WO2021088065A1 - 无线定位方法及装置 - Google Patents

无线定位方法及装置 Download PDF

Info

Publication number
WO2021088065A1
WO2021088065A1 PCT/CN2019/116865 CN2019116865W WO2021088065A1 WO 2021088065 A1 WO2021088065 A1 WO 2021088065A1 CN 2019116865 W CN2019116865 W CN 2019116865W WO 2021088065 A1 WO2021088065 A1 WO 2021088065A1
Authority
WO
WIPO (PCT)
Prior art keywords
preset
measurement result
terminal device
wireless positioning
network device
Prior art date
Application number
PCT/CN2019/116865
Other languages
English (en)
French (fr)
Inventor
刘梦婷
常俊仁
张向东
黄甦
张宏平
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to PCT/CN2019/116865 priority Critical patent/WO2021088065A1/zh
Priority to CN201980101656.3A priority patent/CN114600519B/zh
Publication of WO2021088065A1 publication Critical patent/WO2021088065A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W4/00Services specially adapted for wireless communication networks; Facilities therefor
    • H04W4/02Services making use of location information

Definitions

  • This application relates to the field of wireless communication, and more specifically, to a wireless positioning method and device.
  • the wireless positioning system estimates the position of the terminal device by detecting the characteristic parameters (such as transmission time, incident angle, electric wave field strength, etc.) of the signal transmitted between the mobile terminal device and the fixed-position network device, thereby positioning the terminal device.
  • the radio resource control (radio resource control, RRC) state of the terminal device includes the connected state (RRC_CONNECTED), the deactivated state (RRC_INACTIVE) and Idle state (RRC_IDLE).
  • RRC radio resource control
  • the terminal device is in the connected state, there is an established communication link between the terminal device and the network device, through which data transmission can be performed, and the network device can locate the terminal device based on the communication link.
  • the terminal device is in the deactivated state or idle state, and there is no communication link between the terminal device and the network device or the established communication link is interrupted, the data transmission between the terminal device and the network device cannot be carried out, so the network device cannot Position the terminal equipment.
  • the wireless positioning system can be applied to a variety of positioning scenarios.
  • a typical application scenario is a geo-fencing (geo-fencing) scenario in the Internet of Things (IoT) field.
  • the geofence can be understood as a preset wireless boundary.
  • an instant alarm can be triggered to realize the monitoring of personnel or equipment in the geofence.
  • terminal devices are generally in an idle state or deactivated state, and only switch to a connected state when they need to communicate with network devices. If each positioning is performed, the terminal will be in an idle state or deactivated state. Switching the device to the connected state and then positioning it will increase the signaling overhead of the terminal device, resulting in higher power consumption of the terminal device.
  • the present application provides a wireless positioning method and device, which can locate a terminal device in an idle state or a deactivated state, reduce the signaling overhead of the terminal device and the power consumption of the terminal device, thereby improving the performance of the device and the system.
  • a wireless positioning method including: a terminal device obtains a first measurement result by measuring the signal quality of a serving cell, wherein the terminal device is in an idle state or a deactivated state; if the first measurement result satisfies the first With a preset condition, the terminal device determines a second measurement result from the beam measurement results by performing beam measurement, and the second measurement result is used to indicate the measurement result of the first beam; if the first beam is included in the preset beam list, the terminal The device performs random access and enters the connected state; the terminal device sends alarm information to the first network device, and the alarm information is used to instruct the terminal device to cross the preset wireless boundary.
  • the terminal device can initiate signal measurement for positioning in the idle state or in the deactivated state. If the measurement result does not meet the alarm condition (that is, the above-mentioned first preset condition and preset beam list), the terminal device will not enter the connection In other words, the terminal device in the idle state or in the deactivated state will enter the connected state only when it is about to cross the preset wireless boundary. For the terminal device that does not cross the preset wireless boundary, there is no need to enter the connected state. . Therefore, the wireless positioning method provided by the present application can locate the terminal device in the idle state or the deactivated state, reduce the signaling overhead of the terminal device and the power consumption of the terminal device, thereby improving the performance of the device and the system.
  • the alarm condition that is, the above-mentioned first preset condition and preset beam list
  • the above-mentioned terminal device's signal quality measurement of the serving cell can measure one or more of the following parameters: reference signal receiving power (RSRP), reference signal receiving quality (RSRQ) , Received signal strength indicator (RSSI), which is not limited in this application.
  • RSRP reference signal receiving power
  • RSSI Received signal strength indicator
  • performing beam measurement by the terminal device may be understood as a process in which the terminal device receives the reference signal sent by the first network device and performs measurement on the reference signal.
  • the first network device may send a reference signal to the terminal device through a specific transmitting beam, and the terminal device uses the specific receiving beam to receive the reference signal, thereby determining the signal strength or signal of the reference signal received or measured by each receiving beam Quality is the result of beam measurement.
  • the terminal device may determine the receiving beam with the strongest signal reception strength or the best signal reception quality from the beam measurement result, which may be referred to as the first beam in this application.
  • the signal measurement result of the reference signal on the receiving beam with the strongest signal reception strength or the best signal reception quality may be referred to as the measurement result of the first beam, that is, the second measurement result.
  • the aforementioned reference signal may be, for example, a channel state information reference signal (CSI-RS), a UE-specific reference signal (DMRS), and a cell-specific reference signal (CRS). ) Etc. This application does not limit this.
  • the first preset condition is that the first measurement result is greater than or equal to the first threshold, and the preset beam list is the first The preset beam list; or, if the terminal device moves away from the first network device, the first preset condition is that the first measurement result is less than or equal to the second threshold, and the preset beam list is the second preset beam list.
  • the terminal device can learn whether the terminal device is moving closer to the first network device or moving away from the first network device according to multiple measurement results of the signal strength or signal quality of the serving cell , So as to select the corresponding preset condition and preset beam list for judgment.
  • the wireless positioning method further includes: the terminal device receives a location measurement request from the second network device; and the terminal device sends the first network device to the second network device according to the location measurement request. The measurement result and the second measurement result.
  • the above-mentioned first measurement result and second measurement result can be used to calculate the position of the terminal device.
  • the second network device may calculate the position of the terminal device by itself, or the second network device may also send the first measurement result and the second measurement result to other network devices After the other network device calculates the location of the terminal device, it sends the calculation result to the second network device, which is not limited in this application.
  • the second network device may be a location management function LMF network element, and may also be a local location management function (LLMF) deployed on a network device such as a base station; other network devices may be a location measurement unit (location measurement unit).
  • measurement unit, LMU or a location management component (location management component, LMC) in the 5G NR system.
  • the terminal device is switched from the connected state to the idle state or the deactivated state.
  • the historical location information of the terminal device is stored on the network side, and the second network device can be based on the stored information about the terminal device. Historical location information, initiate a request, request to locate the terminal device.
  • the location measurement request is sent to the second network device by the fifth-generation mobile communication system 5G gateway or the access and mobility management function AMF network element.
  • the above-mentioned wireless positioning method may be initiated by the terminal device itself, or the terminal device may perform positioning according to a request from the network side.
  • the 5G gateway or the access and mobility management function AMF network element may send the location measurement request to the second network device, and the second network device then sends the location measurement request to the terminal device.
  • this application only takes 5G gateway or access and mobility management function AMF network element as an example for description. 5G communication system or its next-generation mobile communication system and 5G gateway or access and mobility management function AMF Network elements with similar network element functions are all covered by this application.
  • the wireless positioning method further includes: the terminal device calculates the location of the terminal device according to the first measurement result and the second measurement result. That is, in the case that the terminal device initiates positioning by itself, the terminal device may also calculate its own position according to the first measurement result and the second measurement result.
  • the wireless positioning method further includes: the terminal device receives preset information sent by the first network device, the preset information carrying the first preset condition and the preset beam list .
  • the first preset condition and the preset beam list may be obtained by the terminal device from preset information sent by the first network device.
  • the preset information may be system information, such as SSB.
  • the preset information sent by the first network device may also include other preset conditions and other beam lists, which is not limited in this application.
  • the preset condition and beam list included in the preset information sent by the first network device are the preset condition and beam list corresponding to the first network device.
  • the preset information includes the first threshold and the second threshold.
  • the terminal device can select the corresponding threshold and preset conditions according to the movement of the terminal device, that is, if the terminal device moves close to the first network device, the terminal device
  • the first threshold can be selected to determine that the first preset condition is that the first measurement result is greater than or equal to the first threshold. If the terminal device moves away from the first network device, the terminal device can select the second threshold to determine the first preset The condition is that the first measurement result is less than or equal to the second threshold.
  • the above method further includes: the terminal device determines the first preset condition from multiple preset conditions according to the current service type, and the multiple preset conditions correspond to multiple For different service types, the first preset condition corresponds to the current service type.
  • the system can preset multiple geo-fences at the same time, or the shape of the geo-fences can be changed, that is, there can be multiple preset wireless boundaries, and the preset wireless boundaries can be changed.
  • Different preset wireless boundaries correspond to different preset conditions
  • different preset wireless boundaries correspond to different service types, that is, different service types correspond to different preset conditions.
  • the terminal device may select the first preset condition corresponding to the current service type from a plurality of preset conditions according to the current service type.
  • the foregoing multiple preset conditions may be carried in preset information sent by the first network device.
  • the wireless positioning method of the present application can be applied to a variety of different scenarios, for example, multiple preset geofences with different shapes and different ranges are set, which is conducive to improving positioning. flexibility.
  • the aforementioned random access is contention-based random access or two-step random access. That is, the manner in which the terminal device performs random access to enter the connected state may be contention-based random access, or simplified contention-based random access, that is, two-step random access, which is not limited in this application.
  • another wireless positioning method which includes: a terminal device obtains a first measurement result by measuring the signal quality of a serving cell, the terminal device is in an idle state or a deactivated state; if the first measurement result meets the first preset Assuming conditions, the terminal device determines the second measurement result from the beam measurement results by performing beam measurement, and the second measurement result is used to indicate the measurement result of the first beam; if the first beam is included in the preset beam list, the terminal device The first network device sends a random access request, the random access request carries a first preamble, and the first preamble is associated with the first beam.
  • the terminal device can use the preamble for positioning to send a random access request when it needs to initiate an alarm.
  • the first network device receives the preamble for positioning and can learn that the terminal device crosses over. Preset wireless boundaries. In this way, the terminal device only needs to send a preamble for positioning to initiate a random access request to inform the first network device that there is information that the terminal device is out of bounds, and subsequent steps related to random access may not be performed.
  • the terminal device may succeed in random access, or may fail in random access, which is not limited here, and does not affect the wireless positioning method provided in this application.
  • the terminal device in the idle state or in the deactivated state can implicitly alert the network device without entering the random access connection state.
  • This method is beneficial to reduce the number of terminals. The signaling overhead of the equipment and the power consumption of the terminal equipment, thereby improving the performance of the equipment and the system.
  • the first preamble in this application is a preamble used for positioning that is associated with the first beam.
  • the first network device may be able to determine that there is a terminal device that crosses the preset wireless boundary based on identifying that the first preamble is a preamble used for positioning. However, the first network device cannot determine which terminal device specifically crosses the preset wireless boundary.
  • the terminal device may send the identification (ID) of the terminal device to the first network device, so that the first network device can recognize that the preset wireless boundary is crossed. Terminal equipment.
  • the foregoing first preamble used for positioning may be an existing preamble by adding or subtracting some bits, or the first preamble may carry a special identifier. Among them, the added or reduced part of the bits, or a special identifier is used to indicate the first beam.
  • the first preset condition is that the first measurement result is greater than or equal to the first threshold, and the preset beam list is the first A preset beam list; or, if the terminal device moves away from the first network device, the first preset condition is that the first measurement result is less than or equal to the second threshold, and the preset beam list is the second preset beam list.
  • the wireless positioning method further includes: the terminal device receives a location measurement request from the second network device; and the terminal device sends the first network device to the second network device according to the location measurement request. The measurement result and the second measurement result.
  • the location measurement request is sent to the second network device by the fifth-generation mobile communication system 5G gateway or the access and mobility management function AMF network element.
  • 5G gateway or access and mobility management function AMF network element only takes 5G gateway or access and mobility management function AMF network element as an example for description.
  • 5G communication system or its next-generation mobile communication system and 5G gateway or access and mobility management function AMF Network elements with similar network element functions are all covered by this application.
  • the wireless positioning method further includes: the terminal device calculates the location of the terminal device according to the first measurement result and the second measurement result.
  • the wireless positioning method further includes: the terminal device receives preset information sent by the first network device, the preset information carrying the first preset condition and the preset List of beams.
  • the wireless positioning method further includes: the terminal device determines the first preset condition from multiple preset conditions according to the current service type, and the multiple preset conditions correspond to For multiple different service types, the first preset condition corresponds to the current service type.
  • the aforementioned random access request is included in contention-based random access, or the random access request is included in two-step random access.
  • a wireless positioning device which is used to execute the method in any one of the possible implementation manners of the foregoing aspects.
  • the device includes a unit for executing the method in any one of the possible implementation manners of the foregoing aspects.
  • another wireless positioning device including a processor, which is coupled with a memory and can be used to execute instructions in the memory to implement the method in any one of the possible implementation manners of the foregoing aspects.
  • the wireless positioning device further includes a memory.
  • the wireless positioning device further includes a communication interface, and the processor is coupled with the communication interface.
  • the wireless positioning device is a terminal device.
  • the communication interface may be a transceiver, or an input/output interface.
  • the wireless positioning device is a chip configured in a terminal device.
  • the communication interface may be an input/output interface.
  • a processor including: an input circuit, an output circuit, and a processing circuit.
  • the processing circuit is used to receive a signal through the input circuit and transmit a signal through the output circuit, so that the processor executes the method in any one of the possible implementation manners of the foregoing aspects.
  • the above-mentioned processor may be a chip, the input circuit may be an input pin, the output circuit may be an output pin, and the processing circuit may be a transistor, a gate circuit, a flip-flop, and various logic circuits.
  • the input signal received by the input circuit may be received and input by, for example, but not limited to, a receiver, and the signal output by the output circuit may be, for example, but not limited to, output to the transmitter and transmitted by the transmitter, and the input circuit and output
  • the circuit can be the same circuit, which is used as an input circuit and an output circuit at different times. This application does not limit the specific implementation of the processor and various circuits.
  • a processing device including a processor and a memory.
  • the processor is used to read instructions stored in the memory, and can receive signals through a receiver, and transmit signals through a transmitter, so as to execute the method in any one of the possible implementation manners of the foregoing aspects.
  • processors there are one or more processors and one or more memories.
  • the memory may be integrated with the processor, or the memory and the processor may be provided separately.
  • the memory can be a non-transitory (non-transitory) memory, such as a read only memory (ROM), which can be integrated with the processor on the same chip, or can be set in different On the chip, this application does not limit the type of memory and the setting mode of the memory and the processor.
  • ROM read only memory
  • sending instruction information may be a process of outputting instruction information from the processor
  • receiving capability information may be a process of the processor receiving input capability information.
  • the processed output data may be output to the transmitter, and the input data received by the processor may come from the receiver.
  • the transmitter and receiver can be collectively referred to as a transceiver.
  • the above-mentioned processing device may be a chip, and the processor may be implemented by hardware or software.
  • the processor When implemented by hardware, the processor may be a logic circuit, an integrated circuit, etc.; when implemented by software, the processing
  • the processor may be a general-purpose processor, which is implemented by reading software codes stored in the memory.
  • the memory may be integrated in the processor, may be located outside the processor, and exist independently.
  • a computer program product includes: a computer program (also called code, or instruction), which when the computer program is executed, enables the computer to execute any of the above aspects.
  • the method in the implementation mode includes: a computer program (also called code, or instruction), which when the computer program is executed, enables the computer to execute any of the above aspects. The method in the implementation mode.
  • a computer-readable storage medium stores a computer program (also called code, or instruction) when it runs on a computer, so that the computer executes any of the above aspects.
  • a computer program also called code, or instruction
  • a communication system including the aforementioned terminal device and network device.
  • Fig. 1 shows a schematic diagram of a communication system according to an embodiment of the present application
  • Fig. 2 shows a schematic diagram of another communication system according to an embodiment of the present application
  • FIG. 3 shows a schematic flowchart of a wireless positioning method according to an embodiment of the present application
  • FIG. 4 shows a schematic diagram of a geofence scene in an embodiment of the present application
  • FIG. 5 shows a schematic flowchart of another wireless positioning method according to an embodiment of the present application.
  • FIG. 6 shows a schematic flowchart of another wireless positioning method according to an embodiment of the present application.
  • FIG. 7 shows a schematic flowchart of another wireless positioning method according to an embodiment of the present application.
  • FIG. 8 shows a schematic structural diagram of a device according to an embodiment of the present application.
  • FIG. 9 shows a schematic structural diagram of a terminal device according to an embodiment of the present application.
  • LTE long term evolution
  • FDD frequency division duplex
  • TDD time division duplex
  • 5G fifth generation
  • NR new radio
  • FIG. 1 shows a schematic diagram of a communication system 100 applicable to the wireless positioning method and device according to the embodiments of the present application.
  • the communication system 100 may include at least one access network device, such as the access network device 110 shown in FIG. 1, and the communication system 100 may also include at least one terminal device, such as the terminal shown in FIG. Equipment 120.
  • the access network device 110 and the terminal device 120 may communicate through a wireless link.
  • Each communication device such as the access network device 110 or the terminal device 120, may be configured with multiple antennas, and the multiple antennas may include at least one transmitting antenna for transmitting signals and at least one receiving antenna for receiving signals.
  • each communication device additionally includes a transmitter chain and a receiver chain.
  • Those of ordinary skill in the art can understand that they may include multiple components related to signal transmission and signal reception (such as processors, modulators, multiplexers, etc.). Converter, demodulator, demultiplexer or antenna, etc.). Therefore, the access network device 110 and the terminal device 120 can communicate through multi-antenna technology.
  • the terminal equipment in the embodiments of this application may also be referred to as: user equipment (UE), mobile station (MS), mobile terminal (MT), access terminal, user unit, user station, Mobile station, mobile station, remote station, remote terminal, mobile device, user terminal, terminal, wireless communication device, user agent or user device, etc.
  • UE user equipment
  • MS mobile station
  • MT mobile terminal
  • access terminal user unit, user station, Mobile station, mobile station, remote station, remote terminal, mobile device, user terminal, terminal, wireless communication device, user agent or user device, etc.
  • the terminal device may be a device that provides voice/data connectivity to the user, for example, a handheld device with a wireless connection function, a vehicle-mounted device, and so on.
  • some examples of terminal devices include: mobile phones (mobile phones), tablet computers, notebook computers, handheld computers, mobile internet devices (MID), wearable devices, virtual reality (VR) devices, augmented Augmented reality (AR) equipment, wireless terminals in industrial control, wireless terminals in self-driving (self-driving), wireless terminals in remote medical surgery, and smart grid (smart grid) Wireless terminals in transportation safety (transportation safety), wireless terminals in smart city (smart city), wireless terminals in smart home (smart home), cellular phones, cordless phones, session initiation protocols (session initiation) protocol, SIP) phones, wireless local loop (WLL) stations, personal digital assistants (personal digital assistants, PDAs), handheld devices with wireless communication capabilities, computing devices or other processing devices connected to wireless modems, In-vehicle devices, wearable devices, terminal devices in a 5
  • the terminal device may be a terminal device in an Internet of Things (IoT) system.
  • IoT Internet of Things
  • the Internet of Things is an important part of the development of information technology in the future. Its main technical feature is to connect objects to the network through communication technology, so as to realize the intelligent network of human-machine interconnection and interconnection of things.
  • the terminal device in the embodiment of the present application may be a wearable device. Wearable devices can also be called wearable smart devices. It is a general term for using wearable technology to intelligently design everyday wear and develop wearable devices, such as glasses, gloves, watches, clothing and shoes.
  • a wearable device is a portable device that can be worn directly on the body or integrated into the user's clothes or accessories.
  • Wearable devices are not only a hardware device, but also powerful functions can be achieved through software support, data interaction, and cloud interaction.
  • wearable smart devices include full-featured, large-sized, complete or partial functions that can be achieved without relying on smart phones, such as smart watches or smart glasses, and only focus on a certain type of application function, and need to cooperate with other devices such as smart phones.
  • the terminal device may also be a terminal device in machine type communication (MTC).
  • MTC machine type communication
  • the terminal device may also be an in-vehicle module, an in-vehicle module, an in-vehicle component, an in-vehicle chip, or an in-vehicle unit built into the vehicle as one or more components or units.
  • On-board components, on-board chips, or on-board units, etc. can implement the methods provided in this application.
  • the embodiments of the present application can also be applied to the Internet of Vehicles, such as vehicle to everything (V2X), long term evolution-vehicle (LTE-V) technology, and vehicle-to-vehicle (vehicle-to-vehicle). vehicle, V2V) technology, etc.
  • V2X vehicle to everything
  • LTE-V long term evolution-vehicle
  • V2V vehicle-to-vehicle
  • vehicle, V2V vehicle, V2V technology, etc.
  • the access network device involved in this application may be a device that communicates with a terminal device.
  • the access network device may also be called a wireless access network device. It may be a transmission reception point (TRP) or LTE
  • the evolved base station (evolved NodeB, eNB or eNodeB) in the system can also be a home base station (for example, home evolved NodeB, or home Node B, HNB), baseband unit (BBU), or cloud wireless
  • the wireless controller in the cloud radio access network (CRAN) scenario, or the access network device can be a relay station, an access point, an in-vehicle device, a wearable device, and an access network device in a 5G network or future evolution
  • the access network equipment in the PLMN network can also be the access point (AP) in the WLAN, or the gNB in the NR system.
  • the above-mentioned access network equipment can also be urban base stations, micro base stations, Pico base stations, femto base stations, etc
  • the access network equipment may include a centralized unit (CU) node, or a distributed unit (DU) node, or a radio access network (radio access network) including a CU node and a DU node.
  • CU centralized unit
  • DU distributed unit
  • radio access network radio access network
  • CU-CP node control plane CU node
  • CU-UP node user plane CU node
  • DU node a radio access network
  • the access network equipment provides services for the cell.
  • the terminal equipment communicates with the cell through the transmission resources (for example, frequency domain resources, or spectrum resources) allocated by the access network equipment.
  • the cell may belong to a macro base station (for example, a macro eNB or a macro eNB). Macro gNB, etc.) can also belong to the base station corresponding to the small cell.
  • the small cell here can include: metro cell, micro cell, pico cell, femto cell ( Femto cells), etc., these small cells have the characteristics of small coverage and low transmit power, and are suitable for providing high-rate data transmission services.
  • the terminal device or the access network device includes a hardware layer, an operating system layer running on the hardware layer, and an application layer running on the operating system layer.
  • the hardware layer includes hardware such as a central processing unit (CPU), a memory management unit (MMU), and memory (also referred to as main memory).
  • the operating system may be any one or more computer operating systems that implement business processing through processes, for example, Linux operating systems, Unix operating systems, Android operating systems, iOS operating systems or windows operating systems.
  • the application layer includes applications such as browsers, address books, word processing software, and instant messaging software.
  • this application does not specifically limit the specific structure of the execution subject of the method provided in this application, as long as it can communicate with the method provided in the embodiment of this application by running a program that records the code of the method provided in this application.
  • the execution subject of the method provided in the embodiment of the present application may be a terminal device or an access network device, or a functional module in the terminal device or the access network device that can call and execute the program.
  • computer-readable storage media may include, but are not limited to: magnetic storage devices (for example, hard disks, floppy disks, or tapes, etc.), optical disks (for example, compact discs (CDs), digital versatile discs, DVDs ), etc.), smart cards and flash memory devices (for example, erasable programmable read-only memory (EPROM), cards, sticks or key drives, etc.).
  • various storage media described herein may represent one or more devices and/or other machine-readable media for storing information.
  • the term "machine-readable medium” may include, but is not limited to, wireless channels and various other media capable of storing, containing, and/or carrying instructions and/or data.
  • FIG. 1 only shows the system architecture between the terminal device and the access network device.
  • FIG. 2 shows a schematic diagram of another communication system 200 suitable for this application.
  • the communication system 200 shown in FIG. 2 may also be referred to as a positioning architecture based on a 5G core network.
  • the communication system 200 includes:
  • the UE corresponding to the terminal equipment in the aforementioned communication system 100, can measure the downlink signal from the access network equipment to support positioning.
  • the base station (gNB) in the NR system corresponds to the access network equipment in the communication system 100 described above.
  • the base station (next-generation eNodeB, ng-eNB) in the next-generation LTE system corresponds to the access network equipment in the communication system 100 described above.
  • the above-mentioned gNB and ng-eNB can provide the signal to be measured for the UE, and forward the measurement result to a location management function (location management function, LMF) network element.
  • location management function location management function, LMF
  • Access and mobility management function (AMF) network elements are mainly used for mobility management and access management, etc., which can be used to implement, for example, legal monitoring or access authorization (or authentication). ) And other functions.
  • the AMF may receive the location service request, or the AMF itself may initiate the location service and send the location service request to the LMF network element.
  • the location management function (LMF) network element is responsible for supporting different types of location services of the UE, including positioning the UE and delivering auxiliary data to the UE.
  • the control plane and user plane of the LMF network element are respectively enhanced serving mobile location center (E-SMLC) and secure user plane location location platform (SLP).
  • E-SMLC enhanced serving mobile location center
  • SLP secure user plane location location platform
  • the LMF network element may exchange the following information with the aforementioned ng-eNB, gNB, and UE:
  • the LMF network element can exchange information with the ng-eNB or gNB through certain specific positioning protocols, such as NR positioning protocol annex (NRPPa) messages, for example, the LMF network element and the ng-eNB Or transmit positioning reference signal (positioning reference signal, PRS) configuration information, sounding reference signal (sounding reference signal, SRS) configuration information, cell timing, cell location information, etc. between gNBs.
  • NRPPa NR positioning protocol annex
