WO2021026774A1 - 一种多通道并行双向器件耦合装置 - Google Patents

一种多通道并行双向器件耦合装置 Download PDF

Info

Publication number
WO2021026774A1
WO2021026774A1 PCT/CN2019/100401 CN2019100401W WO2021026774A1 WO 2021026774 A1 WO2021026774 A1 WO 2021026774A1 CN 2019100401 W CN2019100401 W CN 2019100401W WO 2021026774 A1 WO2021026774 A1 WO 2021026774A1
Authority
WO
WIPO (PCT)
Prior art keywords
optical signal
lens array
end device
channel parallel
parallel bidirectional
Prior art date
Application number
PCT/CN2019/100401
Other languages
English (en)
French (fr)
Inventor
唐晓辉
刘金
毛晶磊
Original Assignee
索尔思光电(成都)有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 索尔思光电(成都)有限公司 filed Critical 索尔思光电(成都)有限公司
Priority to CN201980001401.XA priority Critical patent/CN110651212B/zh
Priority to PCT/CN2019/100401 priority patent/WO2021026774A1/zh
Publication of WO2021026774A1 publication Critical patent/WO2021026774A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/42Coupling light guides with opto-electronic elements
    • G02B6/4201Packages, e.g. shape, construction, internal or external details
    • G02B6/4204Packages, e.g. shape, construction, internal or external details the coupling comprising intermediate optical elements, e.g. lenses, holograms
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/42Coupling light guides with opto-electronic elements
    • G02B6/4201Packages, e.g. shape, construction, internal or external details
    • G02B6/4204Packages, e.g. shape, construction, internal or external details the coupling comprising intermediate optical elements, e.g. lenses, holograms
    • G02B6/4215Packages, e.g. shape, construction, internal or external details the coupling comprising intermediate optical elements, e.g. lenses, holograms the intermediate optical elements being wavelength selective optical elements, e.g. variable wavelength optical modules or wavelength lockers

