WO2021088180A1 - 一种bidi器件、光模块以及生产方法 - Google Patents

一种bidi器件、光模块以及生产方法 Download PDF

Info

Publication number
WO2021088180A1
WO2021088180A1 PCT/CN2019/123570 CN2019123570W WO2021088180A1 WO 2021088180 A1 WO2021088180 A1 WO 2021088180A1 CN 2019123570 W CN2019123570 W CN 2019123570W WO 2021088180 A1 WO2021088180 A1 WO 2021088180A1
Authority
WO
WIPO (PCT)
Prior art keywords
optical
optical fiber
port
filter
bidi
Prior art date
Application number
PCT/CN2019/123570
Other languages
English (en)
French (fr)
Inventor
梅雪
刘成刚
曹俊红
Original Assignee
武汉光迅科技股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 武汉光迅科技股份有限公司 filed Critical 武汉光迅科技股份有限公司
Publication of WO2021088180A1 publication Critical patent/WO2021088180A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/42Coupling light guides with opto-electronic elements
    • G02B6/4201Packages, e.g. shape, construction, internal or external details
    • G02B6/4204Packages, e.g. shape, construction, internal or external details the coupling comprising intermediate optical elements, e.g. lenses, holograms
    • G02B6/4215Packages, e.g. shape, construction, internal or external details the coupling comprising intermediate optical elements, e.g. lenses, holograms the intermediate optical elements being wavelength selective optical elements, e.g. variable wavelength optical modules or wavelength lockers
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/42Coupling light guides with opto-electronic elements
    • G02B6/4201Packages, e.g. shape, construction, internal or external details
    • G02B6/4204Packages, e.g. shape, construction, internal or external details the coupling comprising intermediate optical elements, e.g. lenses, holograms
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/40Transceivers

