WO2017071473A1 - 传输系统信息的方法及基站、终端和系统 - Google Patents

传输系统信息的方法及基站、终端和系统 Download PDF

Info

Publication number
WO2017071473A1
WO2017071473A1 PCT/CN2016/101914 CN2016101914W WO2017071473A1 WO 2017071473 A1 WO2017071473 A1 WO 2017071473A1 CN 2016101914 W CN2016101914 W CN 2016101914W WO 2017071473 A1 WO2017071473 A1 WO 2017071473A1
Authority
WO
WIPO (PCT)
Prior art keywords
terminal
base station
system information
information
sent
Prior art date
Application number
PCT/CN2016/101914
Other languages
English (en)
French (fr)
Inventor
张健
曲秉玉
李元杰
周永行
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to JP2018522040A priority Critical patent/JP7050670B2/ja
Priority to AU2016345125A priority patent/AU2016345125B2/en
Priority to EP16858909.1A priority patent/EP3358777B1/en
Priority to ES16858909T priority patent/ES2833498T3/es
Priority to BR112018008560-0A priority patent/BR112018008560B1/pt
Priority to KR1020187014685A priority patent/KR102181447B1/ko
Publication of WO2017071473A1 publication Critical patent/WO2017071473A1/zh
Priority to US15/965,137 priority patent/US10588064B2/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W36/00Hand-off or reselection arrangements
    • H04W36/0005Control or signalling for completing the hand-off
    • H04W36/0083Determination of parameters used for hand-off, e.g. generation or modification of neighbour cell lists
    • H04W36/0085Hand-off measurements
    • H04W36/0094Definition of hand-off measurement parameters
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W48/00Access restriction; Network selection; Access point selection
    • H04W48/08Access restriction or access information delivery, e.g. discovery data delivery
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0053Allocation of signaling, i.e. of overhead other than pilot signals
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W48/00Access restriction; Network selection; Access point selection
    • H04W48/16Discovering, processing access restriction or access information
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W68/00User notification, e.g. alerting and paging, for incoming communication, change of service or the like
    • H04W68/02Arrangements for increasing efficiency of notification or paging channel
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/20Control channels or signalling for resource management
    • H04W72/21Control channels or signalling for resource management in the uplink direction of a wireless link, i.e. towards the network
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/20Control channels or signalling for resource management
    • H04W72/23Control channels or signalling for resource management in the downlink direction of a wireless link, i.e. towards a terminal
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W74/00Wireless channel access
    • H04W74/08Non-scheduled access, e.g. ALOHA
    • H04W74/0833Random access procedures, e.g. with 4-step access
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W76/00Connection management
    • H04W76/20Manipulation of established connections
    • H04W76/27Transitions between radio resource control [RRC] states
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W88/00Devices specially adapted for wireless communication networks, e.g. terminals, base stations or access point devices
    • H04W88/08Access point devices

Definitions

  • the present invention relates to communication technologies, and in particular, to a method for transmitting system information, a base station, a terminal, and a system.
  • the low frequency band usually refers to the spectrum below 3 GHz
  • the centimeter wave band usually refers to the spectrum in the range of 3 GHz to 30 GHz
  • the millimeter wave band usually refers to the spectrum in the range of 30 GHz to 300 GHz.
  • Conventional cellular communications typically utilize a frequency band of around 2 GHz or less.
  • a common signal of a cell such as system information, is generally transmitted in an omnidirectional transmission manner, resulting in a large power consumption of the base station.
  • the embodiments of the present invention provide a method for transmitting system information, a base station, a terminal, and a system, which are used to solve the problem of large power consumption when a base station transmits system information in a cellular communication.
  • an embodiment of the present invention provides a method for transmitting system information.
  • the method includes: the terminal sends an uplink signal, where the uplink signal is used to trigger the base station to send the first system information, and the first system information is used by the terminal to camp in the cell; correspondingly, the base station receives the uplink signal sent by the terminal; and the base station is in the beam where the terminal is located.
  • Sending the first system information; correspondingly, the terminal receives the first system information that the base station sends in the beam where the terminal is located.
  • the base station before receiving the uplink signal sent by the terminal, the base station sends a downlink signal in the cell by using at least one beam, where the downlink signal includes a downlink discovery reference signal DRS, and the downlink DRS is used by the terminal to discover the cell; Before the terminal sends an uplink signal, A downlink signal transmitted by the base station in the cell through at least one beam is also received. The terminal can determine whether there is cell coverage at the current location according to the downlink DRS, and can obtain information about the beam where the terminal is currently located.
  • DRS downlink discovery reference signal
  • the terminal before the terminal sends the uplink signal, the terminal also predicts that the cell is suitable for camping according to the downlink DRS.
  • the terminal can thus transmit an uplink signal in a targeted manner to a base station which is highly likely to camp.
  • the terminal sends an uplink signal to the base station according to the configuration information of the uplink signal; correspondingly, the base station receives the uplink signal sent by the terminal according to the configuration information of the uplink signal.
  • the configuration information of the uplink signal may be preset, or may be included in the downlink signal sent by the base station. When the configuration information of the uplink signal is preset, the downlink signaling overhead of the base station can be saved. When the configuration information of the uplink signal is sent by the base station, the terminal can transmit the uplink signal more flexibly.
  • the terminal receives the first system information sent by the base station in the beam where the terminal is located, and further sends a radio resource control RRC connection establishment procedure to the base station according to the first system information; the base station is also in the RRC connection establishment process.
  • the second system information is sent in the beam where the terminal is located, and the second system information is used by the terminal to communicate in the cell; correspondingly, the terminal is in the RRC connection establishment process or after the RRC connection establishment process Receiving second system information sent by the base station in the beam where the terminal is located. Therefore, the base station only needs to send the second system information to the terminal in the RRC connected state, which saves system overhead.
  • the base station sends the second system information in the beam where the terminal is located after transmitting the RRC connection setup message, or the base station sends the second system in the beam where the terminal is located after the RRC connection setup message sent by the receiving terminal is completed.
  • the terminal receives the second system information that is sent by the base station after sending the RRC connection setup message, or the terminal receives the second system information that is sent by the base station after receiving the RRC connection setup complete message sent by the terminal. Therefore, the base station can send the second system information to the terminal at an appropriate timing according to actual conditions.
  • the first system information includes configuration information of the broadcast channel, operation At least one of the merchant information and the tracking area information. Further, the first system information may further include configuration information of the paging channel, and is used by the terminal to calculate a paging window. For example, the terminal may calculate a paging window according to the configuration information of the paging channel, and receive a paging message within the paging window. Therefore, in the case that the terminal transmits the system information through the beam mode, the terminal does not miss the paging message.
  • an embodiment of the present invention provides another method of transmitting system information.
  • the method includes: the terminal sends an uplink signal, where the uplink signal is used to trigger the base station to send the first system information and the second system information; correspondingly, the base station receives the uplink signal sent by the terminal; the base station sends the first system information and the second in the beam where the terminal is located.