  • LMF network element and the UE use LTE positioning protocol (LTE positioning protocol, LPP) messages to transmit UE capability information, auxiliary information, measurement results and other information.
  • LTE positioning protocol LTE positioning protocol, LPP
  • the foregoing information transmission between the LMF network element and the ng-eNB or gNB, and the information transmission between the LMF network element and the UE are all forwarded through the intermediate device.
  • the UE may first send the measurement result to the gNB, and the gNB and the AMF network element forward the measurement result, so that the LMF network element receives the measurement result sent by the UE.
  • the UE sends an LPP message to the LMF network element.
  • the LPP message may be transmitted through the LPP protocol data unit (protocol data unit, PDU).
  • the UE includes the LPP PDU in the first In the payload container of the message (e.g. UL NAS Transport message), the UE then sends the first message to the ng-eNB or gNB in the second message (e.g. RRC UL Information Transfer message); (2) ng-eNB Or the gNB forwards the first message to the AMF network element through the third message (such as the NGAP Uplink NAS Transport message); (3) The AMF network element obtains the LPP PDU from the first message and sends it to the LMF network by including it in the N1 message container yuan.
  • the message e.g. UL NAS Transport message
  • the UE and the ng-eNB are connected through the LTE-Uu interface
  • the UE and the gNB are connected through the NR-Uu interface
  • the gNB and the ng-eNB are connected through the Xn interface
  • the gNB and AMF are connected through the NG control plane (NG Control plane, NG-C) interface connection
  • ng-eNB and AMF are connected through NG-C interface
  • AMF and LMF are connected through NLs interface.
  • the aforementioned communication system 200 may also include a 5G core network location services (5G core network location services, 5GC LCS) entity, which is equivalent to a gateway and can be connected to other control entities.
  • 5G core network location services 5G core network location services, 5GC LCS
  • the AMF network element can be directly or indirectly connected to the 5GC LCS entity through other interfaces.
  • FIG. 1 and FIG. 2 are only schematic diagrams, and the communication system 100 and the communication system 200 may also include other devices not shown.
  • the embodiment of the present application does not limit the number of terminal devices and access networks included in the communication system 100 and the communication system 200.
  • the radio resource control state of the terminal device includes a connected state (RRC_CONNECTED), a deactivated state (RRC_INACTIVE), and an idle state (RRC_IDLE).
  • RRC_CONNECTED a connected state
  • RRC_INACTIVE a deactivated state
  • RRC_IDLE an idle state
  • the terminal device When the terminal device is in the connected state, the terminal device has established a link with the access network device and the core network device. When data arrives on the network, the core network device and the access network device can directly transmit the data to The terminal equipment.
  • the terminal device When the terminal device is in the deactivated state, it means that the terminal device has previously established links with the access network device and the core network device, but the link between the terminal device and the access network device is released. Although the link is released, the access network device needs to save the context of the terminal device. When data needs to be transmitted, the access network device can quickly restore the released link according to the context of the terminal device.
  • the deactivated state can only be converted through the RRC connection release message when the terminal device is in the connected state, and the idle state can be converted when the terminal device is in the connected state, or the terminal device can be self-resident.
  • the cell is in an idle state.
  • the terminal device When the terminal device is in the idle state or in the deactivated state, the terminal device can perform the following operations when it camps on the cell:
  • the terminal device can initiate random access in the cell where it resides;
  • the network device can send a paging message to the terminal device, and the terminal device can receive the paging message and respond;
  • the terminal equipment can receive notifications from the earthquake and tsunami warning system (ETWS) and the commercial mobile alert system (CMAS).
  • EWS earthquake and tsunami warning system
  • CMAS commercial mobile alert system
  • Random access refers to the process before the terminal device sends a random access preamble, tries to access the network and establishes a basic signaling connection with the network. It should be understood that random access is initiated by a terminal device in an idle state or in a deactivated state, mainly to obtain uplink synchronization with the access network device and apply for uplink resources. Random access is mainly used in the initial access period before the RRC connection is established and the RRC connection re-establishment period.
  • Random access is divided into contention-based random access and non-contention-based random access.
  • Non-competition-based random access the terminal device can use the random access code allocated by the access network device to initiate random access.
  • Non-competition-based random access includes the terminal device sending a random access request and accessing the network. The device sends a random access response in two steps.
  • the terminal device can randomly select a random access preamble to initiate random access. Since the random access preamble can be selected by multiple different terminal devices in a resource pool, it will lead to resource competition. The problem. In this case, the access network device needs to send a contention resolution message to the terminal device. Therefore, the contention-based random access procedure includes the following four steps:
  • Step 1 The terminal device randomly selects a random access preamble, and sends a random access request on a physical random access channel (PRACH), which can be called message 1 (msg1).
  • PRACH physical random access channel
  • Step 2 The access network device detects the random access request carrying the random access preamble, and then sends a random access response, which can be called message 2 (msg2).
  • the random access response may include the number of the random access preamble received by the access network device, the time adjustment amount of the random access preamble received by the access network device, and the amount used to indicate Information about the location of the uplink resource allocated by the access network device to the terminal device.
  • Step 3 The terminal device receives the random access response sent by the access network device, and sends an uplink message (that is, physical uplink shared channel (PUSCH)) on the uplink resource indicated by the random access response, which can be called Message 3 (msg3), the uplink message may include the unique identifier of the terminal device (for example, temporary mobile subscriber identity (TMSI)) or the corresponding random access identifier;
  • PUSCH physical uplink shared channel
  • msg3 Message 3
  • the uplink message may include the unique identifier of the terminal device (for example, temporary mobile subscriber identity (TMSI)) or the corresponding random access identifier;
  • TMSI temporary mobile subscriber identity
  • Step 4 The access network device receives the uplink message sent by the above terminal device, and sends a contention resolution message to the terminal device that has successfully accessed, which can be called message 4 (msg4), and the contention resolution message can include the successfully accessed terminal.
  • message 4 msg4
  • the unique ID of the device such as TMSI or the corresponding random access identifier.
  • terminal devices there may be one or more terminal devices.
  • multiple terminal devices select the same random access preamble for random access at the same time, competition will result.
  • the access network device needs to pass the above four steps. Carry out competition resolution.
  • the aforementioned contention-based random access may also be referred to as 4-step random access (4-step RACH).
  • 4-step RACH 4-step random access
  • the above-mentioned contention-based four-step random access can be simplified to two-step random access (2-step RACH).
  • Two-step random access is suitable for small data transmission and/or scenarios in unlicensed frequency bands.
  • the two-step random access mainly includes two steps: the terminal device sends a message A (msgA) to the access network device and the access network device sends a message B (msgB) to the terminal device.
  • msgA may include messages in msg 1 and msg 3
  • msgB may include messages in msg 2 and msg 4.
  • msgA may include a random access request carrying a random access preamble, a message for requesting to establish a connection, reestablish a connection, or resume a connection, a message for requesting system information on demand, a cell wireless network temporary identification -radio network temporary identity, C-RNTI), etc.
  • msgB can include timing advance, C-RNTI, etc.
  • non-competition-based random access also has only two steps
  • the two-step random access in the embodiment of the present application specifically refers to contention-based two-step random access.
  • Geofencing is a new application of location-based services (LBS). Geofencing is a geographic boundary enclosed by a virtual fence. When a terminal device enters or leaves the geographic boundary, it can trigger an instant alarm to achieve Monitoring of personnel in the fence.
  • LBS location-based services
  • Geo-fencing can provide intelligent security protection for major scenarios. For example, real-time monitoring of asset locations in industrial parks, and geo-fences in kindergartens or nursing homes can define safe areas and dangerous areas through geo-fences, which can help the smart home industry to achieve intelligence through near-field identification. Unlock etc.
  • the shape of the geofence may be a circle, an ellipse, a polygon, etc., which is not limited in the embodiment of the present application.
  • the positioning of the terminal equipment by the wireless positioning system is to estimate the position of the terminal equipment by detecting the characteristic parameters of the signal transmitted between the terminal equipment and the fixed-position network equipment (such as transmission time, incident angle, electric wave field strength, etc.).
  • the characteristic parameters of the signal transmitted between the terminal equipment and the fixed-position network equipment such as transmission time, incident angle, electric wave field strength, etc.
  • terminal devices are generally in an idle state or deactivated state, and when communication is required Only switch to the connected state. If the terminal device in the idle or deactivated state is switched to the connected state each time positioning is performed, and then the positioning is performed, the signaling overhead of the terminal device will be large, which will lead to the function of the terminal device. Consumption is greater.
  • the present application provides a wireless positioning method and device that can locate terminal equipment in an idle or deactivated state, reduce the signaling overhead of the terminal equipment and the power consumption of the terminal equipment, thereby improving the equipment and system performance.
  • instructions can include direct instructions and indirect instructions, as well as explicit instructions and implicit instructions.
  • the information indicated by a certain piece of information is called information to be indicated.
  • the information to be indicated can be directly indicated.
  • Indication information such as indicating the information to be instructed itself or the index of the information to be instructed, etc.
  • the information to be indicated can also be indicated indirectly by indicating other information, where there is an association relationship between the other information and the information to be indicated. It is also possible to indicate only a part of the information to be indicated, while other parts of the information to be indicated are known or agreed in advance. For example, it is also possible to realize the indication of specific information by means of the arrangement order of various information agreed in advance (for example, as stipulated in the agreement), thereby reducing the indication overhead to a certain extent.
  • MAC-CE media access control-control element
  • RRC radio resource control
  • RSRP Reference signal received power
  • CSI-RS channel state information reference signal
  • SS physical broadcast channel
  • PBCH physical broadcast channel
  • SSB Synchronization signal block
  • the first, second, and various numerical numbers are only for easy distinction for description, and are not used to limit the scope of the embodiments of the present application. For example, different thresholds, different preset conditions, different preset beam lists, etc. are distinguished.
  • pre-acquisition may include being indicated by network device signaling or pre-defined, for example, protocol definition.
  • pre-defined can be implemented by pre-saving corresponding codes, tables or other methods that can be used to indicate related information in the equipment (for example, including terminal equipment and network equipment). This application does not make any specific implementation methods. limited.
  • the “protocols” involved in the embodiments of the present application may refer to standard protocols in the communication field, for example, may include LTE protocol, NR protocol, and related protocols applied to future communication systems, which are not limited in this application.
  • terminal equipment can be replaced with a device or chip that can achieve similar functions to the terminal equipment
  • the network equipment can also be replaced with a device that can achieve similar functions to the network equipment.
  • a chip the name of which is not limited in the embodiment of this application.
  • FIG. 3 is a schematic flowchart of a wireless positioning method 300 according to an embodiment of the application.
  • the method 300 may be applied to the communication system 100 shown in FIG. 1 and may also be applied to the communication system 200 shown in FIG. 2, which is not limited in the embodiment of the present application.
  • the method 300 may include:
  • the terminal device measures the signal quality of the serving cell to obtain a first measurement result, where the terminal device is in an idle state or a deactivated state;
  • the terminal device performs beam measurement and determines a second measurement result from the beam measurement result, where the second measurement result is used to indicate the measurement result of the first beam;
  • the terminal device sends alarm information to the first network device, where the alarm information is used to instruct the terminal device to cross a preset wireless boundary.
  • the terminal device is in an idle state or a deactivated state and cannot send information to the network side, but the terminal device can receive a signal transmitted by the network side.
  • the terminal device may receive the signal of the serving cell, measure the signal quality, and obtain the first measurement result.
  • the first measurement result indicates the signal measurement result of the serving cell by the terminal device, which may be specifically expressed by a numerical value.
  • the above-mentioned terminal equipment measures the signal quality of the serving cell and can measure one or more of the following parameters: reference signal receiving power (RSRP), reference signal receiving quality (RSRQ) ), received signal strength indicator (RSSI), which is not limited in the embodiment of the present application.
  • RSRP reference signal receiving power
  • RSRQ reference signal receiving quality
  • RSSI received signal strength indicator
  • the terminal device can determine whether the first measurement result meets the first preset condition.
  • the first preset condition may be obtained in advance by the terminal device.
  • the first preset condition may be defined by a protocol; or, the first preset condition may be obtained by the terminal device from preset information sent by the first network device.
  • the first network device may send the preset information (for example, system information) so that the terminal device in the idle state or in the deactivated state can obtain the preset information, and then obtain the above-mentioned first preset condition from the preset information. If the first measurement result meets the first preset condition, the terminal device continues to perform beam measurement, that is, step S320 is performed; if the first measurement result does not meet the first preset condition, the terminal device can terminate the measurement and end this positioning process .
  • the preset information for example, system information
  • the beam measurement performed by the terminal device can be understood as a process in which the terminal device receives the reference signal sent by the first network device and measures the reference signal.
  • the first network device may send a reference signal to the terminal device through a specific transmitting beam, and the terminal device uses the specific receiving beam to receive the reference signal, thereby determining the signal strength or signal of the reference signal received or measured by each receiving beam Quality is the result of beam measurement.
  • the terminal device may determine the receiving beam with the strongest signal reception strength or the best signal reception quality from the beam measurement result, and this embodiment of the present application may be referred to as the first beam.
  • the signal measurement result of the reference signal on the receiving beam with the strongest signal reception strength or the best signal reception quality may be referred to as the measurement result of the first beam, that is, the second measurement result.
  • the aforementioned reference signal may be, for example, a channel state information reference signal (CSI-RS), a UE-specific reference signal (DMRS), and a cell-specific reference signal (CRS). ) And so on, the embodiment of the present application does not limit this.
  • the terminal device may determine whether the first beam corresponding to the second measurement result belongs to the preset beam list.
  • the preset beam list may also be obtained in advance by the terminal device.
  • the preset beam list may be defined by a protocol; or, the preset beam list may be obtained by the terminal device from preset information sent by the first network device. It is similar to the above-mentioned first preset condition, and will not be repeated here. If the first beam is included in the preset beam list, the terminal device initiates random access and enters the connected state, and then continues to perform step S330; if the first beam is not included in the preset beam list, the terminal device can end this session Positioning process.
  • the foregoing first preset condition and preset beam list are both set according to the preset wireless boundary.
  • the inclusion of the foregoing first beam in the preset beam list indicates that the terminal device is about to cross the preset wireless boundary and needs to alert the network device. . Since the terminal device is in the idle state or in the deactivated state, the terminal device needs to perform step S330, enter the connected state, and establish a communication link capable of data transmission before it can send alarm information to the network device related to the preset wireless boundary.
  • the method for the terminal device to perform random access to enter the connected state may be the contention-based random access described above, or the simplified contention-based random access, that is, two-step random access. This is not limited.
  • the terminal device may perform step S340, that is, send alarm information to the first network device to instruct the terminal device to cross the preset wireless boundary.
  • the alarm information may be 1-bit information, specifically may be 0 or 1, or may be other forms of information, which is not limited in this application.
  • the terminal device can initiate signal measurement for positioning in the idle state or in the deactivated state. If the measurement result does not meet the alarm condition (that is, the above-mentioned first preset condition and preset beam list), the terminal device will not enter In the connected state, in other words, the terminal device in the idle state or in the deactivated state will enter the connected state only when it is about to cross the preset wireless boundary. For the terminal device that does not cross the preset wireless boundary, there is no need to enter the connection state. state. Therefore, the wireless positioning method of the embodiment of the present application can locate the terminal device in the idle state or in the deactivated state, reduce the signaling overhead of the terminal device and the power consumption of the terminal device, thereby improving the performance of the device and the system.
  • the alarm condition that is, the above-mentioned first preset condition and preset beam list
  • the cell signal measurement in step S310 is at low frequency (corresponding to a low frequency cell), and the beam measurement in step S320 is at high frequency (corresponding to a high frequency cell).
  • the working frequency band of the low frequency cell is less than With a certain threshold (for example, less than 6 GHz), the working frequency band of the high-frequency cell is between certain two thresholds (for example, 24.25 GHz to 52.6 GHz). Therefore, according to whether the serving cell of the terminal device can work at low frequency and high frequency, it can be divided into the following two situations:
  • the serving cell can work in low and high frequencies, which is also called the common site of the high frequency cell and the low frequency cell.
  • the network devices corresponding to the low-frequency cell and the high-frequency cell are both the first network device (for example, it can be regarded as a macro base station), and the terminal device can complete the measurement of the signal quality of the serving cell by receiving the signal of the first network device And beam measurement.
  • the serving cell can only work in low frequency, which is also called high frequency cell and low frequency cell non-co-site.
  • the network device corresponding to the low-frequency cell is the first network device (for example, it can be regarded as a macro base station), and there can be one or more high-frequency cells, which correspond to one or more other network devices (for example, it can be regarded as Acer). Small base stations within the coverage of the station), when the terminal device performs beam measurement, it needs to receive the reference signal of the one or more other network devices to obtain the corresponding beam measurement result.
  • the difference from case 1 is that multiple network devices in case 2 need to communicate with each other through signaling to transmit the beam information in the preset beam list.
  • one or more small base stations can send their respective preset beam lists to the macro base station.
  • the preset beam list of small base station 1 is ⁇ 2,3 ⁇
  • the preset beam list of small base station 2 The beam list is ⁇ 5,6 ⁇
  • the preset beam category of the small base station 3 is ⁇ 6,7 ⁇ .
  • the macro base station receives the preset beam list sent by each small base station, and summarizes it to get the final preset beam list ⁇ 2, 3,5,6,7 ⁇ .
  • the signaling interaction between multiple network devices can be performed before the terminal device performs beam measurement. Specifically, it can be performed before the terminal device performs signal quality measurement of the serving cell, or the terminal device can perform the serving cell. After the signal quality is measured, the embodiment of the present application does not limit this.
  • the first preset condition is that the first measurement result is greater than or equal to the first threshold, and the preset beam list is the first preset beam list; or, if The terminal device moves away from the first network device, the first preset condition is that the first measurement result is less than or equal to the second threshold, and the preset beam list is the second preset beam list.
  • the terminal device can learn whether the terminal device is moving closer to the first network device or moving away from the first network device according to multiple measurement results of the signal strength or signal quality of the serving cell. Move in the direction to select the corresponding preset condition and preset beam list for judgment.
  • the first and second thresholds corresponding to different network devices can be different.
  • the first threshold and the second threshold of the network device are used below.
  • the second threshold of the network device is described.
  • the above-mentioned first preset beam list and second beam preset list are also for the same network device, and the first preset beam list and the second beam preset list corresponding to different network devices may be different.
  • the following describes the first preset beam list of the network device and the second preset beam list of the network device.
  • the first network device is network device A. As shown in the figure, network device A is located outside the preset wireless boundary.
  • the terminal device starts to move within the preset wireless boundary, that is, the terminal device will cross the preset wireless boundary from the inside to the outside.
  • the terminal device is moving close to network device A
  • the first preset condition is that the first measurement result is greater than or equal to the first threshold of network device A
  • the preset beam list is the first preset beam of network device A List. That is, the terminal device is getting closer and closer to the network device A, and the signal quality will become stronger and stronger.
  • the terminal device can be considered to meet the first preset condition, and then trigger the terminal device Beam measurement.
  • the first threshold of the network device A is the signal strength value of the network device A corresponding to the inner boundary in FIG. 4, but this embodiment of the present application does not limit this.
  • Figure 4 shows the first preset beam list ⁇ 1,2,3,4 ⁇ of network device A.
  • the terminal device can perform random access and enter the connected state to send alarm information to the network device A.
  • the terminal device may not initiate random access and continue to be in Idle state or deactivated state.
  • the terminal device starts to move from outside the preset wireless boundary, that is, the terminal device will cross the preset wireless boundary from the outside to the inside.
  • the terminal device is moving away from network device A
  • the first preset condition is that the first measurement result is less than or equal to the second threshold of network device A
  • the preset beam list is the second preset beam of network device A List. That is, the terminal device is farther and farther from the network device A, and the signal quality will become weaker and weaker.
  • the terminal device can be considered to meet the first preset condition, which then triggers the terminal device’s Beam measurement.
  • the second threshold of the network device A is the signal strength value of the network device A corresponding to the outer boundary in FIG. 4, but this embodiment of the present application does not limit this.
  • Figure 4 shows the second preset beam list ⁇ 1,2,3,4,5 ⁇ of network device A.
  • the terminal device can perform random access and enter the connected state to send alarm information to the network device A.
  • the terminal device may not initiate random access and continue to be in Idle state or deactivated state.
  • the second threshold value of the aforementioned network device A is greater than the first threshold value of the network device A.
  • the first preset beam list and the second preset beam list of the network device A are different.
  • the first network device is the network device B in FIG. 4. As shown in the figure, the network device B is located inside the preset wireless boundary.
  • the terminal device starts to move within the preset wireless boundary, that is, the terminal device will cross the preset wireless boundary from the inside to the outside.
  • the terminal device is moving away from network device B
  • the first preset condition is that the first measurement result is less than or equal to the second threshold of network device B
  • the preset beam list is the second preset beam of network device B List. That is, the terminal device is farther and farther from the network device B, and the signal quality will become weaker and weaker.
  • the terminal device can be considered to meet the first preset condition, thereby triggering the terminal device's Beam measurement.
  • the second threshold of the network device B is the signal strength value of the network device B corresponding to the outer boundary in FIG. 4, but the embodiment of the present application does not limit this.
  • Figure 4 shows the second preset beam list ⁇ 9, 10, 11, 12, 13, 14 ⁇ of network device B.
  • the terminal device can perform random access and enter the connected state to send alarm information to the network device B.
  • the terminal device may not initiate random access and continue to be in Idle state or deactivated state.
  • the terminal device starts to move from outside the preset wireless boundary, that is, the terminal device will cross the preset wireless boundary from the outside to the inside.
  • the terminal device is moving close to network device B
  • the first preset condition is that the first measurement result is greater than or equal to the first threshold of network device B
  • the preset beam list is the first preset beam of network device B List. That is, the terminal device is getting closer and closer to the network device B, and the signal quality will become stronger and stronger.
  • the signal quality is strong to the signal strength corresponding to the outer boundary, it can be considered that the terminal device meets the first preset condition, and then triggers the terminal device’s Beam measurement.
  • the first threshold of the network device B is the signal strength value of the network device B corresponding to the outer boundary in FIG. 4, but this embodiment of the present application does not limit this.
  • Figure 4 shows the first preset beam list ⁇ 9, 10, 11, 12, 13, 14 ⁇ of network device B.
  • the terminal device can perform random access and enter the connected state to send alarm information to the network device B.
  • the terminal device may not initiate random access and continue to be in Idle state or deactivated state.
  • the second threshold value of the foregoing network device B is greater than the first threshold value of the network device B.
  • the first preset beam list and the second preset beam list of the network device B are the same.
  • the preset conditions of each cell and its corresponding preset beam list may be determined by the network equipment of the cell in combination with the conditions of all beams and preset wireless boundaries.
  • the embodiment of the present application does not limit the selection of the preset condition and the corresponding preset beam list.
  • the above-mentioned wireless positioning method further includes: the terminal device receives a location measurement request from the second network device; the terminal device sends the first measurement result and the second network device to the second network device according to the location measurement request. Measurement results.
  • the above-mentioned first measurement result and second measurement result can be used to calculate the position of the terminal device.
  • the second network device may calculate the position of the terminal device by itself, or the second network device may also send the first measurement result and the second measurement result to other network devices , Other network devices can calculate the location of the terminal device, and then send the calculation result to the second network device, which is not limited in this embodiment of the application.
  • the second network device may be a location management function LMF network element, and may also be a local location management function (LLMF) deployed on a network device such as a base station; other network devices may be a location measurement unit (location measurement unit).
  • measurement unit, LMU or a location management component (location management component, LMC) in the 5G NR system.
  • the terminal device is switched from the connected state to the idle state or the deactivated state.
  • the historical location information of the terminal device is stored on the network side, and the second network device can be based on the stored information about the terminal device. Historical location information, initiate a request, request to locate the terminal device.
  • the above-mentioned information transmission between the terminal device and the second network device may be directly sent by the terminal device to the second network device, or it may be The terminal device sends to the second network device through the first network device and other network devices, which is not limited in the embodiment of the present application.
  • the above position measurement request is sent to the second network device by the 5G gateway of the fifth generation mobile communication system or the access and mobility management function AMF network element.
  • the above-mentioned wireless positioning method 300 may be initiated by the terminal device itself, or the terminal device may perform positioning according to a request from the network side.
  • the 5G gateway or the access and mobility management function AMF network element may send the location measurement request to the second network device, and the second network device then sends the location measurement request to the terminal device.
  • 5G gateway or access and mobility management function AMF network element As an example for description.
  • 5G communication system or its next-generation mobile communication system and 5G gateway or access and mobility management function AMF Network elements with similar network element functions are all covered by this application.
  • the above wireless positioning method further includes: the terminal device calculates the position of the terminal device according to the first measurement result and the second measurement result. That is, in the case that the terminal device initiates positioning by itself, the terminal device may also calculate its own position according to the first measurement result and the second measurement result.
  • the above wireless positioning method further includes: the terminal device receives preset information sent by the first network device, where the preset information carries the first preset condition and the preset beam list.
  • the first preset condition and the preset beam list may be obtained by the terminal device from the preset information sent by the first network device.
  • the preset information may be system information, such as SSB.
  • the preset information sent by the first network device may also include other preset conditions and other beam lists, which are not limited in this embodiment of the application.
  • the preset condition and beam list included in the preset information sent by the first network device are the preset condition and beam list corresponding to the first network device.
  • the preset information includes the first threshold and the second threshold.
  • the terminal device can select the corresponding threshold and preset conditions according to the movement of the terminal device, that is, if the terminal device moves close to the first network device, the terminal device
  • the first threshold can be selected to determine that the first preset condition is that the first measurement result is greater than or equal to the first threshold. If the terminal device moves away from the first network device, the terminal device can select the second threshold to determine the first preset The condition is that the first measurement result is less than or equal to the second threshold.
