,P为一预设阀值,根据压缩机规格书中安全运行时的压差决定),然后等待系统B被唤醒。
步骤四:系统B接受到唤醒信号后,立即启动并按与所述输出水温目标值对应的目标功率控制能力输出,能够弥补此时系统A降频后的能力衰减。
步骤五:检测到系统B唤醒启动成功后,控制系统A正式进入除霜动作。
步骤六:在系统A进入除霜动作时,系统A的压缩机升频至第二预设频率Fdefrun(Fdefrun为一预设参数,该参数通过实验室测试数据得出,需满足压缩机进行除霜后,运行在该频率时,除霜能够除霜干净),关闭风机,四通阀得电,打开电子膨胀阀到除霜开度。
步骤七:当系统A正式进入除霜后,随着除霜引起水温下降,系统B自动升频,提高能力输出,进一步弥补机组能力的衰减,使水温保持恒定不波动。
步骤八:系统A在达到除霜退出条件后,进入除霜退出状态。
步骤九:系统A的压缩机降频至第三预设频率FdefEnd(FdefEnd为一预设参数,该参 数通过实验室测试数据得出,需满足压缩机退出除霜后,运行在该频率时,压缩机排气压力-吸气压力≥P,P为一预设阀值,根据压缩机规格书中安全运行时的压差决定),电子膨胀阀回到初开度,四通阀失电。
步骤十:系统A退出除霜后,压缩机关闭,只留系统B持续运行制热模式。
步骤十一:系统B需进入除霜时,按上述步骤重复,将系统A唤醒以此循环。
第三实施例:
基于第一实施例的两个子系统都在运行制热模式的情况,本申请第三实施例实现进一步优化,所述在控制其中一子系统进行除霜操作时,升高其中另一子系统的压缩机频率,以预设的与所述水侧换热器的输出水温目标值对应的功率值为目标功率控制其中另一子系统的制热输出功率的步骤,如图4所示,具体包括:
S15,在所述热泵系统运行时,控制其中一子系统、其中另一子系统运行制热模式;
在本实施例中,当所述热泵系统上电运行后,按照负载需求判断二子系统的状态,其中二子系统均为运行制热模式。
S16,当接收到所述其中一子系统发出的除霜请求时,则控制所述其中一子系统运行除霜模式;
S17,在控制所述其中一子系统进入除霜准备状态后,升高所述其中另一子系统的压缩机频率,在以预设的与所述水侧换热器的输出水温目标值对应的功率值为目标功率控制所述其中另一子系统的制热输出功率后,控制所述其中一子系统进行除霜动作;
在本实施例中,应当在所述其中另一子系统的压缩机升高输出功率并弥补了所述其中一子系统的制热能力衰减后,才控制所述其中一系统进行除霜动作。其中,所述除霜操作是除霜模式运行中的重要环节,为子系统进入除霜准备状态后通过四通阀切换冷媒流路以进行蒸发器的升温除霜动作,在除霜动作时,该子系统的高温冷媒将不会对共用的水侧换热器产生热交换作用。
S18,当检测到所述其中一子系统满足除霜退出条件后,控制所述其中一子系统重新运行制热模式,而所述其中另一子系统继续运行制热模式。
本实施例实现二子系统之间的同时运行制热模式以及交替进行除霜,当运行中的所述其中一子系统进行除霜时,则立即将运行中的其中另一子系统升频,重复执行步骤S16~S18,以此循环。
优选地,所述步骤S17,在控制所述其中一子系统进入除霜准备状态后,升高所述其中另一子系统的压缩机频率,在以预设的与所述水侧换热器的输出水温目标值对应的功率值为目标功率控制所述其中另一子系统的制热输出功率后,控制所述其中一子系统进行除霜动作的步骤,具体包括:
S171,根据所述其中一子系统发出的除霜请求控制所述其中一子系统进入除霜准备状态;
S172,在控制所述其中一子系统进入除霜准备状态后,控制所述其中一子系统的压缩机降频至第四预设频率,同时控制所述其中另一子系统的压缩机升频至第五预设频率;