Definitions

  • This application relates to the field of optical communications, and in particular to a BIDI device, an optical module, and a production method.
  • a pigtailed optical transceiver (hereinafter referred to as a BIDI device) requires an external wavelength division multiplexer (hereinafter referred to as a WDM component). As shown in Figure 1, it needs to be led out from both sides of the WDM component 100'.
  • One optical fiber 110' is connected to the optical transmitter 200', the optical receiver 300' and the port 190'.
  • the three optical fibers 110' are processed in the WDM assembly 100' by a fusion tapering process, and the optical fibers 110' need to be matched Therefore, a longer tapering area is required, which in turn causes the WDM component 100' itself to need a longer length to meet the process requirements; in addition, the bending diameter of the optical fiber 110' is limited.
  • the minimum bending diameter of the optical fiber It is 10mm, and the WDM assembly 100' leads out the optical fiber 110' from both sides, so a relatively independent fiber space on each side is formed, resulting in a larger volume.
  • pluggable BIDI devices Due to its large size, pigtailed BIDI devices cannot keep up with the development of module volume. It is difficult to put into QSFP28 (that is, four-channel SFP interface, 28 is a series model) or smaller optical module.
  • QSFP28 that is, four-channel SFP interface, 28 is a series model
  • pluggable BIDI devices In order to reduce the size, manufacturers have developed pluggable BIDI devices, while pluggable BIDI devices, one needs to couple multiple devices at the same time, and the yield is low, and the other pluggable BIDI generally uses 45° filter splitting and converging lens Incident coaxial package form; limited by its own structure and incident mode, the wavelength division wavelength interval of plug-in BIDI is relatively large, which cannot meet the dense wavelength division requirements of high-capacity, high-speed wavelength division devices.
  • TOSA separate optical transmitters
  • ROSA separate optical receivers
  • the research direction of the manufacturer has returned to the BIDI device, which has the functions of light receiving and light emission at the same time, which can effectively solve the problem of time difference between the uplink and the downlink.
  • the low wavelength division density of devices still restricts the development of technology.
  • the embodiments of the present application expect to provide a BIDI device, an optical module, and a production method to solve the problem of the existing BIDI device in long-distance transmission, which is too large and has a small wavelength division density.
  • a BIDI device including a wavelength division multiplexer, a first optical device, and a second optical device; one of the first optical device and the second optical device is an optical transmitter, and the other is an optical receiver
  • the wavelength division multiplexer includes a first optical port, a second optical port, a third optical port, a first collimating unit, and a filter; the first collimating unit is arranged in the filter away from the On one side of the first optical port, the filter can receive parallel light from the first collimating unit; the first optical port is coupled and fixed to the first optical device, and the second optical port is connected to the The second optical device is optically connected, and the third optical port is used to receive external light or emit light; the angle A between the plane normal of the filter and the optical axis of the parallel light is less than or equal to 5°.
  • the first optical device includes a second collimating unit matched with the first collimating unit.
  • the first collimating unit is a collimating lens; and/or, the second collimating unit is a collimating lens.
  • the wavelength division multiplexer includes a dual-core pin
  • the dual-core pin includes a core body, a first optical fiber, a second optical fiber, a first channel for the first optical fiber to pass through, and a The second channel through which the second optical fiber passes;
  • the core body is arranged on the side of the first collimating unit away from the filter;
  • the side of the filter away from the core body is the first light Port;
  • the end of the first channel away from the filter is the second optical port, the first end of the first optical fiber is aligned with the first collimating unit, and the first optical fiber passes through the
  • the wavelength division multiplexer is connected to the second optical device through the first optical fiber;
  • the end of the second channel facing away from the filter is the third optical port, and the first optical fiber
  • the first ends of the two optical fibers are aligned with the first collimating unit, and the second optical fiber passes through the third optical port.
  • the second optical port and the third optical port are arranged on the same side of the core body away from the filter.
  • first channel penetrates the core body along the extension direction of the first optical fiber; and/or, the second channel penetrates the core body along the extension direction of the second optical fiber.
  • first channel is a tapered hole, and an end of the first channel with a larger diameter faces away from the filter; and/or, the second channel is a tapered hole, and the second channel has a larger diameter. The large end faces away from the filter.
  • the axes of the first channel and the second channel are located in the same plane, and the axes of the first channel and the second channel intersect.
  • the end of the first end of the first optical fiber is flush with the first end surface of the core body facing the filter; and/or, the end of the first end of the second optical fiber is flush with the first end of the filter.
  • the core body is flush with the first end surface of the filter.
  • first optical fiber and the first channel are fixed with glue; and/or, the second optical fiber and the second channel are fixed with glue.
  • the wavelength division multiplexer includes an optical housing, and the filter, the first collimating unit, and the dual-core pin are arranged inside the optical housing.
  • optical housing is a straight cylindrical structure that is open at both ends along the arrangement direction of the filter, the first collimating unit, and the dual-core pin.
  • the first optical device includes a body and a connecting tube fixed on the body, the first collimating unit is arranged in the body, and the connecting tube is sleeved outside the optical housing.
  • connecting pipe and the optical housing are bonded by ultraviolet curing glue; or, the connecting pipe and the optical housing are welded by laser.
  • the wavelength division multiplexer includes a connector provided on the second end of the first optical fiber connected to the second optical device.
  • the connector is a ceramic ferrule, and the wavelength division multiplexer is plugged and connected to the second optical device through the connector.
  • the first optical fiber coil is placed; and/or, the second optical fiber coil is placed.
  • An optical module includes a housing and the above-mentioned BIDI device, and the housing is used for accommodating the wavelength division multiplexer, the first optical device, and the second optical device.
  • the wavelength division multiplexer includes a port and a limiting portion provided on the port, the port is provided at the second end of the second optical fiber, and the housing includes a contact with the limiting portion Cooperating positioning part.
  • one of the positioning portion and the limiting portion is a groove, and the other is a bump.
  • a production method including:
  • a port is installed at the second end of the second optical fiber.
  • the providing a wavelength division multiplexer includes the following steps: inserting the first optical fiber into the first channel, curing the first optical fiber and the first channel; inserting the second optical fiber into the second channel Channel, curing the second optical fiber and the second channel; grinding the end plane of the dual-core pin toward the first collimating unit; coupling and fixing the filter and the first collimating unit to form a coupling Body; coupling the coupling body and the dual-core pin.
  • the production method further includes: an optical housing is sleeved on the coupling body and the dual core The outer surface of the pin.
  • the first optical device includes a body and a connecting tube fixed on the side of the body facing the wavelength division multiplexer, and the first optical device and the wavelength division multiplexer are fixed in the coupling.
  • the steps further include: penetrating the optical housing into the connecting tube and fixing the connection.
  • the production method further includes: the first optical fiber is connected to the second end of the second optical device to install a connector; the first optical fiber The connector is plugged and connected to the second optical device.
  • the production method further includes: coiling the first optical fiber and the second optical fiber.
  • the first optical port is coupled and fixed with the first optical device, so that the coupling and fixing of the first optical port and the first optical device are not in the form of optical fiber, but directly close to the first optical port.
  • the light emitted or received by the first optical port directly includes the body of the chip and is directly connected with the optical path, which saves more volume;
  • the angle A between the plane normal of the filter and the optical axis of the parallel light is less than or equal to 5°, which can reduce the energy loss of the two polarization states of the light beam during the transmission of the filter. Therefore, by reducing the angle of the filter 110, Avoid the waste of light energy; combined with the filter, it can receive the parallel light from the first collimating unit, and the filter is used to process the parallel light instead of the convergent light, which can eliminate the light emitted or incident to the filter and the plane normal of the filter
  • the difference in the included angle can avoid the difference and drift of the bandpass wavelength center value caused by the difference, increase the density of the wavelength interval, meet the wavelength division density, and make the wavelengths between the two beams closer, at the same
  • the number of carriers can be increased under power, and the range of carrier wavelength selection is also broadened.
  • Figure 1 is a schematic structural diagram of a pigtailed BIDI device in the prior art
  • FIG. 2 is a schematic diagram of the structure of a pluggable BIDI device in the prior art
  • Fig. 3 is a schematic diagram of the size relationship of the structure shown in Fig. 2;
  • FIG. 4 is a schematic structural diagram of a BIDI device according to an embodiment of the application.
  • Figure 5 is a structural embodiment of the component wavelength division multiplexer
  • Fig. 6 is a partial enlarged view of area C in Fig. 5;
  • FIG. 7 is a structural example of area B in FIG. 4;
  • FIG. 8 is a structural example of area B in FIG. 4;
  • FIG. 9 is a schematic diagram of an optical path of a BIDI device according to an embodiment of the application.
  • FIG. 10 is a schematic diagram of the first optical port and the second optical port forming a first optical path in an embodiment of the application;
  • Fig. 11 is a schematic diagram of a second optical port formed by a second optical port and a third optical port in an embodiment of the application;
  • FIG. 12 is a schematic structural diagram of an optical module according to an embodiment of the application.
  • FIG. 13 is a schematic diagram of the coincidence of the optical axis of the light beam with the plane normal of the filter, where the light beam is convergent light;
  • FIG. 14 is a schematic diagram of the coincidence of the optical axis of the light beam with the plane normal of the filter, where the light beam is parallel light;
  • FIG. 15 is a flowchart of a production method according to an embodiment of the application.
  • FIG. 16 is a flowchart of a production method according to another embodiment of the application.
  • orientation or positional relationship of "upper”, “lower”, “left”, “right”, “front”, and “rear” is based on the orientation or positional relationship shown in FIG. 3, which requires It is understood that these orientation terms are only for the convenience of describing the application and simplifying the description, rather than indicating or implying that the device or element referred to must have a specific orientation, be constructed and operated in a specific orientation, and therefore cannot be understood as a reference to the application. limit.
  • a BIDI device as shown in FIGS. 4 to 11, includes a wavelength division multiplexer 100, a first optical device 200, and a second optical device 300.
  • the wavelength division multiplexer 100 includes a first optical port 101, a second optical port 102, a third optical port 103, a first collimating unit 120, and a filter 110.
  • a first light passing through the first collimating unit 120 and the filter 110 is formed between the first light port 101 and the second light port 102.
  • the second light path reflected by the filter 110 is formed between the second light port 102 and the third light port 103.
  • the first optical port 101 is coupled and fixed to the first optical device 200
  • the second optical port 102 is optically connected to the second optical device 300
  • the third optical port 103 is used to receive external light or emit light.
  • the optical path connection between the second optical port 102 and the second optical device 300 can be achieved through the first optical fiber 144 (mentioned below), or the two can be directly coupled and fixed together to reduce the structure of one optical fiber; the third optical port 103 is connected to the outside
  • the optical path connection can be achieved through the second optical fiber 145 (mentioned below).
  • the coupling and fixing of the first optical port 101 and the first optical device 200 is not in the form of optical fibers, but directly closes the first optical port 101 to the body 230 of the first optical device 200, and the first optical port 101 emits light.
  • the received light directly includes the body 230 of the chip and is directly connected to the optical path, eliminating the need for the existing pigtailed BIDI device: ceramic plug-in 120', optical fiber 110' connected to the optical transmitter 200', and socket for the optical transmitter 200'
  • the structure and the socket structure on the WDM assembly 100' play a role in saving more volume; in addition, due to the direct coupling and fixing, the pigtails extending from the second optical port 102 and the third optical port 103 (that is, the first optical fiber 144 and the second optical fiber 145) also do not need to use the traditional fusion taper, which saves the taper area and reduces the overall volume of the wavelength division multiplexer 100, thereby making the BIDI device small in size.