  • System information correspondingly, the terminal receives the first system information and the second system information that are sent by the base station in the beam where the terminal is located. Therefore, the terminal can quickly establish a communication service in the cell after receiving the first system information and the second system information.
  • an embodiment of the present invention provides a base station, where the base station has a function of implementing a behavior of a base station in the actual method.
  • the functions may be implemented by hardware or by corresponding software implemented by hardware.
  • the hardware or software includes one or more modules corresponding to the functions described above.
  • the structure of the base station includes a processor and a transmitter configured to support the base station to perform the corresponding functions in the above methods.
  • the transmitter is configured to support communication between the base station and the terminal, and send information or instructions involved in the foregoing method to the terminal.
  • the base station can also include a memory for coupling with the processor that stores the necessary program instructions and data for the base station.
  • an embodiment of the present invention provides a terminal, where the terminal has a function of implementing terminal behavior in the design of the foregoing method.
  • the functions may be implemented by hardware or by corresponding software implemented by hardware.
  • the hardware or software includes one or more modules corresponding to the functions described above.
  • the modules can be software and/or hardware.
  • the structure of the terminal includes a receiver and a processor, and the receiver is configured to support the terminal to receive the first system information and/or the second system information sent by the base station.
  • the processor controls the terminal to predict the cell according to the downlink DRS received by the receiver. Residing; or initiating an RRC connection setup procedure based on the first system information received by the receiver, or calculating a paging window.
  • an embodiment of the present invention provides a communication system, including the base station and the terminal in the foregoing aspect.
  • an embodiment of the present invention provides a computer storage medium for storing computer software instructions for use by the base station, including a program designed to perform the above aspects.
  • an embodiment of the present invention provides a computer storage medium for storing computer software instructions for use in the terminal, including a program designed to perform the above aspects.
  • the solution provided by the present invention can send system information as needed, thereby reducing power consumption of the base station and reducing system overhead.
  • FIG. 1 is a schematic diagram of a possible system network for implementing the present invention
  • FIG. 2 is a schematic flowchart of a transmission system information according to an embodiment of the present invention.
  • FIG. 3a is a schematic diagram of communication for transmitting information of a first system according to an embodiment of the present invention
  • FIG. 3b is a schematic diagram of a base station transmitting first system information according to an embodiment of the present disclosure
  • FIG. 4 is a schematic diagram of communication for transmitting information of a second system according to an embodiment of the present invention.
  • FIG. 5 is a schematic diagram of communication of a method for paging according to an embodiment of the present invention.
  • FIG. 6 is a schematic diagram of communication of another transmission system information according to an embodiment of the present invention.
  • FIG. 7 is a schematic structural diagram of a base station according to an embodiment of the present disclosure.
  • FIG. 8 is a schematic structural diagram of a terminal according to an embodiment of the present invention.
  • the network architecture and the service scenario described in the embodiments of the present invention are used to more clearly illustrate the technical solutions of the embodiments of the present invention, and do not constitute a limitation of the technical solutions provided by the embodiments of the present invention.
  • the technical solutions provided by the embodiments of the present invention are equally applicable to similar technical problems.
  • the base station sends a signal to the terminal in a beamforming manner in the cell.
  • the beamforming manner may be a beam switching manner, which is generally implemented by using an analog or radio frequency circuit;
  • the way of adaptive beam is generally implemented using digital circuits.
  • the beam may be a beam of a horizontal plane or a beam of a vertical plane.
  • LTE Long Term Evolution
  • the technical solutions described in the embodiments of the present invention may be applicable to a Long Term Evolution (LTE) system, or other wireless communication systems using various radio access technologies, for example, using code division multiple access, frequency division multiple access, and time division.
  • it can also be applied to the subsequent evolution system using the LTE system, such as the 5th Generation (5G) system.
  • 5G 5th Generation
  • the base station involved in the embodiment of the present invention is a device deployed in a radio access network to provide a wireless communication function for a terminal.
  • the name of the base station may be different.
  • it may be an evolved Node B (eNB or eNodeB)
  • eNB evolved Node B
  • 3G third generation
  • it can be a Node B.
  • 2G Base Transceiver Station
  • the base station in the embodiment of the present invention includes both the base station in the existing communication system, and also The base station in the communication system that may occur in the future is not limited in the embodiment of the present invention.
  • the terminal involved in the embodiment of the present invention may be a wireless terminal, and the wireless terminal may be a device that provides voice or data connectivity to the user, a handheld device with a wireless connection function, or other processing device connected to the wireless modem.
  • the wireless terminal can communicate with one or more core networks via a radio access network (eg, Radio Access Network, RAN for short), and the wireless terminal can be a mobile terminal, such as a mobile phone (or "cellular" phone) and has a mobile
  • RAN Radio Access Network
  • the computer of the terminal for example, the wireless terminal can be a portable, pocket, handheld, computer built-in or in-vehicle mobile device that exchanges voice or data with the wireless access network.
  • the wireless terminal may be a personal communication service (PCS) phone, a cordless phone, a Session Initiation Protocol (SIP) phone, a Wireless Local Loop (WLL) station, or an individual.
  • PCS personal communication service
  • SIP Session Initiation Protocol
  • WLL Wireless Local Loop
  • a wireless terminal may also be called a system, a Subscriber Unit, a Subscriber Station, a Mobile Station, a Mobile, a Remote Station, and an Access Point.
  • AP Remote Terminal
  • Access Terminal User Terminal
  • User Agent User Device
  • UE User Equipment
  • the technical solution provided by the embodiment of the present invention can be applied to a scenario in which a low-frequency cell works as an independent cell in a cellular communication system, and the solution provided by the embodiment of the present invention is used to transmit a system information by using a traditional omnidirectional transmission. Sending system information internally can greatly reduce system overhead.
  • the technical solution provided by the embodiment of the present invention can also be applied to a scenario in which a high-frequency cell operates as an independent cell in a cellular communication system. If the system information is transmitted in an omnidirectional transmission mode in a high-frequency cell, not only the power consumption of the base station is large, Moreover, the transmission range will be very limited, and the solution provided by the embodiment of the present invention can ensure the coverage and capacity of the cell while reducing the system overhead. It can be understood that the technical solution provided by the embodiment of the present invention can also be applied to a scenario in which a high frequency cell and a low frequency cell are jointly set up in a cellular communication.
  • One embodiment of the present invention provides a method of transmitting system information, and a base station, terminal, and system based on the method.
  • the terminal sends an uplink signal, where the uplink signal is used to trigger the base station to send the first system information, and the first system information is used by the terminal to camp in the cell; after receiving the uplink signal, the base station sends the first system information in the beam where the terminal is located; The terminal receives the first system information that the base station sends in the beam where the terminal is located.