S173,当所述其中另一子系统的压缩机升频至第五预设频率时,控制所述其中一子系统进行除霜动作,从而以预设的与所述水侧换热器的输出水温目标值对应的功率值为目标功率控制所述其中另一子系统的制热输出功率,其中,所述制热输出功率等于所述第五预设频率;
S174,当检测到所述其中一子系统满足除霜退出条件后,控制所述其中一子系统重新运行制热模式,而所述其中另一子系统继续运行制热模式。
在其中一种优选实施例中,所述步骤S173,当所述其中另一子系统的压缩机升频至第五预设频率时,控制所述其中一子系统进行除霜动作,从而以预设的与所述水侧换热器的输出水温目标值对应的功率值为目标功率控制所述其中另一子系统的制热输出功率,其中,所述制热输出功率等于所述第五预设频率的步骤,具体包括:
当所述其中另一子系统的压缩机升频至第五预设频率时,控制所述其中一子系统进行除霜动作;
当控制所述其中一子系统进行除霜动作时,控制所述其中一子系统的压缩机升频至第六预设频率,控制所述其中一子系统的四通阀通电并关闭风机,控制所述其中一子系统的电子膨胀阀的开度至除霜开度;
以预设的与所述水侧换热器的输出水温目标值对应的功率值为目标功率控制所述其中另一子系统的制热输出功率,所述制热输出功率等于所述第五预设频率。
在其中一种优选实施例中,所述步骤S18,当检测到所述其中一子系统满足除霜退出条件后,控制所述其中一子系统重新运行制热模式,而所述其中另一子系统继续运行制热模式的步骤,具体包括:
当检测到所述其中一子系统满足除霜退出条件后,控制所述其中一子系统降频至第七预设频率,控制所述其中一子系统的四通阀失电并重启风机,控制所述其中一子系统的电子膨胀阀的开度至制热开度,以退出除霜状态;
在退出所述除霜状态后,控制所述其中一子系统重新运行制热模式。
在其中一种优选实施例中,所述方法还包括:
在控制所述其中一子系统进行除霜动作且不满足除霜退出条件时,当接收到所述其中另一子系统发出的除霜请求时,保存却不响应所述其中另一子系统的除霜请求。
示例性地,为便于理解,以下是本申请第三实施例的其中一种详细步骤:
当两个子系统均在开机运行,此时其中一运行中的子系统需要进行除霜的情况下,定义所述其中一子系统为系统A,所述其中另一子系统为系统B。
步骤一:所述热泵系统开机运行,根据负载需求,系统A和系统B都处于运行状态。
步骤二:系统A提出需要进入除霜请求,计算机控制系统A进入除霜准备状态。
步骤三:系统A接收进入除霜准备状态后,系统A的压缩机降频至第四预设频率Fdefstart(Fdefstart为一预设参数,该参数通过实验室测试数据得出,需满足压缩机运行在该频率时,压缩机排气压力-吸气压力≥P,P为一预设阀值,根据压缩机规格书中安全运行时的压差决定),由于系统A的压缩机降频导致机组能力下降,从而导致水温下降,此时系统B的压缩机立即升频(同步)至第五预设频率,从而弥补此时系统A降频后能力衰减。
步骤四:系统B接受到系统A升频后,已维持水温时,系统A正式进入除霜动作。
步骤五:系统A进入除霜动作,压缩机升频至第六预设频率Fdefrun(Fdefrun为一预设参数,该参数通过实验室测试数据得出,需满足压缩机进行除霜后,运行在该频率时,除霜能够除霜干净),关闭风机,四通阀得电,打开电子膨胀阀到除霜开度。
步骤六:假设系统A在除霜过程中,未退出除霜前,此时系统B也提出进入除霜请求,计算机保存系统B的除霜请求,但不响应系统B的除霜请求,系统B继续运行。
步骤七:系统A在达到除霜退出条件后,进入除霜退出状态。