  • the second optical port 102 and the third optical port 103 are located on the same side of the filter 110, and the first optical port 101 is located on the opposite side of the filter 110. If the BIDI device adopts the coiling process, the first optical fiber 144 and the second optical fiber 145 extending from the second optical port 102 and the third optical port 103 on the same side can be coiled together, reducing the volume occupied by the coiling fiber.
  • pigtailed or plug-in BIDI devices all use 45° filters for light splitting, and what is processed on the filters is also traditional convergent light.
  • pluggable BIDI devices generally use a 45° filter 110" splitter and convergent lens incident coaxial package form, the TO cap 201" of the optical transmitter 200" and the TO of the optical receiver 300"
  • the cap 301" is used to converge the light beam.
  • the D light with a certain wavelength emitted by the light emitter 200" passes through the TO cap 201" of the light emitter 200" and reaches the surface of the 45° filter 110".
  • the filter 110 "transmits into the port 120" to complete the light emission; the external E light with a certain wavelength passes through the port 120", reaches the surface of the 45° filter 110", and reflects from the 45° filter 110" into the light receiving
  • the TO cap 301” of the device 300” completes the light reception.
  • the wavelength interval is strongly related to the angle change. If the 45° filter 110" is 45°, the angle change is 90°. On the one hand, the TO cap 201" of the optical transmitter 200" is not coupled to the optical transmitter 200". Therefore, the convergence angle of the light emitted from the TO cap 201” of the light emitter 200” is uncontrollable and the error is large. On the other hand, because the 45° filter 110” is not coupled, it is directly pasted on the 45° supporting surface 111 "Up, and the 45° supporting surface 111" has a tolerance for each angle.
  • the glue thickness for bonding the 45° filter 110" is also different; whether it is the light emitted from the TO cap 201" of the light emitter 200" It is impossible to complete the coupling calibration from the angle of production. Therefore, in the prior art device, the wavelength center value of the light to be wavelength-divided needs to be set aside correspondingly. Width margin, which in turn causes the wavelength division wavelength interval to be further widened.
  • the optical transmitter 200", the optical receiver 300" and the port 120" are all fixed on the tube body 100", once the port 120" is displaced, even the micron level, it will affect the optical transmitter 200" and the light receiving at the same time.
  • the quality of the light beam emitted and received by the optical transmitter 300", and the displacement of any one of the optical transmitter 200" and the optical receiver 300” will also make the optical port (108) unable to receive and emit light normally.
  • the optical transmitter 200" and the optical receiver 300 The problems of "and port 120" are superimposed together, the yield is low, and when used at the module level, because each part is hard-connected, the position of each part cannot be adjusted and must be accurate. If it is not accurate, it cannot be installed in the module. , To further reduce the yield.
  • optical transmitter 200 If any one of the optical transmitter 200", optical receiver 300", port 120", and tube 100" is broken, all of them need to be reworked. There is only one connection between them. There is no way to couple and calibrate the second time. It can be produced by a one-time instant curing process, such as laser welding.
  • the use of convergent light at 45° filter 110" will require a larger wavelength separation between D light and E light, resulting in fewer signal carriers.
  • the capacity of the channel becomes smaller; the number of signal carriers becomes smaller, and the band near 1300nm must also be used.
  • the wavelength of this band has a large dispersion window, and the optical power of the device itself is small, plus the optical power caused by the 45° filter 110" splitting Loss, multiple factors make this form of BIDI device unable to support long-distance transmission of more than 40km.
  • the filter 110 is used to process the parallel light 111 that reaches the mirror surface.
  • the parallel light 111 located on the first light path is transmitted by the filter 110;
  • the parallel light 111 on the light path is reflected by the filter 110, thereby realizing the light splitting function.
  • the parallel light 111 in the embodiment of the present application refers to a light beam that, in principle, satisfies "the image side beam waist is at the image side focal point" in laser communication.
  • the parallel light shaping caused by process, manufacturing or other process deviations does not absolutely conform to the definition. As long as it does not deviate from the description of the definition of parallel light in the Gaussian beam in principle, it can be regarded as the parallel light 111 described in this patent.
  • One of the first optical device 200 and the second optical device 300 is an optical transmitter, and the other is an optical receiver; according to the different functions of the first optical device 200 and the second optical device 300, the first optical path and the second optical device 300 The light transmission directions of the two light paths are different.
  • first optical device 200 is an optical receiver
  • second optical device 300 is an optical transmitter
  • the light emitted by the second optical device 300 enters the third optical port 103 through the second optical port 102, and the convergent light emitted by the second optical device 300 (the solid line is shown in the figure) Means, the same below) enters through the second light port 102, the convergent light passes through the first collimating unit 120 and then turns into parallel light 111 (shown by a dotted line in the figure, the same below), and the parallel light 111 is reflected by the filter 110 After passing through the first collimating unit 120 again, it becomes convergent light again, and the convergent light is transmitted to the outside through the third optical port 103; the emission of the optical signal is completed.
  • the first optical path external light enters the first optical port 101 through the third optical port 103 and then enters the first optical device 200.
  • the concentrated light emitted from the outside enters from the first light port 101, passes through the first collimating unit 120, and then turns into a parallel light 111.
  • the parallel light 111 passes through the filter 110 and reaches the first light port 101.
  • An optical port 101 is coupled to the fixed first optical device 200 to receive; the receiving of optical signals is completed.
  • the first optical device 200 is an optical transmitter and the second optical device 300 is an optical receiver: as shown in FIG. 10, in the first optical path, the light emitted by the first optical device 200 enters the first optical port 101 through the first optical port 101. Three optical port 103, and then pass to the outside. Among them, the parallel light 111 emitted by the first optical device 200 is incident from the first light port 101, passes through the filter 110 and reaches the first collimating unit 120, and the parallel light 111 passes through the first collimating unit 120 and then turns into convergent light. , The concentrated light is transmitted from the third optical port 103 to the outside. Complete the emission of the optical signal. As shown in FIG.
  • the first optical device 200 is an optical transmitter or an optical receiver, it does not affect its corresponding optical path, and the specific design may prevail.
  • the first optical device 200 is used as the optical transmitter and the second optical device 300 is used as the optical receiver as an embodiment for description, so as to avoid repetitive description.
  • the optical transmitter may be any type of packaged laser, such as BOX type, TO type, butterfly type, PIN in-line type, airtight type, and non-airtight type.
  • the optical receiver can be any type of packaged detector, such as BOX type, TO type, butterfly type, PIN in-line type, airtight type, and non-airtight type.
  • the angle A between the plane normal of the filter 110 and the optical axis of the parallel light 111 is less than or equal to 5°. It can be understood that there is no absolute parallelism. In this case, the parallel lights 111 in the first light path and the second light path are almost parallel, so they can be regarded as having coincident optical axes; specifically, the plane normal of the filter 110 is the same as that in the first light path. The angle A of the optical axis of the parallel light 111 is less than or equal to 5°.
  • the wavelength separation between the D light and the E light distinguished by the 45° filter 110" cannot be dense, and the optical power loss of this splitting method is large, and it does not support the realization of local area network wavelength division (hereinafter referred to as LAN). -WDM) or dense wavelength division (hereinafter referred to as DWDM).
  • LAN local area network wavelength division
  • DWDM dense wavelength division
  • the wavelength of the band drifts 0.4 ⁇ 0.5nm as the filter angle increases or decreases by 1°.
  • the center interval of the LAN-WDM wavelength division is 4.5nm, that is to say, if the angle of light and the angle of the filter normal exceeds 11.2°, the crosstalk between the two bands at the center of the 4.5nm wavelength sub-band will be very significant.
  • the light beam entering from the first optical port 101 or the third optical port 103 has two polarization states. From an optical point of view, only the plane method of the filter 110 When the line is completely parallel to the beam without an angle, the waves of the two polarization states will overlap and the transmitted power will be the largest; as the angle between the plane normal of the filter 110 and the beam increases, the wavelengths of the two polarization states will separate The more, the wider the band, and the larger the interval between the center wavelengths of the band.
  • both polarization states carry the energy of light
  • the center wavelength is separated to one polarization state and the band cannot be used
  • the light energy carried by one polarization state of this band is wasted.
  • the power requirement is extremely high, and the waste of light energy will inevitably bring about the shortening of the transmission distance.
  • the angle at which the filter 110 is set is less than or equal to 5°.
  • the energy loss of the two polarization states of the light beam of the first optical path during the transmission of the filter 110 is extremely small.
  • the energy loss of the light beam of the second light path is also extremely small during the reflection process of the filter 110; thus, by reducing the angle of the filter 110, the waste of light energy is avoided.
  • the small-angle setting of the filter 110 should be used in combination with parallel light.
  • the plane normal of the filter 110" coincides with the optical axis of the incident light, since the incident light is convergent light, the edge of the light beam and the filter 110" still have a clip.
  • Angle H and the closer to the optical axis of the beam, the smaller the angle H of the light beam, the angle of each beam is different, which causes the wavelength of the wavelength band to drift differently, which makes the wavelength center value of the light to be wavelength-divided Need to leave a corresponding width margin, which in turn causes the wavelength division wavelength interval to be further widened.
  • the use of the filter 110 to process the parallel light 111 instead of the convergent light can eliminate the difference in the angle between the light exiting or entering the filter 110 and the plane normal of the filter 110, and then The difference and drift of the bandpass wavelength center value caused by the difference can be avoided, and the density of the wavelength interval can be increased to meet the wavelength division density, that is, the wavelength between the light beams in the first optical path and the second optical path is closer, At the same power, more carriers can be added, and the range of carrier wavelengths can be expanded. Therefore, designers can choose to avoid the high-dispersion area near 1300nm and switch to other wavelength bands during specific design.
  • Optical fiber transmission Among them, chromatic dispersion is the main factor limiting the increase in transmission distance. By increasing wavelength selectivity and increasing channel capacity, long-distance transmission can finally be realized.
  • the first collimating unit 120 can mutually transform the ordinary light and the parallel light 111.
  • the ordinary light is relative to the parallel light 111.
  • the ordinary light is defined as Converge or diverge light.
  • the filter 110 can receive the parallel light 111 from the first collimating unit 120.
  • the first collimating unit 120 may be a collimating lens, and the first collimating unit 120 should be arranged at the position of the filter 110 facing away from the first light port 101. On one side, it is ensured that both the paths of the first light path and the second light path pass through the first collimating unit 120.
  • the mutual coupling of parallel light 111 is only sensitive to the angle of incidence, unlike convergent light, which also needs to be coupled to the focal length. Therefore, the output of parallel light 111 can achieve easier coupling and fixing between devices and compatible with multiple processes. The role of.
  • the first collimating unit 120 is arranged on the side of the filter 110 close to the first light port 101, the first light path is the parallel light 111, and the second light path does not pass through the first collimating unit 120, so it belongs to In the traditional convergent light, the problem of processing the converged light on the filter 110 still exists, and the first light path uses the parallel light 111, and the second light path does not use it. This will inevitably cause the two to be mismatched, making the coupling more difficult, and also Can not get better long-distance transmission effect.
  • the first collimating unit 120 needs to be arranged on the side of the filter 110 away from the first light port 101, so that, regardless of whether the filter 110 reflects or transmits, the parallel light 111 is processed.
  • the parallel light 111 exists on the propagation path between the first collimating unit 120 and the filter 110, and the existence here means that it may partially exist. It can also exist throughout. Specifically, no matter in the first light path or the second light path, when the light travels from the filter 110 to the first collimating unit 120, the state of the light is converted from the parallel light 111 to the convergent light; The collimating unit 120 propagates to the filter 110, and the state of the light is converted from the convergent light to the parallel light 111, so as to ensure that all the parallel light 111 processed on the filter 110 is ensured to obtain a higher channel capacity and achieve a long distance. transmission.
