WO2021036011A1 - 基于平面波导芯片的光接收引擎 - Google Patents

基于平面波导芯片的光接收引擎 Download PDF

Info

Publication number
WO2021036011A1
WO2021036011A1 PCT/CN2019/119106 CN2019119106W WO2021036011A1 WO 2021036011 A1 WO2021036011 A1 WO 2021036011A1 CN 2019119106 W CN2019119106 W CN 2019119106W WO 2021036011 A1 WO2021036011 A1 WO 2021036011A1
Authority
WO
WIPO (PCT)
Prior art keywords
detector
waveguide chip
photosensitive area
receiving engine
mode field
Prior art date
Application number
PCT/CN2019/119106
Other languages
English (en)
French (fr)
Inventor
陈亦凡
郑睿
Original Assignee
苏州易锐光电科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 苏州易锐光电科技有限公司 filed Critical 苏州易锐光电科技有限公司
Priority to US17/632,655 priority Critical patent/US20220276454A1/en
Publication of WO2021036011A1 publication Critical patent/WO2021036011A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/42Coupling light guides with opto-electronic elements
    • G02B6/4201Packages, e.g. shape, construction, internal or external details
    • G02B6/4286Optical modules with optical power monitoring
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/42Coupling light guides with opto-electronic elements
    • G02B6/4201Packages, e.g. shape, construction, internal or external details
    • G02B6/4204Packages, e.g. shape, construction, internal or external details the coupling comprising intermediate optical elements, e.g. lenses, holograms
    • G02B6/4215Packages, e.g. shape, construction, internal or external details the coupling comprising intermediate optical elements, e.g. lenses, holograms the intermediate optical elements being wavelength selective optical elements, e.g. variable wavelength optical modules or wavelength lockers
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/42Coupling light guides with opto-electronic elements
    • G02B6/4201Packages, e.g. shape, construction, internal or external details
    • G02B6/4204Packages, e.g. shape, construction, internal or external details the coupling comprising intermediate optical elements, e.g. lenses, holograms
    • G02B6/4214Packages, e.g. shape, construction, internal or external details the coupling comprising intermediate optical elements, e.g. lenses, holograms the intermediate optical element having redirecting reflective means, e.g. mirrors, prisms for deflecting the radiation from horizontal to down- or upward direction toward a device
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/42Coupling light guides with opto-electronic elements
    • G02B6/4201Packages, e.g. shape, construction, internal or external details
    • G02B6/4287Optical modules with tapping or launching means through the surface of the waveguide
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/60Receivers
    • H04B10/66Non-coherent receivers, e.g. using direct detection
    • H04B10/67Optical arrangements in the receiver
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/10Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type
    • G02B6/12Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type of the integrated circuit kind
    • G02B6/12007Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type of the integrated circuit kind forming wavelength selective elements, e.g. multiplexer, demultiplexer
    • G02B6/12009Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type of the integrated circuit kind forming wavelength selective elements, e.g. multiplexer, demultiplexer comprising arrayed waveguide grating [AWG] devices, i.e. with a phased array of waveguides
    • G02B6/12019Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type of the integrated circuit kind forming wavelength selective elements, e.g. multiplexer, demultiplexer comprising arrayed waveguide grating [AWG] devices, i.e. with a phased array of waveguides characterised by the optical interconnection to or from the AWG devices, e.g. integration or coupling with lasers or photodiodes

