WO2021088194A1 - 互感器、其封装制造方法及其电力仪表 - Google Patents

互感器、其封装制造方法及其电力仪表 Download PDF

Info

Publication number
WO2021088194A1
WO2021088194A1 PCT/CN2019/124227 CN2019124227W WO2021088194A1 WO 2021088194 A1 WO2021088194 A1 WO 2021088194A1 CN 2019124227 W CN2019124227 W CN 2019124227W WO 2021088194 A1 WO2021088194 A1 WO 2021088194A1
Authority
WO
WIPO (PCT)
Prior art keywords
transformer
ring
side wall
magnetic core
material part
Prior art date
Application number
PCT/CN2019/124227
Other languages
English (en)
French (fr)
Inventor
朱永虎
姚昱
Original Assignee
浙江永泰隆电子股份有限公司
桐乡市伟达电子有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 浙江永泰隆电子股份有限公司, 桐乡市伟达电子有限公司 filed Critical 浙江永泰隆电子股份有限公司
Priority to KR1020227002683A priority Critical patent/KR102615056B1/ko
Publication of WO2021088194A1 publication Critical patent/WO2021088194A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F27/00Details of transformers or inductances, in general
    • H01F27/24Magnetic cores
    • H01F27/245Magnetic cores made from sheets, e.g. grain-oriented
    • H01F27/2455Magnetic cores made from sheets, e.g. grain-oriented using bent laminations
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F17/00Fixed inductances of the signal type 
    • H01F17/04Fixed inductances of the signal type  with magnetic core
    • H01F17/06Fixed inductances of the signal type  with magnetic core with core substantially closed in itself, e.g. toroid
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F27/00Details of transformers or inductances, in general
    • H01F27/02Casings
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F27/00Details of transformers or inductances, in general
    • H01F27/02Casings
    • H01F27/022Encapsulation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F27/00Details of transformers or inductances, in general
    • H01F27/24Magnetic cores
    • H01F27/26Fastening parts of the core together; Fastening or mounting the core on casing or support
    • H01F27/266Fastening or mounting the core on casing or support
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F3/00Cores, Yokes, or armatures
    • H01F3/02Cores, Yokes, or armatures made from sheets
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F38/00Adaptations of transformers or inductances for specific applications or functions
    • H01F38/20Instruments transformers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F41/00Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties
    • H01F41/005Impregnating or encapsulating
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F41/00Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties
    • H01F41/02Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for manufacturing cores, coils, or magnets
    • H01F41/0206Manufacturing of magnetic cores by mechanical means
    • H01F41/0233Manufacturing of magnetic circuits made from sheets
    • H01F41/024Manufacturing of magnetic circuits made from deformed sheets