  • the first optical device 200 includes a second collimating unit 210 that cooperates with the first collimating unit 120, and the second collimating unit 210 It can be a collimating lens.
  • the second collimating unit 210 converts the light and the parallel light 111 to each other, so that the conventional first optical device 200 that emits concentrated light can be used in the device.
  • the transformation of the second collimating unit 210 is exactly the opposite of that of the first collimating unit 120, and the convergent light emitted by the chip assembly 250 of the first optical device 200 is transformed by the second collimating unit 210 It is parallel light 111.
  • the parallel light 111 enters from the first light port 101, passes through the filter 110 and reaches the first collimating unit 120. After passing through the first collimating unit 120, the parallel light 111 is converted into convergent light.
  • the third optical port 103 is transmitted to the outside. Complete the emission of the optical signal.
  • the chip assembly 250 is a light generating chip for emitting light; when the first optical device 200 is a light receiver, the chip assembly 250 is a light receiving chip, which converts the light signal into electricity. signal.
  • the wavelength division multiplexer 100 includes a first lens unit 130.
  • the first lens unit 130 is disposed on the side of the filter 110 close to the first optical device 200 to remove light.
  • the first optical device 200 includes a second lens unit 220 that cooperates with the first lens unit 130, and the second lens unit 220 converts the light and the parallel light 111 to each other, so as to facilitate the traditional light emission of the first convergent light.
  • An optical device 200 can be used in this device.
  • the conversion of the first lens unit 130 is exactly the opposite of that of the second lens unit 220.
  • the convergent light emitted by the chip assembly 250 of the first optical device 200 is converted into parallel light by the second collimating unit 210.
  • the light 111 travels a certain distance.
  • the parallel light 111 passes through the second lens unit 220 and then turns into convergent light.
  • the convergent light enters from the first light port 101.
  • the convergent light passes through the first lens unit 130 and then turns into parallel light 111.
  • the light 111 passes through the filter 110 to reach the first collimating unit 120, the parallel light 111 passes through the first collimating unit 120 and then turns into a convergent light, and the convergent light is transmitted from the third optical port 103 to the outside. Complete the emission of the optical signal.
  • the first lens unit 130 and the second lens unit 220 may be ball lenses or collimating lenses.
  • the wavelength division multiplexer 100 includes a dual-core pin 140, and the dual-core pin 140 includes a core body 141, a first optical fiber 144, and a second optical fiber 145.
  • the side of the filter 110 away from the core body 141 is the first optical port 101, which is directly and fixedly coupled with the first optical device 200.
  • the end of the first channel 142 facing away from the filter 110 is the second optical port 102.
  • the first end of the first optical fiber 144 is aligned with the first collimating unit 120.
  • the first optical fiber 144 passes through the second optical port 102.
  • the multiplexer 100 is connected to the second optical device 300 through the first optical fiber 144; that is, the second end of the first optical fiber 144 is connected to the second optical device 300. After the corresponding coupling is completed, the first optical fiber 144 is connected to the first channel 142. Glue can be used to fix between them.
  • the end of the second channel 143 away from the filter 110 is the third optical port 103.
  • the first end of the second optical fiber 145 is aligned with the first collimating unit 120.
  • the second optical fiber 145 passes through the third optical port 103 and passes through the third optical port 103.
  • the second end of the two optical fibers 145 is connected to the outside. After the corresponding coupling is completed, the second optical fiber 145 and the second channel 143 are fixed with glue.
  • the second end of the second optical fiber 145 forms the aforementioned first light path, in which light is received or emitted.
  • the first collimating unit 120-the first end of the second optical fiber 145-the second optical fiber 145 (passing through the third optical port 103)-the second end of the second optical fiber 145 form the aforementioned second optical path, In the light path, the emission or reception of light is realized.
  • the basic function of the wavelength division multiplexer is to realize light splitting, and the light splitting must first realize the physical separation between the two ends.
  • the ends are the sockets F and G for optical fiber access.
  • the ends are the ceramic insert 120' and the optical receiver 300", no matter what type, the end The volume is counted in millimeters or even centimeters.
  • the 45° filter 110" can be tilted at 45° to make the ends bifurcate in a vertical manner, so as to obtain the necessary separation distance S3 between the two ends with the smallest volume.
  • the diameter of the core body 141 can be designed to be small.
  • the angle A between the plane normal of the filter 110 and the optical axis of the parallel light 111 in the first light path is 5°
  • the angle between the first optical fiber 144 and the second optical fiber 145 is about 10°
  • the angle A between the plane normal of the mirror 110 and the optical axis of the parallel light 111 in the first light path is 1°
  • the angle between the first optical fiber 144 and the second optical fiber 145 is about 2°, which is almost visible It is parallel to transmit or reflect from the filter 110.
  • the required isolation distance S4 between the first optical fiber 144 and the second optical fiber 145 is much smaller than the center isolation distance S3 of the prior art. Therefore, the distance (not shown) of the optical path after calculation is also reduced by a lot, so that from the first The light incident from the second optical fiber 145 can reflect the first optical fiber 144 at a small angle, which directly reduces the distance between the second optical port 102 and the third optical port 103.
  • the volume of the wavelet division multiplexer 100 meets the requirements of miniaturized module assembly.
  • the filter 110 is tilted at a small angle, and the angles of the first channel 142 and the second channel 143 of the dual-core pin 140 are designed to match it, so that the first optical fiber 144 and the second optical fiber 145 can interact with each other.
  • the filter 110 is coupled to satisfy the volume and reach the center interval of the wavelength sub-band specified by the BIDI device in the LAN-WDM or even the DWDM line standard.
  • the first channel 142 penetrates the core body 141 along the extension direction of the first optical fiber 144; the second channel 143 penetrates the core body 141 along the extension direction of the second optical fiber 145;
  • the filter 110 is set at a small angle, the angle between the first optical fiber 144 and the second optical fiber 145 is very small, and it can be considered that the axial directions of the first optical fiber 144 and the second optical fiber 145 and the core body 141 are roughly the same; Yes, there is no absolute consistency. Therefore, the axial direction of the core body 141 does not mean that the first optical fiber 144 and the second optical fiber 145 are parallel. It meets the requirements.
  • the first channel 142 is a tapered hole, and the end of the first channel 142 with a larger diameter faces away from the filter 110 to form a second optical port 102, thereby facilitating the first optical fiber 144 Insertion and assembly; the end of the first end of the first optical fiber 144 is flush with the first end surface of the core body 141 facing the filter 110 to receive or transmit optical signals.
  • the second channel 143 is a tapered hole, and the end of the second channel 143 with a larger diameter faces away from the filter 110 to form a third optical port 103, thereby facilitating the insertion and assembly of the second optical fiber 145; the end of the first end of the second optical fiber 145 It is flush with the first end surface of the core body 141 facing the filter 110 so as to receive or transmit optical signals.
  • the axes of the first channel 142 and the second channel 143 are located in the same plane, and the axes of the first channel 142 and the second channel 143 intersect, so as to satisfy the second light path.
  • the reflection is done on the filter 110 in the middle.
  • the wavelength division multiplexer 100 includes an optical housing 170, and the filter 110, the first collimating unit 120, and the dual-core pin 140 are disposed in the optical housing 170.
  • the filter 110, the first collimating unit 120, and the dual-core pin 140 have been previously coupled and fixed together, so the optical housing 170 can be fixed to any one or more of them.
  • the optical housing 170 can be an integral processing part or a separate processing part.
  • the material can be metal or non-metal. According to different processes, different materials and processing methods are allowed. For example, when welding is adopted, the material can be stainless steel. Material, when the glue is used for connection, glass or plastic can be used.
  • the optical housing 170 is a straight cylindrical structure with both ends open along the arrangement direction of the filter 110, the first collimating unit 120, and the dual-core pin 140. Specifically, since the filter 110 adopts a small angle and the separation distance between the first optical fiber 144 and the second optical fiber 145 is short, it is possible to concentrately extend from the first end of the optical housing 170 to form a pigtail.
  • the first optical device 200 includes a body 230 and a connecting tube 240 fixed on the body 230.
  • the first collimating unit 120 is disposed in the body 230.
  • 230 also includes a chip assembly 250.
  • the connecting tube 240 is sleeved outside the optical housing 170.
  • the second end of the optical housing 170 is close to the bottom of the connecting tube 240, so that the first optical port 101 extends to the distance between the body 230 and the connecting tube 240.
  • the position of the connection slit 241 is close to the chip assembly 250, so that the main body 230 and the first optical port 101 are directly coupled and fixed.
  • the chip assembly 250 can be directly connected to the optical path of the first optical port 101 without borrowing optical fibers, eliminating the need for intermediate parts. Save volume.
  • the connecting tube 240 can be bonded with UV curing glue.
  • the connecting tube 240 needs to be made of transparent plastic or glass to facilitate UV irradiation.
  • a dispensing hole 242 can be opened on the connecting tube 240 to facilitate dispensing and UV irradiation; or, the connecting tube 240 and the optical housing 170 can also be laser welded, or two or more fixed and mixed methods can be used. .
  • the wavelength division multiplexer 100 includes a connector 180, which is arranged on the second end of the first optical fiber 144 connected to the second optical device to It is convenient to connect the second optical device 300.
  • the connector 180 is a ceramic ferrule, and the wavelength division multiplexer 100 is pluggably connected to the second optical device 300 through the connector 180.
  • the first optical fiber 144 can be placed in a coiled fiber; the second optical fiber 145 can be placed in a coiled fiber to save volume.
  • An optical module includes a housing 400 and the above-mentioned BIDI device.
  • the housing 400 is used for accommodating the wavelength division multiplexer 100, the first optical device 200, and the second optical device 300, thereby forming a complete functional module.
  • the wavelength division multiplexer 100 includes a port 190 and a limiting portion 191 provided on the port 190.
  • the port 190 is provided at the second end of the second optical fiber 145, and the housing
  • the body 400 includes a positioning portion 401 that cooperates with the limiting portion 191.
  • One of the positioning portion 401 and the limiting portion 191 is a groove, and the other is a bump. The accuracy of the installation position of the module is not required, so It can be adjusted flexibly according to needs to further improve the yield.
  • a production method as shown in Fig. 15 and Fig. 16, for manufacturing the above-mentioned BIDI device, including:
  • a port 190 is installed at the second end of the second optical fiber 145.
  • the main body for providing the wavelength division multiplexer 100 includes the following steps:
  • the second optical fiber 145 is inserted into the second channel 143, and the second optical fiber 145 and the second channel 143 are cured;
  • the coupling fixed filter 110 and the first collimating unit 120 form a coupling body
  • the spot analyzer is respectively coupled to the required optical power and spot shape.
  • the light beam of the first optical port 101 is parallel light.
  • the production method further includes:
  • the optical housing 170 is sleeved on the outer surface of the coupling body and the dual-core pin 140.
  • the specific implementation includes: inserting the optical housing 170 into the connecting tube 240, thereby fixing the optical device 200 and the main body of the wavelength division multiplexer 100.
  • the housing 170 and the connecting pipe 240 includes: inserting the optical housing 170 into the connecting tube 240, thereby fixing the optical device 200 and the main body of the wavelength division multiplexer 100.
  • the production method before the step of connecting the first optical fiber 144 to the second optical device 300, the production method further includes:
  • a connector 180 is installed at the second end of the first optical fiber 144 connected to the second optical device 300; the first optical fiber 144 is pluggably connected to the second optical device 300 through the connector 180.
  • the production method further includes:
  • the wavelength division multiplexer 100, the first optical device 200, and the second optical device 300 are housed in the housing 400, and the port 190 and the housing 400 are limited.
  • Position installation to complete the production of optical modules Specifically, the first optical fiber 144 located at the second optical port 102 and the second optical fiber 405 located at the third optical port 103 are coiled and loaded into the module housing 400 together, and the port 190 is placed in the optical port of the module.
  • the connector 180 is inserted into the second optical device 300.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Electromagnetism (AREA)
  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Optical Couplings Of Light Guides (AREA)

