WO2023169536A1 - 空调器及其电量控制方法 - Google Patents

空调器及其电量控制方法 Download PDF

Info

Publication number
WO2023169536A1
WO2023169536A1 PCT/CN2023/080627 CN2023080627W WO2023169536A1 WO 2023169536 A1 WO2023169536 A1 WO 2023169536A1 CN 2023080627 W CN2023080627 W CN 2023080627W WO 2023169536 A1 WO2023169536 A1 WO 2023169536A1
Authority
WO
WIPO (PCT)
Prior art keywords
operating frequency
compressor
air conditioner
power
current value
Prior art date
Application number
PCT/CN2023/080627
Other languages
English (en)
French (fr)
Inventor
刘腾
张绍良
张然
Original Assignee
海信空调有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 海信空调有限公司 filed Critical 海信空调有限公司
Priority to CN202380013568.4A priority Critical patent/CN118103639A/zh
Publication of WO2023169536A1 publication Critical patent/WO2023169536A1/zh

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/30Control or safety arrangements for purposes related to the operation of the system, e.g. for safety or monitoring
    • F24F11/46Improving electric energy efficiency or saving
    • F24F11/47Responding to energy costs
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/50Control or safety arrangements characterised by user interfaces or communication
    • F24F11/61Control or safety arrangements characterised by user interfaces or communication using timers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/62Control or safety arrangements characterised by the type of control or by internal processing, e.g. using fuzzy logic, adaptive control or estimation of values
    • F24F11/63Electronic processing
    • F24F11/64Electronic processing using pre-stored data
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/89Arrangement or mounting of control or safety devices
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F2110/00Control inputs relating to air properties
    • F24F2110/10Temperature
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F2140/00Control inputs relating to system states
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F2140/00Control inputs relating to system states
    • F24F2140/60Energy consumption
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B30/00Energy efficient heating, ventilation or air conditioning [HVAC]
    • Y02B30/70Efficient control or regulation technologies, e.g. for control of refrigerant flow, motor or heating