Definitions

  • the present invention relates to the field of optical communication technology, in particular to a multi-channel parallel bidirectional device coupling device.
  • the main function of the integrated optical transceiver module (optical module for short) is to convert the received optical signal into an electrical signal, and to convert the electrical signal into an optical signal for transmission to realize data transmission.
  • the standard SR4.2 uses dual-wavelength 850nm and 910nm.
  • the current low-cost design is to use a chip on a board, as shown in Figure 1, in a lens array that simultaneously arranges the transmitter and receiver of two wavelength optical signals. Since multiple channels need to be aligned at the same time, the combination of the lens array is required to be highly accurate and difficult to implement. As shown in Figure 1, for 8-channel transceiving, it is necessary to realize the alignment of 4 receiving/transmitting devices at the same time, which is difficult to implement and has low alignment efficiency.
  • the object of the present invention is to provide a multi-channel parallel bidirectional device coupling device, which can reduce the combining accuracy of the lens array and improve the alignment efficiency.
  • a multi-channel parallel bidirectional device coupling device comprising a first lens array and a second lens array.
  • the first lens array is used for arranging the transmitting end device and the receiving end device of the first optical signal
  • the second lens array is used for For arranging the transmitting end device and the receiving end device of the second optical signal, the wavelength of the first optical signal and the second optical signal are different.
  • two lens arrays are provided to arrange the transmitting end device and the receiving end device of the optical signal of one wavelength respectively.
  • the alignment of the two optical signals is achieved by using one lens array. The alignment difficulty is greatly reduced, and the alignment efficiency is improved.
  • the multi-channel parallel bidirectional device coupling device further includes a beam splitter for reflecting the first optical signal and transmitting the second optical signal.
  • a beam splitter for reflecting the first optical signal and transmitting the second optical signal.
  • the first lens array has an L-shaped structure
  • the beam splitter is obliquely arranged on the first lens array and bridges two surfaces of the first lens array, so that the two surfaces Facing the beam splitter, the first light signal enters the beam splitter through one of the surfaces, and is incident on the other surface after being reflected by the beam splitter.
  • the angles at which the first optical signal is incident on the two surfaces are both non-90 degrees.
  • the angles at which the first light signal is incident on the two surfaces are both non-90 degrees, which can avoid reflection caused by vertical incidence, and thus can avoid the interference of reflected light.
  • two lens arrays are provided to respectively arrange the transmitting end device and the receiving end device of an optical signal of one wavelength.
  • the array realizes the alignment of the two optical signals, the difficulty of alignment is greatly reduced, and the alignment efficiency is improved.
  • Fig. 1 is a schematic structural diagram of an 8-channel parallel bidirectional device coupling device in the prior art.
  • Fig. 2 is a schematic structural diagram of a multi-channel parallel bidirectional device coupling device in an embodiment of the present invention.
  • Substrate 10 first lens array 20; first surface 21; second surface 22; first cavity 23; second lens array 30; reflecting surface 31; incident surface 32, second cavity 33; beam splitter 40; laser Driver 51; laser diode 52; photodiode 61; transimpedance amplifier 62; optical fiber 70.
  • this embodiment schematically provides a multi-channel parallel bidirectional device coupling device, which includes a first lens array 20 and a second lens array 30.
  • the first lens array 20 is used to arrange the first optical signal.
  • the transmitting end device and the receiving end device, and the second lens array 30 is used to arrange the transmitting end device and the receiving end device of the second optical signal.
  • the first optical signal and the second optical signal have different wavelengths. Generally, the wavelength of the first optical signal is 850nm and the wavelength of the second optical signal is 910nm; or the wavelength of the first optical signal is 910nm, and the wavelength of the second optical signal is 910nm. It is 850nm. As shown in FIG.
  • the first lens array 20 and the second lens array 30 do not only include lenses (represented by the thick curve in the figure), but also include a support for supporting the lenses.
  • the support body and the lens are made of the same material and are integrally formed by a mold. Therefore, the thick curve shown in FIG. 2 can also be understood as a lens curved surface.
  • the first lens array 20 has an L-shaped structure, and the beam splitter 40 is obliquely arranged on the first lens array 20 and bridges two surfaces of the first lens array 20.
  • the two surfaces are referred to herein as the first surface 21 and the second surface 22 respectively.
  • the first surface 21 and the second surface 22 both face the beam splitter 40, and the first light signal is incident on the first surface 21
  • the beam splitter 40 is incident on the second surface 22 after being reflected by the beam splitter 40.
  • the second lens array 30 has a triangular (body) structure.
  • the second lens array 30 provides a reflective surface 31 and an incident surface 32.