  • the above-mentioned wireless positioning method further includes: the terminal device determines a first preset condition from a plurality of preset conditions according to the current service type, and the multiple preset conditions correspond to a plurality of different service types, The first preset condition corresponds to the current service type.
  • the system can preset multiple geo-fences at the same time, or the shape of the geo-fences can be changed, that is, there can be multiple preset wireless boundaries, and the preset wireless boundaries can be changed.
  • Different preset wireless boundaries correspond to different preset conditions
  • different preset wireless boundaries correspond to different service types, that is, different service types correspond to different preset conditions.
  • the terminal device may select the first preset condition corresponding to the current service type from a plurality of preset conditions according to the current service type. For example, the kindergarten corresponds to the preset wireless boundary 1, the nursing home corresponds to the preset wireless boundary 2, and the industrial park corresponds to the preset wireless boundary 3.
  • the terminal device can determine the preset condition corresponding to the nursing home as the first The preset condition, that is, the preset condition corresponding to the preset wireless boundary 2 is determined as the first preset condition.
  • the preset condition that is, the preset condition corresponding to the preset wireless boundary 2 is determined as the first preset condition.
  • 3 preset wireless boundaries can be set, preset wireless boundary A, preset wireless boundary B, and preset wireless boundary C.
  • the range of the boundary is expanded successively, and the corresponding threshold value is successively increased (when the elderly moves closer to the network device), or the corresponding threshold value is successively decreased (when the elderly moves away from the network device), so that when the elderly crosses the preset wireless boundary A, it will be triggered
  • the terminal device executes the first-level alarm.
  • the terminal device is triggered to execute the second-level alarm
  • the terminal device is triggered to execute the third-level alarm to realize real-time monitoring of the location of the elderly.
  • the foregoing multiple preset conditions may be carried in preset information sent by the first network device.
  • the wireless positioning method of the embodiment of the present application can be applied to a variety of different scenarios, such as setting multiple preset geofences with different shapes and different ranges, which is beneficial to improve Positioning flexibility.
  • FIG. 5 takes the terminal device as the UE, the first network device as the gNB/ng-eNB, and the second access network device as the LMF as an example.
  • the wireless positioning method according to the embodiment of the present application is described in detail with reference to FIG. 2.
  • the 5GC LCS entity sends a positioning request to the AMF, and correspondingly, the AMF receives the positioning request.
  • the AMF sends a positioning request to the LMF, and correspondingly, the LMF receives the positioning request.
  • the LMF sends a location measurement request to the UE, and correspondingly, the UE receives the location measurement request, and the UE is in an idle state or a deactivated state.
  • the location measurement request may specifically be sent through an LPP message.
  • the UE measures the signal quality of the serving cell to obtain a first measurement result.
  • the UE performs beam measurement, and determines a second measurement result from the beam measurement result, and the second measurement result is used to indicate the measurement result of the first beam.
  • the first beam is included in the preset list, and the UE performs random access and enters the connected state.
  • the UE sends alarm information to the gNB/ng-eNB to instruct the terminal device to cross the preset boundary, and correspondingly, the gNB/ng-eNB receives the alarm information.
  • the UE sends the first measurement result and the second measurement result to the LMF, and correspondingly, the LMF receives the first measurement result and the second measurement result.
  • the first measurement result and the second measurement result may specifically be sent through an LPP message.
  • the LMF determines the location of the UE according to the first measurement result and the second measurement result.
  • the LMF sends location information to the AMF, and the location information is used to indicate the location of the UE, and correspondingly, the AMF receives the location information.
  • the AMF sends the location information to the 5GC LCS entity, and correspondingly, the 5GC LCS entity receives the location information.
  • the AMF can send a location request to the LMF based on the location request of the 5GC LCS entity, or it can send a location request to the LMF based on its own location requirements.
  • the LMF can send a location measurement request to the UE based on the location request of the AMF, or it can send a location measurement request to the UE based on its own location requirements.
  • the UE may measure the signal quality of the serving cell based on the location measurement request sent by the LMF, or measure the signal quality of the serving cell based on its own positioning requirements, which is not limited in the embodiment of the present application.
  • FIG. 6 shows a schematic flowchart of another wireless positioning method 600 according to an embodiment of the present application.
  • the method 600 may be applied to the communication system 100 shown in FIG. 1 and may also be applied to the communication system 200 shown in FIG. 2, and the embodiment of the present application is not limited thereto.
  • the method includes:
  • the terminal device measures the signal quality of the serving cell to obtain a first measurement result, and the terminal device is in an idle state or a deactivated state.
  • the terminal device If the first measurement result meets the first preset condition, the terminal device performs beam measurement, and determines a second measurement result from the beam measurement result, where the second measurement result is used to indicate the measurement result of the first beam.
  • the terminal device sends a random access request to the first network device, the random access request carries a first preamble, and the first preamble is associated with the first beam .
  • method 300 informs the first network device through an explicit indication that the terminal device crosses a preset wireless boundary, while method 600 associates the beam with the preamble used for positioning, and uses implicit
  • the indicating method informs the first network device that the terminal device crosses the preset wireless boundary. That is, in the above method 600, the terminal device can use the preamble for positioning to send a random access request when it needs to initiate an alarm.
  • the first network device receives the preamble for positioning and can learn that there is a terminal device crossing Preset wireless boundaries.
  • step S610 and step S620 reference may be made to step S310 and step S320 in the above method 300, which will not be repeated here.
  • the terminal device only needs to send a preamble for positioning to initiate a random access request to inform the first network device that there is information that the terminal device is out of bounds, and subsequent steps related to random access may not be performed.
  • the terminal device may subsequently succeed in random access, or may fail in random access, which is not limited in the embodiment of this application, and does not affect the wireless positioning method provided in this application. Therefore, in the wireless positioning method of the embodiment of the present application, the terminal device in the idle state or in the deactivated state can implicitly alert the network device without entering the random access connection state. This method is beneficial to reduce The signaling overhead of the terminal equipment and the power consumption of the terminal equipment, thereby improving the equipment and system performance.
  • the first preamble in the embodiment of the present application is a preamble used for positioning that is associated with the first beam.
  • the first network device may be able to determine that there is a terminal device that crosses the preset wireless boundary based on identifying that the first preamble is a preamble used for positioning. However, the first network device cannot determine which terminal device crosses the preset wireless boundary.
  • the terminal device may send the identification (ID) of the terminal device to the first network device, so that the first network device can recognize that the device crossing the preset wireless boundary is the terminal equipment.
  • ID the identification of the terminal device
  • the above-mentioned first preamble used for positioning may add or reduce some bits in the existing preamble, or the first preamble carries a special identifier. Among them, the added or reduced part of the bits, or a special identifier is used to indicate the first beam.
  • the first preset condition is that the first measurement result is greater than or equal to the first threshold, and the preset beam list is the first preset beam list; or, if The terminal device moves away from the first network device, the first preset condition is that the first measurement result is less than or equal to the second threshold, and the preset beam list is the second preset beam list.
  • the above wireless positioning method further includes: the terminal device receives a location measurement request from the second network device; the terminal device sends the first measurement result and the second measurement to the second network device according to the location measurement request result.
  • the above position measurement request is sent to the second network device by the 5G gateway of the fifth generation mobile communication system or the access and mobility management function AMF network element.
  • 5G gateway or access and mobility management function AMF network element only takes 5G gateway or access and mobility management function AMF network element as an example for description.
  • 5G communication system or its next-generation mobile communication system and 5G gateway or access and mobility management function AMF Network elements with similar network element functions are all covered by this application.
  • the above wireless positioning method further includes: the terminal device calculates the position of the terminal device according to the first measurement result and the second measurement result.
  • the foregoing wireless positioning method further includes: the terminal device receives preset information sent by the first network device, where the preset information carries the first preset condition and the preset beam list.
  • the above-mentioned wireless positioning method further includes: the terminal device determines a first preset condition from a plurality of preset conditions according to the current service type, and the multiple preset conditions correspond to a plurality of different service types, The first preset condition corresponds to the current service type.
  • the foregoing random access request is included in contention-based random access, or the foregoing random access request is included in two-step random access.
  • FIG. 7 takes the terminal device as the UE, the first network device as the gNB/ng-eNB, and the second access network device as the LMF as an example.
  • the terminal device as the UE
  • the first network device as the gNB/ng-eNB
  • the second access network device as the LMF as an example.
  • FIG. 2 another wireless positioning method according to an embodiment of the present application will be described in detail.
  • the 5GC LCS entity sends a positioning request to the AMF, and correspondingly, the AMF receives the positioning request.
  • the AMF sends a positioning request to the LMF, and correspondingly, the LMF receives the positioning request.
  • the LMF sends a location measurement request to the UE, and correspondingly, the UE receives the location measurement request, and the UE is in an idle state or a deactivated state.
  • the location measurement request may specifically be sent through an LPP message.
  • the UE measures the signal quality of the serving cell to obtain a first measurement result.
  • the UE performs beam measurement, and determines a second measurement result from the beam measurement result, and the second measurement result is used to indicate the measurement result of the first beam.
  • the first beam is included in the preset list, and the UE sends a random access request to the gNB/ng-eNB.
  • the random access request carries a first preamble, and the first preamble is associated with the first beam.
  • the gNB/ng-eNB receives the random access request, and the gNB/ng-eNB can determine that a terminal device is about to cross the preset boundary according to the first preamble in the random access request.
  • the UE executes a series of subsequent random access procedures and enters the connected state.
  • the UE sends the first measurement result and the second measurement result to the LMF, and correspondingly, the LMF receives the first measurement result and the second measurement result.
  • the first measurement result and the second measurement result may specifically be sent through an LPP message.
  • the LMF determines the location of the UE according to the first measurement result and the second measurement result.
  • the LMF sends location information to the AMF, where the location information is used to indicate the location of the UE, and correspondingly, the AMF receives the location information.
  • the AMF sends the location information to the 5GC LCS entity, and correspondingly, the 5GC LCS entity receives the location information.
  • the AMF can send a location request to the LMF based on the location request of the 5GC LCS entity, or it can send a location request to the LMF based on its own location requirements.
  • the LMF can send a location measurement request to the UE based on the location request of the AMF, or it can send a location measurement request to the UE based on its own location requirements.
  • the UE may measure the signal quality of the serving cell based on the location measurement request sent by the LMF, or measure the signal quality of the serving cell based on its own positioning requirements, which is not limited in the embodiment of the present application.
  • FIG. 8 is a schematic block diagram of a wireless positioning device provided by an embodiment of the present application.
  • the device 1000 may include a transceiver unit 1100 and a processing unit 1200.
  • the apparatus 1000 may correspond to the terminal device in the above method embodiment, for example, it may be a terminal device or a chip configured in the terminal device.
  • the apparatus 1000 is used to execute each step or process corresponding to the terminal device in the foregoing method embodiment 300.
  • the processing unit 1200 is configured to: obtain a first measurement result by measuring the signal quality of the serving cell, the device is in an idle state or a deactivated state; and, if the first measurement result meets the first preset condition, pass Perform beam measurement, and determine a second measurement result from the beam measurement results, where the second measurement result is used to indicate the measurement result of the first beam; the transceiver unit 1100 is configured to: if the first beam is included in the preset beam list, Perform random access and enter the connected state; and send alarm information to the first network device, where the alarm information is used to indicate that the device crosses the preset wireless boundary.
  • the first preset condition is that the first measurement result is greater than or equal to a first threshold, and the preset beam list is the first preset beam list; or, if the device is far away from the first network device
  • the first preset condition is that the first measurement result is less than or equal to the second threshold, and the preset beam list is the second preset beam list.
  • the transceiver unit 1100 is further configured to: receive a location measurement request from the second network device; and send the first measurement result and the second measurement result to the second network device according to the location measurement request.
  • the above-mentioned location measurement request is sent to the second network device by the 5G gateway of the fifth generation mobile communication system or the access and mobility management function AMF network element.
  • the processing unit 1200 is further configured to calculate the position of the device according to the first measurement result and the second measurement result.
  • the transceiver unit 1100 is further configured to receive preset information sent by the first network device, where the preset information carries the first preset condition and the preset beam list.
  • the processing unit 1200 is further configured to: determine the first preset condition from a plurality of preset conditions according to the current service type, the multiple preset conditions corresponding to a plurality of different service types, and the first preset condition Suppose the condition corresponds to the current business type.
  • the aforementioned random access is contention-based random access or two-step random access.
  • the apparatus 1000 is used to execute each step or process corresponding to the terminal device in the foregoing method embodiment 600.
  • the processing unit 1200 is configured to: obtain a first measurement result by measuring the signal quality of the serving cell, the device is in an idle state or a deactivated state; and, if the first measurement result meets the first preset condition, pass Perform beam measurement, and determine a second measurement result from the beam measurement results, where the second measurement result is used to indicate the measurement result of the first beam; the transceiver unit 1100 is configured to: if the first beam is included in the preset beam list, Send a random access request to the first network device, where the random access request carries a first preamble, and the first preamble is associated with the first beam.
  • the first preset condition is that the first measurement result is greater than or equal to a first threshold, and the preset beam list is the first preset beam list; or, if the device is far away from the first network device
  • the first preset condition is that the first measurement result is less than or equal to the second threshold, and the preset beam list is the second preset beam list.
  • the transceiver unit 1100 is further configured to: receive a location measurement request from the second network device; and send the first measurement result and the second measurement result to the second network device according to the location measurement request.
  • the above-mentioned location measurement request is sent to the second network device by the 5G gateway of the fifth generation mobile communication system or the access and mobility management function AMF network element.
  • the processing unit 1200 is further configured to calculate the position of the device according to the first measurement result and the second measurement result.
  • the transceiving unit 1100 is further configured to receive preset information sent by the first network device, where the preset information carries the first preset condition and the preset beam list.
  • the processing unit 1200 is further configured to: determine the first preset condition from a plurality of preset conditions according to the current service type, the multiple preset conditions corresponding to a plurality of different service types, and the first preset condition Suppose the condition corresponds to the current business type.
  • the foregoing random access request is included in contention-based random access, or the foregoing random access request is included in two-step random access.
  • the transceiver unit 1100 in the communication device 1000 may correspond to the transceiver 2020 in the terminal device 2000 shown in FIG. 9, and the processing unit 1200 in the communication device 1000 may It corresponds to the processor 2010 in the terminal device 2000 shown in FIG. 9.
  • the transceiver unit 1100 in the communication device 1000 may be an input/output interface.
  • FIG. 9 is a schematic structural diagram of a terminal device 2000 provided by an embodiment of the present application.
  • the terminal device 2000 can be applied to the system shown in FIG. 1 or FIG. 2 to perform the functions of the terminal device in the foregoing method embodiment.
  • the terminal device 2000 includes a processor 2010 and a transceiver 2020.
  • the terminal device 2000 further includes a memory 2030.
  • the processor 2010, the transceiver 2002, and the memory 2030 can communicate with each other through internal connection paths to transfer control and/or data signals.
  • the memory 2030 is used for storing computer programs, and the processor 2010 is used for downloading from the memory 2030. Call and run the computer program to control the transceiver 2020 to send and receive signals.
  • the terminal device 2000 may further include an antenna 2040 for transmitting the uplink data or uplink control signaling output by the transceiver 2020 through a wireless signal.
  • the above-mentioned processor 2010 and the memory 2030 may be combined into a processing device, and the processor 2010 is configured to execute the program code stored in the memory 2030 to realize the above-mentioned functions.
  • the memory 2030 may also be integrated in the processor 2010 or independent of the processor 2010.
  • the processor 2010 may correspond to the processing unit in FIG. 8.
  • the above-mentioned transceiver 2020 may correspond to the transceiver unit in FIG. 8, and may also be referred to as a transceiver unit.
  • the transceiver 2020 may include a receiver (or receiver, receiving circuit) and a transmitter (or transmitter, transmitting circuit). Among them, the receiver is used to receive signals, and the transmitter is used to transmit signals.
  • the terminal device 2000 shown in FIG. 9 can implement various processes involving the terminal device in the method embodiments shown in FIGS. 3 to 7.
  • the operations and/or functions of the various modules in the terminal device 2000 are respectively for implementing the corresponding processes in the foregoing method embodiments.
  • the above-mentioned processor 2010 can be used to execute the actions described in the previous method embodiments implemented by the terminal device, and the transceiver 2020 can be used to execute the terminal device described in the previous method embodiments to send to or receive from the network device. action.
  • the transceiver 2020 can be used to execute the terminal device described in the previous method embodiments to send to or receive from the network device. action.
  • the aforementioned terminal device 2000 may further include a power supply 2050 for providing power to various devices or circuits in the terminal device.
  • the terminal device 2000 may also include one or more of an input unit 2060, a display unit 2070, an audio circuit 2080, a camera 2090, and a sensor 2100.
  • the audio circuit It may also include a speaker 2082, a microphone 2084, and so on.
  • An embodiment of the present application also provides a processing device, including a processor and an interface; the processor is configured to execute the method in any of the foregoing method embodiments.
  • the above-mentioned processing device may be a chip.
  • the processing device may be a field programmable gate array (FPGA), an application specific integrated circuit (ASIC), a system on chip (SoC), or It is a central processor unit (CPU), a network processor (NP), a digital signal processing circuit (digital signal processor, DSP), or a microcontroller (microcontroller unit). , MCU), it can also be a programmable logic device (PLD) or other integrated chips.
  • FPGA field programmable gate array
  • ASIC application specific integrated circuit
  • SoC system on chip
  • CPU central processor unit
  • NP network processor
  • DSP digital signal processing circuit
  • microcontroller unit microcontroller unit
  • MCU programmable logic device
  • PLD programmable logic device
  • each step of the above method can be completed by an integrated logic circuit of hardware in the processor or instructions in the form of software.
  • the steps of the method disclosed in the embodiments of the present application may be directly embodied as being executed and completed by a hardware processor, or executed and completed by a combination of hardware and software modules in the processor.
  • the software module can be located in a mature storage medium in the field, such as random access memory, flash memory, read-only memory, programmable read-only memory, or electrically erasable programmable memory, registers.
  • the storage medium is located in the memory, and the processor reads the information in the memory and completes the steps of the above method in combination with its hardware. To avoid repetition, it will not be described in detail here.
  • the processor in the embodiment of the present application may be an integrated circuit chip with signal processing capability.
  • the steps of the foregoing method embodiments can be completed by hardware integrated logic circuits in the processor or instructions in the form of software.
  • the above-mentioned processor may be a general-purpose processor, a digital signal processor (DSP), an application specific integrated circuit (ASIC), a field programmable gate array (FPGA) or other programmable logic devices, discrete gates or transistor logic devices, discrete hardware components .
  • DSP digital signal processor
  • ASIC application specific integrated circuit
  • FPGA field programmable gate array
  • the methods, steps, and logical block diagrams disclosed in the embodiments of the present application can be implemented or executed.
  • the general-purpose processor may be a microprocessor or the processor may also be any conventional processor or the like.
  • the steps of the method disclosed in the embodiments of the present application can be directly embodied as being executed and completed by a hardware decoding processor, or executed and completed by a combination of hardware and software modules in the decoding processor.
  • the software module can be located in a mature storage medium in the field, such as random access memory, flash memory, read-only memory, programmable read-only memory, or electrically erasable programmable memory, registers.
  • the storage medium is located in the memory, and the processor reads the information in the memory and completes the steps of the above method in combination with its hardware.
  • the memory in the embodiments of the present application may be a volatile memory or a non-volatile memory, or may include both volatile and non-volatile memory.
  • the non-volatile memory can be read-only memory (ROM), programmable read-only memory (programmable ROM, PROM), erasable programmable read-only memory (erasable PROM, EPROM), and electrically available Erase programmable read-only memory (electrically EPROM, EEPROM) or flash memory.
  • the volatile memory may be random access memory (RAM), which is used as an external cache.
  • RAM random access memory
  • static random access memory static random access memory
  • dynamic RAM dynamic RAM
  • DRAM dynamic random access memory
  • synchronous dynamic random access memory synchronous DRAM, SDRAM
  • double data rate synchronous dynamic random access memory double data rate SDRAM, DDR SDRAM
  • enhanced synchronous dynamic random access memory enhanced SDRAM, ESDRAM
  • synchronous connection dynamic random access memory serial DRAM, SLDRAM
  • direct rambus RAM direct rambus RAM
  • the present application also provides a computer program product.
  • the computer program product includes: computer program code.
  • the computer program code runs on a computer, the computer executes the steps shown in FIGS. 3 to 7. Each step or process executed by the terminal device in the illustrated embodiment.
  • the present application also provides a computer-readable storage medium that stores a program code, and when the program code runs on a computer, the computer executes FIGS. 3 to 3 7 shows the various steps or processes performed by the terminal device in the embodiment.
  • the present application also provides a communication system, which includes the aforementioned one or more terminal devices and one or more network devices.
  • the computer may be implemented in whole or in part by software, hardware, firmware, or any combination thereof.
  • software it can be implemented in the form of a computer program product in whole or in part.
  • the computer program product includes one or more computer instructions.
  • the computer may be a general-purpose computer, a special-purpose computer, a computer network, or other programmable devices.
  • the computer instructions may be stored in a computer-readable storage medium, or transmitted from one computer-readable storage medium to another computer-readable storage medium.
  • the computer instructions may be transmitted from a website, computer, server, or data center.
  • the computer-readable storage medium may be any available medium that can be accessed by a computer or a data storage device such as a server or a data center integrated with one or more available media.
  • the usable medium may be a magnetic medium (for example, a floppy disk, a hard disk, and a magnetic tape), an optical medium (for example, a high-density digital video disc (digital video disc, DVD)), or a semiconductor medium (for example, a solid state disk (solid state disc), SSD)) etc.
  • the network equipment in each of the above-mentioned device embodiments corresponds completely to the network equipment or terminal equipment in the terminal equipment and method embodiments, and the corresponding modules or units execute the corresponding steps.
  • the communication unit executes the receiving or the terminal equipment in the method embodiments.
  • the processing unit executes the functions of specific units, refer to the corresponding method embodiments. Among them, there may be one or more processors.
  • component used in this specification are used to denote computer-related entities, hardware, firmware, a combination of hardware and software, software, or software in execution.
  • the component may be, but is not limited to, a process, a processor, an object, an executable file, an execution thread, a program, and/or a computer running on a processor.
  • the application running on the computing device and the computing device can be components.
  • One or more components may reside in processes and/or threads of execution, and components may be located on one computer and/or distributed between two or more computers.
  • these components can be executed from various computer-readable storage media having various data structures stored thereon.
  • the component can be based on, for example, a signal having one or more data packets (e.g. data from two components interacting with another component in a local system, a distributed system, and/or a network, such as the Internet that interacts with other systems through a signal) Communicate through local and/or remote processes.
  • a signal having one or more data packets (e.g. data from two components interacting with another component in a local system, a distributed system, and/or a network, such as the Internet that interacts with other systems through a signal) Communicate through local and/or remote processes.
  • At least one in this document refers to one or more, and “plurality” refers to two or more.
  • “And/or” describes the association relationship of the associated objects, indicating that there can be three relationships, for example, A and/or B, which can mean: A alone exists, A and B exist at the same time, and B exists alone, where A, B can be singular or plural.
  • the character “/” generally indicates that the associated objects before and after are in an “or” relationship.
  • the following at least one item (a) or similar expressions refers to any combination of these items, including any combination of a single item (a) or a plurality of items (a).
  • At least one of a, b, and c can mean: a, or b, or c, or a and b, or a and c, or b and c, or a, b and c, where a, b, c can be single or multiple.
  • the disclosed system, device, and method may be implemented in other ways.
  • the device embodiments described above are merely illustrative, for example, the division of the units is only a logical function division, and there may be other divisions in actual implementation, for example, multiple units or components may be combined or It can be integrated into another system, or some features can be ignored or not implemented.
  • the displayed or discussed mutual couplings or direct couplings or communication connections may be indirect couplings or communication connections between devices or units through some interfaces, and may be in electrical, mechanical or other forms.
  • the units described as separate components may or may not be physically separated, and the components displayed as units may or may not be physical units, that is, they may be located in one place, or they may be distributed on multiple network units. Some or all of the units may be selected according to actual needs to achieve the objectives of the solutions of the embodiments.
  • the functional units in the various embodiments of the present application may be integrated into one processing unit, or each unit may exist alone physically, or two or more units may be integrated into one unit.
  • each functional unit may be implemented in whole or in part by software, hardware, firmware, or any combination thereof.
  • software When implemented by software, it can be implemented in the form of a computer program product in whole or in part.
  • the computer program product includes one or more computer instructions (programs).
  • programs When the computer program instructions (programs) are loaded and executed on the computer, the processes or functions described in the embodiments of the present application are generated in whole or in part.
  • the computer may be a general-purpose computer, a special-purpose computer, a computer network, or other programmable devices.
  • the computer instructions may be stored in a computer-readable storage medium, or transmitted from one computer-readable storage medium to another computer-readable storage medium.
  • the computer instructions may be transmitted from a website, computer, server, or data center. Transmission to another website site, computer, server or data center via wired (such as coaxial cable, optical fiber, digital subscriber line (DSL)) or wireless (such as infrared, wireless, microwave, etc.).
  • the computer-readable storage medium may be any available medium that can be accessed by a computer or a data storage device such as a server or a data center integrated with one or more available media.
  • the usable medium may be a magnetic medium (for example, a floppy disk, a hard disk, and a magnetic tape), an optical medium (for example, a DVD), or a semiconductor medium (for example, a solid state disk (SSD)).
  • the function is implemented in the form of a software functional unit and sold or used as an independent product, it can be stored in a computer-readable storage medium.
  • the technical solution of the present application essentially or the part that contributes to the existing technology or the part of the technical solution can be embodied in the form of a software product, and the computer software product is stored in a storage medium, including Several instructions are used to make a computer device (which may be a personal computer, a server, or a network device, etc.) execute all or part of the steps of the method described in each embodiment of the present application.
  • the aforementioned storage media include: U disk, mobile hard disk, read-only memory (read-only memory, ROM), random access memory (random access memory, RAM), magnetic disk or optical disk and other media that can store program code .