Definitions

  • the invention relates to the technical field of transformers, in particular to a transformer for power meter measurement, a packaging manufacturing method thereof, and a power meter.
  • a transformer is a device for the use, measurement or measurement of electrical parameters.
  • the transformer is especially suitable for electronic power meters.
  • the miniature current (voltage) transformer products cover almost all aspects of the application of the entire power system.
  • Transformers generally include magnetic cores wound with secondary current wire coils.
  • the power transformers currently widely used in the power field, they have very strict requirements on magnetic core materials, not only requiring high magnetic indicators (such as high magnetic permeability, high permeability). Saturation magnetic induction, low loss, etc.), and the entire magnetization curve of the magnetic core material is required to meet certain conditions to ensure the accuracy of the transformer in the entire measurement range.
  • high magnetic indicators such as high magnetic permeability, high permeability.
  • Saturation magnetic induction, low loss, etc. Saturation magnetic induction, low loss, etc.
  • the entire magnetization curve of the magnetic core material is required to meet certain conditions to ensure the accuracy of the transformer in the entire measurement range.
  • the application of amorphous microcrystalline alloys as transformer cores has gradually attracted the attention of those skilled in the art.
  • Amorphous means that when the solidification rate of a metal or alloy is very fast (for example, an iron-boron alloy melt is solidified with a cooling rate of up to one million degrees per second), the atoms are frozen before they are arranged neatly, and the final atomic arrangement The method is similar to liquid, but chaotic. This is an amorphous alloy. Compared with traditional metal magnetic materials, amorphous alloys have disorderly arrangement of atoms, no crystal anisotropy, and high resistivity, so they have high permeability and low loss. The magnetic properties of amorphous alloys are actually So far the most important application field of amorphous alloys. In addition, amorphous processing technology is flexible.
  • amorphous alloys Compared with other magnetic materials, amorphous alloys have a wide range of chemical composition, and even the same material can easily obtain the required magnetic properties through different subsequent treatments. . Therefore, the magnetic properties of amorphous alloys are very flexible, and there is a lot of choice, which provides convenience for the selection of power electronic components. On the other hand, the amorphous manufacturing process is energy-saving and environmentally friendly. Due to traditional thin steel plates, from steelmaking, casting, ingot billeting, blooming, annealing, hot rolling, annealing, pickling, finishing, shearing to finished thin plates , Requires several technological links and dozens of procedures.
  • the present invention provides a transformer with better magnetic index and better stability in use, its packaging manufacturing method and power meter.
  • a transformer is used to be sheathed on a primary current line.
  • the transformer includes a transformer housing, a ring-shaped magnetic core accommodated in the transformer housing, and a ring-shaped magnetic core accommodated in the transformer housing and wound around the ring-shaped magnetic core.
  • the secondary current line on the core, the annular magnetic core includes a superfine crystal magnetic core, the transformer housing includes an integrally arranged hard material part and a soft material part, the hard material part and the soft material part are common
  • a ring-shaped accommodating cavity with a closed bottom is formed.
  • the ring-shaped accommodating cavity includes a ring-shaped bottom wall, an outer side wall surrounding the outer side of the ring-shaped bottom wall, and an inner side wall surrounding the middle of the ring-shaped bottom wall, and the ring-shaped magnetic core Close to the annular bottom wall, and sleeved on the outer side of the inner side wall and housed in the inner side of the outer side wall, the outer side wall is a part of the hard material part, the inner side wall is a part of the soft material part, and the inner side wall A perforation is formed on the inner side for the primary current line to pass through, the inner side wall protrudes into the perforation to resist a soft interference part that interferes with the primary current line, and the soft material part is a high temperature resistant material,
  • the ring-shaped accommodating cavity is filled with a packaging material for holding the ring-shaped magnetic core.
  • the ultramicrocrystalline magnetic core is a circular ring made of a thin strip of amorphous material after winding it round by round and heat treatment.
  • the amorphous material is formed by solidifying an alloy melt containing ferromagnetic elements and vitrifying elements at a cooling rate of one million degrees per second.
  • the ferromagnetic element includes iron, cobalt, nickel and/or any combination thereof;
  • the vitrification element includes silicon, boron, carbon and/or any combination thereof.
  • the ring-shaped magnetic core includes a magnetic core shell and the ultra-microcrystalline magnetic core housed in the magnetic core shell, and the magnetic core shell is wrapped on the outside of the ultra-microcrystalline magnetic core Ring shape.
  • the superfine crystal magnetic core dipping varnish is cured in the annular receiving cavity.
  • the hard material portion includes an annular bottom end wall extending from the outer side wall to the perforation direction, and the annular bottom end wall is provided with a corresponding to the perforation for supplying a primary current line
  • the soft material portion includes an annular chassis extending from the inner side wall to the outer side wall, and the bottom end wall and the chassis are integrally arranged to form the annular bottom wall.
  • the bottom end wall is provided with a number of small columns surrounding the outer side of the middle hole
  • the annular chassis is provided with a number of holes surrounding the outer side of the inner side wall, so The hole part is pierced and fixed on the small cylinder.
  • the top of the small cylinder is integrally extended to cover the chassis to prevent the chassis from separating from the cap of the small cylinder.
  • the annular chassis is embedded and formed inside the bottom end wall.
  • the annular chassis is perforated with holes distributed on the outer side of the inner side wall, and the holes are embedded in the bottom end wall.
  • the present invention may also adopt the following technical solutions:
  • a power meter includes a power meter housing, a metering device, a metering display device, and a connection structure between a transformer and a terminal button located in the power meter housing.
  • the connection structure between the transformer and the terminal button includes the transformer, wear A primary current line provided on the transformer and a terminal button electrically connected to the primary current line.
  • the terminal button includes a main body and a columnar body extending forward from the main body.
  • the columnar body is recessed from the front to the back with a connecting hole, and the main body is provided with a rearward recessed
  • the connection hole, the connection hole and the connection hole are opposite to the front and back and do not communicate with each other, and the primary current line is penetrated in the connection hole.
  • the present invention may also adopt the following technical solutions:
  • a method for packaging and manufacturing a transformer for manufacturing the above-mentioned transformer includes:
  • a ring-shaped magnetic core wound with a secondary current line coil including an ultra-microcrystalline magnetic core
  • a transformer housing is fabricated.
  • the transformer housing includes a hard material part and a soft material part that are integrally arranged, and the hard material part and the soft material part together form a closed bottom annular receiving cavity, the annular receiving cavity It includes a ring-shaped bottom wall, an outer side wall surrounding the outer side of the ring-shaped bottom wall, and an inner side wall surrounding the middle of the ring-shaped bottom wall.
  • the outer side wall is a part of a hard material part and the inner side wall is a part of a soft material part
  • a perforation is formed on the inner side of the inner side wall for the primary current line to pass through, and the inner side wall protrudes into the perforation to resist a soft interference portion that interferes with the primary current line, and the soft material portion High temperature resistant material;
  • the present invention may also adopt the following technical solutions:
  • a method for packaging and manufacturing a transformer for manufacturing the above-mentioned transformer includes:
  • the ring-shaped magnetic core includes an ultra-microcrystalline magnetic core
  • the hard material part includes a bottom end wall with a middle hole and an outer side wall surrounding the bottom end wall, and the bottom end wall is provided with a number of small columns surrounding and distributed outside the middle hole;
  • the soft material portion includes a cylindrical hollow inner side wall and an annular chassis extending outward from the inner side wall.
  • a through hole is formed on the inner side of the inner side wall for the primary current to pass through, and the inner side wall protrudes into the through hole
  • a soft interference part for resisting and interfering with the primary current line, the soft material part is a high temperature resistant material, and the annular chassis is provided with holes distributed on the outer side of the inner side wall;
  • the packaging and manufacturing method of the transformer further includes after the hole is pierced and fixed on the small cylinder, ultrasonic riveting the small cylinder to make the top of the small cylinder It has an integrally extending flat-shaped cap, so that the small cylinder passes through the hole and is riveted to the chassis.
  • the present invention may also adopt the following technical solutions:
  • a method for packaging and manufacturing a transformer for manufacturing the above-mentioned transformer includes:
  • a ring-shaped magnetic core wound with a secondary current line coil including an ultra-microcrystalline magnetic core
  • a two-color plastic injection machine is used to form a transformer housing with two different soft and hard materials at one time.
  • the transformer housing includes a hard material part and a soft material part.
  • the soft material part includes a cylindrical hollow inner side wall and a self-internal side wall.
  • a ring-shaped chassis extending outwards, a perforation is formed on the inner side of the inner side wall for the primary current line to pass through, and the inner side wall protrudes into the perforation to resist the soft interference part that interferes with the primary current line.
  • the flexible material part is a high temperature resistant material.
  • the rigid material part includes a bottom end wall with a middle hole and an outer side wall surrounding the bottom end wall.
  • the chassis is embedded in the bottom end wall by injection molding so that the inner side wall and the outer side
  • the wall, the chassis and the bottom end wall form an annular receiving cavity with a bottom seal;
  • the step of using a two-color plastic injection machine to mold a transformer housing with two different soft and hard materials at one time includes first injection molding the soft material part, and placing the soft material part in the mold for injection molding. In this way, the ring-shaped chassis of the soft material part is embedded in the hard material part.
  • the step of using a two-color plastic injection machine to mold a transformer housing with two different soft and hard materials at one time includes first injection molding the outer side wall of the hard material part and part of the bottom end wall.
  • the soft material part is formed on the wall, and then another part of the bottom end wall is further injection-molded on the outside of the annular chassis of the soft material part, so that the annular chassis of the soft material part is embedded in the hard material part.
  • the ring-shaped chassis of the soft material portion is provided with a number of holes distributed at intervals during molding, and the holes are for the hard material portion to pass through during injection molding.
  • the annular magnetic core of the present invention includes an ultra-microcrystalline magnetic core
  • the transformer housing includes a hard material part and a soft material part integrally arranged, the hard material part and the soft material part Together to form a closed annular receiving cavity
  • the soft material part is provided with a soft interference part for resisting and interfering with the primary current line
  • the soft material part is made of high temperature resistant material
  • the annular receiving cavity is It is filled with an encapsulating material to hold the ring-shaped magnetic core.
  • Figure 1 is a three-dimensional schematic diagram of the connection structure between the transformer and the terminal button of the present invention
  • Figure 2 is a schematic diagram of the three-dimensional structure of the transformer of the present invention.
  • Figure 3 is an exploded view of a part of the three-dimensional structure of the transformer of the present invention.
  • FIG. 5 is a schematic diagram of the structure of the first embodiment of the present invention after ultrasonic riveting of the hard material part and the soft material part;
  • FIG. 6 is a front view of the hard material part and the soft material part after ultrasonic riveting in the first embodiment of the present invention
  • FIG. 7 is a side cross-sectional view of the hard material part and the soft material part after ultrasonic riveting in the first embodiment of the present invention
  • FIG. 8 is a schematic diagram of the structure of the soft material part of the second embodiment of the present invention.
  • FIG. 9 is a perspective schematic view of the hard material part and the soft material part after integral injection molding according to the second embodiment of the present invention.
  • FIG. 11 is a side cross-sectional view of the third embodiment of the present invention before the hard material part and the soft material part are inserted and fixed;
  • FIG. 12 is a side cross-sectional view of the third embodiment of the present invention of the hard material part and the soft material part after being inserted and fixed;
  • FIG. 13 is a perspective schematic view of the third embodiment of the present invention after the hard material part and the soft material part are inserted and fixed;
  • Figure 14 is an exploded schematic diagram of the internal magnetic core of the transformer of the present invention.
  • Figure 15 is a schematic diagram of the framework of the power meter of the present invention.
  • Ring-shaped containment chamber 101 Ring-shaped bottom wall 102
  • Terminal button 3 Main body 31
  • a transformer 1 is used to be sleeved on the primary current line 2.
  • the transformer 1 can be used to isolate and detect the power data on the primary current line 2.
  • the transformer 1 includes a transformer housing 10, an annular magnetic core 13 housed in the transformer housing 10, and a secondary current wire 14 housed in the transformer housing 10 and wound on the annular magnetic core 13.
  • each of the "rings” does not specifically refer to a circular ring, but any shape with a hole in the middle for the primary current line 2 to pass through is included in the coverage of the "ring",
  • the inner and outer circumferences of the "annular” are not limited to a circular shape, and may have any shape.
  • the annular magnetic core 13 includes a magnetic core housing 132 and an ultra-microcrystalline magnetic core 133 housed in the magnetic core housing 132.
  • the ultra-microcrystalline magnetic core 133 is The thin ribbon of amorphous material is wound round and round, and then heat treated to make a circular ring shape. It has excellent magnetic indicators, such as high permeability, high saturation magnetic induction, low loss, etc., but because of the amorphous material During heat treatment, it becomes brittle due to structural relaxation and other reasons, and its toughness is poor. Similar to metallic glass, when subjected to external force, the ultra-fine crystal core 133 is extremely easy to crack, and the soft magnetic performance will decrease accordingly, which will be serious.
  • the damage to the transformer 1 causes the accuracy of the transformer 1 to be poor, which makes the meter measurement inaccurate.
  • the thin ribbon of amorphous material is formed by solidifying an alloy melt containing ferromagnetic elements and vitrifying elements at a cooling rate of, for example, one million degrees per second. In this way, the alloy not only has magnetic properties and can control a lower melting point, so that it is easier to form amorphous.