Definitions

  • the application relates to a light receiving engine based on a planar waveguide chip, which belongs to the technical field of optical communication.
  • optical transceiver is an important part of the overall optical communication link, and functions to realize the conversion of photoelectric signals.
  • the wavelength division multiplexing device can be used to couple multiple optical signals of different wavelengths to a single optical fiber.
  • an arrayed waveguide chip is usually used to realize the light splitting processing of the light in the optical fiber.
  • the arrayed waveguide chip needs to have wavelength insensitivity, that is, a flat-topped transmission spectrum.
  • the flat-top transmission spectrum is realized by fabricating the output waveguide of the arrayed waveguide chip into a multi-mode waveguide structure. At this time, when the wavelength changes, the mode field distribution of the output waveguide of the arrayed waveguide chip changes correspondingly.
  • an arrayed waveguide chip with a multimode waveguide structure cannot maintain a single mode field characteristic at the exit end, which makes the coupling between the arrayed waveguide chip and the detector difficult and the coupling efficiency is low.
  • the present application provides a light receiving engine based on a planar waveguide chip, which can solve the problem of low coupling efficiency between the existing arrayed waveguide chip and the detector.
  • This application provides the following technical solutions:
  • Optical receiving engine based on planar waveguide chip including:
  • An arrayed waveguide chip for receiving optical signals emitted by optical fibers.
  • the output waveguide of the arrayed waveguide chip has a multi-mode waveguide structure. Light enters the arrayed waveguide chip and then passes through the output waveguide. Lights with different wavelengths correspond to the The mode field distribution of the output waveguide is different;
  • a detector coupled to the array waveguide chip, the photosensitive area of the detector is determined based on the mode field distribution range of the output waveguide;
  • An amplifier connected to the detector.
  • the normal direction of the light exit surface of the arrayed waveguide chip points to the photosensitive area of the detector.
  • the array waveguide chip is formed with a total reflection surface, and the total reflection surface is used to totally reflect the light transmitted in the array waveguide chip to the upper surface of the array waveguide chip to exit;
  • the center of the photosensitive area coincides with the center of the output light field on the upper surface.
  • the arrayed waveguide chip is supported by a support, so that the detector is separated from the area on the upper surface of the arrayed waveguide chip for emitting light by a predetermined distance.
  • the photosensitive area of the detector includes a mode field distribution range of the output waveguide, and the size of the photosensitive area is less than or equal to a size threshold.
  • the shape of the mode field distribution range is a rectangle.
  • the photosensitive area of the detector is a rectangle, and the ratio of the width to the height of the rectangle of the photosensitive area is equal to the rectangle of the mode field distribution range. The ratio of the width to the height.
  • the shape of the mode field distribution range is an ellipse
  • the photosensitive area of the detector is an ellipse
  • the ratio of the long axis to the short axis of the ellipse of the photosensitive area is equal to the mode The ratio of the major axis to the minor axis of the ellipse of the field distribution range.
  • the detector is connected to the amplifier by gold wire bonding.
  • the arrayed waveguide chip includes a core layer and a cladding layer wrapped around the core layer, and the ratio of the width to the height of the core layer ranges from [3, 5]; the refractive index of the core layer The range of the difference between the refractive index of the cladding layer is [0.75%, 2.5%].
  • the amplifier is a transimpedance amplifier.
  • the beneficial effects of the present application are: by setting the arrayed waveguide chip for receiving the optical signal from the optical fiber, the output waveguide of the arrayed waveguide chip has a multimode waveguide structure, and the light enters the arrayed waveguide chip and then is output through the output waveguide; light with different wavelengths The corresponding output waveguides have different mode field distributions; for the detector coupled with the arrayed waveguide chip, the photosensitive area of the detector is determined based on the mode field distribution range of the output waveguide; and the amplifier connected to the detector; it can solve the existing arrayed waveguide chip The problem of low coupling efficiency with the detector; by optimizing the photosensitive area of the detector, the photosensitive area can be matched with the light spot mode field of the waveguide chip to improve the coupling efficiency.
  • FIG. 1 and 2 are schematic diagrams of the structure of a light receiving engine based on a planar waveguide chip provided by an embodiment of the present application;
  • FIG. 3 is a schematic cross-sectional view of an arrayed waveguide chip provided by an embodiment of the present application.
  • FIG. 4 is a schematic diagram of the photosensitive area of the detector provided by an embodiment of the present application.
  • Fig. 5 is a schematic diagram of a photosensitive area of a detector provided by another embodiment of the present application.
  • Figures 1 and 2 are schematic diagrams of the structure of an optical receiving engine based on a planar waveguide chip provided by an embodiment of the present application. As shown in the figure, the optical receiving engine at least includes:
  • the arrayed waveguide chip 1 is used to receive the optical signal from the optical fiber.
  • the output waveguide of the arrayed waveguide chip 1 has a multi-mode waveguide structure. The light enters the arrayed waveguide chip 1 and then is output through the output waveguide; the light with different wavelengths corresponds to the mode field of the output waveguide Different distribution
  • the detector 2 coupled to the arrayed waveguide chip 1, and the photosensitive area of the detector 2 is determined based on the mode field distribution range of the output waveguide;
  • Amplifier 3 connected to the detector 2.
  • the photosensitive area of the detector 2 is determined based on the variation range of the peak position in the mode field distribution of the output waveguide.
  • the arrayed waveguide chip 1 includes a core layer 11 and a cladding layer 12 wrapped around the core layer 11.
  • the core layer 11 is rectangular, and the ratio of the width to the height of the rectangle ranges from [3, 5]; the refractive index of the core layer 11 and the cladding layer