  • the terminal may also initiate a Radio Resource Control (RRC) connection establishment process according to the first system information; the base station is also in the RRC connection establishment process or after the RRC connection establishment process.
  • RRC Radio Resource Control
  • the second system information is sent by the beam where the terminal is located, and the second system information is used by the terminal to communicate in the cell; correspondingly, the terminal receives the second system information that is sent by the base station in the beam where the terminal is located.
  • the base station when the terminal is a terminal in the RRC idle state, the base station only needs to send the first system information in the beam where the terminal is located; when the terminal is the terminal in the RRC connected state, the base station only needs to send the beam in the terminal where the terminal is located.
  • Second system information when the terminal is a terminal in the RRC idle state, the base station only needs to send the first system information in the beam where the terminal is located; when the terminal is the terminal in the RRC connected state, the base station only needs to send the beam in the terminal where the terminal is located. Second system information.
  • the first system information and the second system information are described below by taking the LTE system as an example.
  • the 3rd Generation Partnership Project (3GPP) has a series of regulations on system information through the TS36.331 protocol.
  • the solution of the embodiment of the present invention divides existing system information into first system information and second system information. Understandably, new communication systems in the future may introduce new system information or integrate or reclassify existing system information. New system information or reclassified system information may also be added according to its use.
  • the first system information or the second system information described in the embodiment of the present invention is not limited to the existing system information listed next.
  • the first system information and the second system information are separately described below.
  • the first system information is used by the terminal to camp in the cell.
  • the first system information includes configuration information of a broadcast channel (BCH), carrier information, Track at least one of the zone information.
  • the configuration information of the broadcast channel includes at least one of the following information: a downlink bandwidth information, a system frame number (SFN), and a Physical Hybrid Automatic Retransmission Request Indication Channel (PHICH). ) configuration information.
  • the carrier information may be a public land mobile network (PLMN) list information.
  • the tracking area information may be a Tracking Area Code (TAC).
  • TAC Tracking Area Code
  • the first system information further includes at least one of information included in a System Information Block (SIB) 1 to SIB5, where the SIB1 includes information for evaluating whether the terminal is allowed to access the cell.
  • SIB System Information Block
  • SIB2 includes common radio resource configuration information applicable to all terminals
  • SIB3 includes public information applicable to at least one of co-frequency cell reselection, inter-frequency cell reselection, and inter-system cell reselection
  • SIB4 contains information of a cell requiring a specific reselection parameter and cell blacklist information, that is, list information of cells that are not allowed to camp and access
  • SIB5 includes inter-frequency cell reselection information, such as other evolved universal terrestrial radio The frequency information of the Evolved Universal Terrestrial Radio Access Network (E-UTRAN) and the information related to the inter-frequency neighboring cell.
  • the first system information further includes at least one of the following information:
  • a configuration information of the cell selection including at least one of the following: a minimum reference signal received power (Reference Signal Received Power, RSRP) level, and a minimum RSRP level offset required for cell selection;
  • RSRP Reference Signal Received Power
  • Configuration information of the cell reselection including at least one of the following information: reselection threshold, cell reselection priority, configuration information of co-frequency cell reselection, configuration information of inter-frequency cell reselection;
  • the configuration information of the cell reselection includes at least one of the following: a minimum RSRP level required for cell reselection, an antenna port 1 presence indication, and neighboring cell configuration information, where the neighboring cell configuration information includes: a physical cell identifier, and a cell inter-segment
  • the configuration information of the inter-frequency cell reselection includes at least one of the following information: configuration information of the carrier frequency list, downlink carrier frequency, cell selection, or minimum RSRP level offset required for cell reselection Re-election time The timer, the reselection threshold low value, the allowed measurement bandwidth, the antenna port 1 presence indication, and the neighboring area configuration information, where the neighboring area configuration
  • System configuration information including at least one of the following information: time division duplex configuration, system value label, access category forbidden information (such as cell forbidden indication), frequency or band indication information, and broadcast control channel (Broadcast Control Channel) , referred to as BCCH) configuration information, cell identity (Cell Identity, CI for short);
  • BCCH Broadcast Control Channel
  • Random access configuration information including at least one of the following: configuration information of a physical random access channel (PRACH), and public configuration of a random access channel (RACH)
  • the configuration information of the physical random access channel includes at least one of the following: a root sequence index, a configuration index of the physical random access channel, and the common configuration information of the random access channel includes preamble information;
  • the configuration information of the paging channel includes at least one of the following information: a paging record list, a system information change, and a UE identity (such as S-TMSI (System Architecture Evolution Temporary Mobile) Subscriber Identity, System Architecture Evolution - Temporary Mobile Subscriber Identity) or IMSI (International Mobile Subscriber Identity), core network-domain (such as circuit domain or packet domain);
  • a paging record list such as S-TMSI (System Architecture Evolution Temporary Mobile) Subscriber Identity, System Architecture Evolution - Temporary Mobile Subscriber Identity) or IMSI (International Mobile Subscriber Identity)
  • IMSI International Mobile Subscriber Identity
  • core network-domain such as circuit domain or packet domain
  • Configuration information of the physical channel Common configuration information of the physical downlink shared channel (PDSCH), public configuration information of the Physical Uplink Shared Channel (PUSCH), and physical uplink control channel (Physical)
  • PDSCH physical downlink shared channel
  • PUSCH Physical Uplink Shared Channel
  • Physical uplink control channel Physical
  • the common configuration information of the Uplink Control Channel PUCCH
  • UPC Uplink Power Control
  • the first system Information priority package Contains information with the highest priority.
  • the priority of the information may also be sorted in other manners. The embodiment of the present invention does not limit the priority order of the information listed in "a ⁇ f".
  • the second system information is used by the terminal to communicate in the cell.
  • the second system information includes all system information except the first system information, such as information in SIB6 to SIB19.
  • SIB6 ⁇ 8 are information related to inter-system cell reselection;
  • SIB9 includes name information of home base station;
  • SIB10 includes main notification information of Earthquake and Tsunami Warning System (ETWS);
  • SIB11 contains secondary notification of ETWS Information;
  • SIB12 includes notification information of the Commercial Mobile Alert System (CMAS);
  • SIB13 includes the Multimedia Broadcast Multicast System (MBMS); and the SIB14 includes Extended Access Barring (abbreviation).
  • SIB15 includes MBMS Service Area Identifier (SAI) and/or neighbor carrier frequency; SIB16 includes Global Positioning System (GPS) time and cooperative universal time; SIB17 includes E-UTRAN And the service guidance information of the wireless local area network (WLAN); the SIB18 indicates that the E-UTRAN supports the terminal process information of the device to device (D2D) communication; the SIB19 includes the E-UTRAN to support the D2D discovery. Resource configuration information.