  • the ferromagnetic element includes iron, cobalt, nickel, etc. and/or any combination thereof;
  • the vitrification element includes silicon, boron, carbon, etc. and/or any combination thereof.
  • the ring-shaped magnetic core 133 includes a magnetic core housing 132 and an ultra-microcrystalline magnetic core 13 housed in the magnetic core housing 132. Ring; or the ultra-microcrystalline magnetic core 133 is dipped and cured in the transformer 1.
  • the ultra-microcrystalline magnetic core 133 can be fixed in the magnetic core housing 132 by soft glue or sponge, etc.
  • the magnetic core housing 132 is in a ring shape to match the shape of the ultra-microcrystalline magnetic core 133.
  • the coil of the wire 14 is wound on the magnetic core housing 132, the coil of the secondary current wire 14 can be electrically connected to a pair of lead wires 15, and the lead wires 15 extend out of the transformer housing 10 for connecting with the transformer 1
  • the external metering device 42 is electrically connected.
  • the ultra-microcrystalline magnetic core 133 is protected by the magnetic core housing 132, the ultra-microcrystalline magnetic core 133 in the transformer 1 is easily damaged during handling, vibration, distortion, deformation, and extrusion.
  • the transformer housing 10 of the present invention includes a rigid material portion 11 and a soft material portion 12 integrally arranged, and the soft material refers to a material with a certain degree of softness and elasticity.
  • the hard material portion 11 and the soft material portion 12 together form an annular receiving cavity 101 with a closed bottom 103.
  • the annular receiving cavity 101 includes an annular bottom wall 102 and an outer side wall surrounding the outside of the annular bottom wall 102 112 and the inner side wall 122 surrounding the middle of the annular bottom wall 102, the annular magnetic core 13 is close to the annular bottom wall 102, and is sleeved outside the inner side wall 122 and received inside the outer side wall 112.
  • the ring-shaped accommodating cavity 101 is filled with a packaging material 104 to hold the ring-shaped magnetic core 13, the outer side wall 112 is a part of the hard material part 11, and the inner side wall 122 is a part of the soft material part 12.
  • a through hole 123 is formed inside the inner side wall 122 for the primary current wire 2 to pass through, and the inner side wall 122 protrudes into the through hole 123 to resist the soft interference portion 124 that interferes with the primary current wire 2.
  • the soft material part 12 is a high temperature resistant material. In this way, the rigid material portion 11 can achieve better structural stability and shape consistency for the transformer housing 10.
  • the rigid material portion 11 can be made of ABS, PVC, or PC materials.
  • the soft inner side wall 122 and the soft interference portion 124 can realize the smooth passage of the primary current line 2 and realize the anti-vibration and buffering cooperation between the transformer 1 and the primary current line 2, so as to realize the interference to the interior of the transformer 1
  • the anti-vibration protection of the microcrystalline magnetic core 133 prevents the collision between the microcrystalline magnetic core 133 and the primary current line 2 due to various reasons, resulting in vibration and fragmentation that affects the measurement accuracy; the hard material and the soft material are integrated Together, the ring-shaped receiving cavity 101 has a closed bottom 103. After filling the ring-shaped receiving cavity 101 with the packaging material 104, the bottom 103 has excellent airtightness.
  • the packaging material 104 can be made of epoxy resin. Glue or other packaging materials.
  • the transformer 1 needs to be often in a high temperature environment. If the bottom 103 of the annular housing cavity 101 has a gap After the encapsulation material 104 is heated, it is easy to flow out of the transformer housing 10 through the gap, and once such leakage occurs, it will affect the accuracy of measurement at the slightest level, and it is prone to huge power safety accidents such as fire.
  • the high temperature resistant material can be rubber or silica gel.
  • the soft inner side wall 122 and the soft interference part 124 will not be thermally damaged, which improves the transformer 1 The safety of use.
  • the soft interference portion 124 may be straight-toothed or other protruding shapes, as long as it has a certain degree of softness and elasticity.
  • the hard material portion 11 includes a ring-shaped bottom end wall 111 extending from the outer side wall 112 in the direction of the perforation 123.
  • the annular bottom end wall 111 is provided with a middle hole 113 corresponding to the perforation 123 for the primary current line 2 to pass through, and the soft material portion 12 includes a direction extending from the inner side wall 122 to the outer side wall 112
  • An annular chassis 121, the bottom end wall 111 and the chassis 121 are integrally formed with each other to form the annular bottom wall 102.
  • the soft and hard materials are combined between the bottom end wall 111 and the chassis 121, so that there is no gap between the bottom end wall 111 and the chassis 121, and when the packaging material 104 is heated, the glue will not leak to the outside. .
  • FIGS 4 and 10 to 13 are schematic diagrams of the bottom end wall 111 and the chassis 121 being integrated with each other in the first and third embodiments of the present invention.
  • the bottom end wall 111 is provided with A number of small cylinders 114 distributed on the outside of the middle hole 113 are arranged, the annular chassis 121 is provided with a number of holes 125 distributed on the outer side of the inner side wall 122, and the holes 125 are penetrated and fixed to the On the small cylinder 114.
  • the bottom end wall 111 and the chassis 121 can be integrated with each other before the packaging, and the bottom end wall 111 and the chassis 121 are tightly fixed and do not have a transverse relationship between each other. There is a possibility of a gap due to displacement or lateral separation, so that even if the packaging material 104 is heated, it will not leak glue through the possible gap. In this way, the anti-vibration and anti-leakage glue functions of the ultramicrocrystalline magnetic core 133 transformer 1 are realized.
  • the present invention provides a packaging and manufacturing method of the transformer 1, and the packaging and manufacturing method of the transformer 1 includes:
  • the annular magnetic core 13 includes a magnetic core housing 132 and an ultra-microcrystalline magnetic core 133 housed in the magnetic core housing 132.
  • the hard material portion 11 includes a bottom end wall 111 having a central hole 113 and an outer side wall 112 surrounding the bottom end wall 111, the bottom end wall 111 is provided with surrounding and distributed in the center Several small cylinders 114 outside the hole 113; the soft material portion 12 includes a cylindrical hollow inner side wall 122 and an annular chassis 121 extending outward from the inner side wall 122.
  • a through hole 123 is formed inside the inner side wall 122 for For the primary current wire 2 to pass through, the inner side wall 122 protrudes into the through hole 123 to resist the soft interference portion 124 that interferes with the primary current wire 2, and the soft material portion 12 is made of high temperature resistant material, and the ring
  • the shaped bottom plate 121 is provided with holes 125 that are distributed around the outer side of the inner side wall 122;
  • annular chassis 121 is tightly attached to the bottom end wall 111, and the hole 125 is fixed on the small column 114 to form an annular receiving cavity 101 sealed at the bottom 103;
  • the packaging material 104 is poured into the annular receiving cavity 101 to complete the packaging.
  • the ring-shaped chassis 121 and the bottom end wall 111 can be seamlessly fixed and attached.
  • the packaging material 104 will not be heated after a long time.
  • the possible gap between the annular chassis 121 and the bottom end wall 111 overflows the transformer housing 10, and the integrated soft and hard transformer housing 10 can not only effectively protect the outside of the transformer 1, but also protect the ultrafine crystals.
  • the magnetic core 133 transformer 1 has excellent anti-vibration and anti-leakage functions.
  • FIGS. 5 to 7 are schematic diagrams of the transformer housing 10 after the ultrasonic riveting process in the first embodiment of the present invention.
  • the small cylinder 114 is riveted by ultrasonic waves.
  • the top of the small cylinder 114 is integrally extended to cover the chassis 121 to prevent the chassis 121 from being separated.
  • the cap 115 of the small cylinder 114 is described. With this arrangement, the cap 115 integrally extending with the bottom end wall 111 enables the chassis 121 to be extremely tightly attached to the bottom end wall 111 seamlessly.
  • the cap 115 can also press down the chassis 121 from the peripheral position of the small cylinder 114.
  • the riveting process of the first embodiment can make the hard material part 11 and the soft material
  • the parts 12 are more tightly compounded, which can ensure a seamless connection between the hard material part 11 and the soft material part 12, and avoid leakage of glue at the bottom 103 of the transformer housing 10.
  • the riveting process refers to that the packaging and manufacturing method of the transformer 1 further includes performing ultrasonic waves on the small cylinder 114 after the hole 125 is penetrated and fixed on the small cylinder 114 Riveting, so that the top of the small cylinder 114 has an integrally extending flat-shaped cap 115, and the small cylinder 114 is passed through the hole 125 and then riveted to the chassis 121.
  • the soft material is a high-temperature resistant material, when the small cylinder 114 is ultrasonically welded, large damage to the soft material can be avoided, the structure is stable after riveting, and excellent airtightness of the bottom 103 of the transformer housing 10 is achieved.
  • FIG. 8 to FIG. 10 are structural diagrams of the transformer housing 10 in the second embodiment of the present invention.
  • the annular chassis 121 is embedded and formed inside the bottom end wall 111.
  • the soft material portion 12 and the hard material portion 11 can have complete sealing characteristics of the bottom 103 during manufacturing and molding, and achieve the best degree of leak-proof glue function.
  • the specific steps include:
  • the ring-shaped magnetic core 13 includes a magnetic core housing 132 and an ultra-microcrystalline magnetic core 133 housed in the magnetic core housing 132;
  • a two-color plastic injection machine is used to form a transformer housing 10 with two different soft and hard materials at one time.
  • the transformer housing 10 includes a hard material portion 11 and a soft material portion 12, and the soft material portion 12 includes a cylindrical hollow inner side
  • the wall 122 and the annular chassis 121 extending outward from the inner side wall 122, the inner side wall 122 is formed with a through hole 123 for the primary current line 2 to pass through, and the inner side wall 122 protrudes into the through hole 123 to resist Interfering with the soft interference portion 124 of the primary current line 2,
  • the soft material portion 12 is made of a high temperature resistant material, and the hard material portion 11 includes a bottom end wall 111 having a middle hole 113 and an outer side of the bottom end wall 111
  • the outer side wall 112, the chassis 121 is injection-molded and embedded in the bottom end wall 111, so that the inner side wall 122, the outer side wall 112, the chassis 121, and the bottom end wall 111 form an annular receiving cavity 101 with
  • the packaging material 104 is poured into the annular receiving cavity 101 to complete the packaging.
  • the two-color plastic injection machine forms a transformer housing 10 with two different soft and hard materials at one time, so that the transformer housing 10 includes both a hard material part 11 and a soft material part 12, which has excellent properties.
  • the anti-vibration performance of the ring-shaped receiving cavity 101 has the best bottom 103 airtightness. Even if the inside of the transformer 1 has a great leakage pressure after being heated, it can still ensure that the encapsulating material 104 will not be separated from the rigid material part 11
  • the soft material parts 12 leak outwards, which completely avoids measurement errors and even electrical accidents caused by glue leakage here.
  • the “two-color plastic injection machine” refers to a device that can complete the integrated injection molding of the transformer housing 10 with two or more materials at the same time or before and after.
  • the device can be composed of a complete device or Multiple devices can be combined or coordinated with each other.
  • the hard material part 11 and the soft material part 12 can be injected together at the same time; or as shown in FIG. 8, the soft material part 12 is injected first, and then the hard material part 11 is injected outside the soft material part 12, for example, The rubber part or silicone part is put into an injection mold for injection molding; or the hard material part 11 is partly injected, then the soft material part 12 is injected, and then the remaining part of the hard material part 11 is injection molded.
  • the annular chassis 121 is provided with a hole 125 that is distributed on the outside of the inner side wall 122, and the hole 125 is embedded in the The inside of the bottom end wall 111.
  • the hard material part 11 can flow into the hole 125 during injection molding. After the injection is completed, the embedding tightness between the soft material and the surrounding hard material can be enhanced, and delamination between the materials is not easy to occur.
  • the soft material portion 12 may not be provided with the hole portion 125, or a chassis 121 of other shapes may be used for injection molding.
  • the present invention also provides a power meter 4, which is used for sampling, metering, and measuring electrical parameters in isolation.
  • the power meter 4 includes a power meter housing 41, a metering device 42 located in the power meter housing 41, a metering display device 43, and a terminal button box 44.
  • the terminal button box 44 is provided with a transformer 1 and a terminal button.
  • the connecting structure 100 of the transformer 1 and the terminal button 3 includes the transformer 1, the primary current line 2 passing through the transformer 1, and the primary current wire 2 electrically connected to the primary current The terminal button 3 on the line 2.
  • the terminal button 3 includes a main body portion 31 and a cylindrical body 32 extending forward from the main body portion 31.
  • the cylindrical body 32 is recessed with a connecting hole 321 from the front to the back. 31 is provided with a connection hole 311 recessed from the back to the front.
  • the connection hole 321 and the connection hole 311 face back and forth and do not communicate with each other.
  • the primary current line 2 is inserted through the connection hole 321.
  • the power meter 4 has a transformer 1 with an ultra-microcrystalline magnetic core 133, and the transformer 1 has anti-vibration and anti-leakage performance, which greatly contributes to the stability of the measurement results of the power meter 4 and the safety of electricity use.
  • the step of using a two-color plastic injection machine to mold the transformer housing 10 with two different soft and hard materials at one time includes first injection molding the soft material part 12, and putting the soft material part 12 into the mold The outer hard material part 11 is injected in the middle, so that the annular chassis 121 of the soft material part 12 is embedded in the hard material part 11.
  • the step includes first injection molding the outer side wall 112 of the hard material part 11 and a part of the bottom end wall 111, that is, the bottom end of a thinner layer.
  • Wall 111, the soft material part 12 is formed on the part of the bottom end wall 111, and then another part of the bottom end wall 111, namely the bottom end wall 111, is further injection-molded on the outer side of the annular chassis 102 of the soft material part 12 Thicker, so that the ring-shaped chassis 102 of the soft material part 12 is embedded in the hard material part 11.
  • the ring-shaped chassis 102 of the soft material portion 12 is provided with a number of holes 125 distributed at intervals during molding, and the holes 125 are for the hard material portion 11 to pass through during injection molding. In this way, the soft and hard materials can be embedded and combined more stably.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Transformers For Measuring Instruments (AREA)
  • Insulating Of Coils (AREA)