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本申请提供了一种无线定位方法及装置,能够确定处于空闲态或去激活态的终端设备是否跨越预设的无线边界,实现对处于空闲态或去激活态的终端设备的定位,减小终端设备的信令开销以及终端设备的功耗。该方法包括:终端设备通过测量服务小区的信号质量,获得第一测量结果,该终端设备处于空闲态或去激活态;若第一测量结果满足第一预设条件,该终端设备通过执行波束测量,从波束测量结果中确定第二测量结果,第二测量结果用于指示第一波束的测量结果;若第一波束包含在预设波束列表中,终端设备执行随机接入,进入连接态;终端设备向第一网络设备发送告警信息,该告警信息用于指示终端设备跨越预设无线边界。

Description

无线定位方法及装置 技术领域
本申请涉及无线通信领域,更具体地,涉及一种无线定位方法及装置。
背景技术
无线定位系统通过检测可移动的终端设备和固定位置的网络设备之间传输信号的特征参数(例如传输时间、入射角、电波场强等)估计终端设备的位置,从而对终端设备定位。在某些通信系统中,例如第五代移动通信(5th-generation,5G)系统,终端设备的无线资源控制(radio resource control,RRC)状态包括连接态(RRC_CONNECTED)、去激活态(RRC_INACTIVE)和空闲态(RRC_IDLE)。当终端设备处于连接态时,终端设备与网络设备之间存在已建立的通信链路,通过该通信链路可以进行数据传输,网络设备可以基于该通信链路对终端设备定位。当终端设备处于去激活态或空闲态时,终端设备与网络设备之间不存在通信链路或已建立的通信链路中断,则终端设备与网络设备之间无法进行数据传输,因此网络设备无法对终端设备定位。
无线定位系统可应用于多种定位场景,一个典型的应用场景为物联网(Internet of things,IoT)领域中的地理围栏(geo-fencing)场景。其中,地理围栏可以理解为一个预设的无线边界,当终端设备进入或离开该无线边界时能够触发即时告警,实现对地理围栏内人员或设备的监控。但是,现有技术中目前不存在对处于空闲态或去激活态的终端设备定位的方案。并且,出于节能的目的,终端设备一般都处于空闲态或去激活态,待需要与网络设备通信时才转换至连接态,若每次进行定位时都将处于空闲态或去激活态的终端设备转换至连接态,再进行定位,会增加终端设备的信令开销,从而导致终端设备的功耗较大。
发明内容
本申请提供一种无线定位方法及装置,能够对处于空闲态或去激活态的终端设备定位,减小终端设备的信令开销以及终端设备的功耗,从而提升设备和系统性能。
第一方面,提供了一种无线定位方法,包括:终端设备通过测量服务小区的信号质量,获得第一测量结果,其中,终端设备处于空闲态或去激活态;若第一测量结果满足第一预设条件,终端设备通过执行波束测量,从波束测量结果中确定第二测量结果,第二测量结果用于指示第一波束的测量结果;若第一波束包含在预设波束列表中,则终端设备执行随机接入,进入连接态;终端设备向第一网络设备发送告警信息,该告警信息用于指示终端设备跨越预设无线边界。
通过上述方法,终端设备可以在空闲态或去激活态发起用于定位的信号测量,若测量结果不满足告警条件(即上述第一预设条件和预设波束列表),终端设备不会进入连接态,换句话说,处于空闲态或去激活态的终端设备只有在即将跨越预设无线边界的情况下才会 进入连接态,对于未跨越预设无线边界的终端设备而言,无需进入连接态。因此,本申请提供的无线定位方法,能够对处于空闲态或去激活态的终端设备定位,减小终端设备的信令开销以及终端设备的功耗,从而提升设备和系统性能。
应理解,上述终端设备对服务小区的信号质量测量,可以测量下列参数中的一个或多个:参考信号接收功率(reference signal receiving power,RSRP)、参考信号接收质量(reference signal receiving quality,RSRQ)、接收信号强度指示(received signal strength indicator,RSSI),本申请对此不做限定。
还应理解,终端设备执行波束测量可以理解为终端设备接收第一网络设备发送的参考信号,并对参考信号执行测量的过程。示例性地,第一网络设备可以通过特定的发送波束向终端设备发送参考信号,终端设备采用特定的接收波束接收该参考信号,从而确定每个接收波束接收或测量的参考信号的信号强度或信号质量,即为波束测量结果。终端设备可以从波束测量结果中确定出信号接收强度最强或信号接收质量最优的接收波束,本申请可以称为第一波束。相应地,信号接收强度最强或信号接收质量最优的接收波束上的参考信号的信号测量结果可以称为第一波束的测量结果,即第二测量结果。上述参考信号可以例如是信道状态信息参考信号(channel state information-reference signal,CSI-RS)、UE特定参考信号(UE-specific reference signal,DMRS)、小区特定参考信号(cell-specific reference signal,CRS)等等,本申请对此不做限定。
结合第一方面,在第一方面的某些实现方式中,若终端设备靠近第一网络设备移动,第一预设条件为第一测量结果大于或等于第一阈值,预设波束列表为第一预设波束列表;或者,若终端设备远离第一网络设备移动,第一预设条件为第一测量结果小于或等于第二阈值,预设波束列表为第二预设波束列表。
应理解,不同的场景对应的第一预设条件可以是不同的,不同的场景对应的预设波束列表也可以是不同的。在本申请中,终端设备能够根据对服务小区的信号强度或信号质量的多次测量结果获知该终端设备是在向靠近第一网络设备的方向移动,还是在向远离第一网络设备的方向移动,从而选择对应的预设条件和预设波束列表进行判断。
结合第一方面,在第一方面的某些实现方式中,无线定位方法还包括:终端设备接收来自第二网络设备的位置测量请求;终端设备根据位置测量请求,向第二网络设备发送第一测量结果和第二测量结果。
上述第一测量结果和第二测量结果可以用于计算终端设备的位置。第二网络设备在接收到该第一测量结果和第二测量结果之后,可以自行计算终端设备的位置,或者,第二网络设备也可以将第一测量结果和第二测量结果发送给其他网络设备,其他网络设备计算终端设备的位置之后,再将计算结果发送给第二网络设备,本申请对此不做限定。应理解,第二网络设备可以为位置管理功能LMF网元,还可以为部署在基站等网络设备上的本地定位管理功能(local location management function,LLMF);其他网络设备可以为位置测量单元(location measurement unit,LMU)或者为5G NR系统中的定位管理部件(location management component,LMC)。
在一种可能的实现方式中,终端设备是从连接态转换至空闲态或去激活态的,这样,网络侧存储有终端设备的历史位置信息,第二网络设备可以根据存储的关于终端设备的历史位置信息,发起请求,请求对终端设备定位。
结合第一方面,在第一方面的某些实现方式中,位置测量请求由第五代移动通信系统5G网关或接入及移动性管理功能AMF网元发送给第二网络设备。
上述无线定位方法可以由终端设备自行发起定位,也可以由终端设备根据网络侧的请求定位。示例性地,5G网关或接入及移动性管理功能AMF网元可以将位置测量请求发送给第二网络设备,第二网络设备再将位置测量请求发送给终端设备。需要说明的是,本申请仅以5G网关或接入及移动性管理功能AMF网元为例进行说明,5G通信系统或其下一代移动通信系统中与5G网关或接入及移动性管理功能AMF网元功能相似的网元,均术属于本申请的保护范畴。
结合第一方面,在第一方面的某些实现方式中,无线定位方法还包括:终端设备根据第一测量结果和第二测量结果,计算该终端设备的位置。即,在终端设备自行发起定位的情况下,终端设备还可以根据第一测量结果和第二测量结果计算自身的位置。
结合第一方面,在第一方面的某些实现方式中,无线定位方法还包括:终端设备接收第一网络设备发送的预设信息,该预设信息携带第一预设条件和预设波束列表。
第一预设条件和预设波束列表可以是终端设备从第一网络设备发送的预设信息中获取的。在一种可能的实现方式中,该预设信息可以为系统信息,例如SSB。应理解,第一网络设备发送的预设信息中除了包括第一预设条件和预设波束列表之外,还可以包括其他预设条件和其他波束列表,本申请对此不做限定。还应理解,第一网络设备发送的预设信息中包含的预设条件和波束列表为与第一网络设备对应的预设条件和波束列表。
示例性地,预设信息中包括第一阈值和第二阈值,终端设备可以根据该终端设备的移动情况选择对应的阈值以及预设条件,即若终端设备靠近第一网络设备移动,该终端设备可以选择第一阈值,进而确定第一预设条件为第一测量结果大于或等于第一阈值,若终端设备远离第一网络设备移动,该终端设备可以选择第二阈值,进而确定第一预设条件为第一测量结果小于或等于第二阈值。
结合第一方面,在第一方面的某些实现方式中,上述方法还包括:终端设备根据当前业务类型,从多个预设条件中确定第一预设条件,多个预设条件对应多种不同的业务类型,第一预设条件与当前业务类型对应。
考虑到系统可以同时预设多个地理围栏,或者地理围栏的形状可以是变化的,即上述预设无线边界可以是多个,且预设无线边界可以变化。不同的预设无线边界对应的预设条件是不同的,不同的预设无线边界对应不同的业务类型,即不同的业务类型对应不同的预设条件。终端设备可以根据当前业务类型,从多个预设条件中选择与当前业务类型对应的第一预设条件。
在一种可能的实现方式中,上述多个预设条件可以携带在第一网络设备发送的预设信息中。
通过针对不同的业务类型设置不同的预设条件,使得本申请的无线定位方法能够适用于多种不同的场景,例如设置多个形状各异,范围不同的预设地理围栏,有利于提高定位的灵活性。
结合第一方面,在第一方面的某些实现方式中,上述随机接入为基于竞争的随机接入或者两步随机接入。即终端设备执行随机接入进入连接态的方式可以为基于竞争的随机接入,或者简化后的基于竞争的随机接入,即两步随机接入,本申请对此不做限定。
第二方面,提供了另一种无线定位方法,包括:终端设备通过测量服务小区的信号质量,获得第一测量结果,终端设备处于空闲态或去激活态;若第一测量结果满足第一预设条件,终端设备通过执行波束测量,从波束测量结果中确定第二测量结果,第二测量结果用于指示第一波束的测量结果;若第一波束包含在预设波束列表中,终端设备向第一网络设备发送随机接入请求,该随机接入请求携带第一前导码,该第一前导码与该第一波束相关联。
在上述无线定位方法中,终端设备可以在需要发起告警时,采用用于定位的前导码发送随机接入请求,第一网络设备接收到该用于定位的前导码,即可获知存在终端设备跨越预设无线边界。这样,终端设备仅需发送用于定位的前导码以发起随机接入请求,告知第一网络设备存在终端设备越界的信息,后续随机接入的相关步骤可以不执行。该终端设备后续可能随机接入成功,可能随机接入失败,此处不做限定,对本申请提供的无线定位方法不产生影响。因此,本申请提供的无线定位方法,处于空闲态或去激活态的终端设备可以在还未进入随机接入连接态的情况下,隐式地向网络设备进行告警,该方法有利于减小终端设备的信令开销以及终端设备的功耗,从而提升设备和系统性能。
应理解,本申请中的第一前导码是与第一波束相关联的用于定位的前导码。第一网络设备在接收到第一前导码之后,可以能够根据识别该第一前导码是用于定位的前导码,确定存在终端设备跨越预设无线边界。但是,第一网络设备并无法判断具体是哪个终端设备跨越预设无线边界。
在一种可能的实现方式中,在后续随机接入过程中,终端设备可以将该终端设备的标识(ID)发送给第一网络设备,使得该第一网络设备可以识别出跨越预设无线边界的终端设备。
在一种可能的实现方式中,上述用于定位的第一前导码可以是在已有的前导码中增加或减少部分比特,或者,第一前导码携带特殊的标识。其中,增加或减少的部分比特,或特殊的标识用于指示第一波束。
结合第二方面,在第二方面的某些实现方式中,若终端设备靠近第一网络设备移动,第一预设条件为第一测量结果大于或等于第一阈值,预设波束列表为第一预设波束列表;或者,若终端设备远离该第一网络设备移动,第一预设条件为第一测量结果小于或等于第二阈值,预设波束列表为第二预设波束列表。
结合第二方面,在第二方面的某些实现方式中,无线定位方法还包括:终端设备接收来自第二网络设备的位置测量请求;终端设备根据位置测量请求,向第二网络设备发送第一测量结果和第二测量结果。
结合第二方面,在第二方面的某些实现方式中,位置测量请求由第五代移动通信系统5G网关或接入及移动性管理功能AMF网元发送给第二网络设备。需要说明的是,本申请仅以5G网关或接入及移动性管理功能AMF网元为例进行说明,5G通信系统或其下一代移动通信系统中与5G网关或接入及移动性管理功能AMF网元功能相似的网元,均术属于本申请的保护范畴。
结合第二方面,在第二方面的某些实现方式中,无线定位方法还包括:终端设备根据第一测量结果和第二测量结果,计算该终端设备的位置。
结合第二方面,在第二方面的某些实现方式中,无线定位方法还包括:终端设备接收 第一网络设备发送的预设信息,该预设信息携带该第一预设条件和该预设波束列表。
结合第二方面,在第二方面的某些实现方式中,无线定位方法还包括:终端设备根据当前业务类型,从多个预设条件中确定第一预设条件,该多个预设条件对应多种不同的业务类型,该第一预设条件与当前业务类型对应。
结合第二方面,在第二方面的某些实现方式中,上述随机接入请求包含在基于竞争的随机接入中,或者,该随机接入请求包含在两步随机接入中。
第三方面,提供了一种无线定位装置,用于执行上述各方面中任一种可能的实现方式中的方法。具体地,该装置包括用于执行上述各方面中任一种可能的实现方式中的方法的单元。
第四方面,提供了另一种无线定位装置,包括处理器,该处理器与存储器耦合,可用于执行存储器中的指令,以实现上述各方面中任一种可能的实现方式中的方法。在一种可能的实现方式中,该无线定位装置还包括存储器。在一种可能的实现方式中,该无线定位装置还包括通信接口,处理器与通信接口耦合。
在一种实现方式中,该无线定位装置为终端设备。当该无线定位装置为终端设备时,该通信接口可以是收发器,或,输入/输出接口。
在另一种实现方式中,该无线定位装置为配置于终端设备中的芯片。当该无线定位装置为配置于终端设备中的芯片时,该通信接口可以是输入/输出接口。
第五方面,提供了一种处理器,包括:输入电路、输出电路和处理电路。该处理电路用于通过该输入电路接收信号,并通过该输出电路发射信号,使得该处理器执行上述各方面中任一种可能的实现方式中的方法。
在具体实现过程中,上述处理器可以为芯片,输入电路可以为输入管脚,输出电路可以为输出管脚,处理电路可以为晶体管、门电路、触发器和各种逻辑电路等。输入电路所接收的输入的信号可以是由例如但不限于接收器接收并输入的,输出电路所输出的信号可以是例如但不限于输出给发射器并由发射器发射的,且输入电路和输出电路可以是同一电路,该电路在不同的时刻分别用作输入电路和输出电路。本申请对处理器及各种电路的具体实现方式不做限定。
第六方面,提供了一种处理装置,包括处理器和存储器。该处理器用于读取存储器中存储的指令,并可通过接收器接收信号,通过发射器发射信号,以执行上述各方面中任一种可能的实现方式中的方法。
在一种可能的实现方式中,处理器为一个或多个,存储器为一个或多个。
在一种可能的实现方式中,存储器可以与处理器集成在一起,或者存储器与处理器分离设置。
在具体实现过程中,存储器可以为非瞬时性(non-transitory)存储器,例如只读存储器(read only memory,ROM),其可以与处理器集成在同一块芯片上,也可以分别设置在不同的芯片上,本申请对存储器的类型以及存储器与处理器的设置方式不做限定。
应理解,相关的数据交互过程例如发送指示信息可以为从处理器输出指示信息的过程,接收能力信息可以为处理器接收输入能力信息的过程。具体地,处理输出的数据可以输出给发射器,处理器接收的输入数据可以来自接收器。其中,发射器和接收器可以统称为收发器。
上述处理装置可以是一个芯片,该处理器可以通过硬件来实现也可以通过软件来实现,当通过硬件实现时,该处理器可以是逻辑电路、集成电路等;当通过软件来实现时,该处理器可以是一个通用处理器,通过读取存储器中存储的软件代码来实现,该存储器可以集成在处理器中,可以位于该处理器之外,独立存在。
第七方面,提供了一种计算机程序产品,该计算机程序产品包括:计算机程序(也可以称为代码,或指令),当该计算机程序被运行时,使得计算机执行上述各方面中任一种可能实现方式中的方法。
第八方面,提供了一种计算机可读存储介质,该计算机可读存储介质存储有计算机程序(也可以称为代码,或指令)当其在计算机上运行时,使得计算机执行上述各方面中任一种可能的实现方式中的方法。
第九方面,提供了一种通信系统,包括前述的终端设备和网络设备。
附图说明
图1示出了本申请实施例的通信系统的示意图;
图2示出了本申请实施例的另一通信系统的示意图;
图3示出了本申请实施例的无线定位方法的示意性流程图;
图4示出了本申请实施例的地理围栏场景的示意图;
图5示出了本申请实施例的另一无线定位方法的示意性流程图;
图6示出了本申请实施例的另一无线定位方法的示意性流程图;
图7示出了本申请实施例的另一无线定位方法的示意性流程图;
图8示出了本申请实施例的一种装置的结构示意图;
图9示出了本申请实施例的一种终端设备的结构示意图。
具体实施方式
下面将结合附图,对本申请中的技术方案进行详细描述。
本申请提供的技术方案可以应用于各种通信系统,例如:长期演进(long term evolution,LTE)系统、LTE频分双工(frequency division duplex,FDD)系统、LTE时分双工(time division duplex,TDD)系统、第五代(5th generation,5G)移动通信系统、新无线(new radio,NR)系统或者其他演进的通信系统,以及5G通信系统的下一代移动通信系统等。
为便于理解本申请提供的技术方案,首先结合图1详细说明适用于本申请实施例的通信系统。图1示出了适用于本申请实施例的无线定位方法及装置的通信系统100的示意图。如图1所示,该通信系统100可以包括至少一个接入网设备,例如图1所示的接入网设备110;该通信系统100还可以包括至少一个终端设备,例如图1所示的终端设备120。接入网设备110与终端设备120可以通过无线链路通信。各通信设备,如接入网设备110或终端设备120,可以配置多个天线,该多个天线可以包括至少一个用于发送信号的发射天线和至少一个用于接收信号的接收天线。另外,各通信设备还附加地包括发射机链和接收机链,本领域普通技术人员可以理解,它们均可以包括与信号发送和信号接收相关的多个部件(例如处理器、调制器、复用器、解调器、解复用器或天线等)。因此,接入网设备 110与终端设备120可以通过多天线技术通信。
本申请实施例中的终端设备也可以称为:用户设备(user equipment,UE)、移动台(mobile station,MS)、移动终端(mobile terminal,MT)、接入终端、用户单元、用户站、移动站、移动台、远方站、远程终端、移动设备、用户终端、终端、无线通信设备、用户代理或用户装置等。
终端设备可以是一种向用户提供语音/数据连通性的设备,例如,具有无线连接功能的手持式设备、车载设备等。目前,一些终端设备的举例包括:手机(mobile phone)、平板电脑、笔记本电脑、掌上电脑、移动互联网设备(mobile internet device,MID)、可穿戴设备,虚拟现实(virtual reality,VR)设备、增强现实(augmented reality,AR)设备、工业控制(industrial control)中的无线终端、无人驾驶(self driving)中的无线终端、远程手术(remote medical surgery)中的无线终端、智能电网(smart grid)中的无线终端、运输安全(transportation safety)中的无线终端、智慧城市(smart city)中的无线终端、智慧家庭(smart home)中的无线终端、蜂窝电话、无绳电话、会话启动协议(session initiation protocol,SIP)电话、无线本地环路(wireless local loop,WLL)站、个人数字助理(personal digital assistant,PDA)、具有无线通信功能的手持设备、计算设备或连接到无线调制解调器的其它处理设备、车载设备、可穿戴设备,5G网络中的终端设备或者未来演进的公用陆地移动通信网络(public land mobile network,PLMN)中的终端设备等,本申请对此并不限定。