  • the second optical signal transmitted by the beam splitter 40 is incident on the incident surface 32.
  • the reflective surface 31 is used for To reflect the second optical signal, so that the second optical signal is received by the receiving end device.
  • the angles at which the first optical signal is incident on the first surface 21 and the second surface 22 are both non-90 degrees, so as to avoid interference caused by reflection of the first optical signal.
  • the first optical signal is incident horizontally. Therefore, in order to realize that the first optical signal is not incident perpendicularly to the first surface 21 and the second surface 22, the first surface 21 and the second surface 22 are both inclined surfaces.
  • the second optical signal transmitted from the beam splitter 40 is also incident on the incident surface 32 of the second lens array 30 in a non-90 degree state, and after being reflected by the reflective surface 31 of the second lens array 30, it is also non-90 degrees. The degree state is received by the receiving end device of the second optical signal.
  • the first lens array 20 and the second lens array 30 are both arranged on the substrate 10, a first cavity 23 is formed between the first lens array 20 and the substrate 10, and the transmitting end device and the receiving end device of the first optical signal are both arranged In the first cavity 23, a second cavity 33 is formed between the second lens array 30 and the substrate 10, and the transmitting end device and the receiving end device of the second optical signal are both arranged in the second cavity 33.
  • the transmitting end device of the first optical signal includes a laser diode 52 and a laser driver 51
  • the receiving end device of the first optical signal includes a photodiode 61 and a transimpedance amplifier 62.
  • the transmitting end device of the second optical signal includes a laser diode 52 and a laser driver 51, and the receiving end device of the second optical signal includes a photodiode 61 and a transimpedance amplifier 62.
  • the number of channels is determined by the application and the number of LD/PD. For example, if a lens array has only one LD and PD, it is called two channels.
  • the first lens array 20 can be used alone in parallel transmission applications with a single mode length.
  • the first lens array 20 is provided with a connection port, the connection port is aligned with the optical fiber 70 and the lens, the connection port is connected with the optical fiber 70, the first optical signal and the second optical signal are both input and output through the optical fiber 70 to the first lens array 20 .
  • the optical signal transmission process is as follows:
  • the transmission process of the first optical signal the first optical signal is emitted by the transmitting end device of the first optical signal. After collimation by the lens (shown by the second thick curve from left to right in Figure 2), the first optical signal passes through After the second surface 22 is transmitted, it is incident on the beam splitter 40, and after being reflected by the beam splitter 40, it is incident on the first surface 21, and then converged by the lens (shown by the first thick curve from left to right in FIG. It is transmitted by the optical fiber 70.
  • the first optical signal enters the first surface 21 through the optical fiber 70, is transmitted through the first surface 21 and then enters the beam splitter 40, is reflected by the beam splitter 40 and then enters the second surface 22, and then enters the second surface 22 after being reflected by the beam splitter 40. After the two sides 22 are transmitted, they are received by the receiving end device of the second optical signal.
  • the emission process of the second optical signal the second optical signal is emitted by the transmitting end device of the second optical signal, which is collimated by the lens (indicated by the third thick curve from left to right in Figure 2), and the second optical signal passes through
  • the reflective surface 31 of the second lens array 30 reflects to the incident surface 32 of the second lens array 30, passes through the incident surface 32 and then enters the beam splitter 40, and is transmitted by the beam splitter 40 and then enters the first lens array 20.
  • the surface 21 is then transmitted through the optical fiber 70.
  • the second optical signal receiving process the second optical signal enters the first surface 21 through the optical fiber 70, enters the beam splitter 40 after being transmitted through the first surface 21, and enters the second lens array 30 after being transmitted through the beam splitter 40
  • the surface 32 is incident on the reflective surface 31 of the second lens array 30 after being transmitted through the incident surface 32, and is received by the receiving end device of the second optical signal after being reflected by the reflective surface 31.
  • the first lens array 20 only needs to realize the alignment between the transmitting end device and the receiving end device of the first optical signal
  • the second lens array 30 only needs to realize the emission of the second optical signal.
  • the alignment between the end device and the receiving end device therefore, compared to a lens array that must achieve the alignment of the two optical signals, the alignment difficulty in this solution is greatly reduced, and the alignment process is simpler and more efficient. Therefore, the assembly speed of the multi-channel parallel bidirectional device coupling device can be greatly improved, and the production efficiency can be improved.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Optical Couplings Of Light Guides (AREA)