Definitions

  • the present disclosure relates to the technical field of air conditioning, and in particular to an air conditioner and a power control method thereof.
  • the air conditioner includes an indoor unit, an outdoor unit, a receiver and a controller.
  • the indoor unit includes an indoor heat exchanger.
  • the outdoor unit includes an outdoor heat exchanger and a compressor; the outdoor heat exchanger is connected to the indoor heat exchanger; the compressor is configured to compress the refrigerant so that the compressed refrigerant enters the outdoor heat exchanger or the indoor heat exchanger.
  • the receiver is configured to receive a preset power input by a user.
  • the controller is connected to the receiver and the compressor respectively.
  • the controller is configured to obtain the preset electric quantity; determine a first electric quantity and a second electric quantity according to the preset electric quantity, and the sum of the first electric quantity and the second electric quantity is less than or equal to the preset electric quantity.
  • Some embodiments of the present disclosure also provide a power control method for an air conditioner.
  • the method is applied in the air conditioner.
  • the method includes: obtaining the preset electric quantity; determining the first electric quantity and the second electric quantity according to the preset electric quantity, and the sum of the first electric quantity and the second electric quantity is less than or equal to the preset electric quantity. Assume an electric quantity; supply power to the air conditioner according to the first electric quantity, control the compressor to operate according to the preset mode until the first electric quantity is exhausted, and determine that the compressor consumes electricity when the first electric quantity is exhausted.
  • the first operating frequency corresponding to the end time; supplying power to the air conditioner according to the second electric quantity, and determining the target operating frequency of the compressor according to the first operating frequency; and operating according to the target
  • the frequency controls the operation of the compressor until the second power is exhausted; determining the target operating frequency of the compressor according to the first operating frequency includes determining a first current value corresponding to the first operating frequency. , determine the average current value when power is supplied according to the second amount of electricity, and compare the size between the first current value and the average current value; and determine the target operation of the compressor according to the comparison result frequency to control the compressor to operate at the target operating frequency.
  • Figure 1 is a structural block diagram of an air conditioner according to some embodiments.
  • Figure 2 is a flow chart of a power control method for an air conditioner according to some embodiments
  • Figure 3 is a graph showing the relationship between operating frequency and operating time of a compressor according to some embodiments.
  • Figure 4 is a flow chart of another power control method of an air conditioner according to some embodiments.
  • Figure 5 is a flow chart of yet another power control method for an air conditioner according to some embodiments.
  • Figure 6 is a flow chart of yet another power control method for an air conditioner according to some embodiments.
  • Figure 7 is a flow chart of yet another power control method for an air conditioner according to some embodiments.
  • PQ-Preset power level Q1-First power level; Q2-Second power level;
  • TOF-target operating frequency OF1-first operating frequency; OF2-second operating frequency; OF3-third operating frequency;
  • Average current value-As A1-first current value; A1'-reduced first current value; A2-second current value; A3-third current value;
  • Tin - indoor ambient temperature Tin - indoor ambient temperature
  • Tobj - set temperature Tin - indoor ambient temperature
  • first and second are used for descriptive purposes only and cannot be understood as indicating or implying relative importance or implicitly indicating the quantity of indicated technical features. Therefore, features defined as “first” and “second” may explicitly or implicitly include one or more of these features. In the description of the embodiments of the present disclosure, unless otherwise specified, "plurality" means two or more.
  • connection can be a fixed connection, a detachable connection, or an integrated connection; it can be a direct connection or an indirect connection through an intermediate medium.
  • connection can be a fixed connection, a detachable connection, or an integrated connection; it can be a direct connection or an indirect connection through an intermediate medium.
  • connection can be a fixed connection, a detachable connection, or an integrated connection; it can be a direct connection or an indirect connection through an intermediate medium.
  • some embodiments may be described using the term “connected” to indicate that two or more components are in direct physical or electrical contact with each other.
  • the term “coupled” may be used when describing some embodiments to indicate that two or more components are in direct physical or electrical contact.
  • the terms “coupled” or “communicatively coupled” may also refer to two or more components that are not in direct contact with each other but still cooperate or interact with each other. The embodiments disclosed herein are not necessarily limited by the content herein.
  • At least one of A, B and C has the same meaning as “at least one of A, B or C” and includes the following combinations of A, B and C: A only, B only, C only, A and B The combination of A and C, the combination of B and C, and the combination of A, B and C.
  • a and/or B includes the following three combinations: A only, B only, and a combination of A and B.
  • the term “if” is optionally interpreted to mean “when” or “in response to” or “in response to determining” or “in response to detecting,” depending on the context.
  • the phrase “if it is determined" or “if [stated condition or event] is detected” is optionally interpreted to mean “when it is determined" or “in response to the determination" or “on detection of [stated condition or event]” or “in response to detection of [stated condition or event]”.
  • parallel includes absolutely parallel and approximately parallel, and the acceptable deviation range of approximately parallel may be, for example, a deviation within 5°;
  • perpendicular includes absolutely vertical and approximately vertical, and the acceptable deviation range of approximately vertical may also be, for example, Deviation within 5°.
  • equal includes absolute equality and approximate equality, wherein the difference between the two that may be equal within the acceptable deviation range of approximately equal is less than or equal to 5% of either one, for example.
  • the air conditioner in order to meet the user's demand for saving the power consumption of the air conditioner, the air conditioner is provided with a power saving mode.
  • the power saving mode relies on a current frequency limiting method, for example.
  • using current frequency limiting to save power makes it difficult for users to distinguish the power consumption of the air conditioner from that of other household appliances (for example, water heaters), which brings inconvenience to users.
  • some embodiments of the present disclosure provide an air conditioner.
  • the air conditioner can distinguish the power consumption of the air conditioner from that of other household appliances while improving the energy efficiency of the air conditioner.
  • Figure 1 is a structural block diagram of an air conditioner according to some embodiments. As shown in FIG. 1 , the air conditioner 1 includes an indoor unit 101 and an outdoor unit 102 .
  • the indoor unit 101 of the air conditioner 1 has an indoor heat exchanger 15 .
  • the outdoor unit 102 of the air conditioner 1 includes a compressor 11, a four-way valve 14, and an outdoor heat exchanger 17.
  • the air conditioner 1 also includes an expansion valve 16 .
  • the expansion valve 16 may be provided in the indoor unit 101 or the outdoor unit 102 of the air conditioner 1 .
  • the expansion valve 16 is provided in the outdoor unit 102 of the air conditioner 1 .
  • the indoor heat exchanger 15 and the outdoor heat exchanger 17 are respectively connected to the compressor 11, the four-way valve 14 and the expansion valve 16 through the refrigerant pipeline.
  • the compressor 11 , the four-way valve 14 , the indoor heat exchanger 15 and the outdoor heat exchanger 17 connected in sequence form the refrigerant circulation circuit 10 of the air conditioner 1 .
  • the refrigerant circulates in the refrigerant circulation circuit 10 to realize the refrigerant circulation of the air conditioner 1 .
  • the refrigerant cycle includes a series of processes, for example, it not only involves the compression, condensation, expansion and evaporation processes of the refrigerant, but also involves heat exchange with the air through the indoor heat exchanger 15 and the outdoor heat exchanger 17 respectively, and for the adjusted and heated The process of exchanging air circulation to supply refrigerant.
  • the indoor heat exchanger 15 is configured to heat exchange indoor air with the refrigerant transmitted in the indoor heat exchanger 15
  • the outdoor heat exchanger 17 is configured to heat the outdoor air with the refrigerant transmitted in the outdoor heat exchanger 17 . exchange.
  • One of the two heat exchangers (for example, the indoor heat exchanger 15 and the outdoor heat exchanger 17) is used as a condenser, and the other heat exchanger is used as an evaporator.
  • the indoor heat exchanger 15 is used as a condenser
  • the outdoor heat exchanger 17 is used as an evaporator, so that the refrigerant that has absorbed heat through the outdoor heat exchanger 17 radiates heat to the indoor air through the indoor heat exchanger 15 And condensation, at this time, the air conditioner 1 is used as a heater in the heating mode.
  • the outdoor heat exchanger 17 is used as a condenser, so that the refrigerant that has been radiated by the outdoor heat exchanger 17 absorbs the heat of the indoor air through the indoor heat exchanger 15 and evaporates.
  • the air conditioner 1 is used as a cooler in the cooling mode.
  • the compressor 11 is configured to compress the refrigerant so that the compressed refrigerant enters the outdoor heat exchanger 17 or the indoor heat exchanger 15 .
  • the compressor 11 compresses the gas-phase refrigerant in a low-temperature and low-pressure state to form a high-temperature and high-pressure gas phase refrigerant.
  • the compressor 11 is also configured to discharge the high-temperature and high-pressure gas phase refrigerant.
  • the high-temperature and high-pressure gas phase refrigerant flows into the condenser (for example, the indoor heat exchanger 15 or the outdoor heat exchanger 17).
  • the condenser condenses the high-temperature and high-pressure gas phase refrigerant into a high-pressure liquid phase refrigerant, and the heat is released to the surrounding environment through the condensation process.
  • the expansion valve 16 is configured to expand the liquid-phase refrigerant in a high-pressure state into a gas-liquid two-phase refrigerant in a low-pressure state.
  • the evaporator (for example, the indoor heat exchanger 15 or the outdoor heat exchanger 17) achieves a cooling effect by utilizing the latent heat of evaporation of the refrigerant to exchange heat with the material to be cooled.
  • the evaporator absorbs heat from the surrounding environment and evaporates the low-pressure gas-liquid two-phase refrigerant to form a low-temperature and low-pressure gas-phase refrigerant.
  • the gas-phase refrigerant in a low-temperature and low-pressure state returns to the compressor 11 .
  • the circulation flow of the refrigerant in the entire refrigerant circulation circuit 10 is completed, thereby realizing the adjustment of the indoor space temperature by the air conditioner.
  • the air conditioner can be controlled 1. Control of power consumption. Moreover, adopting a control strategy for controlling the operating frequency of the air conditioner 1 will greatly save the power of the air conditioner 1, so that when the weather is hot or cold, the air conditioner 1 can operate under different conditions (for example, office, micro-exercise, etc.) Produce differentiated cooling or heating effects under reading or sleeping conditions).
  • the user can set the desired power consumption of the air conditioner 1 through the terminal device (for example, mobile phone, tablet, etc.) or computer) build Establish the communication connection between the user and the air conditioner 1.
  • the user inputs the desired power consumption of the air conditioner 1 on the mobile phone software, such as inputting a preset electric quantity (PQ), and based on the communication between the mobile phone and the air conditioner 1, the user inputs the desired power consumption of the air conditioner 1.
  • the input preset power is transmitted to air conditioner 1.
  • the expected power consumption input by the user includes but is not limited to the preset power PQ.
  • the following description takes the expected power consumption input by the user to the air conditioner 1 as the preset power PQ as an example.
  • the air conditioner 1 further includes a receiver 12 .
  • the receiver 12 is configured to receive the preset power level PQ input by the user. In this way, the user connects to the receiver 12 of the air conditioner 1 through the terminal device to transmit the preset power input by the user to the receiver 12 .
  • the receiver 12 may include a radio frequency identification (RFID) receiver, a near field communication (NFC) receiver, an infrared receiver, etc.
  • RFID radio frequency identification
  • NFC near field communication
  • infrared receiver etc.
  • the air conditioner 1 also includes a controller 13 .
  • the controller 13 is connected to the receiver 12 .
  • the receiver 12 is also configured to transmit the received preset power level PQ to the controller 13 .
  • Controller 13 includes a processor.