作为示例而非限定,在本申请中,终端设备可以是物联网(internet of things,IoT)系统中的终端设备。物联网是未来信息技术发展的重要组成部分,其主要技术特点是将物品通过通信技术与网络连接,从而实现人机互连,物物互连的智能化网络。示例性地,本申请实施例中的终端设备可以是可穿戴设备。可穿戴设备也可以称为穿戴式智能设备,是应用穿戴式技术对日常穿戴进行智能化设计、开发出可以穿戴的设备的总称,如眼镜、手套、手表、服饰及鞋等。可穿戴设备是可以直接穿在身上,或是整合到用户的衣服或配件的一种便携式设备。可穿戴设备不仅仅是一种硬件设备,更可以通过软件支持以及数据交互、云端交互来实现强大的功能。广义穿戴式智能设备包括功能全、尺寸大、可不依赖智能手机实现完整或者部分的功能,例如:智能手表或智能眼镜等,以及只专注于某一类应用功能,需要和其它设备如智能手机配合使用,如各类进行体征监测的智能手环、智能首饰等。
作为示例而非限定,在本申请实施例中,终端设备还可以是机器类型通信(machine type communication,MTC)中的终端设备。此外,终端设备还可以是作为一个或多个部件或者单元而内置于车辆的车载模块、车载模组、车载部件、车载芯片或者车载单元等,车辆通过内置的所述车载模块、车载模组、车载部件、车载芯片或者车载单元等可以实施本申请提供的方法。因此,本申请实施例也可以应用于车联网,例如车辆外联(vehicle to everything,V2X)、车间通信长期演进技术(long term evolution-vehicle,LTE-V)、车到车(vehicle-to-vehicle,V2V)技术等。
本申请涉及的接入网设备可以是与终端设备通信的设备,该接入网设备也可以称为无线接入网设备,它可以是传输接收点(transmission reception point,TRP),还可以是LTE系统中的演进型基站(evolved NodeB,eNB或eNodeB),还可以是家庭基站(例如,home  evolved NodeB,或home Node B,HNB)、基带单元(base band unit,BBU),还可以是云无线接入网络(cloud radio access network,CRAN)场景下的无线控制器,或者该接入网设备可以为中继站、接入点、车载设备、可穿戴设备以及5G网络中的接入网设备或者未来演进的PLMN网络中的接入网设备等,还可以是WLAN中的接入点(access point,AP),还可以是NR系统中的gNB,上述接入网设备还可以是城市基站、微基站、微微基站、毫微微基站等等,本申请对此不做限定。
在一种网络结构中,接入网设备可以包括集中单元(centralized unit,CU)节点、或分布单元(distributed unit,DU)节点、或是包括CU节点和DU节点的无线接入网络(radio access network,RAN)设备、或者是包括控制面CU节点(CU-CP节点)和用户面CU节点(CU-UP节点)以及DU节点的RAN设备。
接入网设备为小区提供服务,终端设备通过接入网设备分配的传输资源(例如,频域资源,或者说,频谱资源)与小区进行通信,该小区可以属于宏基站(例如,宏eNB或宏gNB等),也可以属于小小区(small cell)对应的基站,这里的小小区可以包括:城市小区(metro cell)、微小区(micro cell)、微微小区(pico cell)、毫微微小区(femto cell)等,这些小小区具有覆盖范围小、发射功率低的特点,适用于提供高速率的数据传输服务。
在本申请实施例中,终端设备或接入网设备包括硬件层、运行在硬件层之上的操作系统层,以及运行在操作系统层上的应用层。该硬件层包括中央处理器(central processing unit,CPU)、内存管理单元(memory management unit,MMU)和内存(也称为主存)等硬件。该操作系统可以是任意一种或多种通过进程(process)实现业务处理的计算机操作系统,例如,Linux操作系统、Unix操作系统、Android操作系统、iOS操作系统或windows操作系统等。该应用层包含浏览器、通讯录、文字处理软件、即时通信软件等应用。并且,本申请并未对本申请提供的方法的执行主体的具体结构特别限定,只要能够通过运行记录有本申请提供的方法的代码的程序,以根据本申请实施例提供的方法进行通信即可,例如,本申请实施例提供的方法的执行主体可以是终端设备或接入网设备,或者,是终端设备或接入网设备中能够调用程序并执行程序的功能模块。
另外,本申请的各个方面或特征可以实现成方法、装置或使用标准编程和/或工程技术的制品。本申请中使用的术语“制品”涵盖可从任何计算机可读器件、载体或介质访问的计算机程序。例如,计算机可读存储介质可以包括,但不限于:磁存储器件(例如,硬盘、软盘或磁带等),光盘(例如,压缩盘(compact disc,CD)、数字通用盘(digital versatile disc,DVD)等),智能卡和闪存器件(例如,可擦写可编程只读存储器(erasable programmable read-only memory,EPROM)、卡、棒或钥匙驱动器等)。另外,本文描述的各种存储介质可代表用于存储信息的一个或多个设备和/或其它机器可读介质。术语“机器可读介质”可包括但不限于,无线信道和能够存储、包含和/或承载指令和/或数据的各种其它介质。
上述图1仅仅示出了终端设备和接入网设备之间的系统架构,为便于理解本申请提供的无线定位方法,图2示出了适用于本申请的另一通信系统200的示意图。图2所示的通信系统200又可以称为基于5G核心网的定位架构,该通信系统200包括:
1、UE,对应于上述通信系统100中的终端设备,可以测量来自接入网设备的下行链路信号以支持定位。
2、NR系统中的基站(gNB),对应于上述通信系统100中的接入网设备。
3、下一代LTE系统中的基站(next-generation eNodeB,ng-eNB),对应于上述通信系统100中的接入网设备。
上述gNB和ng-eNB可以为UE提供待测量的信号,并将测量结果转发给位置管理功能(location management function,LMF)网元。
4、接入及移动性管理功能(access and mobility management function,AMF)网元,主要用于移动性管理和接入管理等,可以用于实现例如,合法监听、或接入授权(或鉴权)等功能。在通信系统200所示的定位架构中,AMF可以接收位置服务请求,或者,AMF自身启动位置服务,并将位置服务请求发送给LMF网元。
5、位置管理功能(location management function,LMF)网元,负责支持UE的不同类型的位置服务,包括对UE定位和向UE传递辅助数据等。LMF网元的控制面和用户面分别是增强服务移动位置中心(enhanced serving mobile location center,E-SMLC)和安全用户面定位平台(secure user plane location location platform,SLP)。具体地,LMF网元可以与上述ng-eNB、gNB和UE之间进行如下的信息交互:
(1)LMF网元可以与ng-eNB或gNB之间通过某些特定的定位协议,例如NR定位协议(NR positioning protocol annex,NRPPa)消息,进行信息交互,例如,LMF网元与ng-eNB或gNB之间传输定位参考信号(positioning reference signal,PRS)配置信息、探测参考信号(sounding reference signal,SRS)配置信息、小区定时、小区位置信息等。
(2)LMF网元与UE之间通过LTE定位协议(LTE positioning protocol,LPP)消息进行UE能力信息、辅助信息、测量结果等信息的传输。
应理解,上述LMF网元和ng-eNB或gNB之间的信息传输、LMF网元和UE之间的信息传输,均是通过中间设备进行转发的。以UE向LMF网元发送测量结果为例,UE可以先将测量结果发送给gNB,gNB和AMF网元对该测量结果进行转发,从而使得LMF网元接收到UE发送的测量结果。示例性地,UE向LMF网元发送LPP消息,LPP消息可以是通过LPP协议数据单元(protocol data unit,PDU)传输的,具体可以包括三个步骤:(1)UE将LPP PDU包含在第一消息(例如UL NAS Transport消息)的负载(payload)容器中,然后,UE在第二消息(例如RRC UL Information Transfer消息)中将第一消息发送给ng-eNB或gNB;(2)ng-eNB或gNB通过第三消息(例如NGAP Uplink NAS Transport消息)将第一消息转发给AMF网元;(3)AMF网元从第一消息中获取LPP PDU将其包含在N1消息容器中发送给LMF网元。
其中,UE和ng-eNB之间通过LTE-Uu接口连接,UE和gNB之间通过NR-Uu接口连接,gNB和ng-eNB之间通过Xn接口连接,gNB和AMF之间通过NG控制面(NG Control plane,NG-C)接口连接,ng-eNB和AMF之间通过NG-C接口连接,AMF和LMF之间通过NLs接口连接。
可选地,上述通信系统200还可以包括5G核心网位置服务(5G core network location services,5GC LCS)实体,5GC LCS实体相当于一个网关,可以与其他控制实体连接。AMF网元可以通过其他接口直接或间接地与5GC LCS实体连接。
应理解,上述图1和图2仅为示意图,通信系统100和通信系统200中还可以包括其它未示出的设备。本申请实施例对通信系统100和通信系统200中包括的终端设备、接入 网的数量不做限定。
为便于理解本申请实施例,首先对本申请中涉及到的术语作简单说明。
1、RRC状态
以NR系统为例,终端设备的无线资源控制状态包括连接态(RRC_CONNECTED)、去激活态(RRC_INACTIVE)和空闲态(RRC_IDLE)。下面分别对这三种状态进行说明。
(1)当终端设备处于连接态时,该终端设备与接入网设备以及核心网设备都已建立链路,当有数据到达网络时,核心网设备和接入网设备可以直接将数据传送至该终端设备。
(2)当终端设备处于去激活态时,说明该终端设备之前和接入网设备以及核心网设备建立过链路,但是该终端设备与接入网设备之间的链路被释放了。虽然链路被释放了,但是接入网设备需要保存终端设备的上下文,当有数据需要传输时,接入网设备可以根据终端设备的上下文快速恢复被释放的这段链路。
(3)当终端设备处于空闲态时,该终端设备与接入网设备和核心网设备之间都没有链路,当有数据需要传输时,需要建立终端设备到接入网设备及核心网设备的链路。
由上可知,去激活态只能在终端设备处于连接态的情况下通过RRC连接释放消息转换,而空闲态可以是终端设备在处于连接态的情况下转换的,也可以是终端设备自驻留小区时就处于空闲态。
当终端设备处于空闲态或去激活态时,终端设备驻留小区时可以执行下列操作:
(1)、在当前公共陆地移动网(public land mobile network,PLMN)下接收系统消息;
(2)、当终端设备希望建立RRC连接或者恢复挂起的RRC连接时,该终端设备可以在驻留的小区发起随机接入;
(3)、如果网络设备需要发送消息或者传输数据给已注册的终端设备,网络设备可以给终端设备发送寻呼消息,终端设备可以接收寻呼消息并做出响应;
(4)、终端设备可以接收地震海啸预警系统(earthquake and tsunami warning system,ETWS)和商用移动告警系统(commercial mobile alert system,CMAS)通知。
可以理解的,上述RRC状态的名称仅仅以NR为例进行说明,不应对本申请构成任何限定。本申请也并不排除在现有或未来的协议中定义其他可能的命名来替代上述NR中的RRC状态的名称,但具有相同或相似的特性。
2、随机接入
随机接入是指从终端设备发送随机接入前导码(preamble)开始,尝试接入网络并与网络间建立起基本的信令连接之前的过程。应理解,随机接入是终端设备在空闲态或去激活态下发起的,主要是取得与接入网设备之间的上行同步和申请上行资源。随机接入主要应用于RRC连接建立之前的初始接入期间和RRC连接重建立期间。
随机接入分为基于竞争的随机接入和基于非竞争的随机接入。
在基于非竞争的随机接入中,终端设备可以采用接入网设备为自身分配的随机接入码发起随机接入,基于非竞争的随机接入包括终端设备发送随机接入请求和接入网设备发送随机接入响应两个步骤。
在基于竞争的随机接入中,终端设备可以随机选择随机接入前导码发起随机接入,由于随机接入前导码可以在一个资源池中供多个不同的终端设备选择,就会导致资源竞争的 问题。在这种情况下,接入网设备需要向终端设备发送竞争解决消息。因此,基于竞争的随机接入过程包括下列四个步骤:
步骤一、终端设备随机选择一个随机接入前导码,在物理随机接入信道(physical random access channel,PRACH)上发送随机接入请求,可以称为消息1(msg1)。
步骤二、接入网设备检测到携带随机接入前导码的随机接入请求,进而发送随机接入响应,可以称为消息2(msg2)。示例性地,该随机接入响应中可以包括该接入网设备接收到的随机接入前导码的编号、该接入网设备接收到的随机接入前导码的时间调整量、以及用于指示该接入网设备为该终端设备分配的上行资源位置的信息。
步骤三、终端设备接收接入网设备发送的随机接入响应,在该随机接入响应指示的上行资源上发送上行消息(即物理上行共享信道(physical uplink shared channel,PUSCH)),可以称为消息3(msg3),该上行消息中可以包括该终端设备的唯一标识(例如临时移动用户识别码(temporary mobile subscriber identity,TMSI))或对应的随机接入标识,;
步骤四、接入网设备接收上述终端设备发送的上行消息,并向接入成功的终端设备发送竞争解决消息,可以称为消息4(msg4),该竞争解决消息中可以包括接入成功的终端设备的唯一ID(例如TMSI)或对应的随机接入标识。
应理解,上述终端设备可以是一个或多个,在多个终端设备同时选择同一随机接入前导码进行随机接入时,就会导致竞争,这时就需要接入网设备通过上述四个步骤进行竞争解决。
上述基于竞争的随机接入也可以称为四步随机接入(4-step RACH)。为了减少上述流程中与随机接入相关的信令开销和时延,可以将上述基于竞争的四步随机接入简化为两步随机接入(2-step RACH)。两步随机接入适用于小数据传输和/或在未许可频段的场景。具体地,两步随机接入主要包括终端设备向接入网设备发送消息A(msgA)和接入网设备向终端设备发送消息B(msgB)两个步骤。其中,msgA可以包括msg 1和msg 3中的消息,msgB可以包括msg 2和msg 4中的消息。示例性地,msgA可以包括携带随机接入前导码的随机接入请求、用于请求建立连接、重建连接或恢复连接的消息、用于请求按需系统信息的消息、小区无线网络临时标识(cell-radio network temporary identity,C-RNTI)等;msgB中可以包括定时提前、C-RNTI等。
考虑到基于非竞争的随机接入也只有两个步骤,需要说明的是,本申请实施例的两步随机接入特指基于竞争的两步随机接入。
3、地理围栏(geo-fencing)
地理围栏是位置定位服务(location based services,LBS)的一种新应用,地理围栏是用一个虚拟的栅栏封闭的地理边界,当终端设备进入或者离开该地理边界时能够触发即时警报,实现对地理围栏内人员的监控。
地理围栏能够为各大场景提供智能安全防护,例如,在工业园区能够实时监控资产位置,在幼儿园或养老院能够通过地理围栏界定安全区域和危险范围,能够帮助智能家居行业通过近场身份识别进行智能开锁等。
应理解,地理围栏的形状可以是圆形、椭圆形或多边形等,本申请实施例对此不做限定。
无线定位系统对终端设备的定位是通过检测终端设备和固定位置的网络设备之间传 输信号的特征参数(例如传输时间、入射角、电波场强等),来估计出该终端设备的位置。当终端设备处于连接态时,该终端设备与网络设备之间存在已建立的链路,可以进行数据传输,网络设备可以对该终端设备进行定位。当终端设备处于去激活态或空闲态时,该终端设备与网络设备之间没有链路,无法进行数据传输,因此无法进行定位。在某些特殊的场景,例如物联网(Internet of things,IoT)领域的地理围栏(geo-fencing)场景,出于节能的目的,终端设备一般都处于空闲态或去激活态,待需要通信时才转换至连接态,若每次进行定位时都将处于空闲态或去激活态的终端设备转换至连接态,再进行定位,会导致终端设备的信令开销较大,从而导致终端设备的功耗较大。
有鉴于此,本申请提供一种无线定位方法及装置,能够对处于空闲态或去激活态的终端设备进行定位,减小终端设备的信令开销以及终端设备的功耗,从而提升设备和系统性能。
在介绍本申请提供的方法之前,先做出以下几点说明。
第一,在本申请中,“指示”可以包括直接指示和间接指示,也可以包括显式指示和隐式指示。将某一信息(如下文所述的告警信息)所指示的信息称为待指示信息,则具体实现过程中,对待指示信息进行指示的方式可以有很多种,例如但不限于,可以直接指示待指示信息,如指示待指示信息本身或者该待指示信息的索引等。也可以通过指示其他信息来间接指示待指示信息,其中该其他信息与待指示信息之间存在关联关系。还可以仅仅指示待指示信息的一部分,而待指示信息的其他部分则是已知的或者提前约定的。例如,还可以借助预先约定(例如协议规定)的各个信息的排列顺序来实现对特定信息的指示,从而在一定程度上降低指示开销。
第二,在下文示出的实施例中,各术语及英文缩略语,如媒体接入控制控制元素(media access control-control element,MAC-CE)、无线资源控制(radio resource control,RRC)、参考信号接收功率(reference signal received power,RSRP)、信道状态信息参考信号(channel state information-reference signal,CSI-RS)、同步信号(synchronization signal,SS)、物理广播信道(physical broadcast channel,PBCH)、同步信号块(SS/PBCH block,SSB)等,均为方便描述而给出的示例性举例,不应对本申请构成任何限定。本申请并不排除在已有或未来的协议中定义其它能够实现相同或相似功能的术语的可能。
第三,在下文示出的实施例中第一、第二以及各种数字编号仅为描述方便进行的区分,并不用来限制本申请实施例的范围。例如,区分不同的阈值、不同的预设条件、不同的预设波束列表等。
第四,在下文示出的实施例中,“预先获取”可包括由网络设备信令指示或者预先定义,例如,协议定义。其中,“预先定义”可以通过在设备(例如,包括终端设备和网络设备)中预先保存相应的代码、表格或其他可用于指示相关信息的方式来实现,本申请对于其具体的实现方式不做限定。
第五,本申请实施例中涉及的“协议”可以是指通信领域的标准协议,例如可以包括LTE协议、NR协议以及应用于未来的通信系统中的相关协议,本申请对此不做限定。
下面结合图3至图7详细说明本申请提供的各个实施例。
本申请实施例以终端设备和网络设备为例进行描述,应理解,终端设备可以替换为能够实现与终端设备类似功能的装置或芯片,网络设备也可以替换为能够实现与网络设备类 似功能的装置或芯片,本申请实施例对其名称不作限定。
图3为本申请实施例提供的无线定位方法300的示意性流程图。该方法300可以应用于图1所示的通信系统100,也可以应用于图2所示的通信系统200,本申请实施例对此不作限定。该方法300可以包括:
S310,终端设备对服务小区的信号质量进行测量,获得第一测量结果,其中,终端设备处于空闲态或去激活态;
S320,若第一测量结果满足第一预设条件,则终端设备进行波束测量,并从波束测量结果中确定第二测量结果,其中,第二测量结果用于指示第一波束的测量结果;
S330,若第一波束包含在预设波束列表中,则终端设备执行随机接入,进入连接态;
S340,终端设备向第一网络设备发送告警信息,该告警信息用于指示终端设备跨越预设无线边界。
在本申请实施例中,终端设备处于空闲态或去激活态,无法向网络侧发送信息,但是,终端设备可以接收到网络侧传输的信号。在步骤S310中,终端设备可以接收服务小区的信号,并对信号质量进行测量,获得第一测量结果。该第一测量结果表示终端设备对服务小区的信号测量结果,具体可以通过数值表示。应理解,上述终端设备对服务小区的信号质量进行测量,可以测量下列参数中的一个或多个:参考信号接收功率(reference signal receiving power,RSRP)、参考信号接收质量(reference signal receiving quality,RSRQ)、接收信号强度指示(received signal strength indicator,RSSI),本申请实施例对此不做限定。
终端设备在获得了第一测量结果之后,可以判断该第一测量结果是否满足第一预设条件。该第一预设条件可以是终端设备预先获取的。示例性地,该第一预设条件可以是协议定义的;或者,该第一预设条件可以是终端设备从第一网络设备发送的预设信息中获取的。例如,第一网络设备可以发送该预设信息(例如系统信息),以便使处于空闲态或去激活态的终端设备获取该预设信息,进而从预设信息中获取上述第一预设条件。若第一测量结果满足第一预设条件,该终端设备继续进行波束测量,即执行步骤S320;若第一测量结果不满足第一预设条件,该终端设备可以终止测量,结束本次定位流程。