Abstract

一种BIDI器件、光模块以及生产方法,包括波分复用器(100)、第一光器件(200)以及第二光器件(300);第一光器件(200)和第二光器件(300)的其中之一为光发射器,其中另一为光接收器;波分复用器(100)包括第一光口(101)、第二光口(102)、第三光口(103)、第一准直单元(120)以及滤镜(110);第一准直单元(120)设置在滤镜(110)背离第一光口(101)的一侧,滤镜(110)能够接收来自第一透镜单元(120)的平行光(111);第一光口(101)与第一光器件(200)耦合固定,第二光口(102)与第二光器件(300)光路连接,第三光口(103)用于接收外部光线或者发出光线,滤镜(110)的平面法线与平行光(111)的光轴夹角A小于或者等于5°。具有体积小且波分密度大的优点。

Description

一种BIDI器件、光模块以及生产方法
相关申请的交叉引用
本申请基于申请号为201911087898.X、申请日为2019年11月8日的中国专利申请提出,并要求该中国专利申请的优先权,该中国专利申请的全部内容在此引入本申请作为参考。
技术领域
本申请涉及光通信领域,尤其涉及一种BIDI器件、光模块以及生产方法。
背景技术
现有技术中,尾纤式的光收发器(以下简称BIDI器件)需要外挂波分复用器(以下简称为WDM组件),如图1所示,需要从WDM组件100’两侧分别引出3条光纤110’连接光发射器200’、光接收器300’以及端口190’,3条光纤110’在WDM组件100’内采用熔融拉锥的工艺进行处理,且光纤110’之间需要通过匹配,因此会需要一段较长的拉锥区域,进而导致WDM组件100’本身需要较长的长度以满足工艺要求;此外,光纤110’的弯曲直径是有限度的,当前技术领域,光纤最小弯曲直径是10mm,而WDM组件100’从两侧引出光纤110’,所以会形成两侧各一个相对独立的盘纤空间,造成体积较大。
由于体积大,尾纤式的BIDI器件跟不上模块体积的发展。很难放进QSFP28(即四通道SFP接口,28为系列型号)或更小体积的光模块中。为了缩小体积,厂商研发出了插拔式BIDI器件,而插拔式BIDI器件,一则需要同时耦合多个器件,成品率低,二则插拔式BIDI一般采用45°滤片分 光加汇聚透镜入射的同轴封装形式;受限于自身结构以及入射方式,插拔式BIDI的波分波长间隔较大,不能满足高容量、高速的波分器件的波分波长间隔密集程度要求。
因此,在4G通信时代,厂家更愿意制作单独的光发射器(以下简称TOSA)和单独的光接收器(以下简称ROSA),用两个光口分别连接光纤传输高速及大容量上下行数据。
然而,随着5G技术的飞速发展,长距离、大容量的5G场景对上下行的时差提出了很高的要求,例如,在40km的5G中传和回传场景中,如果用单独TOSA和ROSA分两根光纤传输,上下行光纤长度的区别,光纤本身的不同,均会造成传输时间、色散和散射等因素的差别,进而导致长距离5G场景的上下行传输技术出现瓶颈。
为此,厂家的研究方向又重新回归到BIDI器件上来,其同时具有光接收与光发射的功能,可以有效解决上下行时差的问题,但尾纤式BIDI器件的体积过大,插拔式BIDI器件波分密度小,仍然制约着技术的发展。
发明内容
有鉴于此,本申请实施例期望提供一种BIDI器件、光模块以及生产方法,以解决现有的BIDI器件在长距离传输中,体积过大与波分密度小的问题。
为达到上述目的,本申请实施例的技术方案是这样实现的:
一种BIDI器件,包括波分复用器、第一光器件以及第二光器件;所述第一光器件和所述第二光器件的其中之一为光发射器,其中另一为光接收器;所述波分复用器包括第一光口、第二光口、第三光口、第一准直单元以及滤镜;所述第一准直单元设置在所述滤镜背离所述第一光口的一侧,所述滤镜能够接收来自所述第一准直单元的平行光;所述第一光口与所述 第一光器件耦合固定,所述第二光口与所述第二光器件光路连接,所述第三光口用于接收外部光线或者发出光线;所述滤镜的平面法线与所述平行光的光轴夹角A小于或者等于5°。
进一步地,所述第一光器件包括与所述第一准直单元相配合的第二准直单元。
进一步地,所述第一准直单元为准直透镜;和/或,所述第二准直单元为准直透镜。
进一步地,所述波分复用器包括双芯插针,所述双芯插针包括芯本体、第一光纤、第二光纤、供所述第一光纤穿过的第一通道以及供所述第二光纤穿过的第二通道;所述芯本体设置在所述第一准直单元背离所述滤镜的一侧;所述滤镜远离所述芯本体的一侧为所述第一光口;所述第一通道背离所述滤镜的一端为所述第二光口,所述第一光纤的第一端对准所述第一准直单元,所述第一光纤穿设于所述第二光口中,所述波分复用器通过所述第一光纤连接所述第二光器件;所述第二通道背离所述滤镜的一端为所述第三光口,所述第二光纤的第一端对准所述第一准直单元,所述第二光纤穿设于所述第三光口中。
进一步地,所述第二光口与所述第三光口设置在所述芯本体背离所述滤镜的同一侧。
进一步地,所述第一通道沿所述第一光纤的延伸方向贯穿所述芯本体;和/或,所述第二通道沿所述第二光纤的延伸方向贯穿所述芯本体。
进一步地,所述第一通道为锥形孔,所述第一通道直径较大的一端背离所述滤镜;和/或,所述第二通道为锥形孔,所述第二通道直径较大的一端背离所述滤镜。
进一步地,所述第一通道与所述第二通道的轴线位于同一平面内,所述第一通道与所述第二通道的轴线相交。
进一步地,所述第一光纤的第一端的端部与所述芯本体朝向所述滤镜的第一端面齐平;和/或,所述第二光纤的第一端的端部与所述芯本体朝向所述滤镜的第一端面齐平。
进一步地,所述第一光纤与所述第一通道之间采用灌胶固定;和/或,所述第二光纤与所述第二通道之间采用灌胶固定。
进一步地,所述波分复用器包括光学外壳,所述滤镜、所述第一准直单元以及所述双芯插针设置在所述光学外壳的内部。
进一步地,所述光学外壳为沿所述滤镜、所述第一准直单元以及所述双芯插针的排布方向的两端敞开的直筒结构。
进一步地,所述第一光器件包括本体以及固定在所述本体上的连接管,所述第一准直单元设置在所述本体内,所述连接管套设在所述光学外壳外。
进一步地,所述连接管与所述光学外壳采用紫外固化胶粘接;或者,所述连接管与所述光学外壳采用激光焊接。
进一步地,所述波分复用器包括连接器,所述连接器设置在所述第一光纤连接所述第二光器件的第二端上。
进一步地,所述连接器为陶瓷插芯,所述波分复用器通过所述连接器与所述第二光器件插拔式连接。
进一步地,所述第一光纤盘纤放置;和/或,所述第二光纤盘纤放置。
一种光模块,包括壳体以及上述的BIDI器件,所述壳体用于容纳所述波分复用器、所述第一光器件以及所述第二光器件。
进一步地,所述波分复用器包括端口以及设置在所述端口上的限位部,所述端口设置在所述第二光纤的第二端,所述壳体内包括与所述限位部配合的定位部。
进一步地,所述定位部与所述限位部的其中之一为凹槽,其中另一为凸块。
一种生产方法,包括:
提供所述波分复用器;
耦合固定所述第一光器件与所述波分复用器的第一光口;
连接所述第一光纤和所述第二光器件;
所述第二光纤的第二端安装端口。
进一步地,所述提供波分复用器包括以下步骤:所述第一光纤插入所述第一通道,固化所述第一光纤和所述第一通道;所述第二光纤插入所述第二通道,固化所述第二光纤与所述第二通道;研磨所述双芯插针朝向所述第一准直单元的端平面;耦合固定所述滤镜与所述第一准直单元形成耦合体;耦合所述耦合体与所述双芯插针。
进一步地,在所述耦合固定所述第一光器件与所述波分复用器的第一光口之前,所述生产方法还包括:光学外壳套设在所述耦合体和所述双芯插针的外表面。
进一步地,所述第一光器件包括本体以及固定在所述本体朝向所述波分复用器一侧的连接管,在所述耦合固定所述第一光器件与所述波分复用器步骤中还包括:将所述光学外壳穿入所述连接管内并固定连接。
进一步地,在所述第一光纤连接所述第二光器件之前,所述生产方法还包括:所述第一光纤连接所述第二光器件的第二端安装连接器;所述第一光纤通过所述连接器与所述第二光器件插拔式连接。
进一步地,在所述第一光纤连接所述第二光器件之前,所述生产方法还包括:盘纤所述第一光纤以及所述第二光纤。
本申请实施例的BIDI器件,通过设置第一光口与第一光器件耦合固定,使得第一光口与第一光器件的耦合固定并非是采用光纤形式,而是直接将第一光口靠近第一光器件的本体,第一光口发出或者接受的光线直接包含芯片的本体直接光路连通,更省体积;
滤镜的平面法线与平行光的光轴夹角A小于或者等于5°,可减少光束的两个偏振态在透射滤镜的过程中能量损失,由此,通过降低滤镜110的角度,避免了光能量的浪费;再结合滤镜能够接收来自第一准直单元的平行光,采用滤镜处理平行光而非汇聚光,可以消除出射或入射滤镜的光线与滤镜的平面法线夹角的差异,进而可以避免因该差异造成的带通波长中心值的不同和漂移,可以增加波长间隔的密度,满足波分密度,并使得两束光束之间的波长更接近,在相同的功率下可增加更多载波数量,也扩宽了载波波长的选择范围,因此设计人员在具体设计时可以选择避开1300nm附近波段的高色散区域而改用其他波长的波段,光纤传输中,色散是限制提高传输距离的主要因素,通过增加波长选择性,提高信道容量,最终可实现长距离传输。
附图说明
图1为现有技术的尾纤式BIDI器件的结构示意图;
图2为现有技术的插拔式BIDI器件的结构示意图;
图3为图2中所示结构的尺寸关系示意图;
图4为本申请实施例的一种BIDI器件的结构示意图;
图5为部件波分复用器的一种结构实施例;
图6为图5中C区域的局部放大图;
图7为图4中B区域的一种结构实施例;
图8为图4中B区域的一种结构实施例;
图9为本申请实施例的一种BIDI器件的光路示意图;
图10为本申请实施例中第一光口与第二光口形成第一光通路的示意图;
图11为本申请实施例中第二光口与第三光口形成第二光通路的示意 图;
图12为本申请实施例的一种光模块结构示意图;
图13为光束的光轴与滤镜的平面法线重合的示意图,其中光束为汇聚光;
图14为光束的光轴与滤镜的平面法线重合的示意图,其中光束为平行光;
图15为本申请实施例的一种生产方法的流程图;
图16为本申请另一实施例的一种生产方法的流程图。
具体实施方式
需要说明的是,在不冲突的情况下,本申请中的实施例及实施例中的技术特征可以相互组合,具体实施方式中的详细描述应理解为本申请的解释说明,不应视为对本申请的不当限制。
在本申请实施例的描述中,“上”、“下”、“左”、“右”、“前”、“后”方位或位置关系为基于附图3所示的方位或位置关系,需要理解的是,这些方位术语仅是为了便于描述本申请和简化描述,而不是指示或暗示所指的装置或元件必须具有特定的方位、以特定的方位构造和操作,因此不能理解为对本申请的限制。
一种BIDI器件,如图4至图11所示,包括波分复用器100、第一光器件200以及第二光器件300。
波分复用器100包括第一光口101、第二光口102、第三光口103、第一准直单元120以及滤镜110。
如图4、图5、图9、图10和图11所示,在第一光口101与第二光口102之间形成有透过第一准直单元120和滤镜110的第一光通路;第二光口102与第三光口103之间形成有经滤镜110反射的第二光通路。
如图1和图3所示,第一光口101与第一光器件200耦合固定,第二光口102与第二光器件300光路连接,第三光口103用于接收外部光线或者发出光线。
第二光口102与第二光器件300之间可以通过第一光纤144实现光路连接(下文提及),也可以两者直接耦合固定在一起以减少一条光纤结构;第三光口103与外部可以通过第二光纤145(下文提及)实现光路连接。
需要注意的是,第一光口101与第一光器件200的耦合固定并非是采用光纤形式,而是直接将第一光口101靠近第一光器件200的本体230,第一光口101发出或者接受的光线直接包含芯片的本体230直接光路连通,省去了现有的尾纤式BIDI器件中:陶瓷插件120’、连接光发射器200’的光纤110’、光发射器200’的插口结构以及WDM组件100’上的插口结构,起到更省体积的作用;此外,由于直接耦合固定,因此,从第二光口102与第三光口103延伸出去的尾纤(即第一光纤144与第二光纤145)也无需采用传统的熔融拉锥,节省了拉锥区域,缩小波分复用器100的整体体积,进而使得BIDI器件体积小。