  • the range of the difference in refractive index of 12 is [0.75%, 2.5%].
  • the coupling modes of the arrayed waveguide chip 1 and the detector 2 include but are not limited to the following:
  • the first type (refer to FIG. 1): the normal direction of the light-emitting surface of the arrayed waveguide chip 1 points to the photosensitive area of the detector 2.
  • the detector 2 is directly fixed on the light-emitting surface of the arrayed waveguide chip 1; or, there is air space between the detector 2 and the light-emitting surface of the arrayed waveguide chip 1.
  • the second type (refer to FIG. 2): the arrayed waveguide chip 1 is formed with a total reflection surface 13, and the total reflection surface 13 is used to totally reflect the light transmitted in the array waveguide chip 1 to the upper surface 14 of the array waveguide chip 1 to exit; a detector; The center of the photosensitive area of 2 coincides with the center of the output light field of the upper surface 14.
  • the optical signal (indicated by the dashed arrow) inside the arrayed waveguide chip 1 exits from the upper surface 14 after passing through the total reflection surface 13 of the arrayed waveguide chip 1, and is directed toward the detector after being refracted at the interface between the arrayed waveguide chip 1 and the air layer. 2The center of the photosensitive area.
  • the arrayed waveguide chip 1 passes through the support 4 It is supported so that the detector 2 and the area of the upper surface 14 of the arrayed waveguide chip for emitting light are separated by a predetermined distance.
  • the total reflection surface 13 may be formed by polishing the end surface of the arrayed waveguide chip 1; or, it may be formed by a reflector provided on the end surface of the array waveguide chip 1. This embodiment does not limit the arrangement of the total reflection surface 13 .
  • the way of connecting the detector 2 and the amplifier 3 may be a gold wire bonding connection.
  • the amplifier 3 may be a trans-impedance amplifier (TIA), of course, it may also be another type of amplifier, which is not limited in this embodiment.
  • TIA trans-impedance amplifier
  • the method for determining the photosensitive area of the detector 2 based on the mode field distribution range of the output waveguide includes: the photosensitive area of the detector 2 includes the mode field distribution range, and the size of the photosensitive area is less than or equal to the size threshold.
  • the photosensitive area of the detector 2 is greater than or equal to the mode field distribution range of the output waveguide.
  • the size threshold is determined according to the maximum detection bandwidth of the detector 2. Since the maximum detection bandwidth of the detector 2 is fixed, and the larger the photosensitive area of the detector 2, the smaller the corresponding bandwidth. Therefore, in this embodiment, in order to ensure the maximum detection bandwidth requirement of the detector 2, the photosensitive area of the detector 2 is smaller than Or equal to the size threshold.
  • the shape of the mode field distribution range of the output waveguide is a rectangle.
  • the photosensitive area of the detector is rectangular, and the ratio of the width to the height of the rectangle of the photosensitive area is equal to the rectangular shape of the mode field distribution range.
  • the ratio of width to height For example, if the ratio of the width to the height of the rectangle of the mode field distribution range is 2:1, then the ratio of the width to the height of the rectangle of the photosensitive area is 2:1.
  • the photosensitive area of the detector 2 can detect the mode field distribution of the output waveguide corresponding to each wavelength.
  • the shape of the mode field distribution range is an ellipse.
  • the photosensitive area of the detector is an ellipse, and the ratio of the long axis to the short axis of the ellipse of the photosensitive area is equal to the ellipse of the mode field distribution range
  • the ratio of the major axis to the minor axis For example, if the ratio of the major axis to the minor axis of the ellipse of the mode field distribution range is 2:1, the ratio of the major axis to the minor axis of the ellipse of the photosensitive area is also 2:1.
  • the photosensitive area of the detector 2 can detect the mode field distribution of the output waveguide corresponding to each wavelength.
  • the size of the photosensitive area of the detector 2 is determined based on the size of the mode field distribution range of the output waveguide.
  • the size of the photosensitive area of the detector 2 does not need to be fixed to the size threshold, which can ensure the detection accuracy. In some scenes
  • the area of the photosensitive area of the detector 2 can also be reduced, and the maximum detection bandwidth of the detector 2 can be increased.
  • the light receiving engine based on the planar waveguide chip provided in this embodiment may also have other components, such as a substrate with electrical functions and mechanical support functions, which are not listed here in this embodiment.
  • the light receiving engine based on the planar waveguide chip provided in this embodiment is provided with an arrayed waveguide chip for receiving optical signals from an optical fiber.
  • the output waveguide of the arrayed waveguide chip has a multimode waveguide structure, and light is incident on the array.
  • the waveguide chip is output through the output waveguide; the light with different wavelengths corresponds to the different mode field distribution of the output waveguide; the detector coupled with the arrayed waveguide chip, the photosensitive area of the detector is determined based on the mode field distribution range of the output waveguide; and
  • the connected amplifier can solve the problem of low coupling efficiency between the existing arrayed waveguide chip and the detector; by optimizing the photosensitive area of the detector, the photosensitive area can be matched with the light spot mode field of the waveguide chip and the coupling efficiency can be improved.
  • the photosensitive area of the detector in this embodiment includes the mode field distribution range of the output waveguide, and the size of the photosensitive area is less than or equal to the size threshold, which can reduce the junction capacitance of the detector and enhance the mode field of the array waveguide chip.
  • the matching degree improves the coupling efficiency; the coupling tolerance is increased, which can realize the installation without precise alignment and reduce the installation difficulty.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Electromagnetism (AREA)
  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Optical Couplings Of Light Guides (AREA)
  • Light Receiving Elements (AREA)
  • Optical Integrated Circuits (AREA)