Abstract

本发明公开了一种互感器、其封装制造方法及其电力仪表,包括互感器外壳、收容于互感器外壳内的环状磁芯、收容于互感器外壳内且缠绕于所述环状磁芯上的二次电流线,所述环状磁芯包括超微晶磁芯,所述互感器外壳包括一体设置的硬性材料部及软性材料部,所述硬性材料部与软性材料部共同形成一底部密闭的环状收容腔,所述外侧壁为硬性材料部的一部分,所述内侧壁为软性材料部的一部分,所述内侧壁内侧形成穿孔用以供所述一次电流线穿过,所述内侧壁向穿孔内突伸有用以抵持干涉所述一次电流线的软性干涉部,所述软性材料部为耐高温材料,所述环状收容腔内填充封装材料。如此,可实现对超微晶磁芯互感器的防振与防漏胶功能。

Description

互感器、其封装制造方法及其电力仪表 技术领域
本发明涉及互感器技术领域,具体涉及电力仪表计量用互感器、其封装制造方法及其电力仪表。
背景技术
互感器是一种对电参数进行隔离的采用、计量或测量的器件,互感器尤其适用于电子式电力仪表,微型电流(电压)互感器产品几乎覆盖了整个电能系统应用的各个方面。
互感器一般包括绕有二次电流线线圈的磁芯,目前在电力领域大量使用的电力互感器中,它们对磁芯材料的要求非常苛刻,不仅要求高的磁性指标(如高导磁率、高饱和磁感、低损耗等),而且要求磁芯材料的整个磁化曲线满足一定的条件,以保证互感器在整个测量范围内的精度。近年来,非晶微晶合金作为互感器磁芯的应用逐渐引起本领域技术人员的关注。
非晶是指当金属或合金的凝固速度非常快(例如用每秒高达一百万度的冷却速率将铁-硼合金熔体凝固),原子来不及整齐排列便被冻结住了,最终的原子排列方式类似于液体,是混乱的,这就是非晶合金。与传统的金属磁性材料相比,由于非晶合金原子排列无序,没有晶体的各向异性,而且电阻率高,因此具有高的导磁率、低的损耗,非晶合金的磁性能实际上是迄今为止非晶合金最主要的应用领域。除此之外,非晶的处理工艺灵活,和其它磁性材料相比,非晶合金具有很宽的化学成分范围,而且即使同一种材料,通过不同的后续处理能够很容易地获得所需要的磁性。所以非晶合金的磁性能是非常灵活的,选择余地很大,为电力电子元器件的选材提供了方便。另一方面,非晶的制造工艺节能、环保,由于传统的薄钢板,从炼钢、浇铸、钢锭开坯、初轧、退火、 热轧、退火、酸洗、精轧、剪切到薄板成品,需要若干工艺环节、数十道工序。由于环节多,工艺繁杂,传统的钢铁企业都是耗能大户和污染大户,有“水老虎”和“电老虎”之称。而非晶合金的制造是在炼钢之后直接喷带,只需一步就制造出了薄带成品,工艺大大简化,节约了大量宝贵的能源,同时无污染物排放,对环境保护非常有利。正是由于非晶合金制造过程节能,同时它的磁性能优良,降低相关仪表应用时使用过程中的损耗,因此被称为绿色材料和二十一世纪的材料。
然而,由于非晶带材在热处理时,结构驰豫等原因会出现脆化,韧性较差,当受到外力时,容易碎裂,并且软磁性能会随之下降,因此在该材料的应用时具有一定的限制。
鉴于此,需要设计一种具有较佳的磁性指标且具有较佳的使用稳定性的互感器,以克服上述技术问题。
发明内容
为了解决上述技术问题,本发明提供了一种有较佳的磁性指标且具有较佳的使用稳定性的互感器、其封装制造方法及其电力仪表。
为了实现上述目的,本发明采用如下技术方案:
一种互感器,用以套设于一次电流线上,所述互感器包括互感器外壳、收容于互感器外壳内的环状磁芯、收容于互感器外壳内且缠绕于所述环状磁芯上的二次电流线,所述环状磁芯包括超微晶磁芯,所述互感器外壳包括一体设置的硬性材料部及软性材料部,所述硬性材料部与软性材料部共同形成一底部密闭的环状收容腔,所述环状收容腔包括环状底壁、环绕于环状底壁外侧的外侧壁以及环绕于环状底壁中部的内侧壁,所述环状磁芯贴近于所述环状底壁,且套设于内侧壁外侧并收容于外侧壁内侧,所述外侧壁为硬性材料部的一部分,所述内侧壁为软性材料部的一部分,所述内侧壁内侧形成穿孔用以供所述一次电流线穿过,所述内侧壁向穿孔内突伸有用以抵持干涉所述一次电流线的软性干涉部,所述软性材料部为耐高温材料,所述环状收容腔内填充有用以固持所 述环状磁芯的封装材料。
作为本发明的进一步改进,所述超微晶磁芯为由非晶材料的薄带进行一圈一圈绕制后热处理所制得的圆环状。
作为本发明的进一步改进,所述非晶材料由每秒一百万度的冷却速率将包含铁磁性元素和玻璃化元素的合金熔体凝固而成。
作为本发明的进一步改进,所述铁磁性元素包括铁、钴、镍和/或其任意组合;所述玻璃化元素包括硅、硼、碳和/或其任意组合。
作为本发明的进一步改进,所述环状磁芯包括磁芯外壳以及收容于所述磁芯外壳内的所述超微晶磁芯,所述磁芯外壳为包覆于超微晶磁芯外部的圆环状。
作为本发明的进一步改进,所述超微晶磁芯浸漆固化于所述环状收容腔内。
作为本发明的进一步改进,所述硬性材料部包括自外侧壁向所述穿孔方向延伸的环状底端壁,环状所述底端壁设有与所述穿孔对应的用以供一次电流线穿过的中孔,所述软性材料部包括自内侧壁向所述外侧壁方向延伸的环状底盘,所述底端壁与底盘相互一体设置成环形所述底壁。
作为本发明的进一步改进,所述底端壁上设有围设分布于中孔外侧的若干小柱体,所述环状底盘上穿设有围设分布于内侧壁外侧的若干孔部,所述孔部穿设固定于所述小柱体上。
作为本发明的进一步改进,所述小柱体顶部一体延伸有用以盖设于所述底盘上用以防止所述底盘脱离所述小柱体的帽部。
作为本发明的进一步改进,所述环状底盘镶埋成型于所述底端壁内部。
作为本发明的进一步改进,所述环状底盘上穿设有围设分布于内侧壁外侧的孔部,所述孔部镶埋于所述底端壁内部。
为了实现上述目的,本发明还可采用如下技术方案:
一种电力仪表,包括电力仪表外壳,位于电力仪表外壳内的计量装置、计量显示装置以及互感器与接线端钮的连接结构,互感器与接线端钮的连接结构包括根据上述的互感器、穿设在所述互感器上一次电流线以及电性连接于所述一次电流线上的接线端钮。
作为本发明的进一步改进,所述接线端钮包括主体部以及自主体部向前延伸的柱状体,所述柱状体自前向后凹陷有连接孔,所述主体部设有自后向前凹陷的接线孔,所述连接孔与接线孔前后相背且不互通,所述一次电流线穿设于所述连接孔内。
为了实现上述目的,本发明还可采用如下技术方案:
一种互感器的封装制造方法,用以制造上述互感器,所述互感器的封装制造方法包括:
制作绕有二次电流线线圈的环状磁芯,所述环状磁芯包括超微晶磁芯;
制作互感器外壳,所述互感器外壳包括一体设置的硬性材料部及软性材料部,所述硬性材料部与软性材料部共同形成一底部密闭的环状收容腔,所述环状收容腔包括环状底壁、环绕于环状底壁外侧的外侧壁以及环绕于环状底壁中部的内侧壁,所述外侧壁为硬性材料部的一部分,所述内侧壁为软性材料部的一部分,所述内侧壁内侧形成穿孔用以供所述一次电流线穿过,所述内侧壁向穿孔内突伸有用以抵持干涉所述一次电流线的软性干涉部,所述软性材料部为耐高温材料;
将绕有二次电流线线圈的所述环状磁芯组装至所述环状收容腔内;
向环状收容腔内灌入封装材料,完成封装。
为了实现上述目的,本发明还可采用如下技术方案:
一种互感器的封装制造方法,用以制造上述互感器,所述互感器的封装制造方法包括:
分别制作硬性材料部、软性材料部、绕有二次电流线线圈的环状磁芯;
所述环状磁芯包括超微晶磁芯;
所述硬性材料部包括具有中孔的底端壁以及围设于底端壁外侧的外侧壁,所述底端壁上设有围设分布于中孔外侧的若干小柱体;
所述软性材料部包括柱状中空的内侧壁以及自内侧壁向外延伸的环状底盘,所述内侧壁内侧形成一穿孔用以供一次电流线穿过,所述内侧壁向穿孔内突伸用以抵持干涉一次电流线的软性干涉部,所述软性材料部为耐高温材料, 所述环状底盘上穿设有围设分布于内侧壁外侧的孔部;
将环状底盘紧密贴合于所述底端壁上,同时将所述孔部穿设固定于所述小柱体上,形成一底部密封的环状收容腔;
将绕有二次电流线线圈的所述环状磁芯组装至所述环状收容腔内;
向环状收容腔内灌入封装材料,完成封装。
作为本发明的进一步改进,所述互感器的封装制造方法还包括在将所述孔部穿设固定于所述小柱体上之后,对所述小柱体进行超声波铆接,使小柱体顶部具有一体延伸的扁平状帽部,使所述小柱体穿过所述孔部后铆接住所述底盘。
为了实现上述目的,本发明还可采用如下技术方案:
一种互感器的封装制造方法,用以制造上述互感器,所述互感器的封装制造方法包括:
制作绕有二次电流线线圈的环状磁芯,所述环状磁芯包括超微晶磁芯;
用双色塑料注射机一次成型具有两种不同软硬材料的互感器外壳,所述互感器外壳包括硬性材料部与软性材料部,所述软性材料部包括柱状中空的内侧壁以及自内侧壁向外延伸的环状底盘,所述内侧壁内侧形成穿孔用以供一次电流线穿过,所述内侧壁向穿孔内突伸用以抵持干涉一次电流线的软性干涉部,所述软性材料部为耐高温材料,所述硬性材料部包括具有中孔的底端壁以及围设于底端壁外侧的外侧壁,所述底盘注塑镶埋于底端壁内,使内侧壁、外侧壁与底盘、底端壁形成一底部密封的环状收容腔;
将绕有二次电流线线圈的所述环状磁芯组装至所述环状收容腔内;
向环状收容腔内灌入封装材料,完成封装。
作为本发明的进一步改进,用双色塑料注射机一次成型具有两种不同软硬材料的互感器外壳步骤中,包括先注塑成型所述软性材料部,将软性材料部放入模具中注塑外部的硬性材料部,如此将软性材料部的环状底盘镶埋于硬性材料部内部。
作为本发明的进一步改进,用双色塑料注射机一次成型具有两种不同软硬材料的互感器外壳步骤中,包括先注塑成型硬性材料部的外侧壁以及部分底端 壁,在所述部分底端壁上成型所述软性材料部,之后再在软性材料部环状底盘的外侧进一步注塑成型另一部分底端壁,如此将软性材料部的环状底盘镶埋于硬性材料部内部。