可以理解的是,如图4至图8所示,第二光口102、第三光口103位于滤镜110的同一侧,第一光口101位于滤镜110的反向一侧。若BIDI器件采用盘纤工艺,从同一侧的第二光口102与第三光口103延伸出的第一光纤144和第二光纤145可以一同盘纤,减少盘纤所占用的体积。
现有技术中,尾纤式或者插拔式的BIDI器件均采用45°滤镜进行分光,滤镜上所处理的也为传统的汇聚光线。
如图2和图3所示,插拔式BIDI器件一般利用45°滤镜110”分光加汇聚透镜入射的同轴封装形式,光发射器200”的TO帽201”和光接收器300”的TO帽301”均用来汇聚光束。光发射器200”发出的具有一定波长的D光,经过光发射器200”的TO帽201”的汇聚,来到45°滤镜110”的表 面,从45°滤镜110”透射进入端口120”,完成光发射;外部发出的具有一定波长的E光经过端口120”,到达45°滤镜110”的表面,从45°滤镜110”反射进入光接收器300”的TO帽301”,完成光接收。
但波长间隔与角度变化强相关,45°滤镜110”为45°,则角度变化为90°,一方面由于光发射器200”的TO帽201”不是通过耦合安装到光发射器200”上,所以从光发射器200”的TO帽201”中发出的光,其汇聚角不可控,误差大,另一方面由于45°滤镜110”未经过耦合,而直接粘贴在45°支撑面111”上,而45°支撑面111”的角度每个都有公差,同时粘接45°滤镜110”的胶水厚度也不尽相同;不论是从光发射器200”的TO帽201”出射光的汇聚角,还是45°滤镜110”摆放的角度都不可能从生产的角度完成耦合校准,因此,在现有技术的装置中,待波分的光的波长中心值需要留出相应的宽度余量,而这又造成波分波长间隔需要进一步加宽。
此外,由于光发射器200”、光接收器300”和端口120”都固定在管体100”上,端口120”一旦发生位移,哪怕是微米级的,会同时影响光发射器200”和光接收器300”发出和接收光束的质量,而光发射器200”和光接收器300”任何一个的位移,也会使光口(108)无法正常的收发光,光发射器200”、光接收器300”和端口120”的问题叠加在一起,成品率低,并且在模块级使用时,由于各个零件是硬连接,每个零件的位置不能调整,必须准确,如果不准确,则不能安装到模块中,进一步降低成品率。光发射器200”、光接收器300”、端口120”与管体100”任何一个坏掉,就需要全部返工,他们之间的连接处均只有一个,没有第二次耦合校准的办法,只能通过一次性瞬间固化的工艺制作,例如激光焊接。
综合上述,采用汇聚光在45°滤镜110”,无论是尾纤式还是插拔式,均会要求D光与E光之间具有更大的波长间隔,进而导致信号载波的数量变少,信道的容量变小;信号载波数量变少,1300nm附近的波段也必须使 用,该波段波长为大色散窗口,并且装置本身光功率小,再加上45°滤镜110”分光导致的光功率的损耗,多重因素使得这种形式的BIDI器件无法支持40km以上的长距离传输。
为了实现长途传输,如图4至图11所示,滤镜110用于处理到达镜面上的平行光111,其中,位于第一光通路上的平行光111,滤镜110予以透射;位于第二光通路上的平行光111,滤镜110予以反射,由此实现分光功能。
可以理解的是,本申请实施例中的平行光111是指:激光通信中,原理上满足“像方束腰在像方焦点”的光束。但由于工艺、制造或其他过程偏差所造成的平行光成型不绝对贴合定义,只要原理上不背离高斯光束中平行光定义的描述,即可认为是本专利所述的平行光111。
第一光器件200和第二光器件300的其中之一为光发射器,其中另一为光接收器;根据第一光器件200以及第二光器件300的功能不同,第一光通路以及第二光通路的光传递方向有差别。
若第一光器件200为光接收器,第二光器件300为光发射器:
如图11所示,在第二光通路中,第二光器件300发出的光线经过第二光口102进入第三光口103,其中第二光器件300发出的汇聚光线(图中用实线表示,下同)经过第二光口102射入,汇聚光线透过第一准直单元120后转为平行光111(图中用虚线表示,下同),平行光111经滤镜110反射后再次透过第一准直单元120重新变为汇聚光线,汇聚光线经过第三光口103传递至外部;完成光信号的发射。
如图10所示,在第一光通路中,外部的光线经过第三光口103进入第一光口101再进入第一光器件200。其中,外部发出的汇聚光线从第一光口101射入,透过第一准直单元120后转为平行光111,平行光111透过滤镜110后到达第一光口101,由与第一光口101耦合固定的第一光器件200接 收;完成光信号的接收。
若第一光器件200为光发射器,第二光器件300为光接收器:如图10所示,在第一光通路中,第一光器件200发出的光线经过第一光口101进入第三光口103,再传入外部。其中,第一光器件200发出的平行光111从第一光口101射入,透过滤镜110到达第一准直单元120,平行光111透过第一准直单元120后转为汇聚光线,汇聚光线从第三光口103传递至外部。完成光信号的发射。如图11所示,在第二光通路中,外部光线经过第三光口103进入第二光口102进入第二光器件300,其中外部发出的汇聚光线(图中用实线表示,下同)经过第三光口103射入,汇聚光线透过第一准直单元120后转为平行光111(图中用虚线表示,下同),平行光111经滤镜110反射后再次透过第一准直单元120重新变为汇聚光线,汇聚光线经过第三光口103传递至第二光器件300;完成光信号的接收。
可知,无论第一光器件200是光发射器还是光接收器,均不影响其对应的光通路,具体可以设计为准。在以下的各实施例中,若无单独说明,均以第一光器件200为光发射器,第二光器件300为光接收器作为实施例进行描述,避免重复叙述。
在本申请实施例中,光发射器可以是任意一种封装形式的激光器,例如BOX型、TO型、butterfly型、PIN直插型、气密型和非气密型等。同理,在本申请实施例中,光接收器可以是任意一种封装形式的探测器,例如BOX型、TO型、butterfly型、PIN直插型、气密型和非气密型等。
如图5至图11所示,滤镜110的平面法线与平行光111的光轴夹角A小于或者等于5°,可以理解的是,不存在绝对意义上的平行,在小于5°的情况下,第一光通路以及第二光通路中的平行光111几乎平行,因此,可视为具有相重合的光轴;具体地,滤镜110的平面法线与在第一光通路中的平行光111的光轴夹角A小于或者等于5°。
如图2和图3所示,45°滤镜110”所区分的D光与E光的波长间隔不能密集,且该分光方式的光功率损耗大,不支持实现局域网波分(以下简称为LAN-WDM)或密集波分(以下简称为DWDM)。理论上,波段的波长随着滤镜角度每增减1°而漂移0.4~0.5nm,行业标准中,LAN-WDM波分波段中心间隔是4.5nm,也就是说,如果光的角度与滤镜法线的角度超过11.2°,以4.5nm为标准的LAN-WDM波分波段中心间隔的两个波段之间串扰会非常显著,当前,40km以上的高速长距离传输系统波分波段的密度和串扰要求都很高、滤镜角度越大则越不满足基本要求,而波分波段中心间隔更小的DWDM的要求只会更高。
可以理解的是,在本申请实施例中,不管是从第一光口101还是第三光口103进入的光束都有两个偏振态,从光学角度上来说,只有在滤镜110的平面法线与光束完全平行无夹角时,两个偏振态的波才会重叠,传输的功率最大;随着滤镜110的平面法线与光束的夹角增大,两个偏振态的波长会分离的越多,从而使得波段越展宽,进而使得波段的中心波长的间隔变大。
由于两个偏振态都带了光的能量,当中心波长的间隔开到一个偏振态的波段无法使用时,该波段的一个偏振态所携带的光能量即被浪费,而长距离传输中对光功率要求极高,光能量的浪费必然会带来传输距离的缩短。
因此,本申请实施例中设置滤镜110的角度小于或者等于5°,相对于传统的45°分光,第一光通路的光束的两个偏振态在透射滤镜110的过程中能量损失极小;同理,第二光通路的光束在经滤镜110反射的过程中中能量损失也极小;由此,通过降低滤镜110的角度,避免了光能量的浪费。
还需要注意的是,滤镜110小角度的设置应与平行光结合使用。现有技术中,如图2和图13所示,即便滤镜110”的平面法线与入射光线的光轴重合,由于入射光线是汇聚光,其光束的边缘与滤镜110”仍然存在夹角H, 而越靠近光束的光轴,光线夹角H越小,光束每一处的角度不一样,进而造成波段的波长发生漂移也不一样,由此使得待波分的光的波长中心值需要留出相应的宽度余量,而这又造成波分波长间隔需要进一步加宽。如图9至图11、以及图14所示,采用滤镜110处理平行光111而非汇聚光,可以消除出射或入射滤镜110的光线与滤镜110的平面法线夹角的差异,进而可以避免因该差异造成的带通波长中心值的不同和漂移,可以增加波长间隔的密度,即满足波分密度,即第一光通路与第二光通路中的光束之间的波长更接近,在相同的功率下可增加更多载波数量,也扩宽了载波波长的选择范围,因此设计人员在具体设计时可以选择避开1300nm附近波段的高色散区域而改用其他波长的波段,光纤传输中,色散是限制提高传输距离的主要因素,通过增加波长选择性,提高信道容量,最终可实现长距离传输。
如图4至图11所示,第一准直单元120可使得普通光线与平行光111相互转化,普通光线是相对于平行光111而言,在本申请的各实施例中,定义普通光线为汇聚光线或者发散光线。滤镜110能够接收来自所述第一准直单元120的平行光111,第一准直单元120可为准直透镜,第一准直单元120应设置在滤镜110背离第一光口101的一侧,确保第一光通路与第二光通路的路径均会通过第一准直单元120。
众所周知,平行光111的互相耦合只对入射角度敏感,而不像汇聚光还需要对焦距进行耦合,因此采用平行光111输出的形式可实现各器件之间更容易耦合固定,并兼容多种工艺的作用。
假定第一准直单元120设置在滤镜110靠近第一光口101的一侧,则第一光通路为平行光111,而第二光通路由于始终未经过第一准直单元120,因此属于传统的汇聚光线,在滤镜110上处理汇聚光线的问题依旧存在,而其中第一光通路采用平行光111,第二光通路不采用,势必会造成两者不 匹配,使得耦合更加困难,也无法得到较好的长距离传输效果。
因此,需要将第一准直单元120应设置在滤镜110背离第一光口101的一侧,从而使得,不管滤镜110是反射还是透射,所处理的均为平行光111。
在一种可能的实施方式中,如图9至图11所示,平行光111存在于第一准直单元120与滤镜110之间的传播路径上,本处的存在是指的可以部分存在也可以是全程存在。具体地,不管是在第一光通路还是第二光通路中,当光线从滤镜110向第一准直单元120传播,光线的状态是从平行光111向汇聚光转化;当光线从第一准直单元120向滤镜110传播,光线的状态是从汇聚光转化为平行光111,从而确保滤镜110上所处理的均为平行光111,进而确保获得更高的信道容量,实现长距离传输。
在一种可能的实施方式中,如图7、图9以及图10所示,第一光器件200包括与第一准直单元120相配合的第二准直单元210,第二准直单元210可为准直透镜。第二准直单元210使得光线与平行光111相互转化,以方便传统发出汇聚光线的第一光器件200可以应用在本装置中。
具体地,在第一光通路中,第二准直单元210的转化与第一准直单元120正好相反,第一光器件200的芯片组件250发出的汇聚光线,经过第二准直单元210转化为平行光111,平行光111从第一光口101射入,透过滤镜110到达第一准直单元120,平行光111透过第一准直单元120后转为汇聚光线,汇聚光线从第三光口103传递至外部。完成光信号的发射。
当第一光器件200为光发射器,芯片组件250为光发生芯片,用于发出光线;当第一光器件200为光接收器时,芯片组件250为光接收芯片,将光信号转为电信号。