在步骤S320中,终端设备进行波束测量可以理解为终端设备接收第一网络设备发送的参考信号,并对参考信号进行测量的过程。示例性地,第一网络设备可以通过特定的发送波束向终端设备发送参考信号,终端设备采用特定的接收波束接收该参考信号,从而确定每个接收波束接收或测量的参考信号的信号强度或信号质量,即为波束测量结果。终端设备可以从波束测量结果中确定出信号接收强度最强或信号接收质量最优的接收波束,本申请实施例可以称为第一波束。相应地,信号接收强度最强或信号接收质量最优的接收波束上的参考信号的信号测量结果可以称为第一波束的测量结果,即第二测量结果。上述参考信号可以例如是信道状态信息参考信号(channel state information-reference signal,CSI-RS)、UE特定参考信号(UE-specific reference signal,DMRS)、小区特定参考信号(cell-specific reference signal,CRS)等等,本申请实施例对此不做限定。
终端设备在获得了第二测量结果之后,可以判断该第二测量结果对应的第一波束是否属于预设波束列表。该预设波束列表也可以是终端设备预先获取的。示例性地,该预设波束列表可以是协议定义的;或者,该预设波束列表可以是终端设备从第一网络设备发送的 预设信息中获取的。与上述第一预设条件类似,此处不再赘述。若第一波束包含在预设波束列表中,该终端设备发起随机接入,进入连接态,即继续执行步骤S330;若第一波束不包含在预设波束列表中,该终端设备可以结束本次定位流程。
应理解,上述第一预设条件和预设波束列表均是按照预设无线边界设置的,上述第一波束包含在预设波束列表即表明终端设备即将跨越预设无线边界,需要向网络设备告警。由于终端设备处于空闲态或去激活态,终端设备需要执行步骤S330,进入连接态,建立可以进行数据传输的通信链路,才可以向与预设无线边界相关的网络设备发送告警信息。还应理解,终端设备执行随机接入进入连接态的方式可以为前述介绍的基于竞争的随机接入,或者简化后的基于竞争的随机接入,即两步随机接入,本申请实施例对此不做限定。
在终端设备进入了连接态之后,该终端设备可以执行步骤S340,即向第一网络设备发送告警信息,指示该终端设备跨越预设无线边界。示例性地,该告警信息可以为1比特的信息,具体可以为0或1,或者为其它形式的信息,本申请对此不做限定。
通过上述方法,终端设备可以在空闲态或去激活态就发起用于定位的信号测量,若测量结果不满足告警条件(即上述第一预设条件和预设波束列表),终端设备不会进入连接态,换句话说,处于空闲态或去激活态的终端设备只有在即将跨越预设无线边界的情况下才会进入连接态,对于未跨越预设无线边界的终端设备而言,无需进入连接态。因此,本申请实施例的无线定位方法,能够对处于空闲态或去激活态的终端设备进行定位,减小终端设备的信令开销以及终端设备的功耗,从而提升设备和系统性能。
在上述方法300中,步骤S310中的小区信号测量是在低频(对应低频小区),而步骤S320中的波束测量是在高频(对应高频小区),示例性地,低频小区的工作频段小于某一阈值(例如小于6GHz),高频小区的工作频段在某两个阈值之间(例如24.25GHz~52.6GHz)。因此,根据终端设备的服务小区是否能够工作在低频和高频,可以分下列两种情况:
情况1、服务小区能够工作在低频和高频,又称为高频小区和低频小区共站点。
对于情况1,低频小区和高频小区对应的网络设备均为第一网络设备(例如可以看作一个宏基站),终端设备通过接收该第一网络设备的信号可以完成服务小区的信号质量的测量和波束测量。
情况2、服务小区仅能工作在低频,又称高频小区和低频小区非共站点。
对于情况2,低频小区对应的网络设备为第一网络设备(例如可以看作一个宏基站),高频小区可以有一个或多个,分别对应一个或多个其他网络设备(例如可以看作宏基站覆盖范围内的小基站),终端设备在进行波束测量时,需要接收该一个或多个其他网络设备的参考信号,获得相应的波束的测量结果。与情况1不同的是,情况2中的多个网络设备之间需要通过信令交互,传输预设波束列表中的波束的信息。
以宏基站和小基站为例,一个或多个小基站可以将各自的预设波束列表发送给宏基站,例如小基站1的预设波束列表为{2,3},小基站2的预设波束列表为{5,6},小基站3的预设波束类别为{6,7},宏基站接收各个小基站发送的预设波束列表,进行汇总可以得到最终的预设波束列表{2,3,5,6,7}。
应理解,在情况2中,多个网络设备之间的信令交互可以在终端设备进行波束测量之前执行,具体可以在终端设备进行服务小区的信号质量测量之前,也可以在终端设备进行 服务小区的信号质量测量之后,本申请实施例对此不做限定。
作为一个可选的实施例,若终端设备靠近第一网络设备移动,第一预设条件为第一测量结果大于或等于第一阈值,预设波束列表为第一预设波束列表;或者,若终端设备远离第一网络设备移动,第一预设条件为第一测量结果小于或等于第二阈值,预设波束列表为第二预设波束列表。
应理解,不同的场景对应的第一预设条件可以是不同的,不同的场景对应的预设波束列表也可以是不同的。在本申请实施例中,终端设备能够根据对服务小区的信号强度或信号质量的多次测量结果获知该终端设备是在向靠近第一网络设备的方向移动,还是在向远离第一网络设备的方向移动,从而选择对应的预设条件和预设波束列表进行判断。
为了便于理解,下面结合图4所示的地理围栏场景分情况对本申请实施例进行详细说明。
由于第一阈值和第二阈值是针对同一个网络设备而言的,不同的网络设备对应的第一阈值和第二阈值可以是不同的,为避免引起歧义,下面采用网络设备的第一阈值、网络设备的第二阈值的方式进行描述。同理,上述第一预设波束列表和第二波束预设列表也是针对同一个网络设备而言的,不同的网络设备对应的第一预设波束列表和第二波束预设列表可以是不同的,为避免引起歧义,下面采用网络设备的第一预设波束列表、网络设备的第二波束预设列表的方式进行描述。
情况1、第一网络设备为网络设备A,如图所示,网络设备A位于预设无线边界外部。
(1)终端设备从预设无线边界内开始移动,即终端设备将从内往外跨越预设无线边界。
这种情况下,终端设备是靠近网络设备A移动的,第一预设条件为第一测量结果大于或等于网络设备A的第一阈值,预设波束列表为网络设备A的第一预设波束列表。即终端设备距离网络设备A越来越近,信号质量会越来越强,在信号质量强到内边界所对应的信号强度时,可以认为终端设备满足第一预设条件,进而触发终端设备的波束测量。可选地,该网络设备A的第一阈值为图4中内边界所对应的网络设备A的信号强度值,但本申请实施例对此不做限定。图4示出了网络设备A的第一预设波束列表{1,2,3,4},假设终端设备进行波束测量获得的第二测量结果为波束2对应的测量结果,那么由于波束2属于该网络设备A的第一预设波束列表,该终端设备可以执行随机接入,进入连接态以便向网络设备A发送告警信息。假设终端设备进行波束测量获得的第二测量结果为波束10对应的测量结果,那么由于波束10不属于该网络设备A的第一预设波束列表,该终端设备可以不发起随机接入,继续处于空闲态或去激活态。
(2)终端设备从预设无线边界外开始移动,即终端设备将从外往内跨越预设无线边界。
这种情况下,终端设备是远离网络设备A移动的,第一预设条件为第一测量结果小于或等于网络设备A的第二阈值,预设波束列表为网络设备A的第二预设波束列表。即终端设备距离网络设备A越来越远,信号质量会越来越弱,在信号质量弱到外边界所对应的信号强度时,可以认为终端设备满足第一预设条件,进而触发终端设备的波束测量。可选地,该网络设备A的第二阈值为图4中外边界所对应的网络设备A的信号强度值,但本申请实施例对此不做限定。图4示出了网络设备A的第二预设波束列表{1,2,3,4,5},假设 终端设备进行波束测量获得的第二测量结果为波束2对应的测量结果,那么由于波束2属于该网络设备A的第二预设波束列表,该终端设备可以执行随机接入,进入连接态以便向网络设备A发送告警信息。假设终端设备进行波束测量获得的第二测量结果为波束10对应的测量结果,那么由于波束10不属于该网络设备A的第二预设波束列表,该终端设备可以不发起随机接入,继续处于空闲态或去激活态。
考虑到上述网络设备A的位置,外边界所对应的信号强度比内边界对应的信号强度强,因此,上述网络设备A的第二阈值大于网络设备A的第一阈值。在图4中,网络设备A的第一预设波束列表和第二预设波束列表是不同的。
情况2、第一网络设备为图4中的网络设备B,如图所示,网络设备B位于预设无线边界内部。
(1)终端设备从预设无线边界内开始移动,即终端设备将从内往外跨越预设无线边界。
这种情况下,终端设备是远离网络设备B移动的,第一预设条件为第一测量结果小于或等于网络设备B的第二阈值,预设波束列表为网络设备B的第二预设波束列表。即终端设备距离网络设备B越来越远,信号质量会越来越弱,在信号质量弱到内边界所对应的信号强度时,可以认为终端设备满足第一预设条件,进而触发终端设备的波束测量。可选地,该网络设备B的第二阈值为图4中外边界所对应的网络设备B的信号强度值,但本申请实施例对此不做限定。图4示出了网络设备B的第二预设波束列表{9,10,11,12,13,14},假设终端设备进行波束测量获得的第二测量结果为波束12对应的测量结果,那么由于波束2属于该网络设备B的第二预设波束列表,该终端设备可以执行随机接入,进入连接态以便向网络设备B发送告警信息。假设终端设备进行波束测量获得的第二测量结果为波束5对应的测量结果,那么由于波束5不属于该网络设备B的第二预设波束列表,该终端设备可以不发起随机接入,继续处于空闲态或去激活态。
(2)终端设备从预设无线边界外开始移动,即终端设备将从外往内跨越预设无线边界。
这种情况下,终端设备是靠近网络设备B移动的,第一预设条件为第一测量结果大于或等于网络设备B的第一阈值,预设波束列表为网络设备B的第一预设波束列表。即终端设备距离网络设备B越来越近,信号质量会越来越强,在信号质量强到外边界所对应的信号强度时,可以认为终端设备满足第一预设条件,进而触发终端设备的波束测量。可选地,该网络设备B的第一阈值为图4中外边界所对应的网络设备B的信号强度值,但本申请实施例对此不做限定。图4示出了网络设备B的第一预设波束列表{9,10,11,12,13,14},假设终端设备进行波束测量获得的第二测量结果为波束12对应的测量结果,那么由于波束12属于该网络设备B的第一预设波束列表,该终端设备可以执行随机接入,进入连接态以便向网络设备B发送告警信息。假设终端设备进行波束测量获得的第二测量结果为波束5对应的测量结果,那么由于波束5不属于该网络设备B的第一预设波束列表,该终端设备可以不发起随机接入,继续处于空闲态或去激活态。
考虑到上述网络设备B的位置,外边界所对应的信号强度比内边界对应的信号强度强,因此,上述网络设备B的第二阈值大于网络设备B的第一阈值。在图4中,网络设备B的第一预设波束列表和第二预设波束列表是相同的。
应理解,上述仅仅示例性地列出了两种可能的情况,各个小区的预设条件和其对应的预设波束列表可以是该小区的网络设备结合所有波束和预设无线边界的情况确定的,本申请实施例对预设条件和其对应的预设波束列表的选取不做限定。
作为一个可选的实施例,上述无线定位方法还包括:终端设备接收来自第二网络设备的位置测量请求;该终端设备根据该位置测量请求,向第二网络设备发送第一测量结果和第二测量结果。
上述第一测量结果和第二测量结果可以用于计算终端设备的位置。第二网络设备在接收到该第一测量结果和第二测量结果之后,可以自行计算终端设备的位置,或者,第二网络设备也可以将第一测量结果和第二测量结果发送给其他网络设备,其他网络设备可以计算终端设备的位置,再将计算结果发送给第二网络设备,本申请实施例对此不做限定。应理解,第二网络设备可以为位置管理功能LMF网元,还可以为部署在基站等网络设备上的本地定位管理功能(local location management function,LLMF);其他网络设备可以为位置测量单元(location measurement unit,LMU)或者为5G NR系统中的定位管理部件(location management component,LMC)。
在一种可能的实现方式中,终端设备是从连接态转换至空闲态或去激活态的,这样,网络侧存储有终端设备的历史位置信息,第二网络设备可以根据存储的关于终端设备的历史位置信息,发起请求,请求对终端设备定位。
应理解,上述终端设备和第二网络设备之间的信息传输,例如位置测量请求、第一测量结果和第二测量结果的传输,可以是终端设备直接发送给第二网络设备的,也可以是终端设备通过第一网络设备以及其他网络设备发送给第二网络设备的,本申请实施例对此不做限定。
作为一个可选的实施例,上述位置测量请求由第五代移动通信系统5G网关或接入及移动性管理功能AMF网元发送给第二网络设备。
上述无线定位方法300可以由终端设备自行发起定位,也可以是终端设备根据网络侧的请求进行定位。示例性地,5G网关或接入及移动性管理功能AMF网元可以将位置测量请求发送给第二网络设备,第二网络设备再将位置测量请求发送给终端设备。
需要说明的是,本申请仅以5G网关或接入及移动性管理功能AMF网元为例进行说明,5G通信系统或其下一代移动通信系统中与5G网关或接入及移动性管理功能AMF网元功能相似的网元,均术属于本申请的保护范畴。
作为一个可选的实施例,上述无线定位方法还包括:终端设备根据第一测量结果和第二测量结果,计算终端设备的位置。即,在终端设备自行发起定位的情况下,终端设备还可以根据第一测量结果和第二测量结果计算自身的位置。
作为一个可选的实施例,上述无线定位方法还包括:终端设备接收第一网络设备发送的预设信息,该预设信息携带第一预设条件和预设波束列表。
如上所述,第一预设条件和预设波束列表可以是终端设备从第一网络设备发送的预设信息中获取的。可选地,该预设信息可以为系统信息,例如SSB。应理解,第一网络设备发送的预设信息中除了包括上述第一预设条件和预设波束列表之外,还可以包括其他预设条件和其他波束列表,本申请实施例对此不做限定。还应理解,第一网络设备发送的预设信息中包含的预设条件和波束列表为与第一网络设备对应的预设条件和波束列表。
示例性地,预设信息中包括第一阈值和第二阈值,终端设备可以根据该终端设备的移动情况选择对应的阈值以及预设条件,即若终端设备靠近第一网络设备移动,该终端设备可以选择第一阈值,进而确定第一预设条件为第一测量结果大于或等于第一阈值,若终端设备远离第一网络设备移动,该终端设备可以选择第二阈值,进而确定第一预设条件为第一测量结果小于或等于第二阈值。
作为一个可选的实施例,上述无线定位方法还包括:终端设备根据当前业务类型,从多个预设条件中确定第一预设条件,该多个预设条件对应多种不同的业务类型,该第一预设条件与当前业务类型对应。
考虑到系统可以同时预设多个地理围栏,或者地理围栏的形状可以是变化的,即上述预设无线边界可以是多个,且预设无线边界可以变化。不同的预设无线边界对应的预设条件是不同的,不同的预设无线边界对应不同的业务类型,即不同的业务类型对应不同的预设条件。终端设备可以根据当前业务类型,从多个预设条件中选择与当前业务类型对应的第一预设条件。例如,幼儿园对应预设无线边界1,养老院对应预设无线边界2,工业园区对应预设无线边界3,若终端设备当前处于养老院,那么终端设备可以将养老院对应的预设条件确定为上述第一预设条件,即将预设无线边界2对应的预设条件确定为第一预设条件。又例如,针对养老院场景,需要根据手机或手环实时监控老人是否会移动出养老院,可以设置3个预设无线边界,预设无线边界A、预设无线边界B和预设无线边界C,无线边界的范围依次扩大,对应的阈值依次增大(老人靠近网络设备移动时),或者对应的阈值依次减小(老人远离网络设备移动时),这样,当老人越过预设无线边界A时会触发终端设备执行一级告警,当老人越过预设边界B时会触发终端设备执行二级告警,当老人越过预设边界C时会触发终端设备执行三级告警,实现对老人位置的实时监控。
可选地,上述多个预设条件可以携带在第一网络设备发送的预设信息中。
通过针对不同的业务类型设置不同的预设条件,使得本申请实施例的无线定位方法能够适用于多种不同的场景,例如设置多个形状各异,范围不同的预设地理围栏,有利于提高定位的灵活性。
为便于理解,图5以终端设备为UE,第一网络设备为gNB/ng-eNB,第二接入网设备为LMF为例,结合图2详细介绍本申请实施例的无线定位方法。
在S501中,5GC LCS实体向AMF发送定位请求,则对应地,AMF接收该定位请求。
在S502中,AMF向LMF发送定位请求,则对应地,LMF接收该定位请求。
在S503中,LMF向UE发送位置测量请求,则对应地,UE接收该位置测量请求,该UE处于空闲态或去激活态。可选地,该位置测量请求具体可以通过LPP消息发送。
在S504中,UE对服务小区的信号质量进行测量,获得第一测量结果。
在S505中,第一测量结果满足第一预设条件,UE进行波束测量,从波束测量结果中确定第二测量结果,该第二测量结果用于指示第一波束的测量结果。
在S506中,第一波束包含在预设列表中,UE执行随机接入,进入连接态。
在S507中,UE向gNB/ng-eNB发送告警信息,指示终端设备跨越预设边界,则对应地,gNB/ng-eNB接收该告警信息。
在S508中,UE向LMF发送第一测量结果和第二测量结果,则对应地,LMF接收该第一测量结果和第二测量结果。可选地,该第一测量结果和第二测量结果具体可以通过 LPP消息发送。
在S509中,LMF根据该第一测量结果和第二测量结果,确定UE的位置。
在S510中,LMF向AMF发送位置信息,该位置信息用于指示UE的位置,则对应地,AMF接收位置信息。
在S511中,AMF向5GC LCS实体发送该位置信息,则对应地,5GC LCS实体接收该位置信息。
关于上述S504~S507的详细描述可参考前述方法300,此处不再赘述。
应理解,上述S501~S503、S508~S511均为可选的步骤。AMF可以基于5GC LCS实体的定位请求,向LMF发送定位请求,也可以基于自身的定位需求,向LMF发送定位请求。同样地,LMF可以基于AMF的定位请求,向UE发送位置测量请求,也可以基于自身的定位需求,向UE发送位置测量请求。UE可以基于LMF发送的位置测量请求测量服务小区的信号质量,也可以基于自身的定位需求,测量服务小区的信号质量,本申请实施例对此不做限定。
图6示出了本申请实施例的另一无线定位方法600的示意性流程图。该方法600可以应用于图1所示的通信系统100,也可以应用于图2所示的通信系统200,本申请实施例不限于此。该方法包括:
S610,终端设备对服务小区的信号质量进行测量,获得第一测量结果,该终端设备处于空闲态或去激活态。
S620,若该第一测量结果满足第一预设条件,终端设备进行波束测量,从波束测量结果中确定第二测量结果,该第二测量结果用于指示第一波束的测量结果。
S630,若该第一波束包含在预设波束列表中,终端设备向第一网络设备发送随机接入请求,该随机接入请求携带第一前导码,该第一前导码与第一波束相关联。
方法600与方法300的区别在于,方法300通过显式指示的方式告知第一网络设备,终端设备跨越预设无线边界,而方法600将波束与用于定位的前导码进行了关联,通过隐式指示的方式告知第一网络设备,终端设备跨越预设无线边界。即在上述方法600中,终端设备可以在需要发起告警时,采用用于定位的前导码发送随机接入请求,第一网络设备接收到该用于定位的前导码,即可获知存在终端设备跨越预设无线边界。关于步骤S610和步骤S620的详细描述可以参考上述方法300中的步骤S310和步骤S320,此处不再赘述。
这样,终端设备仅需发送用于定位的前导码以发起随机接入请求,告知第一网络设备存在终端设备越界的信息,后续随机接入的相关步骤可以不执行。该终端设备后续可能随机接入成功,可能随机接入失败,本申请实施例对此不做限定,对本申请提供的无线定位方法不产生影响。因此,本申请实施例的无线定位方法,处于空闲态或去激活态的终端设备可以在还未进入随机接入连接态的情况下,隐式地向网络设备进行告警,该方法有利于减小终端设备的信令开销以及终端设备的功耗,从而提升设备和系统性能。
应理解,本申请实施例中的第一前导码是与第一波束相关联的用于定位的前导码。第一网络设备在接收到第一前导码之后,可以能够根据识别该第一前导码是用于定位的前导码,确定出存在终端设备跨越预设无线边界。但是,第一网络设备并无法判断具体是哪个终端设备跨越预设无线边界的。
可选地,在后续随机接入过程中,终端设备可以将该终端设备的标识(ID)发送给第一网络设备,使得该第一网络设备可以识别出跨越预设无线边界的设备是该终端设备。
可选地,上述用于定位的第一前导码可以是在已有的前导码中增加或减少部分比特,或者,第一前导码携带特殊的标识。其中,增加或减少的部分比特,或特殊的标识用于指示第一波束。
作为一个可选的实施例,若终端设备靠近第一网络设备移动,第一预设条件为第一测量结果大于或等于第一阈值,预设波束列表为第一预设波束列表;或者,若终端设备远离第一网络设备移动,第一预设条件为第一测量结果小于或等于第二阈值,预设波束列表为第二预设波束列表。