Abstract

一种基于平面波导芯片的光接收引擎,属于光通信技术领域,基于平面波导芯片的光接收引擎包括:用于接收光纤发出的光信号的阵列波导芯片(1),阵列波导芯片(1)的输出波导具有多模波导结构,光线入射至阵列波导芯片(1)后经过输出波导输出;波长不同的光线对应输出波导的模场分布不同;与阵列波导芯片(1)相耦合的探测器(2),探测器(2)的感光区域基于输出波导的模场分布范围确定;以及与探测器(2)相连的放大器;可以解决现有的阵列波导芯片(1)和探测器(2)之间的耦合效率较低的问题;由于通过优化探测器(2)的感光区域,可以使得感光区域匹配波导芯片的光斑模场,提高耦合效率。

Description

基于平面波导芯片的光接收引擎
本申请要求了申请日为2019年8月29日,申请号为201910805981.X的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及一种基于平面波导芯片的光接收引擎,属于光通信技术领域。
背景技术
随着5G时代的来临,数据传输的需求呈现爆发式增长,光纤通信技术以其高带宽的特性一直以来都都到关注。光收发器件是光通信整体链路中重要的一环,功能上要实现光电信号的转换。
由于波分复用结构可以有效地利用光纤高带宽的特性,因此,可以使用波分复用器件将多路不同波长的光信号耦合至单根光纤。为了实现对具有波分复用结构的光纤中光线的耦合和解耦功能,通常使用阵列波导芯片实现对光纤中的光进行分光处理。
在光接收端,阵列波导芯片需要具有波长不敏感特性,即平顶透射谱。在典型的方式中,通过将阵列波导芯片的输出波导制作成多模波导结构来实现平顶透射谱。此时,当波长变化时,阵列波导芯片输出波导的模场分布对应变化。
而具有多模波导结构的阵列波导芯片无法保持出射端单一的模场特性,这就使得阵列波导芯片和探测器之间的耦合变得困难,耦合效率较低。
发明内容
本申请提供了一种基于平面波导芯片的光接收引擎,可以解决现有的阵列波导芯片和探测器之间的耦合效率较低的问题。本申请提供如下技术方案:
基于平面波导芯片的光接收引擎,包括:
用于接收光纤发出的光信号的阵列波导芯片,所述阵列波导芯片的输出波导具有多模波导结构,光线入射至所述阵列波导芯片后经过所述输出波导输出;波长不同的光线对应所述输出波导的模场分布不同;
与所述阵列波导芯片相耦合的探测器,所述探测器的感光区域基于所述输出波导的模场分布范围确定;以及,
与所述探测器相连的放大器。
可选地,所述阵列波导芯片的出光面的法线方向指向所述探测器的感光区域。
可选地,所述阵列波导芯片形成有全反射面,所述全反射面用于将所述阵列波导芯片中传输的光全反射至所述阵列波导芯片的上表面出射;所述探测器的感光区域的中心与所述上表面输出光场中心重合。
可选地,所述阵列波导芯片通过支撑件支撑,以使所述探测器与所述阵列波导芯片的上表面用于出射光线的区域之间相隔预设距离。
可选地,所述探测器的感光区域包括所述输出波导的模场分布范围,且所述感光区域的尺寸小于或等于尺寸阈值。
可选地,所述模场分布范围的形状为矩形,相应地,所述探测器的感光区域为矩形,且所述感光区域的矩形的宽度与高度之比等于所述模场分布范围的矩形的宽度与高度之比。
可选地,所述模场分布范围的形状为椭圆形,相应地,所述探测器的感光区域为椭圆形,且所述感光区域的椭圆形的长轴与短轴之比等于所述模场分布范围的椭圆形的长轴与短轴之比。
可选地,所述探测器通过金线键合连接至所述放大器。
可选地,所述阵列波导芯片包括芯层和包裹在所述芯层周围的包层,所述芯层的宽度与高度之比的范围为[3,5];所述芯层的折射率与所述包层的折射率之差的范围为[0.75%,2.5%]。
可选地,所述放大器为跨阻放大器。
本申请的有益效果在于:通过设置用于接收光纤发出的光信号的阵列波导芯片,阵列波导芯片的输出波导具有多模波导结构,光线入射至阵列波导芯片后经过输出波导输出;波长不同的光线对应输出波导的模场分布不同;与阵列波导芯片相耦合的探测器,探测器的感光区域基于输出波导的模场分布范围确 定;以及与探测器相连的放大器;可以解决现有的阵列波导芯片和探测器之间的耦合效率较低的问题;由于通过优化探测器的感光区域,可以使得感光区域匹配波导芯片的光斑模场,提高耦合效率。
上述说明仅是本申请技术方案的概述,为了能够更清楚了解本申请的技术手段,并可依照说明书的内容予以实施,以下以本申请的较佳实施例并配合附图详细说明如后。
附图说明
图1和图2是本申请一个实施例提供的基于平面波导芯片的光接收引擎的结构示意图;
图3是本申请一个实施例提供的阵列波导芯片的截面示意图;
图4是本申请一个实施例提供的探测器的感光区域的示意图;
图5是本申请另一个实施例提供的探测器的感光区域的示意图。
具体实施方式
下面结合附图和实施例,对本申请的具体实施方式作进一步详细描述。以下实施例用于说明本申请,但不用来限制本申请的范围。
图1和图2是本申请一个实施例提供的基于平面波导芯片的光接收引擎的结构示意图,如图所示,该光接收引擎至少包括:
用于接收光纤发出的光信号的阵列波导芯片1,阵列波导芯片1的输出波导具有多模波导结构,光线入射至阵列波导芯片1后经过输出波导输出;波长不同的光线对应输出波导的模场分布不同;