步骤八:系统A降频至第七预设频率FdefEnd(FdefEnd为一预设参数,该参数通过实验室测试数据得出,需满足压缩机退出除霜后,运行在该频率时,压缩机排气压力-吸气压力≥P,P为一预设阀值,根据压缩机规格书中安全运行时的压差决定),电子膨胀阀回到初开度,四通阀失电,风机重启。系统A压缩机升频,重新开始制热。
步骤九:系统B如果没有发出除霜请求,则系统B的压缩机自动降频,直到水温达到恒定。
步骤十:系统B在系统A除霜期间发出了除霜请求,此时响应系统B的除霜请求,系统B接收进入除霜准备状态后,系统B的压缩机降频至Fdefstart(Fdefstart为一预设参数,该参数通过实验室测试数据得出,需满足压缩机运行在该频率时,压缩机排气压力-吸气压力≥P,P为一预设阀值,根据压缩机规格书中安全运行时的压差决定),由于系统B降频导致机组能力下降,从而导致水温下降,此时系统A立即升频,弥补此时系统B降频后能力衰减。
步骤十一:系统B达到除霜退出条件后,进入除霜退出状态。
步骤十二:系统B降频至FdefEnd,电子膨胀阀回到初开度,四通阀失电,风机重启。系统B压缩机升频,重新开始制热。系统A自动降频,直到水温达到恒定。
步骤十三:但重新又系统发出除霜请求时,重复上述步骤。
第四实施例:
本申请还提供了一种适用于上述的除霜控制方法的除霜控制系统,所述热泵系统包括控制器以及共用一水侧换热器的二子系统,所述控制系统包括控制器,所述控制器被配置成:
在控制其中一子系统进行除霜操作时,以预设的与所述水侧换热器的输出水温目标值对应的功率值为目标功率控制其中另一子系统的制热输出功率。
在其中一种优选实施例中,所述控制器还被配置成:
控制所述水侧换热器的输出水温实际值在所述水侧换热器的输出水温目标值的正常波动范围内。
在其中一种优选实施例中,所述控制器还被配置成:
在控制其中一子系统进行除霜操作时,启动其中另一子系统的压缩机或升高其中另一子系统的压缩机频率,并以预设的与所述水侧换热器的输出水温目标值对应的功率值为目标功率控制其中另一子系统的制热输出功率。
在其中一种优选实施例中,所述控制器还被配置成:
在所述热泵系统运行时,控制其中一子系统运行制热模式,而其中另一子系统待机;
当接收到所述其中一子系统发出的除霜请求时,则控制所述其中一子系统运行除霜模式;
在控制所述其中一子系统进入除霜准备状态后,启动所述其中另一子系统,在以预设的与所述水侧换热器的输出水温目标值对应的功率值为目标功率控制所述其中另一子系统的制热输出功率后,控制所述其中一子系统进行除霜动作;
当检测到所述其中一子系统满足除霜退出条件后,控制所述其中一子系统待机,而所述其中另一子系统继续运行制热模式。
在其中一种优选实施例中,所述控制器还被配置成:
根据所述其中一子系统发出的除霜请求控制所述其中一子系统进入除霜准备状态,并唤醒所述其中另一子系统;
在控制所述其中一子系统进入除霜准备状态后,控制所述其中一子系统的压缩机降频至第一预设频率,并控制所述其中另一子系统的压缩机升频以使所述其中另一子系统的制热输出功率达到与所述水侧换热器的输出水温目标值对应的功率值;
当所述其中另一子系统的制热输出功率达到所述目标功率时,控制所述其中一子系统进行除霜动作。
在其中一种优选实施例中,所述控制器还被配置成:
当控制所述其中一子系统进行除霜动作时,控制所述其中一子系统的压缩机升频至第 二预设频率,控制所述其中一子系统的四通阀通电并关闭风机,控制所述其中一子系统的电子膨胀阀的开度至除霜开度。
在其中一种优选实施例中,所述控制器还被配置成:
当检测到所述其中一子系统满足除霜退出条件后,控制所述其中一子系统降频至第三预设频率,控制所述其中一子系统的四通阀失电,控制所述其中一子系统的电子膨胀阀的开度至制热开度,以退出除霜状态;