作为本发明的进一步改进,所述软性材料部环状底盘在成型时设置若干间隔分布的孔部,所述孔部供硬性材料部在注塑时穿过。
相较于现有技术,本发明所述环状磁芯包括超微晶磁芯,所述互感器外壳包括一体设置的硬性材料部及软性材料部,所述硬性材料部与软性材料部共同形成一底部密闭的环状收容腔,软性材料部设有用以抵持干涉所述一次电流线的软性干涉部,所述软性材料部为耐高温材料,所述环状收容腔内填充有用以固持所述环状磁芯的封装材料。如此设置,可实现对超微晶磁芯互感器的防振与防漏胶功能。
附图说明
图1为本发明互感器与接线端钮的连接结构立体示意图;
图2为本发明互感器的立体结构示意图;
图3为本发明互感器的部分立体结构分解图;
图4为本发明第一实施方式与第三实施方式中硬性材料部与软性材料部的分解示意图;
图5为本发明第一实施方式硬性材料部与软性材料部进行超声波铆合后的结构示意图;
图6为本发明第一实施方式硬性材料部与软性材料部进行超声波铆接后的正视图;
图7为本发明第一实施方式硬性材料部与软性材料部进行超声波铆接后的侧面剖视图;
图8为本发明第二实施方式软性材料部的结构示意图;
图9为本发明第二实施方式硬性材料部与软性材料部一体注塑成型后的立体示意图;
图10为本发明第二实施方式硬性材料部与软性材料部一体注塑成型后的侧面剖视图;
图11为本发明第三实施方式硬性材料部与软性材料部插接固定前的侧面剖视图;
图12为本发明第三实施方式硬性材料部与软性材料部插接固定后的侧面剖视图;
图13为本发明第三实施方式硬性材料部与软性材料部插接固定后的立体示意图;
图14为本发明互感器内部磁芯的分解示意图;
图15为本发明电力仪表框架示意图。
附图标记:
互感器与接线端钮的连接结构      100
互感器              1           互感器外壳      10
环状收容腔          101         环状底壁        102
底部                103         封装材料        104
硬性材料部          11          底端壁          111
外侧壁              112         中孔            113
小柱体              114         帽部            115
软性材料部          12          底盘            121
内侧壁              122         穿孔            123
软性干涉部          124         孔部            125
磁芯                13          磁芯外壳        132
超微晶磁芯          133         二次电流线      14
引出线              15          一次电流线      2
接线端钮            3           主体部          31
接线孔              311         柱状体          32
连接孔              321         电力仪表        4
电力仪表外壳        41          计量装置        42
计量显示装置        43          接线端钮盒      44
具体实施方式
现在将参照附图来详细描述本发明的各种示例性实施例。应注意到:除非另外具体说明,否则在这些实施例中阐述的部件和步骤的相对布置、数字表达式和数值不限制本发明的范围。
以下对至少一个示例性实施例的描述实际上仅仅是说明性的,决不作为对本发明及其应用或使用的任何限制。
对于相关领域普通技术人员已知的技术和设备可能不作详细讨论,但在适当情况下,所述技术和设备应当被视为说明书的一部分。
在这里示出和讨论的所有例子中,任何具体值应被解释为仅仅是示例性的,而不是作为限制。因此,示例性实施例的其它例子可以具有不同的值。
应注意到:相似的标号和字母在下面的附图中表示类似项,因此,一旦某一项在一个附图中被定义,则在随后的附图中不需要对其进行进一步讨论。
在互感器应用领域,作为业内谙熟市场需求的供应商,伟达电子有限公司对现有技术中存在的问题十分了解,其研发队伍在自身已经拥有的独创技术基础上进一步投入巨资,进行长时间且大量的试验、方案筛选,以及大量的客户调查,终于得到本发明的技术方案。
请参图1至13所示,一种互感器1,用以套设于一次电流线2上,如此,所述互感器1可用以对一次电流线2上的电力数据实现隔离检测。所述互感器1包括互感器外壳10、收容于互感器外壳10内的环状磁芯13、收容于互感器外壳10内且缠绕于所述环状磁芯13上的二次电流线14,在本发明中,各所述“环状”并不专指圆环状,但凡中部具有孔洞可供所述一次电流线2穿过的形状均包括在所述“环状”的涵盖范围内,且所述“环状”的内周与外周均不限于圆 形,可以为任意形状。所述环状磁芯13包括磁芯外壳132以及收容于所述磁芯外壳132内的超微晶磁芯133,在图示所示的具体实施方式中,所述超微晶磁芯133为非晶材料的薄带进行一圈一圈绕制后热处理所制得的圆环状,具有极佳的磁性指标,如高导磁率、高饱和磁感、低损耗等,但由于非晶带材在热处理时由于结构驰豫等原因开始脆化,韧性较差,类似于金属玻璃,当受到外力时,超微晶磁芯133极易发生碎裂,并且软磁性能会随之下降,将严重的损坏造成互感器1精度差,使得电表计量不准确。所述非晶材料薄带由例如每秒一百万度的冷却速率将包含铁磁性元素和玻璃化元素的合金熔体凝固而成。如此,合金不但具有磁性且可控制较低的熔点,从而更容易形成非晶。具体的,所述铁磁性元素包括铁、钴、镍等和/或他们的任意组合;所述玻璃化元素包括硅、硼、碳等和/或他们的任意组合。例如Fe-Si-B,FeNiPB,CoZr,ZrTiCuNi等。对所述超微晶磁芯133的保护初步保护采用相应形状的护盒进行保护,或者浸漆固化保护处理。即所述环状磁芯133包括磁芯外壳132以及收容于所述磁芯外壳132内的超微晶磁芯13,所述磁芯外壳132为包覆于超微晶磁芯133外部的圆环状;或所述超微晶磁芯133浸漆固化于所述互感器1内。所述超微晶磁芯133可用软胶或海绵等材料固定于磁芯外壳132内,所述磁芯外壳132为用以配合超微晶磁芯133形状的圆环状,所述二次电流线14的线圈绕设于所述磁芯外壳132上,所述二次电流线14线圈可电性连接一对引出线15,所述引出线15延伸出互感器外壳10用以与互感器1外部的计量装置42电性连接。虽然超微晶磁芯133通过所述磁芯外壳132进行保护,但在搬运,震动,扭曲,变形,挤压等过程中等很容易损坏互感器1内的超微晶磁芯133。
请参图2及图3所示,本发明所述互感器外壳10包括一体设置的硬性材料部11及软性材料部12,所述软性材料是指具有一定软性和弹性的材料。所述硬性材料部11与软性材料部12共同形成一底部103密闭的环状收容腔101,所述环状收容腔101包括环状底壁102、环绕于环状底壁102外侧的外侧壁112以及环绕于环状底壁102中部的内侧壁122,所述环状磁芯13贴近于所述环状底壁102,且套设于内侧壁122外侧并收容于外侧壁112内侧,所述环状收容腔101 内填充有用以固持所述环状磁芯13的封装材料104,所述外侧壁112为硬性材料部11的一部分,所述内侧壁122为软性材料部12的一部分,所述内侧壁122内侧形成穿孔123用以供所述一次电流线2穿过,所述内侧壁122向穿孔123内突伸有用以抵持干涉所述一次电流线2的软性干涉部124,所述软性材料部12为耐高温材料。如此,所述硬性材料部11可对互感器外壳10实现较佳的结构稳定性与形状一致性,在不同实施方式中硬性材料部11可以采用ABS、PVC或PC材料等。所述软性内侧壁122及软性干涉部124可实现一次电流线2的顺利穿过,且实现互感器1与一次电流线2之间的抗振缓冲性配合,实现对互感器1内部超微晶磁芯133的抗振保护,避免超微晶磁芯133与一次电流线2之间因各种原因发生碰撞产生振动而碎裂影响计量准确性;所述硬性材料与软性材料一体结合在一起使所述环状收容腔101具有密闭的底部103,在向环状收容腔101内填充封装材料104后,底部103具有极佳的密闭性,通常所述封装材料104可采用环氧树脂胶或其他封装材料。而在本领域中,由于互感器1内侧的一次电流线2需长时间流通大电流容易产生大量的热量,所述互感器1需常处于高温环境内,若环状收容腔101底部103具有缝隙,封装材料104受热后极易通过所述缝隙流出互感器外壳10外,而一旦发生此类漏胶,轻则对计量准确性产生影响,重则容易发生火灾等巨大的电力安全事故。所述耐高温材料可选用橡胶或硅胶,如此,即使一次电流线2长时间流通大电流,所述软性内侧壁122及软性干涉部124也不会发生热熔性损坏,提高互感器1的使用安全性。另外,所述软性干涉部124可以为直齿状也可以为其他突伸的形状,具有一定软性和弹性即可。
具体的,对软硬一体的互感器外壳10进行软硬性材料的分解来看,所述硬性材料部11包括自外侧壁112向所述穿孔123方向延伸的环状底端壁111,所述环状底端壁111设有与所述穿孔123对应的用以供一次电流线2穿过的中孔113,所述软性材料部12包括自内侧壁122向所述外侧壁112方向延伸的环状底盘121,所述底端壁111与底盘121相互一体设置成所述环状底壁102。即本发明中,所述底端壁111与底盘121之间实现软硬材料的结合,使底端壁111 与底盘121之间不具有缝隙,当封装材料104受热后,不会向外漏胶。