  • SAI Service Area Identifier
  • SIB16 includes Global Positioning System (GPS) time and cooperative universal time
  • SIB17 includes E-UTRAN And the service guidance information of the wireless local area network (WLAN);
  • the SIB18 indicates that the E-UTRAN supports the terminal process information of the device to device (D2D) communication;
  • SIB19 includes the E-UTRAN to support the D2D discovery. Resource configuration information.
  • a base station In traditional cellular communication, a base station generally uses omnidirectional transmission to transmit all system information in a cell range, and the power consumption of the base station is large.
  • system information can be sent on demand: the base station only needs to send the first system information in the beam range of the terminal in the RRC idle state, and the beam range of the terminal in the RRC connected state exists.
  • Sending the second system information, the scheme for transmitting the system information on demand greatly reduces the overhead, especially when the terminals in multiple RRC idle state or RRC connected state are in different beams, and the base station needs When system information is transmitted within the different beams.
  • the terminal sends an uplink signal, where the uplink signal is used to trigger the base station to send the first system information, where the first system information is used by the terminal to camp in the cell.
  • the uplink signal may be a Discovery Reference Signal (DRS), or may be a Sounding Reference Signal (SRS), or may be a random access preamble or a pre- A signal is specifically provided for triggering the base station to transmit the first system information.
  • DRS Discovery Reference Signal
  • SRS Sounding Reference Signal
  • a signal is specifically provided for triggering the base station to transmit the first system information.
  • the terminal before the terminal sends the uplink signal, the terminal further receives a downlink signal that is sent by the base station in the cell by using at least one beam, where the downlink signal includes a downlink DRS, and the downlink DRS is used by the terminal to discover the cell.
  • the terminal can determine whether there is cell coverage at the current location according to the downlink DRS, and can obtain information about the beam where the terminal is currently located.
  • the terminal before the terminal sends the uplink signal, the terminal further predicts that the cell is suitable for camping according to the downlink DRS. For example, the terminal performs pre-judgment according to Reference Signal Strength Indication (RSSI) of the downlink DRS or Reference Signal Received Power (RSRP) of the downlink DRS.
  • RSSI Reference Signal Strength Indication
  • RSRP Reference Signal Received Power
  • the terminal can thus transmit an uplink signal in a targeted manner to a base station which is highly likely to camp.
  • the terminal transmits an uplink signal according to the configuration information of the uplink signal.
  • the configuration information of the uplink signal may be preset, so that the downlink signaling overhead of the base station may be saved.
  • the configuration information of the uplink signal may also be included in the downlink signal sent by the base station, so that the terminal may send the uplink signal more flexibly.
  • the configuration information of the uplink signal may be obtained by other methods, which is not limited by the embodiment of the present invention.
  • the base station receives the uplink signal sent by the terminal, and the uplink signal is used to trigger the base station to send the first system information, where the first system information is used by the terminal to camp in the cell.
  • the base station before receiving the uplink signal sent by the terminal, the base station further sends a downlink signal in the cell by using at least one beam, where the downlink signal includes a downlink DRS, and the downlink DRS is used.
  • the terminal discovers the cell.
  • the base station receives an uplink signal transmitted by the terminal according to the configuration information of the uplink signal.
  • the base station transmits the first system information in the beam where the terminal is located.
  • the base station may send the first system information to the beam where the terminal is located immediately after receiving the uplink signal sent by the terminal, so that the terminal can obtain the first system information faster; or the base station can also locate the terminal according to the preset time period.
  • the beam transmits the first system information. This can reduce the signaling overhead of the base station transmitting the first system information to multiple terminals in the same beam range.
  • the terminal receives the first system information sent by the base station in the beam where the terminal is located.
  • the terminal receives the first system information sent by the base station in the beam where the terminal is located, and further initiates an RRC connection establishment process to the base station according to the first system information.
  • the terminal may initiate an RRC connection establishment process by means of random access.
  • the base station after the base station sends the first system information, the base station sends the second system information in the beam where the terminal is located, or after the RRC connection establishment process initiated by the terminal according to the first system information.
  • the second system information is used by the terminal to communicate in the cell.
  • the base station may send the second system information after receiving the RRC connection setup message sent by the terminal, or the base station may also send the second system information after receiving the RRC connection setup complete message sent by the terminal; or the base station may also use the dedicated RRC.
  • the signaling sends the second system information to the terminal.
  • the terminal receives the second system information that is sent by the base station in the beam where the terminal is located, in the RRC connection establishment process or after the RRC connection establishment process.
  • the terminal may receive the second system information that is sent by the base station after sending the RRC connection setup message; or the terminal may also receive the second system information that is sent by the base station after receiving the RRC connection setup complete message sent by the terminal; or, the terminal may also Receiving second system information that the base station sends through dedicated RRC signaling.
  • the base station can also be in the RRC connection establishment process.
  • the second system information is sent in the beam where the terminal is located, which is not limited in this embodiment. Therefore, the base station can send the second system information to the terminal at an appropriate timing according to actual conditions.
  • the first system information includes at least one of configuration information of the broadcast channel, operator information, and tracking area information.
  • the first system information further includes configuration information of the paging channel, and is used by the terminal to calculate a paging window.
  • the paging window refers to the length of time for monitoring one subframe or multiple subframes of the paging message, and the multiple subframes may be continuous or discontinuous. Therefore, in the case that the terminal transmits the system information through the beam mode, the terminal does not miss the paging message.
  • FIG. 3a is a schematic diagram of communication for transmitting information of a first system according to an embodiment of the present invention.
  • the base station sends a downlink signal in the cell by using at least one beam
  • the downlink signal includes a downlink DRS
  • the downlink DRS is used by the terminal to discover the cell.
  • the downlink DRS includes a downlink synchronization signal
  • the downlink synchronization signal is used by the terminal to obtain downlink synchronization with the base station.
  • the downlink synchronization signal may be a single synchronization signal, or may include a primary primary synchronization signal (PSS) and a secondary secondary synchronization signal (Secondary Synchronization Signal, SSS for short).
  • the downlink DRS further includes at least one of the following: a Cell-specific Reference Signal (CRS), and a Channel State Information-Reference Signal (CSI-RS).
  • CRS Cell-specific Reference Signal
  • CSI-RS Channel State Information-Reference Signal
  • the terminal after receiving the downlink signal sent by the base station in the cell by using at least one beam, the terminal predicts that the cell is suitable for camping.
  • the terminal may pre-determine that the cell is suitable for camping according to the downlink DRS. For example, the terminal predicts that the cell is suitable for camping according to the reference signal strength indication of the downlink DRS or the reference signal received power of the downlink DRS.
  • the downlink signal further includes at least one of PLMN information, cell selection information, and cell reselection information
  • the terminal obtains downlink synchronization with the base station according to the downlink DRS, and according to the PLMN information, the cell selection information, and the cell reselection information. At least one of the ones predicts that the cell is suitable for camping. It can be understood that the terminal may detect the beams of different base stations, thereby receiving no The downlink signal sent by the base station, when the downlink signal includes at least one of the PLMN information, the cell selection information, and the cell reselection information, the terminal may be configured according to the PLMN information, the cell selection information, and the cell reselection information sent by the different base stations.