在退出所述除霜状态后,控制所述其中一子系统的压缩机关闭以使所述其中一子系统待机,而所述其中另一子系统继续运行制热模式。
在其中一种优选实施例中,所述控制器还被配置成:
在所述热泵系统运行时,控制其中一子系统、其中另一子系统运行制热模式;
当接收到所述其中一子系统发出的除霜请求时,则控制所述其中一子系统运行除霜模式;
在控制所述其中一子系统进入除霜准备状态后,升高所述其中另一子系统的压缩机频率,在以预设的与所述水侧换热器的输出水温目标值对应的功率值为目标功率控制所述其中另一子系统的制热输出功率后,控制所述其中一子系统进行除霜动作;
当检测到所述其中一子系统满足除霜退出条件后,控制所述其中一子系统重新运行制热模式,而所述其中另一子系统继续运行制热模式。
在其中一种优选实施例中,所述控制器还被配置成:
根据所述其中一子系统发出的除霜请求控制所述其中一子系统进入除霜准备状态;
在控制所述其中一子系统进入除霜准备状态后,控制所述其中一子系统的压缩机降频至第四预设频率,同时控制所述其中另一子系统的压缩机升频至第五预设频率;
当所述其中另一子系统的压缩机升频至第五预设频率时,控制所述其中一子系统进行除霜动作,从而以预设的与所述水侧换热器的输出水温目标值对应的功率值为目标功率控制所述其中另一子系统的制热输出功率,其中,所述制热输出功率等于所述第五预设频率;
当检测到所述其中一子系统满足除霜退出条件后,控制所述其中一子系统重新运行制热模式,而所述其中另一子系统继续运行制热模式。
在其中一种优选实施例中,所述控制器还被配置成:
当所述其中另一子系统的压缩机升频至第五预设频率时,控制所述其中一子系统进行除霜动作;
当控制所述其中一子系统进行除霜动作时,控制所述其中一子系统的压缩机升频至第二预设频率,控制所述其中一子系统的四通阀通电并关闭风机,控制所述其中一子系统的电子膨胀阀的开度至除霜开度;
以预设的与所述水侧换热器的输出水温目标值对应的功率值为目标功率控制所述其中另一子系统的制热输出功率,所述制热输出功率等于所述第五预设频率。
在其中一种优选实施例中,所述控制器还被配置成:
当检测到所述其中一子系统满足除霜退出条件后,控制所述其中一子系统降频至第六预设频率,控制所述其中一子系统的四通阀失电并重启风机,控制所述其中一子系统的电子膨胀阀的开度至制热开度,以退出除霜状态;
在退出所述除霜状态后,控制所述其中一子系统重新运行制热模式。
在其中一种优选实施例中,所述控制器还被配置成:
在控制所述其中一子系统进行除霜动作且不满足除霜退出条件时,当接收到所述其中另一子系统发出的除霜请求时,保存却不响应所述其中另一子系统的除霜请求。
本申请提供了一种热泵系统的除霜控制系统,当其中一子系统进行除霜操作时,其带来的制热能力衰减将通过其中另一子系统进行弥补,从而既可以使其中一子系统可以正常除霜,又可以在除霜过程中保证输出的水温不波动,进而实现制热模式的持续不间断运行,提高制热稳定性,进而进一步保证用户的用水需求和舒适度,有利于低温热泵的推广应用。
需说明的是,以上所描述的装置实施例仅仅是示意性的,其中所述作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部模块来实现本实施例方案的目的。另外,本申请提供的装置实施例附图中,模块之间的连接关系表示它们之间具有通信连接,具体可以实现为一条或多条通信总线或信号线。本领域普通技术人员在不付出创造性劳动的情况下,即可以理解并实施。
以上所述是本申请的优选实施方式,应当指出,对于本技术领域的普通技术人员来说,在不脱离本申请原理的前提下,还可以做出若干改进和润饰,这些改进和润饰也视为在本申请的保护范围内。