Abstract

本发明涉及一种多通道并行双向器件耦合装置,包括第一透镜阵列和第二透镜阵列,所述第一透镜阵列用于布置第一光信号的发射端器件和接收端器件,所述第二透镜阵列用于布置第二光信号的发射端器件和接收端器件,第一光信号和第二光信号的波长不同。本发明方案中,通过设置两个透镜阵列,一个透镜阵列只需要实现一种波长的光信号的对准,对准难度大大降低,进而提高了对准效率。

Description

一种多通道并行双向器件耦合装置 技术领域
本发明涉及光通信技术领域,特别涉及一种多通道并行双向器件耦合装置。
背景技术
光收发一体化模块(简称光模块)的主要功能是将接收的光信号转换为电信号,以及将电信号转换为光信号发射,以实现数据传输。对于短距离高速光模块,标准SR4.2采用双波长850nm和910nm。目前低成本的设计是采用板上芯片,如图1所示,在一个透镜阵列上同时布置两个波长光信号的发射端和接收端。由于需要多通道同时对准,所以要求透镜阵列结合精度高,实施难度大。如图1所示,针对于8通道收发,就需要同时实现4个收/发端器件的对准,实施难度大,且对准效率低。
发明内容
本发明的目的在于提供一种多通道并行双向器件耦合装置,可以降低透镜阵列的结合精度,提高对准效率。
为了实现本发明目的,本发明实施例提供了以下技术方案:
一种多通道并行双向器件耦合装置,包括第一透镜阵列和第二透镜阵列,所述第一透镜阵列用于布置第一光信号的发射端器件和接收端器件,所述第二透镜阵列用于布置第二光信号的发射端器件和接收端器件,第一光信号和第二光信号的波长不同。
上述耦合装置中,通过设置两个透镜阵列,分别用于布置一种波长的光信号的发射端器件和接收端器件,相比于传统技术中通过一个透镜阵列实现两种 光信号的对准,对准难度大大降低,进而提高了对准效率。
在进一步优化的方案中,上述多通道并行双向器件耦合装置中,还包括一个分光镜,用于反射第一光信号,以及透射第二光信号。通过设置分光镜,实现了两种波长的光信号的区分,使得两种光信号可以通过一根光纤传输,简化装置的结构。
在进一步优化的方案中,所述第一透镜阵列为L型结构,所述分光镜倾斜设置于所述第一透镜阵列,且跨接第一透镜阵列的两个面,使得所述两个面面向所述分光镜,第一光信号经其中一个面入射至分光镜,经分光镜反射后入射至另一个面。所第一光信号入射至两个面的角度均为非90度。第一光信号入射至两个面的角度均为非90度,可以避免垂直入射所造成的反射,进而可以避免反射光干扰。
与现有技术相比,本发明提供的耦合装置中,通过设置两个透镜阵列,分别用于布置一种波长的光信号的发射端器件和接收端器件,相比于传统技术中通过一个透镜阵列实现两种光信号的对准,对准难度大大降低,进而提高了对准效率。
附图说明
为了更清楚地说明本发明实施例的技术方案,下面将对实施例中所需要使用的附图作简单地介绍,应当理解,以下附图仅示出了本发明的某些实施例,因此不应被看作是对范围的限定,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他相关的附图。
图1本现有技术中的8通道并行双向器件耦合装置结构示意图。
图2本发明实施例中多通道并行双向器件耦合装置的结构示意图。
图中标记
基板10;第一透镜阵列20;第一面21;第二面22;第一空腔23;第二透镜阵列30;反射面31;入射面32,第二空腔33;分光镜40;激光驱动器51;激光二极管52;光电二极管61;跨阻放大器62;光纤70。
具体实施方式
下面将结合本发明实施例中附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例。通常在此处附图中描述和示出的本发明实施例的组件可以以各种不同的配置来布置和设计。因此,以下对在附图中提供的本发明的实施例的详细描述并非旨在限制要求保护的本发明的范围,而是仅仅表示本发明的选定实施例。基于本发明的实施例,本领域技术人员在没有做出创造性劳动的前提下所获得的所有其他实施例,都属于本发明保护的范围。
请参阅图2,本实施例中示意性地提供了一种多通道并行双向器件耦合装置,包括第一透镜阵列20和第二透镜阵列30,第一透镜阵列20用于布置第一光信号的发射端器件和接收端器件,第二透镜阵列30用于布置第二光信号的发射端器件和接收端器件。第一光信号和第二光信号的波长不同,一般地,第一光信号的波长为850nm,第二光信号的波长为910nm;或者第一光信号的波长为910nm,第二光信号的波长为850nm。如图2所示,第一透镜阵列20和第二透镜阵列30并不只是包含透镜(图中粗曲线所表示),而是还包含支撑透镜的支撑体。本实施例中,支撑体和透镜采用相同的材料,且通过模具一体成型而成,因此,图2中所示的粗曲线也可以理解为透镜曲面。