  • At least one performs a preliminary determination, and then sends an uplink DRS to the corresponding base station for the cell that is suitable to camp to trigger the corresponding base station to send the first system information, instead of sending the uplink DRS for all detected base stations and receiving the first uplink sent by all the base stations.
  • the terminal may send an uplink DRS according to the configuration information of the uplink DRS of one base station, and trigger the base station to send the first system information to the terminal.
  • the multiple base stations use the same uplink DRS configuration information, and the uplink DRS sent by the terminal may trigger multiple base stations to send the first system information to the beam where the terminal is located; the multiple base stations may cooperate to send the first system information to the terminal.
  • Time-frequency domain resources so that the terminal can receive the first system information from multiple base stations separately or simultaneously; the terminal can select a cell that is provided by one of the multiple base stations according to the first system information, and can even reside at the same time.
  • the network may send a paging message to the terminal through one or more cells.
  • the terminal sends an uplink DRS to the base station, where the uplink DRS is used to trigger the base station to send the first system information.
  • the uplink DRS is cell-specific or beam-specific, and does not distinguish between different terminals. Therefore, different terminals may select the same uplink DRS and corresponding uplink resources to send to the base station.
  • the downlink signal sent by the base station further includes configuration information of the uplink DRS. If the terminal is to be camped on the cell, the terminal sends the uplink DRS to the base station according to the configuration information of the uplink DRS sent by the base station; or, the terminal may also The uplink DRS is sent to the base station according to the preset configuration information of the uplink DRS. Alternatively, the terminal may further generate a corresponding uplink DRS according to the downlink DRS and send the uplink DRS to the base station. It should be noted that if the terminal has received the first system information on the beam where it is located, the terminal may not send the uplink DRS.
  • the terminal also carries a beam identifier in the uplink DRS, and the beam identifier is used for Identifies the beam where the terminal is located.
  • the base station After receiving the uplink DRS sent by the terminal, the base station sends the first system information in the beam where the terminal is located, and the first system information is used by the terminal to camp on the cell.
  • the part that is included in the downlink signal does not include the part.
  • the first system information sent by the base station for the portion not included in the downlink signal, the part is included in the first system information sent by the base station.
  • the downlink signal includes PLMN information, and does not include cell selection information and cell reselection information
  • the first system information includes cell selection information and cell reselection information; or if the downlink signal includes PLMN information and a cell. If the information is selected, the first system information includes cell reselection information; or, if the downlink signal includes PLMN information, cell selection information, and cell reselection information, the first system information does not include the three types of information. Any of them.
  • the base station can determine the beam where the terminal is located in one of the following ways:
  • the first mode if the uplink DRS includes a beam identifier, the base station determines, according to the beam identifier, a beam where the terminal is located;
  • the second mode the base station uses the channel reciprocity to perform channel estimation on the uplink DRS sent by the terminal, so as to determine the beam where the terminal is located in the downlink direction.
  • the base station transmits the first system information through at least one beam within a preset time period, and transmits according to a preset number of times. For example, as shown in FIG. 3b, for a certain beam, within a preset time period t 0 ⁇ t s , the base station may receive multiple terminals (for example, terminal 1 to terminal n) before a preset transmission timing t s . After the uplink DRS is sent, the base station determines that the terminal exists in the beam range and the terminal expects to camp, and sends the first system information one or more times within the range of the beam at the preset transmission timing t s to avoid The first system information is transmitted for each terminal that transmits the uplink DRS, thereby reducing overhead.
  • the sending timing of the first system information sent by the base station by using the different beam may be the same or different.
  • the transmission timing is the same, that is, the base station simultaneously transmits the first system information in different beam ranges; the different transmission timing means that, for example, for the beam 1 and the beam 2, the base station transmits the first system in the range of the beam 1 at the transmission timing 1
  • the information is transmitted at the transmission opportunity 2 within the range of the beam 2, wherein the transmission opportunity 1 and the transmission opportunity 2 can be located at different symbol positions of the same or different subframes.
  • the terminal receives the first system information that is sent by the base station in the beam where the terminal is located. If the first system information is not received within the preset time period after the terminal sends the uplink DRS, the terminal resends the uplink DRS to the base station. Optionally, the terminal reselects the uplink DRS and the corresponding uplink resource, and then sends the uplink DRS.
  • the base station may also send the first system information to the terminal immediately after receiving the uplink DRS sent by the terminal, for example, sending the first system information to the terminal by using dedicated RRC signaling.
  • the terminal in the RRC idle state may perform the steps in the sections 301 to 304.
  • the steps in the sections 301 to 304 may not be performed, or only the correspondence in the 304 part may be performed.
  • the step is that the base station sends the first system information in the beam where the terminal is located, and correspondingly, the terminal receives the first system information sent by the base station.
  • the base station sends the changed first system information in all the beams in the cell range, so that all the terminals in the cell range can receive the changed first system. information. It can be understood that the change of the information of the first system is not frequent, and therefore the overhead is not large, thereby avoiding the overhead of the information of the beam where the base station maintains the terminal.
  • FIG. 4 is a schematic diagram of communication for transmitting information of a second system according to an embodiment of the present invention.
  • the terminal initiates an RRC connection establishment process to the base station according to the first system information, where the terminal initiates an RRC connection establishment process by means of random access as an example.
  • the 405 part and the 407 part in FIG. 4 are optional parts, and one of the parts is selected for execution.
  • the terminal transmits a random access preamble to the base station.
  • the base station sends a random access response message to the terminal.
  • the terminal sends an RRC Connection Request message to the base station.
  • the terminal requests the base station to send the second system information to the beam where the terminal is located in the RRC connection request message.
  • the base station sends an RRC Connection Setup message to the terminal.
  • the base station transmits the second system information to the beam in which the terminal is located.
  • the specific implementation process of the second system information sent by the base station is similar to the process in which the base station sends the first system information in the beam where the terminal is located. For details, refer to the detailed description in section 304, and details are not described herein.
  • the terminal sends an RRC Connection Setup Complete message to the base station.
  • the terminal requests the base station to send the second system information to the beam where the terminal is located in the RRC connection setup complete message.
  • the base station sends the second system information to the beam in which the terminal is located.
  • the 407 part is similar to the 405 part. For details, refer to the detailed description in section 405, and details are not described herein again.
  • the base station may send the second system information to the beam where the terminal is located according to the request of the terminal in the RRC connection request or the RRC connection setup complete message, or may directly send the second system information to the beam where the terminal is located, that is, whether the terminal is The requesting, the base station sends the second system information to the beam where the terminal is located.
  • the base station does not perform, but the base station sends the second system information to the terminal by using dedicated RRC signaling, for example, the base station carries the second system in the RRC connection setup message.