与阵列波导芯片1相耦合的探测器2,探测器2的感光区域基于输出波导的模场分布范围确定;以及,
与探测器2相连的放大器3。
可选地,探测器2的感光区域基于输出波导的模场分布中的峰值位置的变化范围确定。
参考图3所示的阵列波导芯片1的截面图,阵列波导芯片1包括芯层11和包裹在芯层11周围的包层12。可选地,为了保证阵列波导芯片1的光传输质量和传输效率,芯层11为矩形,且矩形的宽度与高度之比的范围为[3,5];芯层11的折射率与包层12的折射率之差的范围为[0.75%,2.5%]。
可选地,阵列波导芯片1与探测器2耦合的方式包括但不限于以下几种:
第一种(参考图1):阵列波导芯片1的出光面的法线方向指向探测器2的感光区域。可选地,探测器2直接固定在阵列波导芯片1的出光面上;或者,探测器2与阵列波导芯片1的出光面之间间隔有空气。
第二种(参考图2):阵列波导芯片1形成有全反射面13,全反射面13用于将阵列波导芯片1中传输的光全反射至阵列波导芯片1的上表面14出射;探测器2的感光区域的中心与上表面14的输出光场中心重合。参考图2,阵列波导芯片1内部的光信号(虚线箭头表示)在经过阵列波导芯片1的全反射面13,从上表面14出射,在阵列波导芯片1和空气层界面折射后,指向探测器2感光区域的中心。
可选地,由于全反射面13具有棱角,为了防止探测器2直接安装至上表面14上时可能与全反射面13产生接触造成损伤的问题,本实施例中,阵列波导芯片1通过支撑件4支撑,以使探测器2与阵列波导芯片的上表面14用于出射光线的区域之间相隔预设距离。
其中,全反射面13可以是对阵列波导芯片1的端面进行抛光形成的;或者,是通过设置在阵列波导芯片1的端面上的反光镜,本实施例不对全反射面13的设置方式作限定。
可选地,探测器2与放大器3相连的方式可以为通过金线键合连接。
可选地,放大器3可以为跨阻放大器(trans-impedance amplifier,TIA),当然,也可以是其它类型的放大器,本实施例对此不作限定。
在本实施例中,探测器2的感光区域基于输出波导的模场分布范围确定的方式包括:探测器2的感光区域包括模场分布范围,且感光区域的尺寸小于或等于尺寸阈值。
可选地,探测器2的感光区域大于或等于输出波导的模场分布范围。
其中,尺寸阈值是根据探测器2的最大探测带宽确定的。由于探测器2的最大探测带宽固定,而探测器2的感光区域越大,对应的带宽越小,因此,本实施例中为了保证探测器2的最大探测带宽需求,探测器2的感光区域小于或等于尺寸阈值。
可选地,参考图4,输出波导的模场分布范围的形状为矩形,相应地,探测器的感光区域为矩形,且感光区域的矩形的宽度与高度之比等于模场分布范围的矩形的宽度与高度之比。比如:模场分布范围的矩形的宽度与高度之比为2:1,则感光区域的矩形的宽度与高度之比为2:1。此时,探测器2的感光区域可以探测到各个波长对应的输出波导的模场分布。
或者,参考图5,模场分布范围的形状为椭圆形,相应地,探测器的感光区域为椭圆形,且感光区域的椭圆形的长轴与短轴之比等于模场分布范围的椭圆形的长轴与短轴之比。比如:模场分布范围的椭圆形的长轴与短轴之比为2:1,则感光区域的椭圆形的长轴与短轴之比也为2:1。此时,探测器2的感光区域可以探测到各个波长对应的输出波导的模场分布。
本实施例中,探测器2的感光区域的尺寸基于输出波导的模场分布范围的尺寸确定,探测器2的感光区域的尺寸无需固定设置为尺寸阈值,既可以保证探测精度,在一些场景中还可以减小探测器2的感光区域的面积,增加探测器2的最大探测带宽。
当然,本实施例中提供的基于平面波导芯片的光接收引擎还可以具有其它组件,比如:具有电气功能和机械支撑功能的衬底等,本实施例在此不再一一列举。
综上所述,本实施例提供的基于平面波导芯片的光接收引擎,通过设置用于接收光纤发出的光信号的阵列波导芯片,阵列波导芯片的输出波导具有多模波导结构,光线入射至阵列波导芯片后经过输出波导输出;波长不同的光线对应输出波导的模场分布不同;与阵列波导芯片相耦合的探测器,探测器的感光区域基于输出波导的模场分布范围确定;以及与探测器相连的放大器;可以解 决现有的阵列波导芯片和探测器之间的耦合效率较低的问题;由于通过优化探测器的感光区域,可以使得感光区域匹配波导芯片的光斑模场,提高耦合效率。
另外,本实施例中探测器的感光区域包括输出波导的模场分布范围,且感光区域的尺寸小于或等于尺寸阈值,既可以减小探测器结电容,又可以增强与阵列波导芯片模场的匹配程度,提高耦合效率;增加耦合容差,可以实现无需精确对准安装,降低安装难度。
以上所述实施例的各技术特征可以进行任意的组合,为使描述简洁,未对上述实施例中的各个技术特征所有可能的组合都进行描述,然而,只要这些技术特征的组合不存在矛盾,都应当认为是本说明书记载的范围。
以上所述实施例仅表达了本申请的几种实施方式,其描述较为具体和详细,但并不能因此而理解为对发明专利范围的限制。应当指出的是,对于本领域的普通技术人员来说,在不脱离本申请构思的前提下,还可以做出若干变形和改进,这些都属于本申请的保护范围。因此,本申请专利的保护范围应以所附权利要求为准。