Claims (13)

  1. 一种热泵系统的除霜控制方法,其特征在于,所述热泵系统包括共用一水侧换热器的二子系统,所述除霜控制方法包括:
    在控制其中一子系统进行除霜操作时,以预设的与所述水侧换热器的输出水温目标值对应的功率值为目标功率控制其中另一子系统的制热输出功率。
  2. 如权利要求1所述的热泵系统的除霜控制方法,其特征在于,所述方法还包括:
    控制所述水侧换热器的输出水温实际值在所述水侧换热器的输出水温目标值的正常波动范围内。
  3. 如权利要求1或2所述的热泵系统的除霜控制方法,其特征在于,所述在控制其中一子系统进行除霜操作时,以预设的与所述水侧换热器的输出水温目标值对应的功率值为目标功率控制其中另一子系统的制热输出功率的步骤,具体包括:
    在控制其中一子系统进行除霜操作时,启动其中另一子系统的压缩机或升高其中另一子系统的压缩机频率,并以预设的与所述水侧换热器的输出水温目标值对应的功率值为目标功率控制其中另一子系统的制热输出功率。
  4. 如权利要求3所述的热泵系统的除霜控制方法,其特征在于,所述在控制其中一子系统进行除霜操作时,启动其中另一子系统的压缩机,以预设的与所述水侧换热器的输出水温目标值对应的功率值为目标功率控制其中另一子系统的制热输出功率的步骤,具体包括:
    在所述热泵系统运行时,控制其中一子系统运行制热模式,而其中另一子系统待机;
    当接收到所述其中一子系统发出的除霜请求时,则控制所述其中一子系统运行除霜模式;
    在控制所述其中一子系统进入除霜准备状态后,启动所述其中另一子系统,在以预设的与所述水侧换热器的输出水温目标值对应的功率值为目标功率控制所述其中另一子系统的制热输出功率后,控制所述其中一子系统进行除霜动作;
    当检测到所述其中一子系统满足除霜退出条件后,控制所述其中一子系统待机,而所述其中另一子系统继续运行制热模式。
  5. 如权利要求4所述的热泵系统的除霜控制方法,其特征在于,所述在控制所述其中一子系统进入除霜准备状态后,启动所述其中另一子系统,在以预设的与所述水侧换热器的输出水温目标值对应的功率值为目标功率控制所述其中另一子系统的制热输出功率后,控制所述其中一子系统进行除霜动作的步骤,具体包括:
    根据所述其中一子系统发出的除霜请求控制所述其中一子系统进入除霜准备状态,并唤醒所述其中另一子系统;
    在控制所述其中一子系统进入除霜准备状态后,控制所述其中一子系统的压缩机降频至第一预设频率,并控制所述其中另一子系统的压缩机升频以使所述其中另一子系统的制热输出功率达到与所述水侧换热器的输出水温目标值对应的功率值;
    当所述其中另一子系统的制热输出功率达到所述目标功率时,控制所述其中一子系统进行除霜动作。
  6. 如权利要求5所述的热泵系统的除霜控制方法,其特征在于,所述当所述其中另一子系统的制热输出功率达到所述目标功率时,控制所述其中一子系统进行除霜动作,所述方法还包括:
    当控制所述其中一子系统进行除霜动作时,控制所述其中一子系统的压缩机升频至第二预设频率,控制所述其中一子系统的四通阀通电并关闭风机,控制所述其中一子系统的电子膨胀阀的开度至除霜开度。
  7. 如权利要求4所述的热泵系统的除霜控制方法,其特征在于,所述当检测到所述其中一子系统满足除霜退出条件后,控制所述其中一子系统待机,而所述其中另一子系统继续运行制热模式,所述方法还包括:
    当检测到所述其中一子系统满足除霜退出条件后,控制所述其中一子系统降频至第三预设频率,控制所述其中一子系统的四通阀失电,控制所述其中一子系统的电子膨胀阀的开度至制热开度,以退出除霜状态;
    在退出所述除霜状态后,控制所述其中一子系统的压缩机关闭以使所述其中一子系统待机,而所述其中另一子系统继续运行制热模式。
  8. 如权利要求3所述的热泵系统的除霜控制方法,其特征在于,所述在控制其中一子系统进行除霜操作时,升高其中另一子系统的压缩机频率,以预设的与所述水侧换热器的输出水温目标值对应的功率值为目标功率控制其中另一子系统的制热输出功率的步骤,具体包括:
    在所述热泵系统运行时,控制其中一子系统、其中另一子系统运行制热模式;