  • the processor may include a central processing unit (CPU), a microprocessor (microprocessor), an application specific integrated circuit (ASIC), a chip, etc., and may be configured such that when the processor executes storage coupled to When the program in the non-transitory computer-readable medium is stored in the controller 13, corresponding operations are performed.
  • Non-transitory computer-readable storage media may include magnetic storage devices (e.g., hard drives, floppy disks, or tapes), smart cards, or flash memory devices (e.g., erasable programmable read-only memory (EPROM)) , card, stick, or keyboard driver).
  • FIG 2 is a flow chart of a power control method for an air conditioner according to some embodiments.
  • the controller 13 is configured to obtain the preset electric quantity PQ; determine the first electric quantity Q1 and the second electric quantity Q2 according to the preset electric quantity PQ, and the sum of the first electric quantity Q1 and the second electric quantity Q2 is less than or Equal to the preset power PQ.
  • the controller 13 can realize the division of the set power PQ, thereby ensuring the heating or cooling effect of the air conditioner 1.
  • the sum of the first electric quantity Q1 and the second electric quantity Q2 is equal to the preset electric quantity PQ.
  • the embodiment of the present disclosure does not limit the division standard of the first electric power Q1 and the second electric power Q2. For example, they can be divided according to the proportion of the electric power.
  • the division ratio of the first electric quantity Q1 and the second electric quantity Q2 can be set according to actual needs. For example, the division ratio of the first electric quantity Q1 and the second electric quantity Q2 is 3: 7.
  • the ratio of the first electric quantity Q1 to the second electric quantity Q2 can be divided according to the difference between the indoor ambient temperature and the set temperature of the air conditioner 1 .
  • the division ratio between the first electric quantity Q1 and the second electric quantity Q2 is less than 5:5. But it is not limited to this. In some embodiments, the division ratio of the first power Q1 and the second power Q2 may also be greater than 5:5.
  • the controller 13 is also connected to the compressor 11 .
  • the controller 13 is also configured to provide power to the air conditioner 1 according to the first power Q1, control the compressor 11 to operate according to the preset mode of the air conditioner 1 until the first power Q1 is exhausted, and determine that the compressor 11 consumes power when the first power Q1 is consumed.
  • the corresponding first operating frequency OF1 at the end of time.
  • the controller 13 is further configured to supply power to the air conditioner 1 according to the second electric quantity Q2, and determine the target operating frequency TOF of the compressor 11 according to the first operating frequency OF1; control according to the target operating frequency TOF
  • the compressor 11 operates until the second power Q2 is exhausted.
  • the air conditioner 1 obtained by some embodiments of the present disclosure obtains the preset electric quantity PQ through the controller 13, and determines the first electric quantity Q1 and the second electric quantity Q2 according to the preset electric quantity PQ, so that the air conditioner 1 uses the first electric quantity Q1 and the second electric quantity Q2.
  • Second power Q2 The cooling capacity in the preset cooling mode or the heat in the preset heating mode is output as the target, thereby realizing the control of the preset power PQ of the air conditioner 1.
  • the operating frequency of the air conditioner 1 is controlled according to the preset power PQ, and the user can specify the power consumption of the air conditioner, thereby distinguishing the power consumption of the air conditioner from that of other household appliances. In this way, not only can the user's concerns about electricity consumption be eliminated, but the energy efficiency of the air conditioner 1 can also be improved while bringing convenience to the user.
  • Figure 3 is a graph of operating frequency versus operating time of a compressor according to some embodiments.
  • the controller 13 divides the preset electric quantity PQ into the first electric quantity Q1 and the second electric quantity PQ in proportion.
  • the second electric quantity Q2 the first electric quantity Q1 is 30% of the preset electric quantity PQ, and the second electric quantity Q2 is 70% of the preset electric quantity PQ.
  • the controller 13 supplies power to the air conditioner 1 according to the first electric quantity Q1 (ie, 30% of the preset electric quantity PQ).
  • the controller 13 supplies power to the air conditioner 1 according to the first amount of electricity Q1
  • the compressor 11 of the air conditioner 1 runs for T1 according to the preset refrigeration module.
  • the operating frequency of the compressor 11 is relatively high, and the air conditioner 1 The cooling effect is more obvious.
  • the first amount of electricity Q1 to power the air conditioner 1
  • the operating frequency of the compressor 11 will successively experience the first platform 1 and the second Platform 2, and after passing through the second platform 2, then reaches the third platform 3.
  • the operating frequency at the third platform 3 is called the first operating frequency OF1.
  • the compressor 11 operates according to the first operating frequency OF1 for a period of time, and when the operation is completed at time T1, the first power Q1 is considered exhausted.
  • the controller 13 determines the first operating frequency OF1 of the compressor 11. At this time, the controller 13 supplies the air conditioner with the second electric quantity Q2 (ie, 70% of the preset electric quantity PQ). 1 power supply.
  • the controller 13 determines the target operating frequency TOF of the compressor 11 of the air conditioner 1, and controls the operation of the compressor 11 according to the target operating frequency TOF until the second electric quantity Q2 is exhausted.
  • Figure 4 is a flow chart of another power control method of an air conditioner according to some embodiments.
  • the controller 13 in the process of determining the target operating frequency TOF of the compressor 11 according to the first operating frequency OF1 , the controller 13 is configured, for example, to determine the first current corresponding to the first operating frequency OF1 value A1, determine the average current value As when power is supplied according to the second electric quantity Q2, and compare the first current value A1 and the average current value As.
  • the controller 13 supplies power to the air conditioner 1 according to the first power Q1.
  • the first power Q1 When the first power Q1 is exhausted, the corresponding current value of the air conditioner 1 at the first operating frequency OF1 is recorded. is the first current value A1.
  • the controller 13 supplies power to the air conditioner 1 according to the second electric quantity Q2, the compressor 11 runs for T2+T3 time.
  • the T2+T3 time period according to the power consumption of the air conditioner 1, the required power consumption time and the The operating voltage determines the average current value As of the air conditioner 1. After determining the first current value A1 and the average current value As, compare the first current value A1 and the average current value As.
  • the controller 13 is also configured to determine the target operating frequency TOF of the compressor 11 based on the comparison result, thereby controlling the compressor 11 to operate at the target operating frequency TOF. run. In this way, by comparing the first current value A1 and the average current value As, the compressor 11 is controlled to operate at different operating frequencies, thereby improving the energy efficiency of the air conditioner 1 .
  • the air conditioner 1 includes an indoor unit 101, an outdoor unit 102, a receiver 12 and a controller 13 as shown in FIG. 1 . It should be noted that the structure and function of the indoor unit 101 and the outdoor unit 102 in the embodiment of the present disclosure are the same as those of the indoor unit 101 and the outdoor unit 102 in the above-mentioned embodiment, and will not be described again here.
  • the receiver 12 is configured to receive the preset power level PQ input by the user.
  • the controller 13 is connected to the receiver 12 and the outdoor The compressor 11 of the machine 102 is connected.
  • the controller 13 is configured to obtain the preset electric quantity PQ; determine the first electric quantity Q1 and the second electric quantity Q2 according to the preset electric quantity PQ, and the sum of the first electric quantity Q1 and the second electric quantity Q2 is less than or equal to the preset electric quantity.
  • Electricity PQ supply power to the air conditioner 1 according to the first electric quantity Q1, control the compressor 11 to operate according to the preset mode until the first electric quantity Q1 is exhausted, and determine the corresponding first operating frequency of the compressor 11 when the first electric quantity Q1 is exhausted.
  • the controller 13 When supplying power to the air conditioner 1 according to the second electric quantity Q2 and determining the target operating frequency TOF of the compressor 11 according to the first operating frequency OF1, the controller 13 is also configured to determine the first current value A1 corresponding to the first operating frequency OF1 , determine the average current value As when powering the air conditioner 1 according to the second electric quantity Q2, and compare the size between the first current value A1 and the average current value As; and determine the target operating frequency TOF of the compressor 11 according to the comparison result, The compressor 11 is controlled to operate at the target operating frequency TOF.
  • the air conditioner 1 obtains the preset electric quantity PQ through the controller 13, and determines the first electric quantity Q1 and the second electric quantity Q2 according to the preset electric quantity PQ, so that the air conditioner 1 outputs the preset electric quantity with the first electric quantity Q1 and the second electric quantity Q2 as the target.
  • Set the cooling capacity in the cooling mode or the heat in the preset heating mode thereby realizing the control of the preset power PQ of the air conditioner 1.
  • the preset power PQ of the air conditioner 1 controls the operating frequency of the air conditioner 1, and the user can specify the power consumption of the air conditioner, thereby distinguishing the power consumption of the air conditioner from that of other household appliances.
  • the energy efficiency of the air conditioner 1 can also be improved while bringing convenience to the user.
  • the compressor 11 is controlled to operate at different operating frequencies, thereby improving the energy efficiency of the air conditioner 1 .
  • Figure 5 is a flow chart of yet another power control method for an air conditioner according to some embodiments.
  • the controller 13 in the process of determining the target operating frequency TOF of the compressor 11 according to the comparison result, the controller 13 is configured to determine whether the first current value A1 is less than or equal to the average current value As.
  • the controller 13 is further configured to determine the first operating frequency OF1 as the target operating frequency TOF of the compressor 11 , thereby controlling the compressor 11 Run at the first operating frequency OF1 until the second power Q2 is exhausted.
  • the controller 13 does not need to control the air conditioner 1 to operate at a higher frequency.
  • the user's demand for temperature can be satisfied by still controlling the air conditioner 1 to operate at the first operating frequency OF1.
  • the controller 13 in response to the first current value A1 being greater than the average current value As (ie, A1 > As), the controller 13 is further configured to perform a frequency reduction process on the first operating frequency OF1 and determine the target operating frequency TOF of the compressor 11 .
  • the controller 13 needs to control the air conditioner 1 at a higher frequency. run.
  • the first operating frequency OF1 for example, the operating frequency at the third platform 3 in Figure 3
  • the first operating frequency OF1 can be appropriately reduced.
  • the target operating frequency TOF is determined, and then the compressor 11 is controlled to The target operating frequency TOF operates until the second power Q2 is exhausted.
  • Figure 6 is a flow chart of yet another power control method for an air conditioner according to some embodiments.
  • the controller 13 is configured to reduce the first operating frequency OF1 according to the preset frequency step n, when the reduced first current value A1' is less than or equal to the average current When the value As (that is, A1' ⁇ As), the second operating frequency OF2 corresponding to the current compressor 11 is determined.
  • the controller 13 reduces the first operating frequency OF1 according to the preset frequency step n (for example, 2 Hz/min). Since the operating frequency of the compressor 11 corresponds to the current value of the air conditioner 1, after the first operating frequency OF1 decreases, the corresponding first current value A1 decreases accordingly. In this way, the controller 13 controls the first operating frequency OF1 The decrease of the first current value A1 can be controlled.
  • the reduced first current value is marked as A1'.
  • the controller 13 determines the second operating frequency OF2 corresponding to the current compressor 11.
  • the controller 13 in order to maintain the stability of the operation of the compressor 11, when the controller 13 decreases the first operating frequency OF1 according to the preset frequency step n, it decreases it in a smaller frequency step. In this way, the problem that the operating frequency of the compressor 11 decreases too quickly resulting in lower operating stability can be avoided, thereby improving the operating stability of the compressor 11 .
  • the controller 13 is also configured to determine the second current based on the second operating frequency OF2. value A2, and controls the compressor 11 to operate at the second operating frequency OF2; during the process of the compressor 11 operating at the second operating frequency OF2, according to the relationship between the indoor ambient temperature Tin and the set temperature Tboj of the air conditioner 1, The target operating frequency TOF of the compressor 11 is determined.