具体的,可参图4、图10至13,所示为本发明第一实施方式及第三实施方式中底端壁111与底盘121相互一体设置的示意图,所述底端壁111上设有围设分布于中孔113外侧的若干小柱体114,所述环状底盘121上穿设有围设分布于内侧壁122外侧的若干孔部125,所述孔部125穿设固定于所述小柱体114上。如此设置,所述孔部125与小柱体114一一插接后可实现在封装前中底端壁111与底盘121相互一体设置,底端壁111与底盘121紧密固持不具有相互之间横向移位或者侧向相互脱离而产生缝隙的可能,使得封装后,封装材料104即便受热也不会通过所述可能的缝隙想外漏胶。如此,实现超微晶磁芯133互感器1的防振与防漏胶功能。
对此,为制造上述实施方式的互感器1,本发明提供了一种互感器1的封装制造方法,所述互感器1的封装制造方法包括:
分别制作如图4所示的硬性材料部11、软性材料部12,以及如图3所示的绕有二次电流线14线圈的环状磁芯13,上述步骤不分前后。参图14所示,其中所述环状磁芯13包括磁芯外壳132以及收容于所述磁芯外壳132内的超微晶磁芯133。参图4所示,所述硬性材料部11包括具有中孔113的底端壁111以及围设于底端壁111外侧的外侧壁112,所述底端壁111上设有围设分布于中孔113外侧的若干小柱体114;所述软性材料部12包括柱状中空的内侧壁122以及自内侧壁122向外延伸的环状底盘121,所述内侧壁122内侧形成一穿孔123用以供一次电流线2穿过,所述内侧壁122向穿孔123内突伸用以抵持干涉一次电流线2的软性干涉部124,所述软性材料部12为耐高温材料,所述环状底盘121上穿设有围设分布于内侧壁122外侧的孔部125;
之后,将环状底盘121紧密贴合于所述底端壁111上,同时将所述孔部125穿设固定于所述小柱体114上,形成一底部103密封的环状收容腔101;
将绕有二次电流线14线圈的所述环状磁芯13组装至所述环状收容腔101内;
向环状收容腔101内灌入封装材料104,完成封装。
如此,所述环状底盘121与所述底端壁111之间可形成无缝固定贴合,当安装环状磁芯13后并进行封装后,所述封装材料104在长时间受热后不会通过所述环状底盘121与所述底端壁111之间可能的缝隙溢出互感器外壳10外,所述软硬一体的互感器外壳10既能有效保护互感器1外侧,且对于超微晶磁芯133互感器1来说具有极佳的防振及防漏胶功能。
进一步,请参图5至7所示,为本发明第一实施方式中进行超声波铆接工艺后的互感器外壳10结构示意图。硬性材料部11与软性材料部12定位组合后,用超声波铆接小柱体114,所述小柱体114顶部一体延伸有用以盖设于所述底盘121上用以防止所述底盘121脱离所述小柱体114的帽部115。如此设置,与底端壁111一体延伸的所述帽部115可使底盘121极其紧固地与所述底端壁111实现无缝贴合。所述帽部115还可从小柱体114的周边位置向下压制所述底盘121,相对于第三实施方式来说,第一实施方式的所述铆接工艺可使硬性材料部11与软性材料部12之间复合更紧密,更能保证硬性材料部11与软性材料部12之间的无缝连接,避免互感器外壳10底部103发生漏胶。
具体的,所述铆接工艺是指,所述互感器1的封装制造方法还包括在将所述孔部125穿设固定于所述小柱体114上之后,对所述小柱体114进行超声波铆接,使小柱体114顶部具有一体延伸的扁平状帽部115,使所述小柱体114穿过所述孔部125后铆接住所述底盘121。由于软性材料为耐高温材料,在对小柱体114进行超声波熔接时,可避免对软性材料造成较大损伤,铆接后结构稳定,实现极佳的互感器外壳10底部103密闭性。
更优选的,请参图8至图10所示,为本发明第二实施方式中互感器外壳10结构示意图,所述环状底盘121镶埋成型于所述底端壁111内部。如此设置,所述软性材料部12与硬性材料部11可在制造成型时即具有完全的底部103密闭特性,实现最佳程度的防漏胶功能。
关于第二实施方式的互感器1制造方法,具体步骤包括:
制作绕有二次电流线14线圈的环状磁芯13,所述环状磁芯13包括磁芯外壳132以及收容于所述磁芯外壳132内的超微晶磁芯133;
用双色塑料注射机一次成型具有两种不同软硬材料的互感器外壳10,所述互感器外壳10包括硬性材料部11与软性材料部12,所述软性材料部12包括柱状中空的内侧壁122以及自内侧壁122向外延伸的环状底盘121,所述内侧壁122内侧形成穿孔123用以供一次电流线2穿过,所述内侧壁122向穿孔123内突伸用以抵持干涉一次电流线2的软性干涉部124,所述软性材料部12为耐高温材料,所述硬性材料部11包括具有中孔113的底端壁111以及围设于底端壁111外侧的外侧壁112,所述底盘121注塑镶埋于底端壁111内,使内侧壁122、外侧壁112与底盘121、底端壁111形成一底部103密封的环状收容腔101;
将绕有二次电流线14线圈的所述环状磁芯13组装至所述环状收容腔101内;
向环状收容腔101内灌入封装材料104,完成封装。
如此设置,所述双色塑料注射机一次成型具有两种不同软硬材料的互感器外壳10,可使所述互感器外壳10既包括硬性材料部11又包括软性材料部12,如此具有极佳的抗振性能,且使环状收容腔101具有最佳的底部103密闭性,即使互感器1内部受热后具有极大的漏胶压力,仍然可以保证封装材料104不会从硬性材料部11与软性材料部12之间向外泄露,完全避免了此处漏胶造成的测量误差甚至电力事故的可能。值得注意的是,所述“双色塑料注射机”是指可实现两种或两种以上材料在同时或前后完成互感器外壳10的一体化注塑的设备,所述设备可由一台完整设备构成也可采用多个设备组合或相互配合而成。具体的,可以硬性材料部11与软性材料部12同时注塑在一起;或者如图8所示,先注塑软性材料部12,再在软性材料部12外侧注塑硬性材料部11,比如将橡胶件或硅胶件放入注射模具中注塑;或者先部分注塑硬性材料部11,再注塑软性材料部12,之后再将硬性材料部11的剩余部分注塑完成。
作为进一步的优化,在如图8所示的第二实施方式中,所述环状底盘121上穿设有围设分布于内侧壁122外侧的孔部125,所述孔部125镶埋于所述底端壁111内部。如此设置,所述硬性材料部11在注塑时可流向所述孔部125内,注塑完成后,可增强软性材料与周边硬性材料之间的镶埋紧密度,不易发生材 料之间的脱层。当然,值得注意的是,在本发明与第二实施方式相似的其他实施方式中,所述软性材料部12也可以不设置所述孔部125,或者采用其他形状的底盘121进行注塑。
请参图15及图1所示,本发明还提供一种电力仪表4,所述电力仪表4用于对电参数进行隔离的采样、计量、测量。所述电力仪表4包括电力仪表外壳41,位于电力仪表外壳41内的计量装置42、计量显示装置43以及接线端钮盒44,所述接线端钮盒44内设有互感器1与接线端钮3的连接结构100,所述互感器1与接线端钮3的连接结构100包括所述的互感器1、穿设在所述互感器1上一次电流线2以及电性连接于所述一次电流线2上的接线端钮3,所述接线端钮3包括主体部31以及自主体部31向前延伸的柱状体32,所述柱状体32自前向后凹陷有连接孔321,所述主体部31设有自后向前凹陷的接线孔311,所述连接孔321与接线孔311前后相背且不互通,所述一次电流线2穿设于所述连接孔321内。如此,所述电力仪表4具有超微晶磁芯133的互感器1,所述互感器1具有防振及防漏胶性能,大大提交电力仪表4的计量结果稳定以及用电使用安全性。
在具体的实施方式中,用双色塑料注射机一次成型具有两种不同软硬材料的互感器外壳10步骤中,包括先注塑成型所述软性材料部12,将软性材料部12放入模具中注塑外部的硬性材料部11,如此将软性材料部12的环状底盘121镶埋于硬性材料部11内部。
或者,用双色塑料注射机一次成型具有两种不同软硬材料的互感器外壳步骤中,包括先注塑成型硬性材料部11的外侧壁112以及部分底端壁111,即较薄的一层底端壁111,在所述部分底端壁111上成型所述软性材料部12,之后再在软性材料部12环状底盘102的外侧进一步注塑成型另一部分底端壁111,即将底端壁111加厚,如此将软性材料部12的环状底盘102镶埋于硬性材料部11内部。
所述软性材料部12环状底盘102在成型时设置若干间隔分布的孔部125,所述孔部125供硬性材料部11在注塑时穿过。如此,可将软硬材料更稳定地镶 埋结合在一起。
除非另有定义,本文所使用的所有的技术和科学术语与属于本发明的技术领域的技术人员通常理解的含义相同。本文中在本发明的说明书中所使用的术语只是为了描述具体的实施例的目的,不是旨在于限制本发明。本文所使用的术语“或/及”包括一个或多个相关的所列项目的任意的和所有的组合。
以上所述实施例的各技术特征可以进行任意的组合,为使描述简洁,未对上述实施例中的各个技术特征所有可能的组合都进行描述,然而,只要这些技术特征的组合不存在矛盾,都应当认为是本说明书记载的范围。
以上所述实施例仅表达了本发明的几种实施方式,其描述较为具体和详细,但并不能因此而理解为对发明专利范围的限制。应当指出的是,对于本领域的普通技术人员来说,在不脱离本发明构思的前提下,还可以做出若干变形和改进,这些都属于本发明的保护范围。因此,本发明专利的保护范围应以所附权利要求为准。