在一种可能的实施方式中,如图8所示,波分复用器100包括第一透镜单元130,第一透镜单元130设置在滤镜110靠近第一光器件200的一侧 以将光线与平行光111相互转化;第一光器件200包括与第一透镜单元130相配合的第二透镜单元220,第二透镜单元220使得光线与平行光111相互转化,以方便传统发出汇聚光线的第一光器件200可以应用在本装置中。
具体地,在第一光通路中,第一透镜单元130的转化与第二透镜单元220正好相反,第一光器件200的芯片组件250发出的汇聚光线,经过第二准直单元210转化为平行光111,传播一定距离,平行光111经过第二透镜单元220后转为汇聚光线,汇聚光线从第一光口101射入,汇聚光线透过第一透镜单元130后转为平行光111,平行光111透过滤镜110到达第一准直单元120,平行光111透过第一准直单元120后转为汇聚光线,汇聚光线从第三光口103传递至外部。完成光信号的发射。
第一透镜单元130与第二透镜单元220可为球透镜或者准直透镜。
在一种可能的实施方式中,如图4至图11所示,波分复用器100包括双芯插针140,双芯插针140包括芯本体141、第一光纤144、第二光纤145、供第一光纤144穿过的第一通道142以及供第二光纤145穿过的第二通道143;芯本体141设置在第一准直单元120背离滤镜110的一侧。
滤镜110远离芯本体141的一侧为第一光口101,与第一光器件200直接固定耦合。第一通道142背离滤镜110的一端为第二光口102,第一光纤144的第一端对准第一准直单元120,第一光纤144穿设于第二光口102中,波分复用器100通过第一光纤144连接第二光器件300;也即,第一光纤144的第二端连接第二光器件300,在完成相应的耦合后,第一光纤144与第一通道142之间可采用灌胶固定。第二通道143背离滤镜110的一端为第三光口103,第二光纤145的第一端对准第一准直单元120,第二光纤145穿设于第三光口103中,通过第二光纤145的第二端连接外部,在完成相应的耦合后,第二光纤145与第二通道143之间采用灌胶固定。
由此,第一光器件200-第一光口101-滤镜110-第一准直单元120-第二 光纤145的第一端-第二光纤145(穿过了第三光口103)-第二光纤145的第二端形成前述的第一光通路,在第一光通路中实现光线的接收或者发射。
第二光器件300-第一光纤144的第二端-第一光纤144(穿过了第二光口102)-第一光纤144的第一端-第一准直单元120-滤镜110-第一准直单元120-第二光纤145的第一端-第二光纤145(穿过了第三光口103)-第二光纤145的第二端形成前述的第二光通路,在第二光通路中实现光线的发射或者接收。
需要说明的是,不管是传统的插拔式BIDI器件还是传统的尾纤式BIDI器件,波分复用器的基础作用都是实现分光,而分光首先要实现两个端部之间的物理分开,如图1所示,端部是光纤接入的插口F和插口G,如图2和图3所示,端部是陶瓷插件120’和光接收器300”,不管是何种类型,端部的体积均是以毫米甚至厘米计数。45°滤镜110”倾斜45°可以使得端部之间以垂直的形式分叉,从而以最小的体积获得两个端部之间所必须的隔离距离S3,当45°滤镜110”倾斜角度H缩小,可以预见性的是,要获得同样长度的隔离距离S3,滤镜110”倾斜角度H越小则光路形走的距离S1与S2越长,进而导致总体体积无限增大;同理,传统的尾纤式也存在相应的问题,因此,采用45°滤镜110”的插拔式或者尾纤式BIDI器件直接改为小角度会导致体积增大。
如图3和图5所示,由于是将两根以微米计数直径的第一光纤144和第二光纤145插入芯本体141中,因此可以设计芯本体141的直径很小,举例来说,当滤镜110的平面法线与在第一光通路中的平行光111的光轴夹角A为5°,则第一光纤144和第二光纤145之间的夹角约为10°,当滤镜110的平面法线与在第一光通路中的平行光111的光轴夹角A为1°,则第一光纤144和第二光纤145之间的夹角约为2°,几乎可视为平行从滤镜110透射或者反射。第一光纤144和第二光纤145之间所需要的隔离距离 S4远小于现有技术中心隔离距离S3,因此计算之后光路形走的距离(未标出)也相应的缩小非常多,使得从第二光纤145入射的光,可以以小角度反射第一光纤144,直接使第二光口102和第三光口103的距离缩小,既能适用于滤镜110小角度倾斜的情况,还能减小波分复用器100的体积,满足小型化的模块组装。
应能理解的是,在现有技术中,BIDI器件的波分密度高(或者理解为滤镜小角度直接带来的效果)与体积小是相对矛盾的两个技术点;具体地,插拔式BIDI器件受限于自身体积结构无法满足滤镜小角度,而体积偏大的尾纤式BIDI器件虽然可以满足滤镜小角度,但体积并不符合要求;因此并不能简单的将滤镜小角度以及小体积联系起来。
在本申请实施例中,通过滤镜110采用小角度倾斜,设计双芯插针140的第一通道142以及第二通道143的角度与之配合,使得第一光纤144与第二光纤145能与滤镜110耦合,以满足体积并达到BIDI器件在LAN-WDM甚至DWDM行标中所规定的波分波段中心间隔。
在一种可能的实施方式中,如图5所示,第一通道142沿第一光纤144的延伸方向贯穿芯本体141;第二通道143沿第二光纤145的延伸方向贯穿芯本体141;在滤镜110小角度设置的情况下,第一光纤144与第二光纤145的夹角很小,可以认为第一光纤144与第二光纤145与芯本体141的轴向走向大致一致;需要理解的是,不存在绝对一致的情况,因此,芯本体141的轴向并非代表第一光纤144与第二光纤145平行,两者与芯本体141的轴向可以略微倾斜,一般认为在20°以内都是符合要求的。
在一种可能的实施方式中,如图5所示,第一通道142为锥形孔,第一通道142直径较大的一端背离滤镜110形成第二光口102,从而方便第一光纤144插入装配;第一光纤144的第一端的端部与芯本体141朝向滤镜110的第一端面齐平,以便接收或者发射光信号。第二通道143为锥形孔, 第二通道143直径较大的一端背离滤镜110形成第三光口103,从而方便第二光纤145的插入装配;第二光纤145的第一端的端部与芯本体141朝向滤镜110的第一端面齐平,以便接收或者发射光信号。
在一种可能的实施方式中,如图5所示,第一通道142与第二通道143的轴线位于同一平面内,第一通道142与第二通道143的轴线相交,从而满足第二光通路中在滤镜110上完成反射。
在一种可能的实施方式中,如图4至图7所示,波分复用器100包括光学外壳170,滤镜110、第一准直单元120以及双芯插针140设置在光学外壳170的内部,一般来说,滤镜110、第一准直单元120以及双芯插针140已经事先耦合固定在一起,因此光学外壳170可以与其中任意一个或者多个部件固定均可。
光学外壳170可以是一体加工件,也可以是分立加工件,材质可以是金属,也可以是非金属,根据不同的工艺,允许不同的材料和加工方式,例如采用焊接连接时,其材质可为不锈钢材料,当采用灌胶连接时,可以采用玻璃或者塑料等等。
在一种可能的实施方式中,如图4至图7所示,光学外壳170为沿滤镜110、第一准直单元120以及双芯插针140的排布方向的两端敞开的直筒结构。具体地,由于滤镜110采用小角度,且第一光纤144与第二光纤145之间的间隔距离很短,因此可以集中从光学外壳170的第一端延伸出形成尾纤。
在一种可能的实施方式中,如图4至图7所示,第一光器件200包括本体230以及固定在本体230上的连接管240,第一准直单元120设置在本体230内,本体230内还包括有芯片组件250,连接管240套设在光学外壳170外,光学外壳170的第二端靠近连接管240底部,使得第一光口101延伸到本体230与连接管240之间的连接缝241位置,靠近芯片组件250,从 而满足本体230与第一光口101直接耦合固定,芯片组件250可以直接与第一光口101光路连接而无需借用光纤,省去了中间的过度零件,节省体积。
连接管240与光学外壳170的连接方式有多种;例如,连接管240与光学外壳170可采用紫外固化胶粘接,此时需要连接管240为透明塑料或者玻璃以方便紫外照射,当然也可以为其他材料,可在连接管240上开设点胶孔242,方便点胶以及紫外照射;或者,连接管240与光学外壳170也可以采用激光焊接,还可以是两者或者多种固定混合的方式。
在一种可能的实施方式中,如图4至图7所示,波分复用器100包括连接器180,连接器180设置在第一光纤144连接第二光器件的第二端上,以方便连接第二光器件300。通常,连接器180为陶瓷插芯,波分复用器100通过连接器180与第二光器件300插拔式连接。
在一种可能的实施方式中,如图12所示,第一光纤144可盘纤放置;第二光纤145盘纤放置,以节省体积。
一种光模块,包括壳体400以及上述的BIDI器件,壳体400用于容纳波分复用器100、第一光器件200以及第二光器件300,从而形成完整的功能模块。
在一种可能的实施方式中,如图12所示,波分复用器100包括端口190以及设置在端口190上的限位部191,端口190设置在第二光纤145的第二端,壳体400内包括与限位部191配合的定位部401,定位部401与限位部191的其中之一为凹槽,其中另一为凸块,模块的安装位置的精确性要求不高,因此可据需要,灵活调整进一步提高成品率。
一种生产方法,如图15和图16所示,用于制造上述的BIDI器件,包括:
S10、提供波分复用器100;
S20、耦合固定第一光器件200与波分复用器100的第一光口101;
S30、连接第一光纤144以及第二光器件300;
S40、第二光纤145的第二端安装端口190。
其中,所述提供波分复用器100的主体包括以下步骤:
S01、第一光纤144插入第一通道142,固化第一光纤144和第一通道142;
S02、第二光纤145插入第二通道143,固化第二光纤145与第二通道143;
S03、研磨双芯插针140朝向第一准直单元120的端平面;
S04、耦合固定滤镜110与第一准直单元120形成耦合体;
S05、耦合耦合体与双芯插针140;其中位于第二光口102的第一光纤144接入光功率计,位于第三光口103的第二光纤145接光源、第一光口101接光斑分析仪,分别耦合到需要的光功率和光斑形状,本发明中第一光口101的光束是平行光。
在一种可能的实施方式中,如图16所示,所述耦合固定第一光器件200与波分复用器100的第一光口101之前,生产方法还包括:
S11、光学外壳170套设在所述耦合体和双芯插针140的外表面。
在一种可能的实施方式中,在所述耦合固定第一光器件200与波分复用器100的主体的步骤中,具体实施方案包括:将光学外壳170穿入连接管240,从而固定光学外壳170与连接管240。
在一种可能的实施方式中,如图16所示,所述第一光纤144连接第二光器件300步骤之前,生产方法还包括:
S21、第一光纤144连接第二光器件300的第二端安装连接器180;第一光纤144通过连接器180与第二光器件300插拔式连接。
在一种可能的实施方式中,如图16所示,在第一光纤144连接第二光 器件300之前,生产方法还包括:
S22、盘纤第一光纤144以及第二光纤145。
所述第二光纤145的第二端安装端口190的步骤之后,将波分复用器100、第一光器件200以及第二光器件300容纳在壳体400内,端口190与壳体400限位安装,从而完成光模块的生产。具体地,将位于第二光口102的第一光纤144和位于第三光口103第二的光纤405,经过盘绕,一同装入模块壳体400之内,将端口190放置在模块的光口限位结构中401,将连接器180插入第二光器件300中。
本申请提供的各个实施例/实施方式在不产生矛盾的情况下可以相互组合。
以上所述仅为本申请的较佳实施例而已,并不用于限制本申请,对于本领域的技术人员来说,本申请可以有各种更改和变化。凡在本申请的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本申请的保护范围之内。