  • the controller 13 determines the second operating frequency OF2 corresponding to the compressor 11, the current value corresponding to the second operating frequency OF2 is determined accordingly, and the current value corresponding to the air conditioner 1 at the second operating frequency OF2 is recorded. is the second current value A2.
  • the compressor 11 is controlled to run at the second operating frequency OF2 for a period of time. Since the second current value A2 corresponding to the second operating frequency OF2 is just smaller than the average current value As, the controller 13 can determine the target operating frequency TOF of the compressor 11 based on the relationship between the indoor ambient temperature Tin and the set temperature Tboj.
  • Figure 7 is a flow chart of yet another power control method for an air conditioner according to some embodiments.
  • the process of determining the target operating frequency TOF of the compressor 11 is based on the relationship between the indoor ambient temperature Tin and the set temperature Tboj.
  • the controller 13 is configured to determine whether the indoor ambient temperature Tin reaches the set temperature Tobj while the compressor 11 is operating at the second operating frequency OF2.
  • the controller 13 In response to the indoor ambient temperature Tin not reaching the set temperature Tobj, the controller 13 is also configured to determine the second operating frequency OF2 as the target operating frequency TOF of the compressor 11, thereby controlling the compressor 11 to operate TOF at the target operating frequency until the second operating frequency OF2.
  • the second battery Q2 is exhausted.
  • the air conditioner 1 determines the second operating frequency OF2 as the target operating frequency TOF through the controller 13, and controls the compressor 11 to operate at the target operating frequency TOF until the second power Q2 is exhausted, that is, the compressor 11 is controlled to operate at the target operating frequency TOF.
  • the second operating frequency OF2 runs until the preset power PQ is exhausted.
  • the controller 13 in response to the indoor ambient temperature Tin reaching the set temperature Tobj, the controller 13 is also configured to reduce the second operating frequency OF2 according to the preset frequency step n until the operating frequency of the compressor 11 reaches the third operating frequency OF3,
  • the third operating frequency OF3 is determined to be the target operating frequency TOF of the compressor 11, thereby controlling the compressor 11 to operate at the target operating frequency TOF until the second power Q2 is exhausted.
  • the operating frequency of the compressor 11 will continue to decrease until the operating frequency of the compressor 11 decreases to the third operating frequency OF3.
  • the third operating frequency OF3 is the minimum operating frequency of the compressor 11.
  • the current value corresponding to the air conditioner 1 operating at the minimum operating frequency of the compressor 11 is recorded as the third current value A3.
  • the compressor 11 When the operating frequency of the compressor is reduced to the third operating frequency OF3, the compressor 11 is controlled to operate at the third operating frequency OF3 until the second power Q2 is exhausted, that is, the compressor 11 is controlled to operate at the third operating frequency OF3 to The preset power PQ is exhausted.
  • Some embodiments of the present disclosure also provide a power control method for an air conditioner.
  • the power control method is applied to the above-mentioned air conditioner 1, for example, applied to the controller 13 of the above-mentioned air conditioner 1.
  • the power control method of the air conditioner 1 at least includes S1 to S5.
  • the user when the air conditioner 1 is running in the cooling mode, in order to achieve a fixed value of power consumption, the user can input the desired power consumption of the air conditioner 1 through the mobile phone software, such as inputting the preset power PQ.
  • the receiver 12 After presetting the power PQ, the receiver 12 receives the preset power PQ. Based on the communication between the receiver 12 and the controller 13 , the controller 13 obtains the preset power PQ.
  • the sum of the first electric quantity Q1 and the second electric quantity Q2 is equal to the preset electric quantity PQ.
  • the preset quantity PQ is divided into electric quantities, for example, the preset electric quantity PQ is divided into a first electric quantity Q1 and a second electric quantity Q2.
  • S3 supply power to the air conditioner 1 according to the first electric quantity Q1, and control the compressor 11 to operate according to the preset mode of the air conditioner 1 until the first electric quantity Q1 is exhausted, and determine the corresponding power of the compressor 11 when the first electric quantity Q1 is exhausted.
  • the preset power PQ is divided into the first power Q1 in a ratio of 3:7, for example. (ie, 30% of the preset electric quantity PQ) and the second electric quantity Q2 (ie, 70% of the preset electric quantity PQ).
  • power is supplied to the air conditioner 1 based on the first electric quantity Q1.
  • the compressor 11 of the air conditioner 1 runs for the preset refrigeration module T1. At this time, the operating frequency of the compressor 11 is higher, and the cooling effect of the air conditioner 1 is relatively high. obvious.
  • the startup operation frequency of the compressor 11 will successively experience the first platform 1 and the second The second platform 2, and after experiencing the second platform 2, then reaches the third platform 3.
  • the operating frequency at the third platform 3 is called the first operating frequency OF1.
  • the compressor 11 operates according to the first operating frequency OF1 for a period of time, and when the operation is completed at time T1, the first power Q1 is considered exhausted. Then, after the first power Q1 is consumed, the first operating frequency OF1 of the compressor 11 is determined.
  • the first operation of the compressor 11 is determined.
  • Frequency OF1 at this time, power is supplied to the air conditioner 1 according to the second electric quantity Q2 (for example, 70% of the preset electric quantity PQ).
  • the target operating frequency TOF of the compressor 11 is determined.
  • the air conditioner 1 uses the first power Q1 and the second electric quantity Q2 are targeted to output the cooling capacity in the preset cooling mode or the heat in the preset heating mode, thereby realizing the control of the preset electric quantity PQ of the air conditioner 1 .
  • the user can specify the power consumption of the air conditioner, thereby distinguishing the power consumption of the air conditioner from that of other household appliances. The power consumption of electrical appliances. In this way, not only can the user's concerns about electricity consumption be eliminated, but the energy efficiency of the air conditioner 1 can also be improved while bringing convenience to the user.
  • the power control method of supplying power to the air conditioner 1 according to the second power Q2 in S4 and determining the target operating frequency TOF of the compressor 11 based on the first operating frequency OF1 includes S41 to S42.
  • S42 Determine the target operating frequency TOF of the compressor 11 based on the comparison result, thereby controlling the compressor 11 to operate at the target operating frequency TOF.
  • Some embodiments of the present disclosure also provide another power control method for the air conditioner 1 .
  • the power control method of the air conditioner 1 includes the above-mentioned S1 to S5, and S4 includes the above-mentioned S41 to S42.
  • the steps of the power control method of the air conditioner 1 in the embodiment of the present disclosure may be referred to the above embodiment, and will not be described again here.
  • the power control method of the air conditioner 1 obtains the preset power PQ and determines the first power Q1 and the second power Q2 according to the preset power PQ, so that the air conditioner 1 uses the first power Q1 and the second power Q2 as The target output is the cooling capacity in the preset cooling mode or the heat in the preset heating mode, thereby achieving control of the preset power PQ of the air conditioner 1 .
  • the user can specify the power consumption of the air conditioner, thereby distinguishing the power consumption of the air conditioner from that of other household appliances. The power consumption of electrical appliances.
  • the energy efficiency of the air conditioner 1 can also be improved while bringing convenience to the user.
  • the compressor 11 is controlled to operate at different operating frequencies, thereby improving the energy efficiency of the air conditioner 1 .
  • the power control method for determining the target operating frequency TOF of the compressor 11 according to the comparison result in S42 includes S421 to S423.
  • the first operating frequency OF1 is down-converted, and the voltage is determined.
  • the power control method of the target operating frequency TOF of the compressor 11 includes S4231 to S4233.
  • the first operating frequency OF1 is reduced according to the preset frequency step n (for example, 2 Hz/min). Since the operating frequency of the compressor 11 corresponds to the current value of the air conditioner 1, after the first operating frequency OF1 decreases, the corresponding first current value A1 decreases accordingly. In this way, by controlling the first operating frequency OF1 decrease, the decrease of the first current value A1 can be controlled. Furthermore, when the reduced first current value A1' is less than or equal to the average current value As, the second operating frequency OF2 corresponding to the current compressor 11 is determined.
  • the first operating frequency OF1 in order to maintain the stability of the operation of the compressor 11, when the first operating frequency OF1 is reduced according to the preset frequency step n, the first operating frequency OF1 is reduced in a smaller frequency step. In this way, the problem that the operating frequency of the compressor 11 decreases too quickly resulting in lower operating stability can be avoided, thereby improving the operating stability of the compressor 11 .
  • the current value corresponding to the second operating frequency OF2 is determined accordingly, and the current value corresponding to the second operating frequency OF2 of the air conditioner 1 is recorded as the second Current value A2.
  • the compressor 11 is controlled to run at the second operating frequency OF2 for a period of time. Since the second current value A2 corresponding to the second operating frequency OF2 is just smaller than the average current value As, the target operating frequency TOF of the compressor 11 can be determined based on the relationship between the indoor ambient temperature Tin and the set temperature Tboj.
  • the target operation of the compressor 11 is determined based on the relationship between the indoor ambient temperature Tin and the set temperature Tobj.
  • the power control method of frequency TOF includes S42331 to S42333.
  • the indoor cooling load has not been eliminated when the air conditioner 1 performs cooling, or that the indoor heat load has not been eliminated while the air conditioner 1 performs heating. Therefore, by determining the second operating frequency OF2 as the target operating frequency TOF, and controlling the compressor 11 to operate at the target operating frequency TOF until the second power Q2 is exhausted, that is, controlling the compressor 11 to operate at the second operating frequency OF2 to The preset power PQ is exhausted.
  • the second operating frequency OF2 is reduced according to the preset frequency step n until the operating frequency of the compressor 11 reaches the third operating frequency OF3, and the third operating frequency OF3 is determined to be
  • the target operating frequency TOF of the compressor 11 is thus controlled to operate the compressor 11 at the target operating frequency TOF until the second power Q2 is exhausted.
  • the operating frequency of the compressor 11 will continue to decrease until the operating frequency of the compressor 11 decreases to the third operating frequency OF3.
  • the third operating frequency OF3 is the minimum operating frequency of the compressor 11, and the current value corresponding to the minimum operating frequency of the compressor 11 is recorded as the third current value A3.
  • the compressor 11 When the operating frequency of the compressor 11 is reduced to the third operating frequency OF3, the compressor 11 is controlled to operate at the third operating frequency OF3 until the second power Q2 is exhausted, that is, the compressor 11 is controlled to operate at the third operating frequency OF3. Until the preset power PQ is exhausted.
  • Some embodiments of the present disclosure also provide a computer-readable storage medium.
  • Computer program instructions are stored in the computer-readable storage medium. When the computer program instructions are run on a computer, they cause the computer to execute an air conditioner as provided in the above embodiments. 1 power control method.
  • Some embodiments of the present disclosure also provide a computer program product.
  • the computer program product includes computer program instructions. When the computer program instructions are executed on the computer, the computer program instructions cause the computer to execute the power control method of the air conditioner 1 as provided in the above embodiment.
  • Some embodiments of the present disclosure also provide a computer program.
  • the computer program When the computer program is executed on the computer, the computer program causes the computer to execute a power control method for an air conditioner as provided in the above embodiment.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Human Computer Interaction (AREA)
  • Physics & Mathematics (AREA)
  • Fuzzy Systems (AREA)
  • Mathematical Physics (AREA)
  • Air Conditioning Control Device (AREA)