  • the RRC signaling of the information, or the base station sends the RRC signaling including the second system information to the terminal after receiving the RRC connection setup complete message sent by the terminal.
  • the changed second system information may be transmitted only to the beam of the terminal having the RRC connected state, thereby reducing the overhead.
  • the terminal may also according to the paging message.
  • the configuration information of the track calculates a paging window and receives a paging message sent by the base station in the paging window. Further, the terminal may also determine a paging occasion after receiving the paging message.
  • FIG. 5 is a schematic flowchart diagram of a method for paging according to an embodiment of the present invention.
  • the terminal calculates a paging window based on the configuration information of the paging channel.
  • the terminal calculates a paging window by determining a starting subframe and a length of time of the paging window.
  • the terminal calculates a paging frame and a paging subframe in which an estimated paging occasion (Paging Occasion, PO for short) is located according to the configuration information of the paging channel, and uses the paging subframe as a paging window for monitoring a paging message.
  • the starting subframe, and the total length of the beam number of the cell multiplied by the switching time of the beam is taken as the length of the paging window.
  • the terminal after receiving the first system information, the terminal only needs to calculate a paging window according to the configuration information of the paging channel included in the first system information. If the terminal has calculated the paging window, the 502 part may be directly executed without executing the 501 part.
  • the terminal receives a paging message within the paging window.
  • the terminal uses the subframe in which the paging message is located as the actual paging occasion.
  • the terminal calculates the subframe in which the paging message is located according to the beam identifier of the beam in which the terminal is located, and uses the subframe as the actual paging occasion. After determining the actual paging occasion, the terminal only needs to monitor and receive the paging message in the subframe where the actual paging occasion is located, so that the time for the terminal to listen to the paging message can be reduced, thereby reducing the power consumption of the terminal.
  • the terminal only needs to determine the actual paging occasion once. If the terminal has determined the actual paging occasion, the terminal may not perform the above steps of determining the actual paging occasion and the steps before determining the actual paging occasion, and directly receive the paging message at the determined actual paging occasion. can.
  • only the 501 part and the 502 part may be performed; and the 501-503 part may also be performed.
  • a terminal sends an uplink.
  • the uplink signal is used to trigger the base station to send the first system information and the second system information; after receiving the uplink signal sent by the terminal, the base station sends the first system information and the second system information in the beam where the terminal is located; correspondingly, the terminal receives the base station The first system information and the second system information transmitted in the beam where the terminal is located.
  • the following uplink signal is an RRC connection establishment request as an example.
  • the terminal sends an RRC Connection Setup Request.
  • the RRC connection setup request message includes request information for requesting the base station to send the first system information and the second system information.
  • the RRC connection setup request message is used to trigger the base station to send the first system information. And second system information.
  • the base station after receiving the RRC connection setup request sent by the terminal, the base station sends the first system information and the second system information in the beam where the terminal is located.
  • the base station sends the first system information and the second system information according to the request of the terminal; in another example, after receiving the RRC connection setup request message, the base station sends the first system information and the second system in the beam where the terminal is located. information.
  • the terminal receives the first system information and the second system information sent by the terminal. Therefore, the terminal can quickly establish a communication service in the cell after receiving the first system information and the second system information.
  • each network element such as a terminal, a base station, etc.
  • each network element includes hardware structures and/or software modules corresponding to each function.
  • the present invention can be implemented in a combination of hardware or hardware and computer software in combination with the elements and algorithm steps of the various examples described in the embodiments disclosed herein. Whether a function is implemented in hardware or computer software to drive hardware depends on the specific application and design constraints of the solution. A person skilled in the art can use different methods for implementing the described functions for each particular application, but such implementation should not be considered to be beyond the scope of the present invention.
  • FIG. 7 shows a possible structural diagram of a base station involved in the above embodiment.
  • the base station includes a transmitter/receiver 701, and may also include a controller/processor 702, a memory 703, and a communication unit 704.
  • the transmitter/receiver 701 is configured to support transmission and reception of information between the base station and the terminal in the foregoing embodiment, and to support radio communication between the terminal and other terminals.
  • the controller/processor 702 performs various functions for communicating with the terminal.
  • On the uplink the uplink signal from the terminal is received via the antenna, coordinated by the receiver 701, and further processed by the controller/processor 702 to recover the traffic data and signaling information transmitted by the terminal.
  • traffic data and signaling messages are processed by controller/processor 702 and mediated by transmitter 701 to generate downlink signals for transmission to the terminal via the antenna.
  • the controller/processor 702 also performs the processes involved in the base station of Figures 2 through 6 and/or other processes for the techniques described herein.
  • the memory 703 is used to store program codes and data of the base station.
  • the communication unit 704 is configured to support the base station to communicate with other network entities.
  • Figure 7 only shows a simplified design of the base station.
  • the base station may include any number of transmitters, receivers, processors, controllers, memories, communication units, etc., and all base stations that can implement the present invention are within the scope of the present invention.
  • Fig. 8 shows a simplified schematic diagram of one possible design structure of the terminal involved in the above embodiment.
  • the terminal includes a transmitter 801, a receiver 802, and may further include a controller/processor 803, a memory 804, and a modem processor 805.
  • Transmitter 801 conditions (e.g., analog conversion, filtering, amplifying, upconverting, etc.) output samples and generates an uplink signal that is transmitted via an antenna to the base station described in the above embodiments.
  • the antenna receives the downlink signal transmitted by the base station in the above embodiment.
  • Receiver 802 conditions (eg, filters, amplifies, downconverts, digitizes, etc.) the signals received from the antenna and provides input samples.
  • encoder 806 receives the traffic data and signaling messages to be transmitted on the uplink and processes (e.g., formats, codes, and interleaves) the traffic data and signaling messages.
  • Modulator 807 further processes (e.g., symbol maps and modulates) the encoded traffic data and signaling messages and provides output samples.
  • Demodulator 809 processing (example For example, demodulating) the input samples and providing symbol estimates.
  • the decoder 808 processes (e.g., deinterleaves and decodes) the symbol estimate and provides decoded data and signaling messages that are sent to the terminal.
  • Encoder 806, modulator 807, demodulator 809, and decoder 808 may be implemented by a composite modem processor 805. These units are processed according to the radio access technology employed by the radio access network (e.g., access technologies of LTE and other evolved systems).
  • the controller/processor 803 controls and manages the actions of the terminal for performing the processing performed by the terminal in the above embodiment. For example, it is used to control the terminal to prejudge the cell for camping according to the downlink DRS and/or other processes of the techniques described in the present invention. As an example, the controller/processor 803 is configured to support the terminal in performing the process 302 of FIG. 3a, processes 501 and 503 in FIG.
  • the memory 804 is used to store program codes and data for the terminal.