Claims (10)

  1. 一种基于平面波导芯片的光接收引擎,其特征在于,所述光接收引擎包括:
    用于接收光纤发出的光信号的阵列波导芯片,所述阵列波导芯片的输出波导具有多模波导结构,光线入射至所述阵列波导芯片后经过所述输出波导输出;波长不同的光线对应所述输出波导的模场分布不同;
    与所述阵列波导芯片相耦合的探测器,所述探测器的感光区域基于所述输出波导的模场分布范围确定;以及,
    与所述探测器相连的放大器。
  2. 根据权利要求1所述的光接收引擎,其特征在于,所述阵列波导芯片的出光面的法线方向指向所述探测器的感光区域。
  3. 根据权利要求1所述的光接收引擎,其特征在于,所述阵列波导芯片形成有全反射面,所述全反射面用于将所述阵列波导芯片中传输的光全反射至所述阵列波导芯片的上表面出射;所述探测器的感光区域的中心与所述上表面输出光场中心重合。
  4. 根据权利要求3所述的光接收引擎,其特征在于,所述阵列波导芯片通过支撑件支撑,以使所述探测器与所述阵列波导芯片的上表面用于出射光线的区域之间相隔预设距离。
  5. 根据权利要求1至4任一所述的光接收引擎,其特征在于,所述探测器的感光区域包括所述输出波导的模场分布范围,且所述感光区域的尺寸小于或等于尺寸阈值。
  6. 根据权利要求5所述的光接收引擎,其特征在于,所述模场分布范围的形状为矩形,相应地,所述探测器的感光区域为矩形,且所述感光区域的矩形的宽度与高度之比等于所述模场分布范围的矩形的宽度与高度之比。
  7. 根据权利要求5所述的光接收引擎,其特征在于,所述模场分布范围的形状为椭圆形,相应地,所述探测器的感光区域为椭圆形,且所述感光区域的椭圆形的长轴与短轴之比等于所述模场分布范围的椭圆形的长轴与短轴之比。
  8. 根据权利要求1至4任一所述的光接收引擎,其特征在于,所述探测器通过金线键合连接至所述放大器。
  9. 根据权利要求1至4任一所述的光接收引擎,其特征在于,所述阵列波导芯片包括芯层和包裹在所述芯层周围的包层,所述芯层的宽度与高度之比的范围为[3,5];所述芯层的折射率与所述包层的折射率之差的范围为[0.75%,2.5%]。
  10. 根据权利要求1至4任一所述的光接收引擎,其特征在于,所述放大器为跨阻放大器。
PCT/CN2019/119106 2019-08-29 2019-11-18 基于平面波导芯片的光接收引擎 WO2021036011A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US17/632,655 US20220276454A1 (en) 2019-08-29 2019-11-18 Optical receiving engine based on planar waveguide chip