Abstract

一种空调器及其电量控制方法,空调器包括室内机、室外机、接收器和控制器。所述压缩机被配置为压缩冷媒。所述接收器被配置为接收用户输入的预设电量。所述控制器分别与所述接收器和所述压缩机连接;所述控制器被配置为获取所述预设电量;根据所述预设电量确定第一电量和第二电量;根据所述第一电量向所述空调器供电,并控制所述压缩机按照预设模式运行至所述第一电量耗尽,确定所述压缩机在所述第一电量耗尽时对应的第一运行频率;根据所述第二电量向空调器供电,并根据所述第一运行频率确定所述压缩机的所述目标运行频率,以控制所述空调器的耗电量;根据所述目标运行频率控制所述压缩机运行,直至所述第二电量耗尽。

Description

空调器及其电量控制方法
本申请要求于2022年3月9日提交的、申请号为202210231789.6的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本公开涉及空调技术领域,尤其涉及一种空调器及其电量控制方法。
背景技术
目前,虽然空调器的运行模式各不相同,但其总体控制策略基本相同,即,建立温区与运行频率的控制逻辑,以及,建立设定温度与运行频率的关系。空调器的这种控制策略决定其耗电量是随机且不可控制的。
发明内容
本公开一些实施例提供一种空调器。所述空调器包括室内机、室外机、接收器和控制器。所述室内机包括室内换热器。所述室外机包括室外换热器和压缩机;所述室外换热器与所述室内换热器连接;所述压缩机被配置为压缩冷媒,以使得压缩后的冷媒进入所述室外换热器或所述室内换热器。所述接收器被配置为接收用户输入的预设电量。所述控制器分别与所述接收器和所述压缩机连接。所述控制器被配置为获取所述预设电量;根据所述预设电量确定第一电量和第二电量,所述第一电量和所述第二电量之和小于或者等于所述预设电量;根据所述第一电量向所述空调器供电,控制所述压缩机按照预设模式运行至所述第一电量耗尽,并确定所述压缩机在所述第一电量耗尽时对应的第一运行频率;根据所述第二电量向所述空调器供电,并根据所述第一运行频率确定所述压缩机的目标运行频率;以及根据所述目标运行频率控制所述压缩机运行,直至所述第二电量耗尽;在根据所述第二电量向所述空调器供电,根据所述第一运行频率确定所述压缩机的所述目标运行频率时,所述控制器被配置为确定所述第一运行频率对应的第一电流值,确定根据所述第二电量向所述空调器供电时的平均电流值,并比较所述第一电流值和所述平均电流值之间的大小;以及根据比较结果确定所述压缩机的所述目标运行频率,以控制所述压缩机以所述目标运行频率运行。
本公开一些实施例还提供一种空调器的电量控制方法。所述方法应用于所述空调器中。所述方法包括:获取所述预设电量;根据所述预设电量确定所述第一电量和所述第二电量,所述第一电量和所述第二电量之和小于或者等于所述预设电量;根据所述第一电量向所述空调器供电,控制所述压缩机按照所述预设模式运行至所述第一电量耗尽,并确定所述压缩机在所述第一电量耗尽时对应的所述第一运行频率;根据所述第二电量向所述空调器供电,并根据所述第一运行频率确定所述压缩机的所述目标运行频率;以及根据所述目标运行频率控制所述压缩机运行,直至所述第二电量耗尽;根据所述第一运行频率确定所述压缩机的所述目标运行频率,包括确定所述第一运行频率对应的第一电流值,确定根据所述第二电量供电时的平均电流值,并比较所述第一电流值和所述平均电流值之间的大小;以及根据所述比较结果确定所述压缩机的所述目标运行频率,以控制所述压缩机以所述目标运行频率运行。
附图说明
为了更清楚地说明本公开中的技术方案,下面将对本公开一些实施例中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本公开的一些实 施例的附图,对于本领域普通技术人员来讲,还可以根据这些附图获得其他的附图。此外,以下描述中的附图可以视作示意图,并非对本公开实施例所涉及的产品的实际尺寸、方法的实际流程、信号的实际时序等的限制。
图1为根据一些实施例的一种空调器的结构框图;
图2为根据一些实施例的一种空调器的电量控制方法的流程图;
图3为根据一些实施例的一种压缩机的运行频率与运行时间的关系图;
图4为根据一些实施例的另一种空调器的电量控制方法的流程图;
图5为根据一些实施例的又一种空调器的电量控制方法的流程图;
图6为根据一些实施例的又一种空调器的电量控制方法的流程图;
图7为根据一些实施例的又一种空调器的电量控制方法的流程图。
在附图中:
1-空调器;
101-室内机;102-室外机;
10-冷媒循环回路;11-压缩机;12-接收器;13-控制器13;14-四通阀;15-室内换热器;16-膨胀阀;17-室外换热器;
PQ-预设电量;Q1-第一电量;Q2-第二电量;
TOF-目标运行频率;OF1-第一运行频率;OF2-第二运行频率;OF3-第三运行频率;
平均电流值-As;A1-第一电流值;A1'-降低后的第一电流值;A2-第二电流值;A3-第三电流值;
n-预设频率步长;
Tin-室内环境温度;Tobj-设定温度。
具体实施方式
下面将结合附图,对本公开一些实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本公开一部分实施例,而不是全部的实施例。基于本公开所提供的实施例,本领域普通技术人员所获得的所有其他实施例,都属于本公开保护的范围。
除非上下文另有要求,否则,在整个说明书和权利要求书中,术语“包括(comprise)”及其其他形式例如第三人称单数形式“包括(comprises)”和现在分词形式“包括(comprising)”被解释为开放、包含的意思,即为“包含,但不限于”。在说明书的描述中,术语“一个实施例(one embodiment)”、“一些实施例(some embodiments)”、“示例性实施例(exemplary embodiments)”、“示例(example)”、“特定示例(specific example)”或“一些示例(some examples)”等旨在表明与该实施例或示例相关的特定特征、结构、材料或特性包括在本公开的至少一个实施例或示例中。上述术语的示意性表示不一定是指同一实施例或示例。此外,所述的特定特征、结构、材料或特点可以以任何适当方式包括在任何一个或多个实施例或示例中。
以下,术语“第一”、“第二”仅用于描述目的,而不能理解为指示或暗示相对重要性或者隐含指明所指示的技术特征的数量。由此,限定有“第一”、“第二”的特征可以明示或者隐含地包括一个或者更多个该特征。在本公开实施例的描述中,除非另有说明,“多个”的含义是两个或两个以上。
在描述一些实施例时,可能使用了“耦接”和“连接”及其衍伸的表达。术语“连接” 应做广义理解,例如,“连接”可以是固定连接,也可以是可拆卸连接,或成一体;可以是直接相连,也可以通过中间媒介间接相连。例如,描述一些实施例时可能使用了术语“连接”以表明两个或两个以上部件彼此间有直接物理接触或电接触。又如,描述一些实施例时可能使用了术语“耦接”以表明两个或两个以上部件有直接物理接触或电接触。然而,术语“耦接”或“通信耦合(communicatively coupled)”也可能指两个或两个以上部件彼此间并无直接接触,但仍彼此协作或相互作用。这里所公开的实施例并不必然限制于本文内容。
“A、B和C中的至少一个”与“A、B或C中的至少一个”具有相同含义,均包括以下A、B和C的组合:仅A,仅B,仅C,A和B的组合,A和C的组合,B和C的组合,及A、B和C的组合。
“A和/或B”,包括以下三种组合:仅A,仅B,及A和B的组合。
如本文中所使用,根据上下文,术语“如果”任选地被解释为意思是“当……时”或“在……时”或“响应于确定”或“响应于检测到”。类似地,根据上下文,短语“如果确定……”或“如果检测到[所陈述的条件或事件]”任选地被解释为是指“在确定……时”或“响应于确定……”或“在检测到[所陈述的条件或事件]时”或“响应于检测到[所陈述的条件或事件]”。
本文中“适用于”或“被配置为”的使用意味着开放和包容性的语言,其不排除适用于或被配置为执行额外任务或步骤的设备。
另外,“基于”的使用意味着开放和包容性,因为“基于”一个或多个所述条件或值的过程、步骤、计算或其他动作在实践中可以基于额外条件或超出所述的值。
如本文所使用的那样,“约”、“大致”或“近似”包括所阐述的值以及处于特定值的可接受偏差范围内的平均值,其中所述可接受偏差范围如由本领域普通技术人员考虑到正在讨论的测量以及与特定量的测量相关的误差(即,测量系统的局限性)所确定。
如本文所使用的那样,“平行”、“垂直”、“相等”包括所阐述的情况以及与所阐述的情况相近似的情况,该相近似的情况的范围处于可接受偏差范围内,其中所述可接受偏差范围如由本领域普通技术人员考虑到正在讨论的测量以及与特定量的测量相关的误差(即,测量系统的局限性)所确定。例如,“平行”包括绝对平行和近似平行,其中近似平行的可接受偏差范围例如可以是5°以内偏差;“垂直”包括绝对垂直和近似垂直,其中近似垂直的可接受偏差范围例如也可以是5°以内偏差。“相等”包括绝对相等和近似相等,其中近似相等的可接受偏差范围内例如可以是相等的两者之间的差值小于或等于其中任一者的5%。
目前,虽然空调器的运行模式各不相同,但其总体控制策略基本相同,即,建立温区与运行频率的控制逻辑,以及,建立设定温度与运行频率的关系。空调器的这种控制策略决定其耗电量是随机且不可控制的。随着空调器的不断普及,用户对于空调器使用的关注点也在不断变化。例如,用户会在空调器的当前使用过程中较为关注空调器的耗电量情况,进而使得空调器按照目前的控制策略难以满足自身需求。
相关技术中,为满足用户对节省空调器的耗电量的需求,空调器中设置有节电模式,该节电模式例如依赖于电流限频的方式来进行。然而,采用电流限频的方式来节省电量,用户难以将空调器的耗电量与其他家用电器(例如,热水器)的耗电量进行区分,给用户带来不便。
为此,本公开一些实施例提供一种空调器。该空调器可以在提高空调器的能效的同时,区分空调器的耗电量与其他家用电器的耗电量。
图1为根据一些实施例的一种空调器的结构框图。如图1所示,空调器1包括室内机101和室外机102。
空调器1的室内机101室内换热器15。空调器1的室外机102包括压缩机11、四通阀14和室外换热器17。
空调器1还包括膨胀阀16。膨胀阀16可以设置在空调器1的室内机101或室外机102中。例如,如图1所示,膨胀阀16设置在空调器1的室外机102中。
室内换热器15和室外换热器17通过冷媒管路分别与压缩机11、四通阀14和膨胀阀16连接。依次连接的压缩机11、四通阀14、室内换热器15和室外换热器17形成空调器1的冷媒循环回路10。冷媒在冷媒循环回路10中循环流动,以实现空调器1的冷媒循环。冷媒循环包括一系列过程,例如,不仅涉及冷媒的压缩、冷凝、膨胀和蒸发过程,还涉及通过室内换热器15和室外换热器17分别与空气进行换热、并针对已被调节和热交换的空气循环供应冷媒的过程。
室内换热器15被配置为将室内空气与在室内换热器15中传输的冷媒进行热交换,室外换热器17被配置为将室外空气与在室外换热器17中传输的冷媒进行热交换。
两个换热器(例如,室内换热器15和室外换热器17)中的一个换热器被用作冷凝器,另一个换热器被用作蒸发器。例如,当室内换热器15被用作冷凝器时,室外换热器17被用作蒸发器,使得经由室外换热器17吸热后的冷媒通过室内换热器15将热量散发至室内空气而冷凝,此时,空调器1被用作制热模式的加热器。或者,当室内换热器15被用作蒸发器时,室外换热器17被用作冷凝器,使得经由室外换热器17散热后的冷媒通过室内换热器15吸收室内空气的热量而蒸发,此时,空调器1被用作制冷模式的冷却器。
压缩机11被配置为压缩冷媒,以使压缩后的冷媒进入室外换热器17或室内换热器15。例如,压缩机11使得处于低温低压状态的气相冷媒受压缩形成高温高压的气相冷媒。
压缩机11还被配置为排出高温高压的气相冷媒。高温高压的气相冷媒流入冷凝器(例如,室内换热器15或室外换热器17)。冷凝器将高温高压的气相冷媒冷凝成高压状态的液相冷媒,热量通过冷凝过程释放到周围环境。
膨胀阀16被配置为将高压状态的液相冷媒膨胀为低压状态的气液两相态冷媒。
蒸发器(例如,室内换热器15或室外换热器17)通过利用冷媒的蒸发的潜热与待冷却的材料进行热交换来实现制冷效果。例如,蒸发器从周围环境中吸收热量并将低压状态的气液两相冷媒蒸发形成低温低压的气相冷媒。低温低压状态的气相冷媒返回到压缩机11中。由此,冷媒在整个冷媒循环回路10中的循环流动得以完成,从而实现空调器对室内空间温度的调节。