  • the controller/processor for performing the above-described base station and terminal functions of the present invention may be a central processing unit (CPU), a general purpose processor, a digital signal processor (DSP), an application specific integrated circuit (ASIC), and a field programmable gate array ( FPGA) or other programmable logic device, transistor logic device, hardware component, or any combination thereof. It is possible to implement or carry out the various illustrative logical blocks, modules and circuits described in connection with the present disclosure.
  • the processor may also be a combination of computing functions, for example, including one or more microprocessor combinations, a combination of a DSP and a microprocessor, and the like.
  • the steps of a method or algorithm described in connection with the present disclosure may be implemented in a hardware, or may be implemented by a processor executing software instructions.
  • the software instructions may be comprised of corresponding software modules that may be stored in RAM memory, flash memory, ROM memory, EPROM memory, EEPROM memory, registers, hard disk, removable hard disk, CD-ROM, or any other form of storage well known in the art.
  • An exemplary storage medium is coupled to the processor to enable the processor to read information from, and write information to, the storage medium.
  • the storage medium can also be an integral part of the processor.
  • the processor and the storage medium can be located in an ASIC. Additionally, the ASIC can be located in the terminal.
  • the processor and the storage medium can also exist as discrete components in the terminal.
  • the functions described herein can be implemented in hardware, software, firmware, or any combination thereof.
  • the functions may be stored in a computer readable medium or transmitted as one or more instructions or code on a computer readable medium.
  • Computer readable media includes both computer storage media and communication media including any medium that facilitates transfer of a computer program from one location to another.
  • a storage medium may be any available media that can be accessed by a general purpose or special purpose computer.

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Computer Security & Cryptography (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本申请涉及通信领域,尤其涉及一种传输系统信息的方法及基站、终端和系统。在一种传输系统信息的方法中,终端发送上行信号,该上行信号用于触发基站发送第一系统信息,第一系统信息用于该终端驻留在小区中;对应的,基站接收终端发送的上行信号;基站在终端所在的波束发送第一系统信息;对应的,终端接收基站在该终端所在的波束发送的第一系统信息。通过本申请提供的方案,可以按需发送系统信息,从而降低基站的功率消耗,减少系统开销。

Description

传输系统信息的方法及基站、终端和系统 技术领域
本发明涉及通信技术,尤其涉及一种传输系统信息的方法及基站、终端和系统。
背景技术
随着分组业务和智能终端的迅速发展,高速、大数据量的业务对频谱的需求不断增加。低频频段通常指3GHz以下范围的频谱,厘米波频段通常指3GHz~30GHz范围的频谱,毫米波频段通常指30GHz~300GHz范围的频谱。传统的蜂窝通信一般利用2GHz左右或更低的频段。在传统的蜂窝通信中,小区的公共信号如系统信息一般采用全向发射的方式进行发送,导致基站的功率消耗较大。
发明内容
本发明实施例提供了一种传输系统信息的方法及基站、终端和系统,用以解决蜂窝通信中基站发送系统信息时功率消耗较大的问题。
一方面,本发明实施例提供一种传输系统信息的方法。方法包括:终端发送上行信号,上行信号用于触发基站发送第一系统信息,第一系统信息用于终端驻留在小区中;对应的,基站接收终端发送的上行信号;基站在终端所在的波束发送第一系统信息;对应的,终端接收基站在终端所在的波束发送的第一系统信息。
在一种可能的设计中,基站接收终端发送的上行信号之前,还通过至少一个波束在小区内发送下行信号,下行信号包括下行发现参考信号DRS,下行DRS用于终端发现该小区;对应的,终端发送上行信号之前, 还接收基站通过至少一个波束在小区内发送的下行信号。终端从而可以根据下行DRS判断当前所处位置是否存在小区覆盖,以及可以获取终端当前所在的波束的信息。
在一种可能的设计中,终端发送上行信号之前,还根据下行DRS预判小区适合驻留。终端从而可以有针对性地向驻留的可能性大的基站发送上行信号。
在一种可能的设计中,终端根据上行信号的配置信息向基站发送上行信号;对应的,基站接收终端根据上行信号的配置信息发送的上行信号。其中,上行信号的配置信息可以是预设的,也可以包括在基站发送的下行信号中。当上行信号的配置信息为预设的时,可以节约基站的下行信令开销;当上行信号的配置信息为基站发送的时,终端可以更灵活的发送上行信号。
在一种可能的设计中,终端接收基站在终端所在的波束发送的第一系统信息之后,还根据第一系统信息向基站发送无线资源控制RRC连接建立过程;基站还在该RRC连接建立过程中或该RRC连接建立过程后在终端所在的波束发送第二系统信息,第二系统信息用于终端在该小区中进行通信;对应的,终端在该RRC连接建立过程中或该RRC连接建立过程后接收基站在终端所在的波束发送的第二系统信息。因此,基站仅需向RRC连接态的终端发送第二系统信息,节约了系统开销。
在一种可能的设计中,基站在发送RRC连接建立消息之后在终端所在的波束发送第二系统信息,或者,基站在接收终端发送的RRC连接建立消息完成之后在终端所在的波束发送第二系统信息;对应的,终端接收基站在发送RRC连接建立消息之后发送的第二系统信息,或者,终端接收基站在接收终端发送的RRC连接建立完成消息之后发送的第二系统信息。因此,基站可以根据实际情况在合适的时机向终端发送第二系统信息。