更具体地,如图2所示,第一透镜阵列20为L型结构,分光镜40倾斜设置于第一透镜阵列20,且跨接第一透镜阵列20的两个面。为了便于描述,此处 将该两个面分别称为第一面21和第二面22,第一面21和第二面22均面向分光镜40,第一光信号经第一面21入射至分光镜40,经分光镜40反射后入射至第二面22。第二透镜阵列30为三角(体)型结构,第二透镜阵列30提供一个反射面31和一个入射面32,经分光镜40透射的第二光信号入射至该入射面32,反射面31用于反射第二光信号,使得第二光信号被接收端器件所接收。
在较优设计中,第一光信号入射至第一面21和第二面22的角度均为非90度,以避免第一光信号反射而形成干扰。一般地,第一光信号是水平入射,因此,为了实现第一光信号不垂直入射至第一面21和第二面22,第一面21和第二面22均为斜面。同理地,从分光镜40透射出的第二光信号也呈非90度状态入射至第二透镜阵列30的入射面32,经第二透镜阵列30的反射面31反射后,也呈非90度状态被第二光信号的接收端器件所接收。
第一透镜阵列20和第二透镜阵列30均设置于基板10上,第一透镜阵列20与基板10之间形成有第一空腔23,第一光信号的发射端器件和接收端器件均布置于第一空腔23内,第二透镜阵列30与基板10之间形成有第二空腔33,第二光信号的发射端器件和接收端器件均布置于第二空腔33内。第一光信号的发射端器件包括激光二极管52和激光驱动器51,第一光信号的接收端器件包括光电二极管61和跨阻放大器62。第二光信号的发射端器件包括激光二极管52和激光驱动器51,第二光信号的接收端器件包括光电二极管61和跨阻放大器62。通道数量由应用和LD/PD的数量决定,例如,如果一个透镜阵列只有一个LD和PD时,叫做两通道。另外,第一透镜阵列20可以单独使用在单模长的并行传输应用中。
第一透镜阵列20中设置有设置有连接口,连接口对准光纤70和透镜,连 接口连接有光纤70,第一光信号和第二光信号均通过光纤70输入和输出第一透镜阵列20。
上述多通道并行双向器件耦合装置中,光信号传输过程如下:
第一光信号的发射过程:第一光信号的发射端器件发射出第一光信号,经透镜(图2中从左至右第二个粗曲线所表示)准直后,第一光信号经第二面22透射后入射至分光镜40,经分光镜40反射后入射至第一面21,然后经透镜(图2中从左至右第一个粗曲线所表示)汇聚后进入光纤70,由光纤70传输出去。
第一光信号的接收过程:第一光信号经光纤70入射至第一面21,经第一面21透射后入射至分光镜40,经分光镜40反射后入射至第二面22,经第二面22透射后被第二光信号的接收端器件所接收。
第二光信号的发射过程:第二光信号的发射端器件发射出第二光信号,经透镜(图2中从左至右第三个粗曲线所表示)准直后,第二光信号经第二透镜阵列30的反射面31反射至第二透镜阵列30的入射面32,经该入射面32透射后入射至分光镜40,经分光镜40透射后入射至第一透镜阵列20的第一面21,然后经光纤70传输出去。
第二光信号的接收过程:第二光信号经光纤70入射至第一面21,经第一面21透射后入射至分光镜40,经分光镜40透射后入射至第二透镜阵列30的入射面32,经该入射面32透射后入射至第二透镜阵列30的反射面31,经该反射面31反射后被第二光信号的接收端器件所接收。
上述多通道并行双向器件耦合装置中,第一透镜阵列20只需要实现第一光信号的发射端器件与接收端器件之间的对准,第二透镜阵列30只需要实现第二光信号的发射端器件与接收端器件之间的对准,因此,相比于一个透镜阵列必 须要实现两个光信号的收发对准,本方案中的对准难度大大降低,继而对准过程更加简单,效率更低,由此可以大大地提高多通道并行双向器件耦合装置的装配速度,提高生产效率。
以上所述,仅为本发明的具体实施方式,但本发明的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本发明揭露的技术范围内,可轻易想到变化或替换,都应涵盖在本发明的保护范围之内。