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201910805981.XA CN110426797A (zh) 2019-08-29 2019-08-29 基于平面波导芯片的光接收引擎
CN201910805981.X 2019-08-29

Publications (1)

Publication Number Publication Date
WO2021036011A1 true WO2021036011A1 (zh) 2021-03-04

Family

ID=68416439

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/119106 WO2021036011A1 (zh) 2019-08-29 2019-11-18 基于平面波导芯片的光接收引擎

Country Status (3)

Country Link
US (1) US20220276454A1 (zh)
CN (1) CN110426797A (zh)
WO (1) WO2021036011A1 (zh)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110426797A (zh) * 2019-08-29 2019-11-08 易锐光电科技(安徽)有限公司 基于平面波导芯片的光接收引擎
CN114495753B (zh) * 2021-12-28 2023-08-18 浙江光塔安全科技有限公司 一种光纤标志灯
CN114839730B (zh) * 2022-04-26 2023-03-07 珠海光库科技股份有限公司 一种光芯片的出射模场测量装置及其测量方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7376308B2 (en) * 2003-12-24 2008-05-20 National Research Council Of Canada Optical off-chip interconnects in multichannel planar waveguide devices
CN105425351A (zh) * 2015-12-14 2016-03-23 博创科技股份有限公司 一种光接收/发射次模块的封装结构及其制备方法
CN105866904A (zh) * 2016-05-23 2016-08-17 宁波环球广电科技有限公司 多通道并行的光接收器件
CN106908910A (zh) * 2015-12-23 2017-06-30 福州高意通讯有限公司 一种多模光纤和光电探测器的耦合结构
CN109143497A (zh) * 2018-09-20 2019-01-04 青岛海信宽带多媒体技术有限公司 一种光模块
CN110426797A (zh) * 2019-08-29 2019-11-08 易锐光电科技(安徽)有限公司 基于平面波导芯片的光接收引擎

Family Cites Families (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6356692B1 (en) * 1999-02-04 2002-03-12 Hitachi, Ltd. Optical module, transmitter, receiver, optical switch, optical communication unit, add-and-drop multiplexing unit, and method for manufacturing the optical module
US6597824B2 (en) * 2001-01-28 2003-07-22 Raytheon Company Opto-electronic distributed crossbar switch
US6690863B2 (en) * 2001-05-17 2004-02-10 Si Optical, Inc. Waveguide coupler and method for making same
US7116851B2 (en) * 2001-10-09 2006-10-03 Infinera Corporation Optical signal receiver, an associated photonic integrated circuit (RxPIC), and method improving performance
US20080260331A1 (en) * 2005-01-27 2008-10-23 Omron Corporation Multiplexer/Demultiplexer, Method for Fabricating the Same, and Optical Multiplexe/Demultiplexer Module
US8064745B2 (en) * 2009-11-24 2011-11-22 Corning Incorporated Planar waveguide and optical fiber coupling
KR20140079540A (ko) * 2012-12-14 2014-06-27 한국전자통신연구원 파장 분할 다중화 방식을 이용한 광수신 모듈
KR101501139B1 (ko) * 2014-08-29 2015-03-23 주식회사 피피아이 광 파워 모니터 구조를 개량시킨 평판형 광도파로 소자 모듈
US9768901B2 (en) * 2014-11-20 2017-09-19 Kaiam Corp. Planar lightwave circuit active connector
US9746608B1 (en) * 2014-12-11 2017-08-29 Partow Technologies, Llc. Integrated optical assembly apparatus and integrated fabrication method for coupling optical energy
US10684415B1 (en) * 2015-12-04 2020-06-16 Broadex Technologies Uk Limited Optical transceiver
US10042116B2 (en) * 2016-04-25 2018-08-07 Applied Optoelectronics, Inc. Techniques for direct optical coupling of photodetectors to optical demultiplexer outputs and an optical transceiver using the same
US10591687B2 (en) * 2017-05-19 2020-03-17 Adolite Inc. Optical interconnect modules with 3D polymer waveguide
US10678004B2 (en) * 2018-08-01 2020-06-09 Lumentum Operations Llc Multiple waveguide alignment
JP7293672B2 (ja) * 2019-01-30 2023-06-20 住友電気工業株式会社 光モジュール
CN109814201A (zh) * 2019-03-14 2019-05-28 青岛海信宽带多媒体技术有限公司 一种光模块
CN210442547U (zh) * 2019-08-29 2020-05-01 易锐光电科技(安徽)有限公司 基于平面波导芯片的光接收引擎
EP4031914A1 (en) * 2019-09-20 2022-07-27 CSEM Centre Suisse d'Electronique et de Microtechnique SA - Recherche et Développement Micro-optical interconnect component and its method of fabrication
US11619783B2 (en) * 2020-10-30 2023-04-04 Xiaotian Steve Yao Sine-cosine optical frequency detection devices for photonics integrated circuits and applications in LiDAR and other distributed optical sensing
US20220244464A1 (en) * 2021-02-02 2022-08-04 Macom Technology Solutions Holdings, Inc. Multimode splitter for narrowing input width photodetector connections