Claims (20)

  1. 一种互感器,用以套设于一次电流线上,所述互感器包括互感器外壳、收容于互感器外壳内的环状磁芯、收容于互感器外壳内且缠绕于所述环状磁芯上的二次电流线,其特征在于:所述环状磁芯包括超微晶磁芯,所述互感器外壳包括一体设置的硬性材料部及软性材料部,所述硬性材料部与软性材料部共同形成一底部密闭的环状收容腔,所述环状收容腔包括环状底壁、环绕于环状底壁外侧的外侧壁以及环绕于环状底壁中部的内侧壁,所述环状磁芯贴近于所述环状底壁,且套设于内侧壁外侧并收容于外侧壁内侧,所述外侧壁为硬性材料部的一部分,所述内侧壁为软性材料部的一部分,所述内侧壁内侧形成穿孔用以供所述一次电流线穿过,所述内侧壁向穿孔内突伸有用以抵持干涉所述一次电流线的软性干涉部,所述软性材料部为耐高温材料,所述环状收容腔内填充有用以固持所述环状磁芯的封装材料。
  2. 如权利要求1所述的互感器,其特征在于:所述超微晶磁芯为由非晶材料的薄带进行一圈一圈绕制后热处理所制得的圆环状。
  3. 如权利要求2所述的互感器,其特征在于:所述非晶材料由每秒一百万度的冷却速率将包含铁磁性元素和玻璃化元素的合金熔体凝固而成。
  4. 如权利要求3所述的互感器,其特征在于:所述铁磁性元素包括铁、钴、镍和/或其任意组合;所述玻璃化元素包括硅、硼、碳和/或其任意组合。
  5. 如权利要求1所述的互感器,其特征在于:所述环状磁芯包括磁芯外壳以及收容于所述磁芯外壳内的所述超微晶磁芯,所述磁芯外壳为包覆于超微晶磁芯外部的圆环状。
  6. 如权利要求1所述的互感器,其特征在于:所述超微晶磁芯浸漆固化于所述环状收容腔内。
  7. 如权利要求1所述的互感器,其特征在于:所述硬性材料部包括自外侧壁向所述穿孔方向延伸的环状底端壁,环状所述底端壁设有与所述穿孔对应的用以供一次电流线穿过的中孔,所述软性材料部包括自内侧壁向所述外侧壁方 向延伸的环状底盘,所述底端壁与底盘相互一体设置成环形所述底壁。
  8. 如权利要求7所述的互感器,其特征在于:所述底端壁上设有围设分布于中孔外侧的若干小柱体,所述环状底盘上穿设有围设分布于内侧壁外侧的若干孔部,所述孔部穿设固定于所述小柱体上。
  9. 如权利要求8所述的互感器,其特征在于:所述小柱体顶部一体延伸有用以盖设于所述底盘上用以防止所述底盘脱离所述小柱体的帽部。
  10. 如权利要求7所述的互感器,其特征在于:所述环状底盘镶埋成型于所述底端壁内部。
  11. 如权利要求10所述的互感器,其特征在于:所述环状底盘上穿设有围设分布于内侧壁外侧的孔部,所述孔部镶埋于所述底端壁内部。
  12. 一种电力仪表,包括电力仪表外壳,位于电力仪表外壳内的计量装置、计量显示装置以及互感器与接线端钮的连接结构,其特征在于:互感器与接线端钮的连接结构包括根据权利要求1至11中任意一项所述的互感器、穿设在所述互感器上一次电流线以及电性连接于所述一次电流线上的接线端钮。
  13. 如权利要求12所述的电力仪表,其特征在于:所述接线端钮包括主体部以及自主体部向前延伸的柱状体,所述柱状体自前向后凹陷有连接孔,所述主体部设有自后向前凹陷的接线孔,所述连接孔与接线孔前后相背且不互通,所述一次电流线穿设于所述连接孔内。
  14. 一种互感器的封装制造方法,其特征在于:用以制造根据权利要求1至7中任意一项所述的互感器,所述互感器的封装制造方法包括:
    制作绕有二次电流线线圈的环状磁芯,所述环状磁芯包括超微晶磁芯;
    制作互感器外壳,所述互感器外壳包括一体设置的硬性材料部及软性材料部,所述硬性材料部与软性材料部共同形成一底部密闭的环状收容腔,所述环状收容腔包括环状底壁、环绕于环状底壁外侧的外侧壁以及环绕于环状底壁中部的内侧壁,所述外侧壁为硬性材料部的一部分,所述内侧壁为软性材料部的一部分,所述内侧壁内侧形成穿孔用以供所述一次电流线穿过,所述内侧壁向穿孔内突伸有用以抵持干涉所述一次电流线的软性干涉部,所述软性材料部为 耐高温材料;
    将绕有二次电流线线圈的所述环状磁芯组装至所述环状收容腔内;
    向环状收容腔内灌入封装材料,完成封装。
  15. 一种互感器的封装制造方法,其特征在于:用以制造根据权利要求1至9中任意一项所述的互感器,所述互感器的封装制造方法包括:
    分别制作硬性材料部、软性材料部、绕有二次电流线线圈的环状磁芯;
    所述环状磁芯包括超微晶磁芯;
    所述硬性材料部包括具有中孔的底端壁以及围设于底端壁外侧的外侧壁,所述底端壁上设有围设分布于中孔外侧的若干小柱体;
    所述软性材料部包括柱状中空的内侧壁以及自内侧壁向外延伸的环状底盘,所述内侧壁内侧形成一穿孔用以供一次电流线穿过,所述内侧壁向穿孔内突伸用以抵持干涉一次电流线的软性干涉部,所述软性材料部为耐高温材料,所述环状底盘上穿设有围设分布于内侧壁外侧的孔部;
    将环状底盘紧密贴合于所述底端壁上,同时将所述孔部穿设固定于所述小柱体上,形成一底部密封的环状收容腔;
    将绕有二次电流线线圈的所述环状磁芯组装至所述环状收容腔内;
    向环状收容腔内灌入封装材料,完成封装。
  16. 如权利要求15所述的互感器的封装制造方法,其特征在于:所述互感器的封装制造方法还包括在将所述孔部穿设固定于所述小柱体上之后,对所述小柱体进行超声波铆接,使小柱体顶部具有一体延伸的扁平状帽部,使所述小柱体穿过所述孔部后铆接住所述底盘。
  17. 一种互感器的封装制造方法,其特征在于:用以制造根据权利要求1、10、11中任意一项所述的互感器,所述互感器的封装制造方法包括:
    制作绕有二次电流线线圈的环状磁芯,所述环状磁芯包括超微晶磁芯;
    用双色塑料注射机一次成型具有两种不同软硬材料的互感器外壳,所述互感器外壳包括硬性材料部与软性材料部,所述软性材料部包括柱状中空的内侧壁以及自内侧壁向外延伸的环状底盘,所述内侧壁内侧形成穿孔用以供一次电 流线穿过,所述内侧壁向穿孔内突伸用以抵持干涉一次电流线的软性干涉部,所述软性材料部为耐高温材料,所述硬性材料部包括具有中孔的底端壁以及围设于底端壁外侧的外侧壁,所述底盘注塑镶埋于底端壁内,使内侧壁、外侧壁与底盘、底端壁形成一底部密封的环状收容腔;
    将绕有二次电流线线圈的所述环状磁芯组装至所述环状收容腔内;
    向环状收容腔内灌入封装材料,完成封装。
  18. 如权利要求17所述的互感器的封装制造方法,其特征在于:用双色塑料注射机一次成型具有两种不同软硬材料的互感器外壳步骤中,包括先注塑成型所述软性材料部,将软性材料部放入模具中注塑外部的硬性材料部,如此将软性材料部的环状底盘镶埋于硬性材料部内部。
  19. 如权利要求17所述的互感器的封装制造方法,其特征在于:用双色塑料注射机一次成型具有两种不同软硬材料的互感器外壳步骤中,包括先注塑成型硬性材料部的外侧壁以及部分底端壁,在所述部分底端壁上成型所述软性材料部,之后再在软性材料部环状底盘的外侧进一步注塑成型另一部分底端壁,如此将软性材料部的环状底盘镶埋于硬性材料部内部。
  20. 如权利要求17所述的互感器的封装制造方法,其特征在于:所述软性材料部环状底盘在成型时设置若干间隔分布的孔部,所述孔部供硬性材料部在注塑时穿过。
PCT/CN2019/124227 2019-11-05 2019-12-10 互感器、其封装制造方法及其电力仪表 WO2021088194A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020227002683A KR102615056B1 (ko) 2019-11-05 2019-12-10 변압기, 그의 패키징 및 제조 방법, 및 그의 전력계