Claims (12)

  1. 一种多通道并行双向器件耦合装置,其特征在于,包括第一透镜阵列和第二透镜阵列,所述第一透镜阵列用于布置第一光信号的发射端器件和接收端器件,所述第二透镜阵列用于布置第二光信号的发射端器件和接收端器件,第一光信号和第二光信号的波长不同。
  2. 根据权利要求1所述的多通道并行双向器件耦合装置,其特征在于,还包括一个分光镜,用于反射第一光信号,以及透射第二光信号。
  3. 根据权利要求2所述的多通道并行双向器件耦合装置,其特征在于,所述第一透镜阵列为L型结构,所述分光镜倾斜设置于所述第一透镜阵列,且跨接第一透镜阵列的两个面,使得所述两个面面向所述分光镜,第一光信号经其中一个面入射至分光镜,经分光镜反射后入射至另一个面。
  4. 根据权利要求3所述的多通道并行双向器件耦合装置,其特征在于,所第一光信号入射至两个面的角度均为非90度。
  5. 根据权利要求4所述的多通道并行双向器件耦合装置,其特征在于,所述第一透镜阵列面向所述分光镜的两个面均为斜面。
  6. 根据权利要求1所述的多通道并行双向器件耦合装置,其特征在于,所述第一透镜阵列设置有连接口,所述连接口连接有光纤,用于传输第一光信号和第二光信号。
  7. 根据权利要求3所述的多通道并行双向器件耦合装置,其特征在于,第一透镜阵列和第二透镜阵列均设置于基板上,第一透镜阵列与基板之间形成有第一空腔,第一光信号的发射端器件和接收端器件均布置于所述第一空腔内,第二透镜阵列与基板之间形成有第二空腔,第二光信号的发射端器件和接收端 器件均布置于所述第二空腔内。
  8. 根据权利要求2所述的多通道并行双向器件耦合装置,其特征在于,第二透镜阵列提供一个反射面,用于反射第二光信号,使得第二光信号被接收端器件所接收,或者入射至所述分光镜。
  9. 根据权利要求8所述的多通道并行双向器件耦合装置,其特征在于,从分光镜透射出的第二光信号呈非90度状态入射至第二透镜阵列的入射面。
  10. 根据权利要求1所述的多通道并行双向器件耦合装置,其特征在于,第一光信号的发射端器件包括激光二极管和激光驱动器,第一光信号的接收端器件包括光电二极管。
  11. 根据权利要求1所述的多通道并行双向器件耦合装置,其特征在于,第二光信号的发射端器件包括激光二极管和激光驱动器,第二光信号的接收端器件包括光电二极管和跨阻放大器。
  12. 根据权利要求1所述的多通道并行双向器件耦合装置,其特征在于,第一光信号的波长为850nm,第二光信号的波长为910nm;或者第一光信号的波长为910nm,第二光信号的波长为850nm。
PCT/CN2019/100401 2019-08-13 2019-08-13 一种多通道并行双向器件耦合装置 WO2021026774A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN201980001401.XA CN110651212B (zh) 2019-08-13 2019-08-13 一种多通道并行双向器件耦合装置
PCT/CN2019/100401 WO2021026774A1 (zh) 2019-08-13 2019-08-13 一种多通道并行双向器件耦合装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2019/100401 WO2021026774A1 (zh) 2019-08-13 2019-08-13 一种多通道并行双向器件耦合装置

Publications (1)