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7376308B2 (en) * 2003-12-24 2008-05-20 National Research Council Of Canada Optical off-chip interconnects in multichannel planar waveguide devices
CN105425351A (zh) * 2015-12-14 2016-03-23 博创科技股份有限公司 一种光接收/发射次模块的封装结构及其制备方法
CN106908910A (zh) * 2015-12-23 2017-06-30 福州高意通讯有限公司 一种多模光纤和光电探测器的耦合结构
CN105866904A (zh) * 2016-05-23 2016-08-17 宁波环球广电科技有限公司 多通道并行的光接收器件
CN109143497A (zh) * 2018-09-20 2019-01-04 青岛海信宽带多媒体技术有限公司 一种光模块
CN110426797A (zh) * 2019-08-29 2019-11-08 易锐光电科技(安徽)有限公司 基于平面波导芯片的光接收引擎

Also Published As

Publication number Publication date
CN110426797A (zh) 2019-11-08
US20220276454A1 (en) 2022-09-01

Similar Documents

Publication Publication Date Title
US7654750B2 (en) Bidirectional optical fiber link systems component couplers
TWI612353B (zh) 光插座及具備它之光模組
WO2021036011A1 (zh) 基于平面波导芯片的光接收引擎
US7333695B2 (en) Singulated dies in a parallel optics module
JP2015028651A (ja) 二重レンズの単一光受信器アセンブリ
US6626584B2 (en) Two-way optical communication device, two-way optical communication system, and method for assembling two-way optical communication device
US20120189248A1 (en) Optoelectronic transmission device
US7013056B2 (en) Bi-directional transceiver module based on silicon optic bench
US7040816B2 (en) Optical communications module, optical fiber, and optical coupling structure of optical fiber and optical communications module
CN212009027U (zh) 一种光纤fa结构及高回损光接收器件
CN210442547U (zh) 基于平面波导芯片的光接收引擎
CN113296199A (zh) 一种单纤双向光组件和光模块
CN211528767U (zh) 一种光组件及其系统
KR20160120385A (ko) 양방향 광송수신 모듈
KR101674005B1 (ko) 단파장 양방향 광송수신모듈
CN102709334A (zh) 高性能半导体光接收器
JP3834178B2 (ja) 双方向光通信器および双方向光通信装置
CN103268003B (zh) 基于波分复用的光电装置
JP2002323643A (ja) 双方向光通信器および双方向光通信装置
US20230069724A1 (en) Receiver optical sub-assembly, multi-channel receiver optical sub-assembly, and operating method thereof
TWI766444B (zh) 光通訊模組
CN212255789U (zh) 一种高回损的光电探测器及光接收器件
CN218585051U (zh) 一种单纤双向传输的并行光路结构及光模块
CN103630985B (zh) 用于传输光信号的光模组
CN210864117U (zh) 一种近波长单纤双向光收发一体器件

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19943555

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19943555

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 19943555

Country of ref document: EP

Kind code of ref document: A1

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 17/08/2022)

122 Ep: pct application non-entry in european phase

Ref document number: 19943555

Country of ref document: EP

Kind code of ref document: A1