在空调器1的运行过程中,通过提前设定需求时间内期望的耗电量,建立以目标运行频率(target operation frequency,TOF)作为控制对象的空调器1的控制策略,可以实现对空调器1耗电量的控制。而且,采用控制空调器1的运行频率的控制策略会极大地节省空调器1的电量,从而在天气较热或较冷时,使得空调器1在不同的条件下(例如,办公、微运动、读书或睡眠条件)下产生差异化的制冷或制热效果。
当空调器1以预设模式(例如,制冷模式或制热模式)运行时,为便于用户提前设定需求时间内期望的空调器1的耗电量,可以通过终端设备(例如,手机、平板或电脑)建 立用户与空调器1之间的通信连接。在一些实施例中,用户通过在手机软件上输入期望的空调器1的耗电量,例如输入预设电量(preset electric quantity,PQ),并基于手机与空调器1之间的通信,将所输入的预设电量传输至空调器1。需要说明的是,用户输入的期望的耗电量包括但不限于预设电量PQ。
以下以用户向空调器1输入的期望的耗电量为预设电量PQ为例进行说明。
如图1所示,空调器1还包括接收器12。接收器12被配置为接收用户输入的预设电量PQ。如此,用户通过终端设备与空调器1的接收器12连接,以将用户输入的预设电量传输至接收器12。
接收器12可以包括射频识别(radio frequency identification,RFID)接收器、近场通信(near filed communication,NFC)接收器、红外接收器等。
空调器1还包括控制器13。控制器13与接收器12连接。接收器12还被配置为将接收到的预设电量PQ传输至控制器13。
控制器13包括处理器。处理器可以包括中央处理器(central processing unit,CPU)、微处理器(microprocessor)、专用集成电路(application specific integrated circuit,ASIC)、芯片等,并且可以被配置为当处理器执行存储在耦合到控制器13的非暂时性计算机可读介质中的程序时,执行相应的操作。非暂时性计算机可读存储介质可以包括磁存储设备(例如,硬盘、软盘、或磁带)、智能卡、或闪存设备(例如,可擦除可编程只读存储器(erasable programmable read-only memory,EPROM)、卡、棒、或键盘驱动器)。
图2为根据一些实施例的一种空调器的电量控制方法的流程图。如图1和图2所示,控制器13被配置为获取预设电量PQ;根据预设电量PQ确定第一电量Q1和第二电量Q2,第一电量Q1和第二电量Q2之和小于或者等于预设电量PQ。如此,基于控制器13与接收器12之间的连接,可以实现控制器13对设定电量PQ的划分,从而保证空调器1的制热或者制冷效果。
在一些实施例中,第一电量Q1和第二电量Q2之和等于预设电量PQ。需要说明的是,本公开实施例对第一电量Q1和第二电量Q2的划分标准不做限定,例如,按电量的占比进行划分。而且,在按电量的占比进行划分的情况下,第一电量Q1与第二电量Q2的划分比例可以根据实际需要进行设置,例如,第一电量Q1与第二电量Q2的划分比例为3:7。
例如,可以根据室内环境温度和空调器1的设定温度之间的差异划分第一电量Q1与第二电量Q2的比例。前述差异较大时所对应的第一电量Q1的占比(Q1/(Q1+Q2)=Q1/PQ)大于前述差异较小时所对应的第一电量Q1的占比。一般情况下,第一电量Q1与第二电量Q2的划分比例小于5:5。但并不绝限于此,在一些实施例中,第一电量Q1与第二电量Q2的划分比例也可以大于5:5。
控制器13还与压缩机11连接。控制器13还被配置为根据第一电量Q1向空调器1供电,控制压缩机11按照空调器1的预设模式运行至第一电量Q1耗尽,并确定压缩机11在第一电量Q1耗尽时对应的第一运行频率OF1。在确定第一运行频率OF1之后,控制器13还被配置为根据第二电量Q2向空调器1供电,并根据第一运行频率OF1确定压缩机11的目标运行频率TOF;根据目标运行频率TOF控制压缩机11运行,直至第二电量Q2耗尽。
如此,本公开一些实施例提供的空调器1通过控制器13获取预设电量PQ,并根据预设电量PQ确定第一电量Q1和第二电量Q2,使得空调器1以第一电量Q1和第二电量Q2 为目标输出预设制冷模式下的冷量或者预设制热模式下的热量,从而实现对空调器1的预设电量PQ的调控而且,通过对空调器1的预设电量PQ进行调控,并按照预设电量PQ控制空调器1的运行频率,用户可以指定空调器的耗电量,从而区分空调器的耗电量与其他家用电器的耗电量。这样,不仅可以消除用户的用电顾虑,还可以在给用户带来便利的同时,提高空调器1的能效。
图3为根据一些实施例的一种压缩机的运行频率与运行时间的关系图。在一些实施例中,如图3所示,当第一电量Q1和第二电量Q2之和等于预设电量PQ时,控制器13将预设电量PQ按占比划分为第一电量Q1和第二电量Q2,第一电量Q1为预设电量PQ的30%,第二电量Q2为预设电量PQ的70%。
首先,控制器13根据第一电量Q1(即,预设电量PQ的30%)向空调器1供电。在控制器13根据第一电量Q1向空调器1供电的过程中,空调器1的压缩机11按照预设制冷模块运行T1时间,此时,压缩机11的运行频率较高,空调器1的制冷效果较为明显。在使用第一电量Q1向空调器1供电时,首先需要维持压缩机11的开机运行,而为了满足压缩机11的开机运行需求,压缩机11的运行频率会先后经历第一平台①和第二平台②,并在经历第二平台②后,随即到达第三平台③,将第三平台③处的运行频率称为第一运行频率OF1。此时,压缩机11按照第一运行频率OF1运行一段时间,并在T1时间运行完成时,认为第一电量Q1耗尽。
然后,在第一电量Q1耗尽后,控制器13确定压缩机11的第一运行频率OF1,此时,控制器13根据第二电量Q2(即,预设电量PQ的70%)向空调器1供电。在使用第二电量Q2向空调器1供电时,控制器13确定空调器1的压缩机11的目标运行频率TOF,并根据目标运行频率TOF控制压缩机11运行,直至第二电量Q2耗尽。
图4为根据一些实施例的另一种空调器的电量控制方法的流程图。在一些实施例中,如图4所示,在根据第一运行频率OF1确定压缩机11的目标运行频率TOF的过程中,控制器13例如被配置为确定第一运行频率OF1对应的第一电流值A1,确定根据第二电量Q2供电时的平均电流值As,并比较第一电流值A1和平均电流值As之间的大小。
例如,如图3和图4所示,控制器13根据第一电量Q1向空调器1供电,当第一电量Q1耗尽时,将空调器1在第一运行频率OF1下对应的电流值记为第一电流值A1。控制器13根据第二电量Q2向空调器1供电时,压缩机11运行T2+T3时间,在T2+T3时间段内,根据空调器1的耗电量、需求的耗电时间及压缩机11的运行电压确定空调器1的平均电流值As。在确定第一电流值A1和平均电流值As后,比较第一电流值A1和平均电流值As之间的大小。
在根据第一运行频率OF1确定压缩机11的目标运行频率TOF的过程中,控制器13还被配置为根据比较结果确定压缩机11的目标运行频率TOF,从而控制压缩机11以目标运行频率TOF运行。如此,通过比较第一电流值A1和平均电流值As的大小来控制压缩机11以不同的运行频率运行,从而使得空调器1的能效得以提高。
本公开一些实施例还提供另一种空调器。该空调器1包括如图1所示的室内机101、室外机102、接收器12和控制器13。需要说明的是,本公开实施例中的室内机101和室外机102的结构和功能均相同与上述实施例中的室内机101和室外机102的结构和功能均相同,在此不再赘述。
接收器12被配置为接收用户输入的预设电量PQ。控制器13分别与接收器12和室外 机102的压缩机11连接。
如图4所示,控制器13被配置为获取预设电量PQ;根据预设电量PQ确定第一电量Q1和第二电量Q2,第一电量Q1和第二电量Q2之和小于或者等于预设电量PQ;根据第一电量Q1向空调器1供电,控制压缩机11按照预设模式运行至第一电量Q1耗尽,并确定压缩机11在第一电量Q1耗尽时对应的第一运行频率OF1;根据第二电量Q2向空调器1供电,并根据第一运行频率OF1确定压缩机11的目标运行频率TOF,以控制空调器1的耗电量;以及根据目标运行频率TOF控制压缩机11运行,直至第二电量Q2耗尽。
在根据第二电量Q2向空调器1供电,并根据第一运行频率OF1确定压缩机11的目标运行频率TOF时,控制器13还被配置为确定第一运行频率OF1对应的第一电流值A1,确定根据第二电量Q2向空调器1供电时的平均电流值As,并比较第一电流值A1和平均电流值As之间的大小;以及根据比较结果确定压缩机11的目标运行频率TOF,以控制压缩机11以目标运行频率TOF运行。
如此,空调器1通过控制器13获取预设电量PQ,并根据预设电量PQ确定第一电量Q1和第二电量Q2,使得空调器1以第一电量Q1和第二电量Q2为目标输出预设制冷模式下的冷量或者预设制热模式下的热量,从而实现对空调器1的预设电量PQ的调控而且,通过对空调器1的预设电量PQ进行调控,并按照预设电量PQ控制空调器1的运行频率,用户可以指定空调器的耗电量,从而区分空调器的耗电量与其他家用电器的耗电量。这样,不仅可以消除用户的用电顾虑,还可以在给用户带来便利的同时,提高空调器1的能效。此外,通过比较第一电流值A1和平均电流值As的大小来控制压缩机11以不同的运行频率运行,从而使得空调器1的能效得以提高。
图5为根据一些实施例的又一种空调器的电量控制方法的流程图。在一些实施例中,如图5所示,在根据比较结果确定压缩机11的目标运行频率TOF的过程中,控制器13被配置为判断第一电流值A1是否小于或者等于平均电流值As。
响应于第一电流值A1小于或者等于平均电流值As(即,A1≤As),控制器13还被配置为确定第一运行频率OF1为压缩机11的目标运行频率TOF,从而控制压缩机11以第一运行频率OF1运行,直至第二电量Q2耗尽。
此时,认为空调器1在第一电量耗尽Q1后,室内环境温度和空调器1的设定温度之间的温差较小,因此,控制器13无需控制空调器1以较高频率运行,仍控制空调器1以第一运行频率OF1运行即可满足用户对温度的需求。
或者,响应于第一电流值A1大于平均电流值As(即,A1>As),控制器13还被配置为对第一运行频率OF1进行降频处理,确定压缩机11的目标运行频率TOF。
此时,认为空调器1在第一电量Q1耗尽后,室内环境温度与空调器1的设定温度之间的差值较大,因此,控制器13需要控制空调器1以较高的频率运行。但是,由于第一运行频率OF1(例如,图3中的第三平台③处的运行频率)本身处于比较高的运行频率,同时,为了兼顾用户可以指定空调器1的耗电量,从而区分空调器1的耗电量与其他家用电器的耗电量的需求,可以适当对第一运行频率OF1进行降频处理,并在降频处理过程中,确定目标运行频率TOF,然后控制压缩机11以该目标运行频率TOF运行,直至第二电量Q2耗尽。
图6为根据一些实施例的又一种空调器的电量控制方法的流程图。在一些实施例中,如图6所示,当第一电流值A1大于平均电流值As时,对第一运行频率OF1进行降频处 理,确定压缩机11的目标运行频率TOF的过程中,控制器13被配置为按照预设频率步长n降低第一运行频率OF1,当降低后的第一电流值A1'小于或等于平均电流值As(即,A1'≤As)时,确定当前压缩机11对应的第二运行频率OF2。
此时,响应于空调器1的第一电流值A1大于平均电流值As,控制器13按照预设频率步长n(例如,2Hz/min)降低第一运行频率OF1。由于压缩机11的运行频率与空调器1的电流值相对应,因此在第一运行频率OF1降低后,对应的第一电流值A1随之降低,如此,控制器13通过控制第一运行频率OF1的降低,可以控制第一电流值A1的降低。在此处,为区别于未被降低的第一电流值A1,将降低后的第一电流值标记为A1'。进而,当降低后的第一电流值A1'小于或者等于平均电流值As时,控制器13确定当前压缩机11对应的第二运行频率OF2。
在一些实施例中,为了维持压缩机11运行的稳定性,控制器13按照预设频率步长n降低第一运行频率OF1时,以较小的频率步长降低。这样,可以避免出现压缩机11的运行频率降低过快导致其运行稳定性较低的问题,从而提高压缩机11运行的稳定性。
当第一电流值A1大于平均电流值As时,对第一运行频率OF1进行降频处理,确定目标运行频率TOF的过程中,控制器13还被配置为根据第二运行频率OF2确定第二电流值A2,并控制压缩机11以第二运行频率OF2运行;在压缩机11以第二运行频率OF2运行的过程中,根据室内环境温度Tin与空调器1的设定温度Tboj之间的关系,确定压缩机11的目标运行频率TOF。
此时,在控制器13确定压缩机11对应的第二运行频率OF2后,与第二运行频率OF2对应的电流值随之确定,将空调器1在第二运行频率OF2下对应的电流值记为第二电流值A2。在确定第二电流值A2后,控制压缩机11以第二运行频率OF2运行一段时间。由于第二运行频率OF2对应的第二电流值A2刚好小于平均电流值As,因此控制器13可以根据室内环境温度Tin与设定温度Tboj之间的关系确定压缩机11的目标运行频率TOF。