    当接收到所述其中一子系统发出的除霜请求时,则控制所述其中一子系统运行除霜模式;
    在控制所述其中一子系统进入除霜准备状态后,升高所述其中另一子系统的压缩机频率,在以预设的与所述水侧换热器的输出水温目标值对应的功率值为目标功率控制所述其中另一子系统的制热输出功率后,控制所述其中一子系统进行除霜动作;
    当检测到所述其中一子系统满足除霜退出条件后,控制所述其中一子系统重新运 行制热模式,而所述其中另一子系统继续运行制热模式。
  9. 如权利要求8所述的热泵系统的除霜控制方法,其特征在于,所述在控制所述其中一子系统进入除霜准备状态后,升高所述其中另一子系统的压缩机频率,在以预设的与所述水侧换热器的输出水温目标值对应的功率值为目标功率控制所述其中另一子系统的制热输出功率后,控制所述其中一子系统进行除霜动作的步骤,具体包括:
    根据所述其中一子系统发出的除霜请求控制所述其中一子系统进入除霜准备状态;
    在控制所述其中一子系统进入除霜准备状态后,控制所述其中一子系统的压缩机降频至第四预设频率,同时控制所述其中另一子系统的压缩机升频至第五预设频率;
    当所述其中另一子系统的压缩机升频至第五预设频率时,控制所述其中一子系统进行除霜动作,从而以预设的与所述水侧换热器的输出水温目标值对应的功率值为目标功率控制所述其中另一子系统的制热输出功率,其中,所述制热输出功率等于所述第五预设频率;
    当检测到所述其中一子系统满足除霜退出条件后,控制所述其中一子系统重新运行制热模式,而所述其中另一子系统继续运行制热模式。
  10. 如权利要求9所述的热泵系统的除霜控制方法,其特征在于,所述当所述其中另一子系统的压缩机升频至第五预设频率时,控制所述其中一子系统进行除霜动作,从而以预设的与所述水侧换热器的输出水温目标值对应的功率值为目标功率控制所述其中另一子系统的制热输出功率,其中,所述制热输出功率等于所述第五预设频率的步骤,具体包括:
    当所述其中另一子系统的压缩机升频至第五预设频率时,控制所述其中一子系统进行除霜动作;
    当控制所述其中一子系统进行除霜动作时,控制所述其中一子系统的压缩机升频至第六预设频率,控制所述其中一子系统的四通阀通电并关闭风机,控制所述其中一子系统的电子膨胀阀的开度至除霜开度;
    以预设的与所述水侧换热器的输出水温目标值对应的功率值为目标功率控制所述其中另一子系统的制热输出功率,所述制热输出功率等于所述第五预设频率。
  11. 如权利要求8所述的热泵系统的除霜控制方法,其特征在于,所述当检测到所述其中一子系统满足除霜退出条件后,控制所述其中一子系统重新运行制热模式,而所述其中另一子系统继续运行制热模式的步骤,具体包括:
    当检测到所述其中一子系统满足除霜退出条件后,控制所述其中一子系统降频至第七预设频率,控制所述其中一子系统的四通阀失电并重启风机,控制所述其中一子 系统的电子膨胀阀的开度至制热开度,以退出除霜状态;
    在退出所述除霜状态后,控制所述其中一子系统重新运行制热模式。
  12. 如权利要求8所述的热泵系统的除霜控制方法,其特征在于,所述方法还包括:
    在控制所述其中一子系统进行除霜动作且不满足除霜退出条件时,当接收到所述其中另一子系统发出的除霜请求时,保存却不响应所述其中另一子系统的除霜请求。
  13. 一种热泵系统的除霜控制系统,其特征在于,所述热泵系统包括共用一水侧换热器的二子系统,所述控制系统包括控制器,所述控制器被配置成:
    在控制其中一子系统进行除霜操作时,以预设的与所述水侧换热器的输出水温目标值对应的功率值为目标功率控制其中另一子系统的制热输出功率。
PCT/CN2019/124771 2019-11-08 2019-12-12 热泵系统的智能除霜控制方法及系统 WO2021088202A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201911086403.1A CN110926071A (zh) 2019-11-08 2019-11-08 热泵系统的智能除霜控制方法及系统
CN201911086403.1 2019-11-08