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201911073500.7A CN110890200B (zh) 2019-11-05 2019-11-05 互感器、其封装制造方法及其电力仪表
CN201911073500.7 2019-11-05

Publications (1)

Publication Number Publication Date
WO2021088194A1 true WO2021088194A1 (zh) 2021-05-14

Family

ID=69746969

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/124227 WO2021088194A1 (zh) 2019-11-05 2019-12-10 互感器、其封装制造方法及其电力仪表

Country Status (3)

Country Link
KR (1) KR102615056B1 (zh)
CN (1) CN110890200B (zh)
WO (1) WO2021088194A1 (zh)

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03208313A (ja) * 1990-01-10 1991-09-11 Matsushita Electric Ind Co Ltd 変成器
US5619174A (en) * 1993-07-30 1997-04-08 Alps Electric Co., Ltd. Noise filter comprising a soft magnetic alloy ribbon core
CN201327760Y (zh) * 2008-11-27 2009-10-14 郡懋电子(东莞)有限公司 软磁复合磁芯
CN102842780A (zh) * 2012-08-23 2012-12-26 桐乡市伟达电子有限公司 元器件的连接端与接线端钮的连接结构
CN103000359A (zh) * 2012-12-14 2013-03-27 桐乡市伟达电子有限公司 互感器及其互感器的封装制造方法
CN203165660U (zh) * 2013-02-20 2013-08-28 青岛力博新能源科技有限公司 小型互感器
CN204668132U (zh) * 2015-01-13 2015-09-23 北京新创四方电子有限公司 一种超微晶磁芯零序电流互感器
CN105023740A (zh) * 2014-04-30 2015-11-04 桐乡市伟达电子有限公司 一种微型互感器及其封装制造方法

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0782955B2 (ja) * 1990-10-22 1995-09-06 三菱電機株式会社 樹脂モールド形変流器
US6753749B1 (en) * 2003-06-05 2004-06-22 Artesyn Technologies, Inc. Toroidal transformer enclosure
CN201629222U (zh) * 2010-03-03 2010-11-10 大连北方互感器集团有限公司 电缆固定式电流互感器
DE102011075456B4 (de) * 2011-05-06 2015-06-25 Siemens Aktiengesellschaft Summenstromwandler und Fehlerstromschutzschalter
CN203134545U (zh) * 2013-03-18 2013-08-14 嘉兴威士顿电子科技有限公司 抗强磁微型电流互感器
CN204740284U (zh) * 2015-07-20 2015-11-04 宁波华宇电子有限公司 一种霍尔电流传感器
CN207116214U (zh) * 2017-09-05 2018-03-16 四川泰克电器有限公司 一种微型电流互感器
CN108039263A (zh) * 2017-11-17 2018-05-15 宁波中策亿特电子有限公司 一种线性插墙式适配器
CN208208545U (zh) * 2018-04-24 2018-12-07 常州欧瑞电气股份有限公司 一种带有保护装置的互感器

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03208313A (ja) * 1990-01-10 1991-09-11 Matsushita Electric Ind Co Ltd 変成器
US5619174A (en) * 1993-07-30 1997-04-08 Alps Electric Co., Ltd. Noise filter comprising a soft magnetic alloy ribbon core
CN201327760Y (zh) * 2008-11-27 2009-10-14 郡懋电子(东莞)有限公司 软磁复合磁芯
CN102842780A (zh) * 2012-08-23 2012-12-26 桐乡市伟达电子有限公司 元器件的连接端与接线端钮的连接结构
CN103000359A (zh) * 2012-12-14 2013-03-27 桐乡市伟达电子有限公司 互感器及其互感器的封装制造方法
CN203165660U (zh) * 2013-02-20 2013-08-28 青岛力博新能源科技有限公司 小型互感器
CN105023740A (zh) * 2014-04-30 2015-11-04 桐乡市伟达电子有限公司 一种微型互感器及其封装制造方法
CN204668132U (zh) * 2015-01-13 2015-09-23 北京新创四方电子有限公司 一种超微晶磁芯零序电流互感器

Also Published As

Publication number Publication date
KR102615056B1 (ko) 2023-12-15
CN110890200B (zh) 2020-10-27
KR20220060527A (ko) 2022-05-11
CN110890200A (zh) 2020-03-17

Similar Documents

Publication Publication Date Title
CN105074846B (zh) 电抗器
US9082541B2 (en) Coil electrical component and method of manufacturing the same
JPWO2013065183A1 (ja) リアクトルの製造方法
WO2021179695A1 (zh) 一种磁流体电磁感应取电装置
WO2021088194A1 (zh) 互感器、其封装制造方法及其电力仪表
CN104575947A (zh) 一种电感及其制造方法
JP2011129593A (ja) リアクトル
US11615913B2 (en) Coil molded article and reactor
JP2010214590A (ja) 複合成形体の製造方法
CN206480481U (zh) 一种高精度低电流互感器
RU2787212C1 (ru) Трансформатор, способ его монтажа в корпусе и производства и измеритель мощности
CN108780693A (zh) 磁性元件
JP2011054612A (ja) リアクトル構造体の製造方法、およびリアクトル構造体
CN202473527U (zh) 一种磁性元器件
JP2009130152A (ja) リアクトル、およびその製造方法
CN203165662U (zh) 一种具有热塑橡胶的电流互感器
CN103928227A (zh) 单芯抗直流分量互感器铁芯的制备方法
JP6809440B2 (ja) リアクトル
JP2013038202A (ja) 巻線素子用圧粉コア部材、その製造方法、巻線素子用圧粉コア及び巻線素子
CN201163572Y (zh) 一种电流互感器
CN206849659U (zh) 一种电流互感器的二次绕组固定结构
JP2000331839A (ja) コイルを有する回路部品
CN101847504A (zh) 一种降低电流互感器剩磁的方法
CN202363234U (zh) 塑壳式断路器电流检测互感器
JP2012013622A (ja) 電流センサおよび電流センサの製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19951360

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19951360

Country of ref document: EP

Kind code of ref document: A1