可以理解的是,当室内环境温度Tin与设定温度Tboj接近时,认为空调器1在进行制冷时,室内的热量刚好被消耗完,或者,认为在空调器1进行制热时,室内的冷量刚好被消耗完。
图7为根据一些实施例的又一种空调器的电量控制方法的流程图。在一些实施例中,如图7所示,在压缩机11以第二运行频率OF2运行,根据室内环境温度Tin与设定温度Tboj之间的关系,确定压缩机11的目标运行频率TOF的过程中,控制器13被配置为在压缩机11以第二运行频率OF2运行的过程中,判断室内环境温度Tin是否达到设定温度Tobj。
响应于室内环境温度Tin未达到设定温度Tobj,控制器13还被配置为确定第二运行频率OF2为压缩机11的目标运行频率TOF,从而控制压缩机11以目标运行频率运行TOF,直至第二电量Q2耗尽。
此时,认为空调器1在进行制冷时,室内冷负荷还未被消除,或者,认为空调器1在进行制热时,室内热负荷还未被消除。需要说明的是,为保持建筑物的热湿环境,在某一时刻需向房间供应的冷量称为冷负荷。相反,为了补偿房间失热量需向房间供应的热量称为热负荷。因此,空调器1通过控制器13确定第二运行频率OF2为目标运行频率TOF,并控制压缩机11以目标运行频率TOF运行,直至第二电量Q2耗尽,也即,控制压缩机11以第二运行频率OF2运行至预设电量PQ耗尽。
或者,响应于室内环境温度Tin达到设定温度Tobj,控制器13还被配置为按照预设频率步长n降低第二运行频率OF2,直至压缩机11的运行频率达到第三运行频率OF3时,确定第三运行频率OF3为压缩机11的目标运行频率TOF,从而控制压缩机11以目标运行频率TOF运行,直至第二电量Q2耗尽。
此时,认为空调器1在进行制冷时,室内冷负荷已经消耗完,无需再对室内进行降温,或者,认为空调器1在进行制热时,室内热负荷已经消耗完,无需再对室内进行升温。因此,为了节省电量,压缩机11的运行频率会继续降低,直至压缩机11的运行频率降低至第三运行频率OF3。第三运行频率OF3为压缩机11的最小运行频率,将空调器1在压缩机11的最小运行频率运行时对应的电流值记为第三电流值A3。当压缩机的运行频率降低至第三运行频率OF3时,控制压缩机11以第三运行频率OF3运行,直至第二电量Q2耗尽,也即,控制压缩机11以第三运行频率OF3运行至预设电量PQ耗尽。
本公开一些实施例还提供一种空调器的电量控制方法,该电量控制方法应用于上述空调器1中,例如应用于上述空调器1的控制器13上。
如图2所示,空调器1的电量控制方法至少包括S1至S5。
S1,获取预设电量PQ。
在一些实施例中,空调器1在运行制冷模式时,为了实现耗电量的定值化,用户可以通过手机软件输入期望的空调器1的消耗电量,例如输入预设电量PQ,在用户输入预设电量PQ后,接收器12接收预设电量PQ,基于接收器12与控制器13之间的通信,控制器13获取预设电量PQ。
S2,根据预设电量PQ确定第一电量Q1和第二电量Q2,第一电量Q1和第二电量Q2之和小于或者等于预设电量PQ。
在一些实施例中,第一电量Q1和第二电量Q2之和等于预设电量PQ。需要说明的是,为了保证空调器1的制热或者制冷效果,将预设定量PQ进行电量划分,例如将预设电量PQ分为第一电量Q1和第二电量Q2。
S3,根据第一电量Q1向空调器1供电,并控制压缩机11按照空调器1的预设模式运行至第一电量Q1耗尽,并确定压缩机11在第一电量Q1耗尽时对应的第一运行频率OF1。
在一些实施例中,如图3所示,当第一电量Q1和第二电量Q2之和等于预设电量PQ时,将预设电量PQ例如按3:7的占比划分为第一电量Q1(即,预设电量PQ的30%)和第二电量Q2(即,预设电量PQ的70%)。首先,根据第一电量Q1向空调器1供电。在根据第一电量Q1向空调器1供电的过程中,空调器1的压缩机11按照预设制冷模块运行T1时间,此时,压缩机11的运行频率较高,空调器1的制冷效果较为明显。在使用第一电量Q1向空调器1供电时,首先需要维持压缩机11的开机运行,而为了满足压缩机11的开机运行需求,压缩机11的开机运行频率会先后经历第一平台①和第二平台②,并在经历第二平台②后,随即到达第三平台③,将第三平台③处的运行频率称为第一运行频率OF1。此时,压缩机11按照第一运行频率OF1运行一段时间,并在T1时间运行完成时,认为第一电量Q1耗尽。然后,在第一电量Q1消耗完后,确定压缩机11的第一运行频率OF1。
S4,根据第二电量Q2向空调器1供电,并根据第一运行频率OF1确定压缩机11的目标运行频率TOF。
在一些实施例中,如图3所示,在第一电量Q1消耗完后,确定压缩机11的第一运行 频率OF1,此时,根据第二电量Q2(例如,预设电量PQ的70%)向空调器1供电。在使用第二电量Q2向空调器1供电时,确定压缩机11的目标运行频率TOF。
S5,根据目标运行频率TOF控制压缩机11运行,直至第二电量Q2耗尽。
如此,根据本公开一些实施例提供的空调器1的电量控制方法,通过获取预设电量PQ,并根据预设电量PQ确定第一电量Q1和第二电量Q2,使得空调器1以第一电量Q1和第二电量Q2为目标输出预设制冷模式下的冷量或者预设制热模式下的热量,从而实现对空调器1的预设电量PQ的调控。而且,通过对空调器1的预设电量PQ进行调控,并按照预设电量PQ控制空调器1的运行频率,用户可以指定空调器的耗电量,从而区分空调器的耗电量与其他家用电器的耗电量。这样,不仅可以消除用户的用电顾虑,还可以在给用户带来便利的同时,提高空调器1的能效。
需要说明的是,本公开一些实施例的空调器1的电量控制方法的具体实现方式与本公开上述任意实施例的空调器1的具体实现方式类似,因此,为了减少冗余,此处不再赘述。
在一些实施例中,如图4所示,S4中根据第二电量Q2向空调器1供电,并根据第一运行频率OF1确定压缩机11的目标运行频率TOF的电量控制方法包括S41至S42。
S41,根据第二电量Q2向空调器1供电,确定第一运行频率OF1对应的第一电流值A1,确定根据第二电量Q2供电时的平均电流值As,并比较第一电流值A1和平均电流值As之间的大小。
S42,根据比较结果确定压缩机11的目标运行频率TOF,从而控制压缩机11以目标运行频率TOF运行。
本公开一些实施例还提供另一种空调器1的电量控制方法。该如图5所示,空调器1的电量控制方法包括上述的S1至S5,S4包括上述的S41至S42。为了减少冗余,本公开实施例中的空调器1的电量控制方法的步骤可参考上述实施例,此处不再赘述。
如此,该空调器1的电量控制方法,通过获取预设电量PQ,并根据预设电量PQ确定第一电量Q1和第二电量Q2,使得空调器1以第一电量Q1和第二电量Q2为目标输出预设制冷模式下的冷量或者预设制热模式下的热量,从而实现对空调器1的预设电量PQ的调控。而且,通过对空调器1的预设电量PQ进行调控,并按照预设电量PQ控制空调器1的运行频率,用户可以指定空调器的耗电量,从而区分空调器的耗电量与其他家用电器的耗电量。这样,不仅可以消除用户的用电顾虑,还可以在给用户带来便利的同时,提高空调器1的能效。此外,通过比较第一电流值A1和平均电流值As的大小来控制压缩机11以不同的运行频率运行,从而使得空调器1的能效得以提高。
在一些实施例中,如图5所示,S42中根据比较结果确定压缩机11的目标运行频率TOF的电量控制方法包括S421至S423。
S421,判断第一电流值A1是否小于或者等于平均电流值As。
S422,响应于第一电流值A1小于或者等于平均电流值As,确定第一运行频率OF1为压缩机11的目标运行频率TOF,从而控制压缩机11以第一运行频率OF1运行,直至第二电量Q2耗尽。
S423,响应于第一电流值A1大于平均电流值As,对第一运行频率OF1进行降频处理,确定压缩机11的目标运行频率TOF,从而控制压缩机11以目标运行频率TOF运行,直至第二电量Q2耗尽。
在一些实施例中,如图6所示,S423中对第一运行频率OF1进行降频处理,确定压 缩机11的目标运行频率TOF的电量控制方法包括S4231至S4233。
S4231,按照预设频率步长n降低第一运行频率OF1,当降低后的第一电流值A1'小于或等于平均电流值As时,确定当前压缩机11对应的第二运行频率OF2。
此时,响应于空调器1的第一电流值A1大于平均电流值As,按照预设频率步长n(例如,2Hz/min)降低第一运行频率OF1。由于压缩机11的运行频率与空调器1的电流值之间相对应,因此在第一运行频率OF1降低后,对应的第一电流值A1随之降低,如此,通过控制第一运行频率OF1的降低,可以控制第一电流值A1的降低。进而,当降低后的第一电流值A1'小于或者等于平均电流值As时,确定当前压缩机11对应的第二运行频率OF2。
在一些实施例中,为了维持压缩机11运行的稳定性,按照预设频率步长n降低第一运行频率OF1时,以较小的频率步长降低。这样,可以避免出现压缩机11的运行频率降低过快导致其运行稳定性较低的问题,从而提高压缩机11运行的稳定性。
S4232,根据第二运行频率OF2确定第二电流值A2,并控制压缩机11以第二运行频率OF2运行。
此时,在确定压缩机11对应的第二运行频率OF2后,与第二运行频率OF2对应的电流值随之确定,将空调器1在第二运行频率OF2下对应的电流值记为第二电流值A2。
S4233,在压缩机11以第二运行频率OF2运行的过程中,根据室内环境温度Tin与设定温度Tobj之间的关系,确定压缩机11的目标运行频率TOF。
此时,在确定第二电流值A2后,控制压缩机11以第二运行频率OF2运行一段时间。由于第二运行频率OF2对应的第二电流值A2刚好小于平均电流值As,因此可以根据室内环境温度Tin与设定温度Tboj之间的关系确定压缩机11的目标运行频率TOF。
可以理解的是,当室内环境温度Tin与设定温度Tboj接近时,认为空调器1在进行制冷时,室内的热量刚好被消耗完,或者,认为在空调器1进行制热时,室内的冷量刚好被消耗完。
在一些实施例中,如图7所示,S4233中在压缩机11以第二运行频率OF2运行的过程中,根据室内环境温度Tin与设定温度Tobj之间的关系确定压缩机11的目标运行频率TOF的电量控制方法包括S42331至S42333。
S42331,在压缩机11以第二运行频率OF2运行的过程中,判断室内环境温度Tin是否达到设定温度Tobj。
S42332,响应于室内环境温度Tin未达到设定温度Tobj,确定第二运行频率OF2为压缩机11的目标运行频率TOF,从而控制压缩机11以目标运行频率TOF运行,直至第二电量Q2耗尽。
此时,认为空调器1在进行制冷时,室内冷负荷还未被消除,或者,认为空调器1在进行制热时,室内热负荷还未被消除。因此,通过确定第二运行频率OF2为目标运行频率TOF,并控制压缩机11以目标运行频率TOF运行,直至第二电量Q2耗尽,也即,控制压缩机11以第二运行频率OF2运行至预设电量PQ耗尽。
S42333,响应于室内环境温度Tin达到设定温度Tobj,按照预设频率步长n降低第二运行频率OF2,直至压缩机11的运行频率达到第三运行频率OF3时,确定第三运行频率OF3为压缩机11的目标运行频率TOF,从而控制压缩机11以目标运行频率TOF运行,直至第二电量Q2耗尽。
此时,认为空调器1在进行制冷时,室内冷负荷已经消耗完,无需再对室内进行降温,或者,认为空调器1在进行制热时,室内热负荷已经消耗完,无需再对室内进行升温。因此,为了节省电量,压缩机11的运行频率会继续降低,直至压缩机11的运行频率降低至第三运行频率OF3。第三运行频率OF3为压缩机11的最小运行频率,压缩机11的最小运行频率对应的电流值记为第三电流值A3。当压缩机11的运行频率降低至第三运行频率OF3时,控制压缩机11以第三运行频率OF3运行,直至第二电量Q2耗尽,也即,控制压缩机11以第三运行频率OF3运行至预设电量PQ耗尽。
本公开一些实施例还提供一种计算机可读存储介质,该计算机可读存储介质中存储有计算机程序指令,计算机程序指令在计算机上运行时,使得计算机执行如上述实施例提供的一种空调器1的电量控制方法。
本公开一些实施例还提供一种计算机程序产品。该计算机程序产品包括计算机程序指令,在计算机上执行该计算机程序指令时,该计算机程序指令使计算机执行如上述实施例提供的一种空调器1的电量控制方法。
本公开一些实施例还提供一种计算机程序。当该计算机程序在计算机上执行时,该计算机程序使计算机执行如上述实施例提供的一种空调器的电量控制方法。
上述计算机可读存储介质、计算机程序产品及计算机程序的有益效果和上述实施例提供的一种空调器1的电量控制方法的有益效果相同,此处不再赘述。
本领域的技术人员将会理解,本发明的公开范围不限于上述具体实施例,并且可以在不脱离本申请的精神的情况下对实施例的某些要素进行修改和替换。本申请的范围受所附权利要求的限制。