作为一个可选的实施例,上述无线定位方法还包括:终端设备接收来自第二网络设备的位置测量请求;终端设备根据该位置测量请求,向第二网络设备发送第一测量结果和第二测量结果。
作为一个可选的实施例,上述位置测量请求由第五代移动通信系统5G网关或接入及移动性管理功能AMF网元发送给第二网络设备。需要说明的是,本申请仅以5G网关或接入及移动性管理功能AMF网元为例进行说明,5G通信系统或其下一代移动通信系统中与5G网关或接入及移动性管理功能AMF网元功能相似的网元,均术属于本申请的保护范畴。
作为一个可选的实施例,上述无线定位方法还包括:终端设备根据第一测量结果和第二测量结果,计算终端设备的位置。
作为一个可选的实施例,上述无线定位方法还包括:终端设备接收第一网络设备发送的预设信息,该预设信息携带该第一预设条件和该预设波束列表。
作为一个可选的实施例,上述无线定位方法还包括:终端设备根据当前业务类型,从多个预设条件中确定第一预设条件,该多个预设条件对应多种不同的业务类型,该第一预设条件与当前业务类型对应。
作为一个可选的实施例,上述随机接入请求包含在基于竞争的随机接入中,或者,上述随机接入请求包含在两步随机接入中。
关于方法600的其他可扩展实施例均可以参考上述方法300中的相应描述,此处不再赘述。
为便于理解,图7以终端设备为UE,第一网络设备为gNB/ng-eNB,第二接入网设备为LMF为例,结合图2详细介绍本申请实施例的另一无线定位方法。
在S701中,5GC LCS实体向AMF发送定位请求,则对应地,AMF接收该定位请求。
在S702中,AMF向LMF发送定位请求,则对应地,LMF接收该定位请求。
在S703中,LMF向UE发送位置测量请求,则对应地,UE接收该位置测量请求,该UE处于空闲态或去激活态。可选地,该位置测量请求具体可以通过LPP消息发送。
在S704中,UE对服务小区的信号质量进行测量,获得第一测量结果。
在S705中,第一测量结果满足第一预设条件,UE进行波束测量,从波束测量结果中确定第二测量结果,该第二测量结果用于指示第一波束的测量结果。
在S706中,第一波束包含在预设列表中,UE向gNB/ng-eNB发送随机接入请求,该随机接入请求携带第一前导码,该第一前导码与第一波束相关联。则对应地,gNB/ng-eNB 接收该随机接入请求,gNB/ng-eNB根据该随机接入请求中的第一前导码,即可确定有终端设备即将跨越预设边界。
在S707中,UE执行后续一系列随机接入的流程,进入连接态。
在S708中,UE向LMF发送第一测量结果和第二测量结果,则对应地,LMF接收该第一测量结果和第二测量结果。可选地,该第一测量结果和第二测量结果具体可以通过LPP消息发送。
在S709中,LMF根据该第一测量结果和第二测量结果,确定UE的位置。
在S710中,LMF向AMF发送位置信息,该位置信息用于指示UE的位置,则对应地,AMF接收位置信息。
在S711中,AMF向5GC LCS实体发送该位置信息,则对应地,5GC LCS实体接收该位置信息。
关于上述S704~S707的详细描述可参考前述方法600,此处不再赘述。
应理解,上述S701~S703、S708~S711均为可选的步骤。AMF可以基于5GC LCS实体的定位请求,向LMF发送定位请求,也可以基于自身的定位需求,向LMF发送定位请求。同样地,LMF可以基于AMF的定位请求,向UE发送位置测量请求,也可以基于自身的定位需求,向UE发送位置测量请求。UE可以基于LMF发送的位置测量请求测量服务小区的信号质量,也可以基于自身的定位需求,测量服务小区的信号质量,本申请实施例对此不做限定。
应理解,上述各过程的序号的大小并不意味着执行顺序的先后,各过程的执行顺序应以其功能和内在逻辑确定,而不应对本申请实施例的实施过程构成任何限定。
以上,结合图3至图7详细说明了本申请实施例提供的方法。以下,结合图8和图9详细说明本申请实施例提供的装置。
图8是本申请实施例提供的无线定位装置的示意性框图。如图8所示,该装置1000可以包括收发单元1100和处理单元1200。该装置1000可对应于上文方法实施例中的终端设备,例如,可以为终端设备,或者配置于终端设备中的芯片。
在一种可能的设计中,该装置1000用于执行上述方法实施例300中终端设备对应的各个步骤或流程。
具体地,该处理单元1200用于:通过测量服务小区的信号质量,获得第一测量结果,该装置处于空闲态或去激活态;以及,若该第一测量结果满足第一预设条件,通过执行波束测量,从波束测量结果中确定第二测量结果,该第二测量结果用于指示第一波束的测量结果;该收发单元1100用于:若该第一波束包含在预设波束列表中,执行随机接入,进入连接态;以及,向第一网络设备发送告警信息,该告警信息用于指示该装置跨越预设无线边界。
可选地,若该装置靠近第一网络设备移动,第一预设条件为第一测量结果大于或等于第一阈值,预设波束列表为第一预设波束列表;或者,若该装置远离第一网络设备移动,第一预设条件为第一测量结果小于或等于第二阈值,预设波束列表为第二预设波束列表。
可选地,该收发单元1100还用于:接收来自第二网络设备的位置测量请求;根据该位置测量请求,向第二网络设备发送该第一测量结果和该第二测量结果。
可选地,上述位置测量请求由第五代移动通信系统5G网关或接入及移动性管理功能 AMF网元发送给第二网络设备。
可选地,该处理单元1200还用于:根据该第一测量结果和该第二测量结果,计算该装置的位置。
可选地,该收发单元1100还用于:接收该第一网络设备发送的预设信息,该预设信息携带该第一预设条件和该预设波束列表。
可选地,该处理单元1200还用于:根据当前业务类型,从多个预设条件中确定该第一预设条件,该多个预设条件对应多种不同的业务类型,该第一预设条件与该当前业务类型对应。
可选地,上述随机接入为基于竞争的随机接入或者两步随机接入。
在另一种可能的设计中,该装置1000用于执行上述方法实施例600中终端设备对应的各个步骤或流程。
具体地,该处理单元1200用于:通过测量服务小区的信号质量,获得第一测量结果,该装置处于空闲态或去激活态;以及,若该第一测量结果满足第一预设条件,通过执行波束测量,从波束测量结果中确定第二测量结果,该第二测量结果用于指示第一波束的测量结果;该收发单元1100用于:若该第一波束包含在预设波束列表中,向第一网络设备发送随机接入请求,该随机接入请求携带第一前导码,该第一前导码与该第一波束相关联。
可选地,若该装置靠近第一网络设备移动,第一预设条件为第一测量结果大于或等于第一阈值,预设波束列表为第一预设波束列表;或者,若该装置远离第一网络设备移动,第一预设条件为第一测量结果小于或等于第二阈值,预设波束列表为第二预设波束列表。
可选地,该收发单元1100还用于:接收来自第二网络设备的位置测量请求;根据该位置测量请求,向第二网络设备发送该第一测量结果和该第二测量结果。
可选地,上述位置测量请求由第五代移动通信系统5G网关或接入及移动性管理功能AMF网元发送给第二网络设备。
可选地,该处理单元1200还用于:根据该第一测量结果和该第二测量结果,计算该装置的位置。
可选地,该收发单元1100还用于:接收第一网络设备发送的预设信息,该预设信息携带该第一预设条件和该预设波束列表。
可选地,该处理单元1200还用于:根据当前业务类型,从多个预设条件中确定该第一预设条件,该多个预设条件对应多种不同的业务类型,该第一预设条件与该当前业务类型对应。
可选地,上述随机接入请求包含在基于竞争的随机接入中,或者,上述随机接入请求包含在两步随机接入中。
应理解,各单元执行上述相应步骤的具体过程在上述方法实施例中已经详细说明,为了简洁,在此不再赘述。
还应理解,该通信装置1000为终端设备时,该通信装置1000中的收发单元1100可对应于图9中示出的终端设备2000中的收发器2020,该通信装置1000中的处理单元1200可对应于图9中示出的终端设备2000中的处理器2010。
还应理解,该通信装置1000为配置于终端设备中的芯片时,该通信装置1000中的收发单元1100可以为输入/输出接口。
图9是本申请实施例提供的终端设备2000的结构示意图。该终端设备2000可应用于如图1或图2所示的系统中,执行上述方法实施例中终端设备的功能。如图所示,该终端设备2000包括处理器2010和收发器2020。可选地,该终端设备2000还包括存储器2030。其中,处理器2010、收发器2002和存储器2030之间可以通过内部连接通路互相通信,传递控制和/或数据信号,该存储器2030用于存储计算机程序,该处理器2010用于从该存储器2030中调用并运行该计算机程序,以控制该收发器2020收发信号。可选地,终端设备2000还可以包括天线2040,用于将收发器2020输出的上行数据或上行控制信令通过无线信号发送出去。
上述处理器2010可以和存储器2030可以合成一个处理装置,处理器2010用于执行存储器2030中存储的程序代码来实现上述功能。具体实现时,该存储器2030也可以集成在处理器2010中,或者独立于处理器2010。该处理器2010可以与图8中的处理单元对应。
上述收发器2020可以与图8中的收发单元对应,也可以称为收发单元。收发器2020可以包括接收器(或称接收机、接收电路)和发射器(或称发射机、发射电路)。其中,接收器用于接收信号,发射器用于发射信号。
应理解,图9所示的终端设备2000能够实现图3至图7所示方法实施例中涉及终端设备的各个过程。终端设备2000中的各个模块的操作和/或功能,分别为了实现上述方法实施例中的相应流程。具体可参见上述方法实施例中的描述,为避免重复,此处适当省略详细描述。
上述处理器2010可以用于执行前面方法实施例中描述的由终端设备内部实现的动作,而收发器2020可以用于执行前面方法实施例中描述的终端设备向网络设备发送或从网络设备接收的动作。具体请见前面方法实施例中的描述,此处不再赘述。
可选地,上述终端设备2000还可以包括电源2050,用于给终端设备中的各种器件或电路提供电源。
除此之外,为了使得终端设备的功能更加完善,该终端设备2000还可以包括输入单元2060、显示单元2070、音频电路2080、摄像头2090和传感器2100等中的一个或多个,所述音频电路还可以包括扬声器2082、麦克风2084等。
本申请实施例还提供了一种处理装置,包括处理器和接口;所述处理器用于执行上述任一方法实施例中的方法。
应理解,上述处理装置可以是一个芯片。例如,该处理装置可以是现场可编程门阵列(field programmable gate array,FPGA),可以是专用集成芯片(application specific integrated circuit,ASIC),还可以是系统芯片(system on chip,SoC),还可以是中央处理器(central processor unit,CPU),还可以是网络处理器(network processor,NP),还可以是数字信号处理电路(digital signal processor,DSP),还可以是微控制器(micro controller unit,MCU),还可以是可编程控制器(programmable logic device,PLD)或其他集成芯片。
在实现过程中,上述方法的各步骤可以通过处理器中的硬件的集成逻辑电路或者软件形式的指令完成。结合本申请实施例所公开的方法的步骤可以直接体现为硬件处理器执行完成,或者用处理器中的硬件及软件模块组合执行完成。软件模块可以位于随机存储器,闪存、只读存储器,可编程只读存储器或者电可擦写可编程存储器、寄存器等本领域成熟 的存储介质中。该存储介质位于存储器,处理器读取存储器中的信息,结合其硬件完成上述方法的步骤。为避免重复,这里不再详细描述。
应注意,本申请实施例中的处理器可以是一种集成电路芯片,具有信号的处理能力。在实现过程中,上述方法实施例的各步骤可以通过处理器中的硬件的集成逻辑电路或者软件形式的指令完成。上述的处理器可以是通用处理器、数字信号处理器(DSP)、专用集成电路(ASIC)、现场可编程门阵列(FPGA)或者其他可编程逻辑器件、分立门或者晶体管逻辑器件、分立硬件组件。可以实现或者执行本申请实施例中的公开的各方法、步骤及逻辑框图。通用处理器可以是微处理器或者该处理器也可以是任何常规的处理器等。结合本申请实施例所公开的方法的步骤可以直接体现为硬件译码处理器执行完成,或者用译码处理器中的硬件及软件模块组合执行完成。软件模块可以位于随机存储器,闪存、只读存储器,可编程只读存储器或者电可擦写可编程存储器、寄存器等本领域成熟的存储介质中。该存储介质位于存储器,处理器读取存储器中的信息,结合其硬件完成上述方法的步骤。
可以理解,本申请实施例中的存储器可以是易失性存储器或非易失性存储器,或可包括易失性和非易失性存储器两者。其中,非易失性存储器可以是只读存储器(read-only memory,ROM)、可编程只读存储器(programmable ROM,PROM)、可擦除可编程只读存储器(erasable PROM,EPROM)、电可擦除可编程只读存储器(electrically EPROM,EEPROM)或闪存。易失性存储器可以是随机存取存储器(random access memory,RAM),其用作外部高速缓存。通过示例性但不是限制性说明,许多形式的RAM可用,例如静态随机存取存储器(static RAM,SRAM)、动态随机存取存储器(dynamic RAM,DRAM)、同步动态随机存取存储器(synchronous DRAM,SDRAM)、双倍数据速率同步动态随机存取存储器(double data rate SDRAM,DDR SDRAM)、增强型同步动态随机存取存储器(enhanced SDRAM,ESDRAM)、同步连接动态随机存取存储器(synchlink DRAM,SLDRAM)和直接内存总线随机存取存储器(direct rambus RAM,DR RAM)。应注意,本文描述的系统和方法的存储器旨在包括但不限于这些和任意其它适合类型的存储器。
根据本申请实施例提供的方法,本申请还提供一种计算机程序产品,该计算机程序产品包括:计算机程序代码,当该计算机程序代码在计算机上运行时,使得该计算机执行图3至图7所示的实施例中终端设备执行的各个步骤或流程。
根据本申请实施例提供的方法,本申请还提供一种计算机可读存储介质,该计算机可读存储介质存储有程序代码,当该程序代码在计算机上运行时,使得该计算机执行图3至图7所示的实施例中终端设备执行的各个步骤或流程。
根据本申请实施例提供的方法,本申请还提供一种通信系统,其包括前述的一个或多个终端设备以及一个或多个网络设备。
在上述实施例中,可以全部或部分地通过软件、硬件、固件或者其任意组合来实现。当使用软件实现时,可以全部或部分地以计算机程序产品的形式实现。所述计算机程序产品包括一个或多个计算机指令。在计算机上加载和执行所述计算机指令时,全部或部分地产生按照本申请实施例所述的流程或功能。所述计算机可以是通用计算机、专用计算机、计算机网络、或者其他可编程装置。所述计算机指令可以存储在计算机可读存储介质中,或者从一个计算机可读存储介质向另一个计算机可读存储介质传输,例如,所述计算机指 令可以从一个网站站点、计算机、服务器或数据中心通过有线(例如同轴电缆、光纤、数字用户线(digital subscriber line,DSL))或无线(例如红外、无线、微波等)方式向另一个网站站点、计算机、服务器或数据中心进行传输。所述计算机可读存储介质可以是计算机能够存取的任何可用介质或者是包含一个或多个可用介质集成的服务器、数据中心等数据存储设备。所述可用介质可以是磁性介质(例如,软盘、硬盘、磁带)、光介质(例如,高密度数字视频光盘(digital video disc,DVD))、或者半导体介质(例如,固态硬盘(solid state disc,SSD))等。
上述各个装置实施例中网络设备与终端设备和方法实施例中的网络设备或终端设备完全对应,由相应的模块或单元执行相应的步骤,例如通信单元(收发器)执行方法实施例中接收或发送的步骤,除发送、接收外的其它步骤可以由处理单元(处理器)执行。具体单元的功能可以参考相应的方法实施例。其中,处理器可以为一个或多个。
在本说明书中使用的术语“部件”、“模块”、“系统”等用于表示计算机相关的实体、硬件、固件、硬件和软件的组合、软件、或执行中的软件。例如,部件可以是但不限于,在处理器上运行的进程、处理器、对象、可执行文件、执行线程、程序和/或计算机。通过图示,在计算设备上运行的应用和计算设备都可以是部件。一个或多个部件可驻留在进程和/或执行线程中,部件可位于一个计算机上和/或分布在两个或更多个计算机之间。此外,这些部件可从在上面存储有各种数据结构的各种计算机可读存储介质执行。部件可例如根据具有一个或多个数据分组(例如来自与本地系统、分布式系统和/或网络间的另一部件交互的二个部件的数据,例如通过信号与其它系统交互的互联网)的信号通过本地和/或远程进程来通信。
应理解,本文中的“至少一个”是指一个或者多个,“多个”是指两个或两个以上。“和/或”,描述关联对象的关联关系,表示可以存在三种关系,例如,A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B的情况,其中A,B可以是单数或者复数。字符“/”一般表示前后关联对象是一种“或”的关系。“以下至少一项(个)”或其类似表达,是指的这些项中的任意组合,包括单项(个)或复数项(个)的任意组合。例如,a、b和c中的至少一项(个),可以表示:a,或b,或c,或a和b,或a和c,或b和c,或a、b和c,其中a,b,c可以是单个,也可以是多个。
本领域普通技术人员可以意识到,结合本文中所公开的实施例描述的各种说明性逻辑块(illustrative logical block)和步骤(step),能够以电子硬件、或者计算机软件和电子硬件的结合来实现。这些功能究竟以硬件还是软件方式来执行,取决于技术方案的特定应用和设计约束条件。专业技术人员可以对每个特定的应用来使用不同方法来实现所描述的功能,但是这种实现不应认为超出本申请的范围。
所属领域的技术人员可以清楚地了解到,为描述的方便和简洁,上述描述的系统、装置和单元的具体工作过程,可以参考前述方法实施例中的对应过程,在此不再赘述。
在本申请所提供的几个实施例中,应该理解到,所揭露的系统、装置和方法,可以通过其它的方式实现。例如,以上所描述的装置实施例仅仅是示意性的,例如,所述单元的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个单元或组件可以结合或者可以集成到另一个系统,或一些特征可以忽略,或不执行。另一点,所显示或讨论的相互之间的耦合或直接耦合或通信连接可以是通过一些接口,装置或单元的间 接耦合或通信连接,可以是电性,机械或其它的形式。
所述作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部单元来实现本实施例方案的目的。
另外,在本申请各个实施例中的各功能单元可以集成在一个处理单元中,也可以是各个单元单独物理存在,也可以两个或两个以上单元集成在一个单元中。
在上述实施例中,各功能单元的功能可以全部或部分地通过软件、硬件、固件或者其任意组合来实现。当使用软件实现时,可以全部或部分地以计算机程序产品的形式实现。所述计算机程序产品包括一个或多个计算机指令(程序)。在计算机上加载和执行所述计算机程序指令(程序)时,全部或部分地产生按照本申请实施例所述的流程或功能。所述计算机可以是通用计算机、专用计算机、计算机网络、或者其他可编程装置。所述计算机指令可以存储在计算机可读存储介质中,或者从一个计算机可读存储介质向另一个计算机可读存储介质传输,例如,所述计算机指令可以从一个网站站点、计算机、服务器或数据中心通过有线(例如同轴电缆、光纤、数字用户线(DSL))或无线(例如红外、无线、微波等)方式向另一个网站站点、计算机、服务器或数据中心进行传输。所述计算机可读存储介质可以是计算机能够存取的任何可用介质或者是包含一个或多个可用介质集成的服务器、数据中心等数据存储设备。所述可用介质可以是磁性介质,(例如,软盘、硬盘、磁带)、光介质(例如,DVD)、或者半导体介质(例如固态硬盘(solid state disk,SSD))等。
所述功能如果以软件功能单元的形式实现并作为独立的产品销售或使用时,可以存储在一个计算机可读存储介质中。基于这样的理解,本申请的技术方案本质上或者说对现有技术做出贡献的部分或者该技术方案的部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质中,包括若干指令用以使得一台计算机设备(可以是个人计算机,服务器,或者网络设备等)执行本申请各个实施例所述方法的全部或部分步骤。而前述的存储介质包括:U盘、移动硬盘、只读存储器(read-only memory,ROM)、随机存取存储器(random access memory,RAM)、磁碟或者光盘等各种可以存储程序代码的介质。
以上所述,仅为本申请的具体实施方式,但本申请的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本申请揭露的技术范围内,可轻易想到变化或替换,都应涵盖在本申请的保护范围之内。因此,本申请的保护范围应以所述权利要求的保护范围为准。