Claims (26)

  1. 一种BIDI器件,包括波分复用器(100)、第一光器件(200)以及第二光器件(300);所述第一光器件(200)和所述第二光器件(300)的其中之一为光发射器,其中另一为光接收器;
    所述波分复用器(100)包括第一光口(101)、第二光口(102)、第三光口(103)、第一准直单元(120)以及滤镜(110);
    所述第一准直单元(120)设置在所述滤镜(110)背离所述第一光口(101)的一侧,所述滤镜(110)能够接收来自所述第一准直单元(120)的平行光(111);
    所述第一光口(101)与所述第一光器件(200)耦合固定,所述第二光口(102)与所述第二光器件(300)光路连接,所述第三光口(103)用于接收外部光线或者发出光线;
    所述滤镜(110)的平面法线与所述平行光(111)的光轴夹角A小于或者等于5°。
  2. 根据权利要求1所述的BIDI器件,所述第一光器件(200)包括与所述第一准直单元(120)相配合的第二准直单元(210)。
  3. 根据权利要求2所述的BIDI器件,所述第一准直单元(120)为准直透镜;和/或,
    所述第二准直单元(210)为准直透镜。
  4. 根据权利要求1所述的BIDI器件,所述波分复用器(100)包括双芯插针(140),所述双芯插针(140)包括芯本体(141)、第一光纤(144)、第二光纤(145)、供所述第一光纤(144)穿过的第一通道(142)以及供所述第二光纤(145)穿过的第二通道(143);
    所述芯本体(141)设置在所述第一准直单元(120)背离所述滤镜(110)的一侧;
    所述滤镜(110)远离所述芯本体(141)的一侧为所述第一光口(101);
    所述第一通道(142)背离所述滤镜(110)的一端为所述第二光口(102),所述第一光纤(144)的第一端对准所述第一准直单元(120),所述第一光纤(144)穿设于所述第二光口(102)中,所述波分复用器(100)通过所述第一光纤(144)连接所述第二光器件(300);
    所述第二通道(143)背离所述滤镜(110)的一端为所述第三光口(103),所述第二光纤(145)的第一端对准所述第一准直单元(120),所述第二光纤(145)穿设于所述第三光口(103)中。
  5. 根据权利要求4所述的BIDI器件,所述第二光口(102)与所述第三光口(103)设置在所述芯本体(141)背离所述滤镜(110)的同一侧。
  6. 根据权利要求4所述的BIDI器件,所述第一通道(142)沿所述第一光纤(144)的延伸方向贯穿所述芯本体(141);和/或,
    所述第二通道(143)沿所述第二光纤(145)的延伸方向贯穿所述芯本体(141)。
  7. 根据权利要求4所述的BIDI器件,所述第一通道(142)为锥形孔,所述第一通道(142)直径较大的一端背离所述滤镜(110);
    和/或,所述第二通道(143)为锥形孔,所述第二通道(143)直径较大的一端背离所述滤镜(110)。
  8. 根据权利要求4所述的BIDI器件,所述第一通道(142)与所述第二通道(143)的轴线位于同一平面内,所述第一通道(142)与所述第二通道(143)的轴线相交。
  9. 根据权利要求4所述的BIDI器件,所述第一光纤(144)的第一端的端部与所述芯本体(141)朝向所述滤镜(110)的第一端面齐平;和/或,
    所述第二光纤(145)的第一端的端部与所述芯本体(141)朝向所述滤镜(110)的第一端面齐平。
  10. 根据权利要求4所述的BIDI器件,所述第一光纤(144)与所述第一通道(142)之间采用灌胶固定;和/或,
    所述第二光纤(145)与所述第二通道(143)之间采用灌胶固定。
  11. 根据权利要求4所述的BIDI器件,所述波分复用器(100)包括光学外壳(170),所述滤镜(110)、所述第一准直单元(120)以及所述双芯插针(140)设置在所述光学外壳(170)的内部。
  12. 根据权利要求11所述的BIDI器件,所述光学外壳(170)为沿所述滤镜(110)、所述第一准直单元(120)以及所述双芯插针(140)的排布方向的两端敞开的直筒结构。
  13. 根据权利要求11所述的BIDI器件,所述第一光器件(200)包括本体(230)以及固定在所述本体(230)上的连接管(240),所述第一准直单元(120)设置在所述本体(230)内,所述连接管(240)套设在所述光学外壳(170)外。
  14. 根据权利要求13所述的BIDI器件,所述连接管(240)与所述光学外壳(170)采用紫外固化胶粘接;或者,所述连接管(240)与所述光学外壳(170)采用激光焊接。
  15. 根据权利要求4所述的BIDI器件,所述波分复用器(100)包括连接器(180),所述连接器(180)设置在所述第一光纤(144)连接所述第二光器件(300)的第二端上。
  16. 根据权利要求15所述的BIDI器件,所述连接器(180)为陶瓷插芯,所述波分复用器(100)通过所述连接器(180)与所述第二光器件(300)插拔式连接。
  17. 根据权利要求4所述的BIDI器件,所述第一光纤(144)盘纤放置;和/或,所述第二光纤(145)盘纤放置。
  18. 一种光模块,包括壳体(400)以及如权利要求4至17任一项所述 的BIDI器件,所述壳体(400)用于容纳所述波分复用器(100)、所述第一光器件(200)以及所述第二光器件(300)。
  19. 根据权利要求18所述的光模块,所述波分复用器(100)包括端口(190)以及设置在所述端口(190)上的限位部(191),所述端口(190)设置在所述第二光纤(145)的第二端,所述壳体(400)内包括与所述限位部(191)配合的定位部(401)。
  20. 根据权利要求19所述的光模块,所述定位部(401)与所述限位部(191)的其中之一为凹槽,其中另一为凸块。
  21. 一种如权利要求4所述的BIDI器件的生产方法,包括:
    提供所述波分复用器(100);
    耦合固定所述第一光器件(200)与所述波分复用器(100)的第一光口(101);
    连接所述第一光纤(144)和所述第二光器件(300);
    所述第二光纤(145)的第二端安装端口(190)。
  22. 根据权利要求21所述的生产方法,所述提供波分复用器(100)包括以下步骤:
    所述第一光纤(144)插入所述第一通道(142),固化所述第一光纤(144)和所述第一通道(142);
    所述第二光纤(145)插入所述第二通道(143),固化所述第二光纤(145)与所述第二通道(143);
    研磨所述双芯插针(140)朝向所述第一准直单元(120)的端平面;
    耦合固定所述滤镜(110)与所述第一准直单元(120)形成耦合体;
    耦合所述耦合体与所述双芯插针(140)。
  23. 根据权利要求22所述的生产方法,在所述耦合固定所述第一光器件(200)与所述波分复用器(100)的第一光口(101)之前,所述生产方法 还包括:
    光学外壳(170)套设在所述耦合体和所述双芯插针(140)的外表面。
  24. 根据权利要求23所述的生产方法,所述第一光器件(200)包括本体(230)以及固定在所述本体(230)朝向所述波分复用器(100)一侧的连接管(240),在所述耦合固定所述第一光器件(200)与所述波分复用器(100)步骤中还包括:
    将所述光学外壳(170)穿入所述连接管(240)内并固定连接。
  25. 根据权利要求21所述的生产方法,在所述第一光纤(144)连接所述第二光器件(300)之前,所述生产方法还包括:
    所述第一光纤(144)连接所述第二光器件(300)的第二端安装连接器(180);所述第一光纤(144)通过所述连接器(180)与所述第二光器件(300)插拔式连接。
  26. 根据权利要求21所述的生产方法,在所述第一光纤(144)连接所述第二光器件(300)之前,所述生产方法还包括:
    盘纤所述第一光纤(144)以及所述第二光纤(145)。
PCT/CN2019/123570 2019-11-08 2019-12-06 一种bidi器件、光模块以及生产方法 WO2021088180A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201911087898.XA CN110927895A (zh) 2019-11-08 2019-11-08 一种bidi器件、光模块以及生产方法
CN201911087898.X 2019-11-08

Publications (1)

Publication Number Publication Date
WO2021088180A1 true WO2021088180A1 (zh) 2021-05-14

Family

ID=69852604

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/123570 WO2021088180A1 (zh) 2019-11-08 2019-12-06 一种bidi器件、光模块以及生产方法

Country Status (2)

Country Link
CN (1) CN110927895A (zh)
WO (1) WO2021088180A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115437084B (zh) * 2022-10-25 2023-03-24 上海三菲半导体有限公司 一种一拖一和一拖多射频收发器件

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN2404134Y (zh) * 1999-12-29 2000-11-01 华中理工大学 单元式可扩充光分插复用器
CN2567880Y (zh) * 2002-08-12 2003-08-20 鸿富锦精密工业(深圳)有限公司 波分复用装置
CN1481101A (zh) * 2002-09-03 2004-03-10 鸿富锦精密工业(深圳)有限公司 光分插复用器
CN102621642A (zh) * 2011-02-01 2012-08-01 深圳新飞通光电子技术有限公司 波分复用的光收发器
CN203705696U (zh) * 2014-02-24 2014-07-09 讯达康通讯设备(惠州)有限公司 一种高隔离度波分复用探测器件
US9753236B1 (en) * 2016-07-19 2017-09-05 Fiberpia Co., Ltd. Optical transceiver for bi-directional optical communication and method of manufacturing the same
CN209281016U (zh) * 2019-02-22 2019-08-20 福建天蕊光电有限公司 一种复合光电探测器

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001305365A (ja) * 2000-04-25 2001-10-31 Nec Corp 光導波路モジュールにおける迷光の遮光構造
CN2504832Y (zh) * 2001-04-30 2002-08-07 福建华科光电有限公司 一种新型波分复用器
CN103197391A (zh) * 2013-04-24 2013-07-10 深圳市极致兴通科技有限公司 一种基于带尾纤的波分复用的光模块
CN106646770A (zh) * 2015-11-04 2017-05-10 江苏飞格光电有限公司 Y形波分复用光收发一体单纤双向器件
CN208399755U (zh) * 2018-07-25 2019-01-18 厦门市贝莱通信设备有限公司 一种一体黏胶式的pwdm-pd组件

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN2404134Y (zh) * 1999-12-29 2000-11-01 华中理工大学 单元式可扩充光分插复用器
CN2567880Y (zh) * 2002-08-12 2003-08-20 鸿富锦精密工业(深圳)有限公司 波分复用装置
CN1481101A (zh) * 2002-09-03 2004-03-10 鸿富锦精密工业(深圳)有限公司 光分插复用器
CN102621642A (zh) * 2011-02-01 2012-08-01 深圳新飞通光电子技术有限公司 波分复用的光收发器
CN203705696U (zh) * 2014-02-24 2014-07-09 讯达康通讯设备(惠州)有限公司 一种高隔离度波分复用探测器件
US9753236B1 (en) * 2016-07-19 2017-09-05 Fiberpia Co., Ltd. Optical transceiver for bi-directional optical communication and method of manufacturing the same
CN209281016U (zh) * 2019-02-22 2019-08-20 福建天蕊光电有限公司 一种复合光电探测器

Also Published As

Publication number Publication date
CN110927895A (zh) 2020-03-27

Similar Documents

Publication Publication Date Title
CN110045468B (zh) 一种单纤双向的光耦合组件
TWI612353B (zh) 光插座及具備它之光模組
WO2017118271A1 (zh) 一种用于双链路传输的并行收发光模块和制作方法
US9568680B1 (en) Optical received with reduced cavity size and methods of making and using the same
CN110058362B (zh) 一种基于五边形棱镜和干涉滤光片的单纤双向收发器件
WO2013080783A1 (ja) 光レセプタクルおよびこれを備えた光モジュール
JPS6184612A (ja) 光カプラ−
US6854897B2 (en) Ferrule part and optical communications module
KR101648877B1 (ko) 양방향 광송수신 모듈
US20140099055A1 (en) Single-Fiber Bi-Directional Optical Transceiver
CN111650701A (zh) 一种改善回波损耗的结构及应用
WO2021088180A1 (zh) 一种bidi器件、光模块以及生产方法
WO2021036011A1 (zh) 基于平面波导芯片的光接收引擎
US20180341073A1 (en) Single-Fiber Bidirectional Sub Assembly
CN105717585A (zh) 一种树形结构光接收组件
CN208506305U (zh) 一种多波长合波光学模块
US20050013542A1 (en) Coupler having reduction of reflections to light source
KR101435589B1 (ko) 양방향 통신용 광모듈 패키지 구조
WO2021026774A1 (zh) 一种多通道并行双向器件耦合装置
KR20110050941A (ko) 양방향 광 서브어셈블리
US20180306973A1 (en) Housing for Packaging Optical Transmitter Module and Optical Transmitter Module
US9983367B2 (en) Optical module and method of making optical module
JPH04134306A (ja) 楕円マイクロレンズ付導波型光デバイス
WO2020000776A1 (zh) 一种光学装置
US20120288237A1 (en) Optical fiber module

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19951289

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19951289

Country of ref document: EP

Kind code of ref document: A1