Publication Number Publication Date
WO2021026774A1 true WO2021026774A1 (zh) 2021-02-18

Family

ID=69014735

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/100401 WO2021026774A1 (zh) 2019-08-13 2019-08-13 一种多通道并行双向器件耦合装置

Country Status (2)

Country Link
CN (1) CN110651212B (zh)
WO (1) WO2021026774A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022267805A1 (zh) * 2021-06-22 2022-12-29 青岛海信宽带多媒体技术有限公司 光模块

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106291834A (zh) * 2015-05-22 2017-01-04 鸿富锦精密工业(深圳)有限公司 光学通讯装置
CN109828335A (zh) * 2017-11-23 2019-05-31 海思光电子有限公司 一种光学耦合模块及电子设备
CN110045468A (zh) * 2019-04-30 2019-07-23 武汉华工正源光子技术有限公司 一种单纤双向的光耦合组件

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW201502618A (zh) * 2013-07-09 2015-01-16 Hon Hai Prec Ind Co Ltd 光耦合模組以及光電轉換裝置
CN204405900U (zh) * 2014-12-25 2015-06-17 武汉电信器件有限公司 一种多波长复用/解复用的并行光收发组件
CN105629404A (zh) * 2016-04-08 2016-06-01 四川华拓光通信股份有限公司 应用于垂直腔面发射激光器的耦合透镜装置
CN208547749U (zh) * 2018-07-29 2019-02-26 广东瑞谷光网通信股份有限公司 单光纤的双收双发光路系统

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106291834A (zh) * 2015-05-22 2017-01-04 鸿富锦精密工业(深圳)有限公司 光学通讯装置
CN109828335A (zh) * 2017-11-23 2019-05-31 海思光电子有限公司 一种光学耦合模块及电子设备
CN110045468A (zh) * 2019-04-30 2019-07-23 武汉华工正源光子技术有限公司 一种单纤双向的光耦合组件

Also Published As

Publication number Publication date
CN110651212A (zh) 2020-01-03
CN110651212B (zh) 2021-11-30

Similar Documents

Publication Publication Date Title
US20190257924A1 (en) Receive path for lidar system
CN105717589B (zh) 一种单光口多路并行光发射组件
CN110045468B (zh) 一种单纤双向的光耦合组件
CN101852613B (zh) 一种应用于光纤传感的光收发一体化装置
US6295393B1 (en) Polarized light synthesizing apparatus, a polarized light splitting apparatus and a pump light outputting apparatus
CN112235050B (zh) 单光纤双向收发装置及光纤通信系统
US11828992B2 (en) Short-waveband active optical component based on vertical emitting laser and multi-mode optical fiber
US12050269B2 (en) Dual lens receive path for LiDAR system
US7416352B2 (en) Optical multi-channel free space interconnect
CN113267856A (zh) 一种收发共轴紧凑激光收发装置
CN104808299A (zh) 一种用于光纤通讯的多波长组件
WO2023065468A1 (zh) 光信号传输系统
WO2021026774A1 (zh) 一种多通道并行双向器件耦合装置
CN204694885U (zh) 一种用于光纤通讯的多波长组件
CN107462987B (zh) 光路控制系统及光模块
CN209281011U (zh) 多通道光收发装置
US20020118904A1 (en) Optical fiber systems for transmitting laser light with reduced back reflection interference
CN108333688B (zh) 用于自由空间光传播的波分复用解复用光器件
US20230021871A1 (en) Planar bidirectional optical coupler for wavelength division multiplexing
US11515941B2 (en) Free space optical communication terminal with dispersive optical component
US6879784B1 (en) Bi-directional optical/electrical transceiver module
CN112198592B (zh) 一种光学系统
CN210347922U (zh) 一种激光雷达装置
CN115808749A (zh) 一种单纤多向光收发装置及光模块
CN111552013A (zh) 分光器及单光纤双向光收发组件

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19941565

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19941565

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 19941565

Country of ref document: EP

Kind code of ref document: A1