Claims (42)

  1. 一种无线定位方法,其特征在于,包括:
    终端设备通过测量服务小区的信号质量,获得第一测量结果,所述终端设备处于空闲态或去激活态;
    若所述第一测量结果满足第一预设条件,所述终端设备通过执行波束测量,从波束测量结果中确定第二测量结果,所述第二测量结果用于指示第一波束的测量结果;
    若所述第一波束包含在预设波束列表中,所述终端设备执行随机接入,进入连接态;
    所述终端设备向第一网络设备发送告警信息,所述告警信息用于指示所述终端设备跨越预设无线边界。
  2. 根据权利要求1所述的无线定位方法,其特征在于,若所述终端设备靠近所述第一网络设备移动,所述第一预设条件为所述第一测量结果大于或等于第一阈值,所述预设波束列表为第一预设波束列表;或者,
    若所述终端设备远离所述第一网络设备移动,所述第一预设条件为所述第一测量结果小于或等于第二阈值,所述预设波束列表为第二预设波束列表。
  3. 根据权利要求1或2所述的无线定位方法,其特征在于,所述方法还包括:
    所述终端设备接收来自第二网络设备的位置测量请求;
    所述终端设备根据所述位置测量请求,向所述第二网络设备发送所述第一测量结果和所述第二测量结果。
  4. 根据权利要求3所述的无线定位方法,其特征在于,所述位置测量请求由第五代移动通信系统5G网关或接入及移动性管理功能AMF网元发送给所述第二网络设备。
  5. 根据权利要求1或2所述的无线定位方法,其特征在于,所述方法还包括:
    所述终端设备根据所述第一测量结果和所述第二测量结果,计算所述终端设备的位置。
  6. 根据权利要求1至5中任一项所述的无线定位方法,其特征在于,所述方法还包括:
    所述终端设备接收所述第一网络设备发送的预设信息,所述预设信息携带所述第一预设条件和所述预设波束列表。
  7. 根据权利要求1至6中任一项所述的无线定位方法,其特征在于,所述方法还包括:
    所述终端设备根据当前业务类型,从多个预设条件中确定所述第一预设条件,所述多个预设条件对应多种不同的业务类型,所述第一预设条件与所述当前业务类型对应。
  8. 根据权利要求1至7中任一项所述的无线定位方法,其特征在于,所述随机接入为基于竞争的随机接入或者两步随机接入。
  9. 一种无线定位方法,其特征在于,包括:
    终端设备通过测量服务小区的信号质量,获得第一测量结果,所述终端设备处于空闲态或去激活态;
    若所述第一测量结果满足第一预设条件,所述终端设备通过执行波束测量,从波束测量结果中确定第二测量结果,所述第二测量结果用于指示第一波束的测量结果;
    若所述第一波束包含在预设波束列表中,所述终端设备向第一网络设备发送随机接入请求,所述随机接入请求携带第一前导码,所述第一前导码与所述第一波束相关联。
  10. 根据权利要求9所述的无线定位方法,其特征在于,若所述终端设备靠近所述第一网络设备移动,所述第一预设条件为所述第一测量结果大于或等于第一阈值,所述预设波束列表为第一预设波束列表;或者,
    若所述终端设备远离所述第一网络设备移动,所述第一预设条件为所述第一测量结果小于或等于第二阈值,所述预设波束列表为第二预设波束列表。
  11. 根据权利要求9或10所述的无线定位方法,其特征在于,所述方法还包括:
    所述终端设备接收来自第二网络设备的位置测量请求;
    所述终端设备根据所述位置测量请求,向所述第二网络设备发送所述第一测量结果和所述第二测量结果。
  12. 根据权利要求11所述的无线定位方法,其特征在于,所述位置测量请求由第五代移动通信系统5G网关或接入及移动性管理功能AMF网元发送给所述第二网络设备。
  13. 根据权利要求9或10所述的无线定位方法,其特征在于,所述方法还包括:
    所述终端设备根据所述第一测量结果和所述第二测量结果,计算所述终端设备的位置。
  14. 根据权利要求9至13中任一项所述的无线定位方法,其特征在于,所述方法还包括:
    所述终端设备接收所述第一网络设备发送的预设信息,所述预设信息携带所述第一预设条件和所述预设波束列表。
  15. 根据权利要求9至14中任一项所述的无线定位方法,其特征在于,所述方法还包括:
    所述终端设备根据当前业务类型,从多个预设条件中确定所述第一预设条件,所述多个预设条件对应多种不同的业务类型,所述第一预设条件与所述当前业务类型对应。
  16. 根据权利要求9至15中任一项所述的无线定位方法,其特征在于,所述随机接入请求包含在基于竞争的随机接入中,或者,所述随机接入请求包含在两步随机接入中。
  17. 一种无线定位装置,其特征在于,包括:
    处理单元,用于测量服务小区的信号质量,获得第一测量结果,所述无线定位装置处于空闲态或去激活态;以及,若所述第一测量结果满足第一预设条件,通过执行波束测量,从波束测量结果中确定第二测量结果,所述第二测量结果用于指示第一波束的测量结果;
    收发单元,用于若所述第一波束包含在预设波束列表中,执行随机接入,进入连接态;以及,向第一网络设备发送告警信息,所述告警信息用于指示所述无线定位装置跨越预设无线边界。
  18. 根据权利要求17所述的无线定位装置,其特征在于,若所述无线定位装置靠近所述第一网络设备移动,所述第一预设条件为所述第一测量结果大于或等于第一阈值,所述预设波束列表为第一预设波束列表;或者,
    若所述终端设备远离所述第一网络设备移动,所述第一预设条件为所述第一测量结果小于或等于第二阈值,所述预设波束列表为第二预设波束列表。
  19. 根据权利要求17或18所述的无线定位装置,其特征在于,所述收发单元还用于:
    接收来自第二网络设备的位置测量请求;
    根据所述位置测量请求,向所述第二网络设备发送所述第一测量结果和所述第二测量结果。
  20. 根据权利要求19所述的无线定位装置,其特征在于,所述位置测量请求由第五代移动通信系统5G网关或接入及移动性管理功能AMF网元发送给所述第二网络设备。
  21. 根据权利要求17或18所述的无线定位装置,其特征在于,所述处理单元还用于:
    根据所述第一测量结果和所述第二测量结果,计算所述无线定位装置的位置。
  22. 根据权利要求17至21中任一项所述的无线定位装置,其特征在于,所述收发单元还用于:
    接收所述第一网络设备发送的预设信息,所述预设信息携带所述第一预设条件和所述预设波束列表。
  23. 根据权利要求17至22中任一项所述的无线定位装置,其特征在于,所述处理单元还用于:
    根据当前业务类型,从多个预设条件中确定所述第一预设条件,所述多个预设条件对应多种不同的业务类型,所述第一预设条件与所述当前业务类型对应。
  24. 根据权利要求17至23中任一项所述的无线定位装置,其特征在于,所述随机接入为基于竞争的随机接入或者两步随机接入。
  25. 一种无线定位装置,其特征在于,包括:
    处理单元,用于通过测量服务小区的信号质量,获得第一测量结果,所述无线定位装置处于空闲态或去激活态;以及,若所述第一测量结果满足第一预设条件,通过执行波束测量,从波束测量结果中确定第二测量结果,所述第二测量结果用于指示第一波束的测量结果;
    收发单元,用于若所述第一波束包含在预设波束列表中,向第一网络设备发送随机接入请求,所述随机接入请求携带第一前导码,所述第一前导码与所述第一波束相关联。
  26. 根据权利要求25所述的无线定位装置,其特征在于,若所述无线定位装置靠近所述第一网络设备移动,所述第一预设条件为所述第一测量结果大于或等于第一阈值,所述预设波束列表为第一预设波束列表;或者,
    若所述无线定位装置远离所述第一网络设备移动,所述第一预设条件为所述第一测量结果小于或等于第二阈值,所述预设波束列表为第二预设波束列表。
  27. 根据权利要求25或26所述的无线定位装置,其特征在于,所述收发单元还用于:
    接收来自第二网络设备的位置测量请求;
    根据所述位置测量请求,向所述第二网络设备发送所述第一测量结果和所述第二测量结果。
  28. 根据权利要求27所述的无线定位装置,其特征在于,所述位置测量请求由第五代移动通信系统5G网关或接入及移动性管理功能AMF网元发送给所述第二网络设备。
  29. 根据权利要求25或26所述的无线定位装置,其特征在于,所述处理单元还用于:
    根据所述第一测量结果和所述第二测量结果,计算所述无线定位装置的位置。
  30. 根据权利要求25至29中任一项所述的无线定位装置,其特征在于,所述收发单元还用于:
    接收所述第一网络设备发送的预设信息,所述预设信息携带所述第一预设条件和所述预设波束列表。
  31. 根据权利要求25至30中任一项所述的无线定位装置,其特征在于,所述处理单元还用于:
    根据当前业务类型,从多个预设条件中确定所述第一预设条件,所述多个预设条件对应多种不同的业务类型,所述第一预设条件与所述当前业务类型对应。
  32. 根据权利要求25至31中任一项所述的无线定位装置,其特征在于,所述随机接入请求包含在基于竞争的随机接入中,或者,所述随机接入请求包含在两步随机接入中。
  33. 一种无线定位装置,其特征在于,包括:处理器,所述处理器与存储器耦合,所述存储器用于存储程序或指令,当所述程序或指令被所述处理器执行时,使得所述无线定位装置执行权利要求1至8中任一项所述的方法。
  34. 一种无线定位装置,其特征在于,包括:处理器,所述处理器与存储器耦合,所述存储器用于存储程序或指令,当所述程序或指令被所述处理器执行时,使得所述无线定位装置执行权利要求9至16中任一项所述的方法。
  35. 一种无线定位系统,其特征在于,包括:用于执行权利要求1至8中任一项所述的方法的无线定位装置以及权利要求1至8中任一项所述的方法的第一网络设备。
  36. 一种无线定位系统,其特征在于,包括:用于执行权利要求9至16中任一项所述的方法的无线定位装置以及权利要求9至16中任一项所述的方法的第一网络设备。
  37. 一种计算机可读存储介质,用于存储计算机程序,其特征在于,所述计算机程序包括用于实现权利要求1至8中任一项所述的方法的指令。
  38. 一种计算机可读存储介质,用于存储计算机程序,其特征在于,所述计算机程序包括用于实现权利要求9至16中任一项所述的方法的指令。
  39. 一种计算机程序产品,所述计算机程序产品中包括计算机程序代码,其特征在于,当所述计算机程序代码在计算机上运行时,使得计算机实现权利要求1至8中任一项所述的方法。
  40. 一种计算机程序产品,所述计算机程序产品中包括计算机程序代码,其特征在于,当所述计算机程序代码在计算机上运行时,使得计算机实现权利要求9至16中任一项所述的方法。
  41. 一种芯片,其特征在于,包括:处理器,用于读取存储器中存储的指令,当所述处理器执行所述指令时,使得所述芯片实现上述权利要求1至8中任一项所述的方法。
  42. 一种芯片,其特征在于,包括:处理器,用于读取存储器中存储的指令,当所述处理器执行所述指令时,使得所述芯片实现上述权利要求9至16中任一项所述的方法。
PCT/CN2019/116865 2019-11-08 2019-11-08 无线定位方法及装置 WO2021088065A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/CN2019/116865 WO2021088065A1 (zh) 2019-11-08 2019-11-08 无线定位方法及装置
CN201980101656.3A CN114600519B (zh) 2019-11-08 2019-11-08 无线定位方法及装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2019/116865 WO2021088065A1 (zh) 2019-11-08 2019-11-08 无线定位方法及装置

Publications (1)

Publication Number Publication Date
WO2021088065A1 true WO2021088065A1 (zh) 2021-05-14

Family

ID=75849537

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/116865 WO2021088065A1 (zh) 2019-11-08 2019-11-08 无线定位方法及装置

Country Status (2)

Country Link
CN (1) CN114600519B (zh)
WO (1) WO2021088065A1 (zh)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114158072A (zh) * 2021-11-26 2022-03-08 中国联合网络通信集团有限公司 专网中数据传输的方法和装置
CN114786222A (zh) * 2022-04-14 2022-07-22 广东辰启科技有限责任公司 一种基于智能盒子的路由自重启方法及智能盒子
WO2023098685A1 (zh) * 2021-11-30 2023-06-08 维沃移动通信有限公司 终端定位方法、装置及网络侧设备
WO2023125510A1 (zh) * 2021-12-28 2023-07-06 维沃移动通信有限公司 定位方法及网络侧设备
CN116867061A (zh) * 2021-12-31 2023-10-10 荣耀终端有限公司 定位方法及设备

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023245568A1 (zh) * 2022-06-23 2023-12-28 上海移远通信技术股份有限公司 无线通信的方法及装置
CN117676459A (zh) * 2022-08-31 2024-03-08 华为技术有限公司 一种相对位置的确定方法及装置

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20100128673A1 (en) * 2007-03-29 2010-05-27 Kyocera Corporation Communication Control Method, Communication System, Communication Control Apparatus and Wireless Base Station
CN102421118A (zh) * 2010-09-28 2012-04-18 电信科学技术研究院 一种mdt测量信息的反馈方法和设备
CN108064024A (zh) * 2017-12-13 2018-05-22 广东欧珀移动通信有限公司 基于定位模块的控制方法、装置、存储介质及移动终端
CN108235336A (zh) * 2016-12-12 2018-06-29 维沃移动通信有限公司 一种测量配置方法、网络设备及终端设备

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017028053A1 (zh) * 2015-08-14 2017-02-23 华为技术有限公司 通信方法、处理装置、通信设备和通信系统
CN107770780B (zh) * 2016-08-23 2020-08-04 成都鼎桥通信技术有限公司 基于空闲态的gap测量方法及设备
KR20180035638A (ko) * 2016-09-29 2018-04-06 삼성전자주식회사 RRC Inactive 및 active 상태에서 data 전송 결정 및 방법 및 장치

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20100128673A1 (en) * 2007-03-29 2010-05-27 Kyocera Corporation Communication Control Method, Communication System, Communication Control Apparatus and Wireless Base Station
CN102421118A (zh) * 2010-09-28 2012-04-18 电信科学技术研究院 一种mdt测量信息的反馈方法和设备
CN108235336A (zh) * 2016-12-12 2018-06-29 维沃移动通信有限公司 一种测量配置方法、网络设备及终端设备
CN108064024A (zh) * 2017-12-13 2018-05-22 广东欧珀移动通信有限公司 基于定位模块的控制方法、装置、存储介质及移动终端

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
QUALCOMM: "Views on scope for NR Positoning WI", 3GPP DRAFT; RP-190238 VIEWS ON SCOPE OF POSITIONING WI, 3RD GENERATION PARTNERSHIP PROJECT (3GPP), MOBILE COMPETENCE CENTRE ; 650, ROUTE DES LUCIOLES ; F-06921 SOPHIA-ANTIPOLIS CEDEX ; FRANCE, vol. TSG RAN, 11 March 2019 (2019-03-11), Shenzhen, China, XP051690086 *
ZHANG, YANHONG ET AL.: "Framework of child tracking system based on mobile positioning", JOURNAL OF SOUTHWEST UNIVERSITY FOR NATIONALITIES(NATURAL SCIENCE EDITION) ), vol. 41, no. 1,, 31 January 2015 (2015-01-31) *

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114158072A (zh) * 2021-11-26 2022-03-08 中国联合网络通信集团有限公司 专网中数据传输的方法和装置
CN114158072B (zh) * 2021-11-26 2023-05-30 中国联合网络通信集团有限公司 专网中数据传输的方法和装置
WO2023098685A1 (zh) * 2021-11-30 2023-06-08 维沃移动通信有限公司 终端定位方法、装置及网络侧设备
WO2023125510A1 (zh) * 2021-12-28 2023-07-06 维沃移动通信有限公司 定位方法及网络侧设备
CN116867061A (zh) * 2021-12-31 2023-10-10 荣耀终端有限公司 定位方法及设备
CN116867061B (zh) * 2021-12-31 2024-04-16 荣耀终端有限公司 定位方法及设备
CN114786222A (zh) * 2022-04-14 2022-07-22 广东辰启科技有限责任公司 一种基于智能盒子的路由自重启方法及智能盒子
CN114786222B (zh) * 2022-04-14 2023-06-13 广东辰启科技有限责任公司 一种基于智能盒子的路由自重启方法及智能盒子

Also Published As

Publication number Publication date
CN114600519A (zh) 2022-06-07
CN114600519B (zh) 2023-08-04

Similar Documents

Publication Publication Date Title
WO2021088065A1 (zh) 无线定位方法及装置
CN103916163B (zh) 用于无线短程通信的方法、装置
WO2017071473A1 (zh) 传输系统信息的方法及基站、终端和系统
KR20190092548A (ko) 포지셔닝 방법 및 시스템, 및 관련 디바이스
US20230189199A1 (en) Positioning method and communication apparatus
US20180160338A1 (en) Relay Node Switching Method and System
US11510134B2 (en) Method and network device for terminal device positioning with integrated access backhaul
WO2020137238A1 (en) Handling procedures for a user equipment, ue, supporting multiple usim cards
US11546044B2 (en) Wireless communication method, terminal device and network device
WO2019101018A1 (zh) 一种链路恢复方法、终端设备及网络设备
EP4185029A1 (en) Information processing method, terminal device, and network device
WO2021138866A1 (zh) 信息确定方法、信息指示方法、终端设备和网络设备
EP4189420A1 (en) Tools and methods for ue environment mapping
WO2021204016A1 (zh) 通信方法以及通信装置
TWI594653B (zh) A method and apparatus for detecting the proximity of a user's device
CN116491135A (zh) 授权配置方法、终端设备和网络设备
EP3466033B1 (en) Location information protection
EP4301057A1 (en) Communication method and apparatus
CN115604820B (zh) 用于定位的方法及装置
US20230403532A1 (en) Dynamic tracing in wireless communication networks
US20240196165A1 (en) Location determining method and apparatus
WO2024031386A1 (zh) 信息处理方法、终端设备和网络设备
CN114205864B (zh) 一种定位方法、装置、芯片及模组设备
WO2022193203A1 (zh) 信息处理方法、终端设备和网络设备
TW202410706A (zh) 獲取位置資訊的方法、通信裝置及系統

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19951508

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19951508

Country of ref document: EP

Kind code of ref document: A1