Claims (20)

  1. 一种空调器,包括:
    室内机,包括室内换热器;
    室外机,包括室外换热器和压缩机;其中,所述室外换热器与所述室内换热器连接;所述压缩机被配置为压缩冷媒,以使压缩后的冷媒进入所述室外换热器或所述室内换热器;
    接收器,被配置为接收用户输入的预设电量;和
    控制器,分别与所述接收器和所述压缩机连接,所述控制器被配置为:
    获取所述预设电量;
    根据所述预设电量确定第一电量和第二电量,所述第一电量和所述第二电量之和小于或者等于所述预设电量;
    根据所述第一电量向所述空调器供电,控制所述压缩机按照预设模式运行至所述第一电量耗尽,并确定所述压缩机在所述第一电量耗尽时对应的第一运行频率;
    根据所述第二电量向所述空调器供电,并根据所述第一运行频率确定所述压缩机的目标运行频率,以控制所述空调器的耗电量;和
    根据所述目标运行频率控制所述压缩机运行,直至所述第二电量耗尽;
    其中,在根据所述第二电量向所述空调器供电,并根据所述第一运行频率确定所述压缩机的所述目标运行频率时,所述控制器被配置为:
    确定所述第一运行频率对应的第一电流值,确定根据所述第二电量向所述空调器供电时的平均电流值,并比较所述第一电流值和所述平均电流值之间的大小;和
    根据比较结果确定所述压缩机的所述目标运行频率,以控制所述压缩机以所述目标运行频率运行。
  2. 根据权利要求1所述的空调器,其中,所述平均电流值根据在根据所述第二电量向所述空调器供电的时间段内的所述空调器的所述耗电量、耗电时间及所述压缩机的运行电压共同确定。
  3. 根据权利要求1或2所述的空调器,其中,在根据所述比较结果确定所述压缩机的所述目标运行频率时,所述控制器被配置为:
    判断所述第一电流值是否小于或者等于所述平均电流值;
    响应于所述第一电流值小于或者等于所述平均电流值,确定所述第一运行频率为所述压缩机的所述目标运行频率;或者
    响应于所述第一电流值大于所述平均电流值,对所述第一运行频率进行降频处理,确定所述压缩机的所述目标运行频率。
  4. 根据权利要求3所述的空调器,其中,在响应于所述第一电流值大于所述平均电流值,对所述第一运行频率进行降频处理,确定所述压缩机的所述目标运行频率时,所述控制器被配置为:
    按照预设频率步长降低所述第一运行频率,当降低后的第一电流值小于或等于所述平均电流值时,确定当前所述压缩机对应的第二运行频率;
    根据所述第二运行频率确定第二电流值,并控制所述压缩机以所述第二运行频率运行;和
    在所述压缩机以所述第二运行频率运行的过程中,根据室内环境温度与设定温度之间的关系,确定所述压缩机的所述目标运行频率。
  5. 根据权利要求4所述的空调器,其中,所述第二电流值小于所述平均电流值。
  6. 根据权利要求4或5所述的空调器,其中,在所述压缩机以所述第二运行频率运行的过程中,根据所述室内环境温度与所述设定温度之间的关系,确定所述压缩机的所述目标运行频率时,所述控制器被配置为:
    在所述压缩机以所述第二运行频率运行的过程中,判断所述室内环境温度是否达到所述设定温度;
    响应于所述室内环境温度未达到所述设定温度,确定所述第二运行频率为所述压缩机的所述目标运行频率;或者
    响应于所述室内环境温度达到所述设定温度,按照所述预设频率步长降低所述第二运行频率,直至所述压缩机的运行频率达到第三运行频率时,确定所述第三运行频率为所述压缩机的所述目标运行频率。
  7. 根据权利要求6所述的空调器,其中,所述第三运行频率为所述压缩机的最小运行频率。
  8. 根据权利要求4-7任一项所述的空调器,其中,所述预设频率步长为2Hz/min。
  9. 根据权利要求1-8任一项所述的空调器,其中,所述第一电量和所述第二电量之和等于所述预设电量;所述第一电量和所述第二电量按相对于所述预设电量的占比划分为30%和70%。
  10. 根据权利要求1-9任一项所述的空调器,其中,所述空调器的预设模式为制冷模式或制热模式。
  11. 一种空调器的电量控制方法,应用于根据权利要求1-10任一项所述的空调器中,所述方法包括:
    获取所述预设电量;
    将所述预设电量确定所述第一电量和所述第二电量,所述第一电量和所述第二电量之和小于或者等于所述预设电量;
    根据所述第一电量向所述空调器供电,控制所述压缩机按照所述预设模式运行至所述第一电量耗尽,并确定所述压缩机在所述第一电量耗尽时对应的所述第一运行频率;
    根据所述第二电量向所述空调器供电,并根据所述第一运行频率确定所述压缩机的所述目标运行频率,以控制所述空调器的耗电量;和
    根据所述目标运行频率控制所述压缩机运行,直至所述第二电量耗尽;
    其中,根据所述第二电量向所述空调器供电,并根据所述第一运行频率确定所述压缩机的所述目标运行频率,包括:
    确定所述第一运行频率对应的第一电流值,确定根据所述第二电量供电时的平均电流值,并比较所述第一电流值和所述平均电流值之间的大小;和
    根据所述比较结果确定所述压缩机的所述目标运行频率,以控制所述压缩机以所述目标运行频率运行。
  12. 根据权利要求11所述的空调器的电量控制方法,其中,所述平均电流值根据在根据所述第二电量向所述空调器供电的时间段内的所述空调器的所述耗电量、耗电时间及所述压缩机的运行电压共同确定。
  13. 根据权利要求11或12所述的空调器的电量控制方法,其中,根据所述比较结果确定所述压缩机的所述目标运行频率,包括:
    判断所述第一电流值是否小于或者等于所述平均电流值;
    响应于所述第一电流值小于或者等于所述平均电流值,确定所述第一运行频率为所述压缩机的所述目标运行频率;或者
    响应于所述第一电流值大于所述平均电流值,对所述第一运行频率进行降频处理,确定所述压缩机的所述目标运行频率。
  14. 根据权利要求13所述的空调器的电量控制方法,其中,对所述第一运行频率进行降频处理,确定所述压缩机的所述目标运行频率,包括:
    按照所述预设频率步长降低所述第一运行频率,当所述降低后的第一电流值小于或等于所述平均电流值时,确定当前所述压缩机对应的所述第二运行频率;
    根据所述第二运行频率确定所述第二电流值,并控制所述压缩机以所述第二运行频率运行;和
    在所述压缩机以所述第二运行频率运行的过程中,根据所述室内环境温度与所述设定温度之间的关系,确定所述压缩机的所述目标运行频率。
  15. 根据权利要求14所述的空调器的电量控制方法,其中,所述第二电流值小于所述平均电流值。
  16. 根据权利要求14或15所述的空调器的电量控制方法,其中,根据所述室内环境温度与所述设定温度之间的关系,确定所述压缩机的所述目标运行频率,包括:
    在所述压缩机以所述第二运行频率运行的过程中,判断所述室内环境温度是否达到所述设定温度;
    响应于所述室内环境温度未达到设定温度,确定所述第二运行频率为所述压缩机的所述目标运行频率;或者
    响应于所述室内环境温度达到所述设定温度,按照所述预设频率步长降低所述第二运行频率,直至所述压缩机的运行频率达到所述第三运行频率时,确定所述第三运行频率为所述压缩机的所述目标运行频率。
  17. 根据权利要求16所述的空调器的电量控制方法,其中,所述第三运行频率为所述压缩机的最小运行频率。
  18. 根据权利要求14-17任一项所述的空调器的电量控制方法,其中,所述预设频率步长为2Hz/min。
  19. 根据权利要求11-18任一项所述的空调器的电量控制方法,其中,所述第一电量和所述第二电量之和等于所述预设电量;所述第一电量和所述第二电量按相对于所述预设电量的占比划分为30%和70%。
  20. 根据权利要求11-19任一项所述的空调器的电量控制方法,其中,所述空调器的预设模式为制冷模式或制热模式。
PCT/CN2023/080627 2022-03-09 2023-03-09 空调器及其电量控制方法 WO2023169536A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202380013568.4A CN118103639A (zh) 2022-03-09 2023-03-09 空调器及其电量控制方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202210231789.6A CN114543277B (zh) 2022-03-09 2022-03-09 空调器及其电量控制方法
CN202210231789.6 2022-03-09

Publications (1)

Publication Number Publication Date
WO2023169536A1 true WO2023169536A1 (zh) 2023-09-14

Family

ID=81664404

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/080627 WO2023169536A1 (zh) 2022-03-09 2023-03-09 空调器及其电量控制方法

Country Status (2)

Country Link
CN (2) CN114543277B (zh)
WO (1) WO2023169536A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114543277B (zh) * 2022-03-09 2023-07-14 海信空调有限公司 空调器及其电量控制方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107883526A (zh) * 2017-10-19 2018-04-06 广东美的制冷设备有限公司 空调器节能控温方法、空调器及存储介质
CN110410924A (zh) * 2019-07-22 2019-11-05 Tcl空调器(中山)有限公司 一种变频空调的运行控制方法、存储介质及空调
CN111023466A (zh) * 2019-12-23 2020-04-17 宁波奥克斯电气股份有限公司 一种空调耗电量的控制方法、系统、存储介质及空调器
CN113865035A (zh) * 2021-09-30 2021-12-31 佛山市顺德区美的电子科技有限公司 便携空调器的控制方法、便携空调器以及控制装置
CN114543277A (zh) * 2022-03-09 2022-05-27 海信(山东)空调有限公司 空调器及其电量控制方法

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS55155134A (en) * 1979-05-21 1980-12-03 Toshiba Corp Air conditioner
JP2001355932A (ja) * 2000-06-13 2001-12-26 Corona Corp 空気調和機
JP2006162213A (ja) * 2004-12-10 2006-06-22 Matsushita Electric Ind Co Ltd 空調用遠隔制御装置
CN103206767B (zh) * 2012-07-09 2014-09-03 广东美的制冷设备有限公司 变频空调器的节能控制方法及装置
KR102123428B1 (ko) * 2013-05-15 2020-06-16 엘지전자 주식회사 공기조화기 및 공기조화기 시스템
CN104748323B (zh) * 2013-12-31 2017-11-14 广东美的制冷设备有限公司 空调器的运行控制方法、装置及空调器
CN106440218B (zh) * 2016-09-30 2019-05-07 广东美的制冷设备有限公司 电量设置控制方法、控制器、智能设备及空调
CN106322688B (zh) * 2016-09-30 2019-07-26 广东美的制冷设备有限公司 电量设置控制方法、控制器、智能设备及空调
CN106969413B (zh) * 2017-03-27 2020-09-25 广东美的制冷设备有限公司 家用空调及其用电量控制方法和控制装置
CN107202400B (zh) * 2017-05-22 2020-08-04 青岛海尔空调器有限总公司 一种空调器控制方法、控制系统和空调器

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107883526A (zh) * 2017-10-19 2018-04-06 广东美的制冷设备有限公司 空调器节能控温方法、空调器及存储介质
CN110410924A (zh) * 2019-07-22 2019-11-05 Tcl空调器(中山)有限公司 一种变频空调的运行控制方法、存储介质及空调
CN111023466A (zh) * 2019-12-23 2020-04-17 宁波奥克斯电气股份有限公司 一种空调耗电量的控制方法、系统、存储介质及空调器
CN113865035A (zh) * 2021-09-30 2021-12-31 佛山市顺德区美的电子科技有限公司 便携空调器的控制方法、便携空调器以及控制装置
CN114543277A (zh) * 2022-03-09 2022-05-27 海信(山东)空调有限公司 空调器及其电量控制方法

Also Published As

Publication number Publication date
CN114543277B (zh) 2023-07-14
CN118103639A (zh) 2024-05-28
CN114543277A (zh) 2022-05-27

Similar Documents

Publication Publication Date Title
CN110513819B (zh) 一种空调控制方法、空调以及存储介质
CN103388856B (zh) 多联机空调系统及其快速启动制热方法
CN109945454B (zh) 空调系统压缩机控制方法、空调控制器和空调
CN111780362B (zh) 一种空调器及其控制方法
CN111207485B (zh) 一种防冻结控制方法、装置、存储介质及水多联系统
WO2023169536A1 (zh) 空调器及其电量控制方法
CN113819514B (zh) 一种空调系统及其控制方法
CN113531856A (zh) 多联空调系统及多联空调系统的冷媒流量控制方法
KR100378822B1 (ko) 인버터 에어컨의 절전냉방 운전방법
CN112815477A (zh) 一种空调器和控制方法
KR102558826B1 (ko) 공기 조화 시스템 및 제어 방법
WO2021135677A1 (zh) 用于自动切换冷水机组的运行模式的控制方法
WO2023231303A1 (zh) 供暖系统及其控制方法
JP2014074564A (ja) 空気調和機
JP5677198B2 (ja) 空冷ヒートポンプチラー
US20240077231A1 (en) Heat-pump water heater
CN113137719B (zh) 一种空调器和控制方法
CN110895013B (zh) 水多联系统的控制方法、装置、存储介质及水多联系统
CN107131656A (zh) 热水器的控制方法、系统、计算机设备及可读存储介质
JP2011237111A (ja) ヒートポンプ温水暖房装置
JP2016050731A (ja) ヒートポンプシステム
JP5772665B2 (ja) ヒートポンプ式給湯装置
WO2023203745A1 (ja) 空気調和装置、および空気調和方法
CN116007144B (zh) 一种空调的控制方法、装置、空调和存储介质
JP4104267B2 (ja) ヒートポンプ式給湯機及びその運転方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23766113

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 202380013568.4

Country of ref document: CN