Publications (1)

Publication Number Publication Date
WO2021088202A1 true WO2021088202A1 (zh) 2021-05-14

Family

ID=69852470

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/124771 WO2021088202A1 (zh) 2019-11-08 2019-12-12 热泵系统的智能除霜控制方法及系统

Country Status (2)

Country Link
CN (1) CN110926071A (zh)
WO (1) WO2021088202A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114963451B (zh) * 2022-05-30 2023-08-18 宁波奥克斯电气股份有限公司 一种多模块多联机除霜控制方法、装置及空调器
CN117404826A (zh) * 2023-12-13 2024-01-16 珠海格力电器股份有限公司 多联机热泵机组及其化霜过程平衡水温的控制方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004257627A (ja) * 2003-02-25 2004-09-16 Sanyo Electric Co Ltd ヒートポンプ装置
CN101532747A (zh) * 2009-04-21 2009-09-16 四川长虹电器股份有限公司 空调机
CN103733004A (zh) * 2011-08-22 2014-04-16 东芝开利株式会社 复合二元制冷循环装置
CN104729029A (zh) * 2013-12-24 2015-06-24 珠海格力电器股份有限公司 空调系统及其控制方法

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003106712A (ja) * 2001-10-02 2003-04-09 Sanyo Electric Co Ltd 空気調和装置
CN106196724B (zh) * 2016-07-28 2018-09-28 广东芬尼克兹节能设备有限公司 多组机组错开进入预设状态的控制方法
CN106766417B (zh) * 2017-03-21 2023-07-21 珠海格力电器股份有限公司 空调系统
CN108759150B (zh) * 2018-05-09 2020-12-29 特灵空调系统(中国)有限公司 空调系统和其控制方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004257627A (ja) * 2003-02-25 2004-09-16 Sanyo Electric Co Ltd ヒートポンプ装置
CN101532747A (zh) * 2009-04-21 2009-09-16 四川长虹电器股份有限公司 空调机
CN103733004A (zh) * 2011-08-22 2014-04-16 东芝开利株式会社 复合二元制冷循环装置
CN104729029A (zh) * 2013-12-24 2015-06-24 珠海格力电器股份有限公司 空调系统及其控制方法

Also Published As

Publication number Publication date
CN110926071A (zh) 2020-03-27

Similar Documents

Publication Publication Date Title
WO2021088202A1 (zh) 热泵系统的智能除霜控制方法及系统
CN110736203B (zh) 用于空调除霜的控制方法、控制装置及空调
WO2022121350A1 (zh) 一种空调化霜控制方法、装置、存储介质及空调
CN111765595B (zh) 一种多联机空调及其化霜控制方法、装置和存储介质
KR102014931B1 (ko) 자연에너지를 이용한 하이브리드 외기 냉방시스템 및 그 제어방법
CN111207485B (zh) 一种防冻结控制方法、装置、存储介质及水多联系统
CN110469958A (zh) 空调器控制方法、装置、计算机设备及存储介质
CN107906640B (zh) 一种用于数据中心的集成蓄冷空调系统及其控制方法
WO2023071331A1 (zh) 空气源热泵机组系统的控制方法和空气源热泵机组系统
CN111059738A (zh) 热回收离心机组热回收侧控制系统
WO2023000700A1 (zh) 多联机空调的控制方法、多联机空调及存储介质
WO2021135677A1 (zh) 用于自动切换冷水机组的运行模式的控制方法
WO2024012144A1 (zh) 多联机系统的控制方法、装置、多联机系统和存储介质
JP3518433B2 (ja) 空気調和機
WO2023169536A1 (zh) 空调器及其电量控制方法
CN111780421A (zh) 一种水温控制方法、处理器、空气能热泵热水系统
CN105890226B (zh) 一种水源冷热联供级热式冷热水机组及其控制方法
US20230013910A1 (en) Multi-split system with partitioned control and selfidentification control method thereof
WO2023005451A1 (zh) 冷水机组的控制方法
CN110895013B (zh) 水多联系统的控制方法、装置、存储介质及水多联系统
WO2020151113A1 (zh) 一种间接蒸发冷室外风机控制方法及控制装置
CN112432320B (zh) 空调系统防结霜的控制方法及其控制器、空调系统
US11499740B2 (en) Air-conditioning management apparatus and air-conditioning system
CN211345737U (zh) 热回收离心机组热回收侧控制系统
US20220252326A1 (en) Defrosting control method, central controller and heating system

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19951672

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19951672

Country of ref document: EP

Kind code of ref document: A1

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 02/11/2022)

122 Ep: pct application non-entry in european phase

Ref document number: 19951672

Country of ref document: EP

Kind code of ref document: A1