在一种可能的设计中,第一系统信息包括广播信道的配置信息、运营 商信息、跟踪区信息中的至少一种。进一步的,第一系统信息还可以包括寻呼信道的配置信息,用于终端计算寻呼窗口。例如,终端可以根据寻呼信道的配置信息计算寻呼窗口,并在该寻呼窗口内接收寻呼消息。从而终端在基站通过波束方式发送系统信息的情况下,不会遗漏寻呼消息。
另一方面,本发明实施例提供了另一种传输系统信息的方法。方法包括:终端发送上行信号,上行信号用于触发基站发送第一系统信息和第二系统信息;对应的,基站接收终端发送的上行信号;基站在终端所在的波束发送第一系统信息和第二系统信息;对应的,终端接收基站在终端所在的波束发送的第一系统信息和第二系统信息。从而终端可以在接收第一系统信息和第二系统信息后在小区中迅速建立通信业务。
又一方面,本发明实施例提供了一种基站,该基站具有实现上述方法实际中基站行为的功能。所述功能可以通过硬件实现,也可以通过硬件执行相应的软件实现。所述硬件或软件包括一个或多个与上述功能相对应的模块。
在一个可能的设计中,基站的结构中包括处理器和发射器,所述处理器被配置为支持基站执行上述方法中相应的功能。所述发射器用于支持基站与终端之间的通信,向终端发送上述方法中所涉及的信息或者指令。所述基站还可以包括存储器,所述存储器用于与处理器耦合,其保存基站必要的程序指令和数据。
又一方面,本发明实施例提供了一种终端,该终端具有实现上述方法设计中终端行为的功能。所述功能可以通过硬件实现,也可以通过硬件执行相应的软件实现。所述硬件或软件包括一个或多个与上述功能相对应的模块。所述模块可以是软件和/或硬件。
在一个可能的设计中,终端的结构中包括接收器和处理器,所述接收器被配置为支持终端接收上述基站发送的第一系统信息和/或第二系统信息。所述处理器控制终端根据所述接收器接收的下行DRS预判小区适合 驻留;或根据所述接收器接收的第一系统信息发起RRC连接建立过程,或计算寻呼窗口。
又一方面,本发明实施例提供了一种通信系统,该系统包括上述方面所述的基站和终端。
再一方面,本发明实施例提供了一种计算机存储介质,用于储存为上述基站所用的计算机软件指令,其包含用于执行上述方面所设计的程序。
再一方面,本发明实施例提供了一种计算机存储介质,用于储存为上述终端所用的计算机软件指令,其包含用于执行上述方面所设计的程序。
相较于现有技术,本发明提供的方案可以按需发送系统信息,从而可以降低基站的功率消耗,减少系统开销。
附图说明
为了更清楚地说明本发明实施例中的技术方案,下面将对本发明各实施例描述中所需要使用的附图作简单地介绍。下面描述中的附图是本发明的一些实施例,对于本领域普通技术人员来说,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1为实现本发明的一种可能的系统网络示意图;
图2为本发明实施例提供的一种传输系统信息的流程示意图;
图3a为本发明实施例提供的一种传输第一系统信息的通信示意图;
图3b为本发明实施例提供的一种基站发送第一系统信息的示意图;
图4为本发明实施例提供的一种传输第二系统信息的通信示意图;
图5为本发明实施例提供的一种寻呼的方法的通信示意图;
图6为本发明实施例提供的另一种传输系统信息的通信示意图;
图7为本发明实施例提供的一种基站结构示意图;
图8为本发明实施例提供的一种终端结构示意图。
具体实施方式
为使本发明实施例的目的、技术方案和优点更加清楚,下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有作出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
本发明实施例描述的网络架构以及业务场景是为了更加清楚的说明本发明实施例的技术方案,并不构成对于本发明实施例提供的技术方案的限定,本领域普通技术人员可知,随着网络架构的演变和新业务场景的出现,本发明实施例提供的技术方案对于类似的技术问题,同样适用。
如图1所示,基站在小区中以波束赋形的方式向终端发送信号,本发明实施例中,波束赋形的方式可以是波束切换的方式,一般使用模拟或射频电路实现;也可以是自适应波束的方式,一般使用数字电路实现。此外,波束可以是水平面的波束,也可以是垂直面的波束。本发明实施例描述的技术方案可以适用于长期演进(Long Term Evolution,简称LTE)系统,或其他采用各种无线接入技术的无线通信系统,例如采用码分多址,频分多址,时分多址,正交频分多址,单载波频分多址等接入技术的系统。此外,还可以适用于使用LTE系统后续的演进系统,如第五代(The 5th Generation,简称5G)系统等。
本发明实施例中所涉及的基站是一种部署在无线接入网中用以为终端提供无线通信功能的装置。在采用不同的无线接入技术的系统中,基站的名称可能会有所不同,例如在LTE系统中,可以为演进的节点B(evolved NodeB,简称eNB或者eNodeB),在第三代(The 3rd Generation,简称3G)系统中,可以为节点B(Node B),在第二代(The 2nd Generation,简称2G)系统中,可以为基站收发信台(Base Transceiver Station,简称BTS)。应当理解的是,本发明实施例中的基站既包括已有通信系统中的基站,也 包括未来可能出现的通信系统中的基站,本发明实施例并不限定。
本发明实施例中涉及的终端,可以是无线终端,无线终端可以是指向用户提供语音或数据连通性的设备、具有无线连接功能的手持式设备、或连接到无线调制解调器的其他处理设备。无线终端可以经无线接入网(例如,Radio Access Network,简称RAN)与一个或多个核心网进行通信,无线终端可以是移动终端,如移动电话(或称为“蜂窝”电话)和具有移动终端的计算机,例如,无线终端可以是便携式、袖珍式、手持式、计算机内置的或者车载的移动装置,它们与无线接入网交换语音或数据。例如,无线终端可以是个人通信业务(Personal Communication Service,简称PCS)电话、无绳电话、会话发起协议(Session Initiation Protocol,简称SIP)话机、无线本地环路(Wireless Local Loop,简称WLL)站、个人数字助理(Personal Digital Assistant,简称PDA)等设备。无线终端也可以称为系统、订户单元(Subscriber Unit)、订户站(Subscriber Station),移动站(Mobile Station)、移动台(Mobile)、远程站(Remote Station)、接入点(Access Point,简称AP)、远程终端(Remote Terminal)、接入终端(Access Terminal)、用户终端(User Terminal)、用户代理(User Agent)、用户设备(User Device)、或用户装备(User Equipment,简称UE)。
本发明实施例提供的技术方案可以应用于蜂窝通信系统中低频小区作为独立小区工作的场景,相比于采用传统的全向发射的方式发送系统信息,本发明实施例提供的方案通过波束在小区内发送系统信息,能够大大降低系统的开销。本发明实施例提供的技术方案也可以应用于蜂窝通信系统中高频小区作为独立小区工作的场景,若在高频小区中还采用全向发射的方式发送系统信息,不仅基站的功率消耗较大,而且发射范围将十分有限,而本发明实施例提供的方案能够在减少系统开销的同时,保证小区覆盖范围和容量。可以理解的是,本发明实施例提供的技术方案还可以应用于蜂窝通信中高频小区与低频小区联合组网的场景。
下面将基于上面所述的本发明实施例涉及的共性方面,对本发明实施例进一步详细说明。
本发明的一个实施例提供一种传输系统信息的方法,和基于这个方法的基站、终端及系统。终端发送上行信号,上行信号用于触发基站发送第一系统信息,第一系统信息用于终端驻留在小区中;基站接收该上行信号后,在终端所在的波束发送第一系统信息;对应的,终端接收基站在终端所在的波束发送的第一系统信息。终端接收该第一系统信息后,还可以根据第一系统信息向基站发起无线资源控制(Radio Resource Control,简称RRC)连接建立过程;基站还在该RRC连接建立过程中或该RRC连接建立过程后在该终端所在的波束发送第二系统信息,第二系统信息用于终端在该小区中进行通信;对应的,终端接收基站在终端所在的波束发送的第二系统信息。需要说明的是,当终端为RRC空闲态的终端时,基站仅需要在该终端所在的波束发送第一系统信息;当终端为RRC连接态的终端时,基站仅需要在该终端所在的波束发送第二系统信息。
为清楚起见,下面以LTE系统为例对上述第一系统信息和第二系统信息进行说明。在LTE系统中,第三代合作伙伴计划(3rd Generation Partnership Project,简称3GPP)通过TS36.331协议对系统信息进行了一系列规定。本发明实施例的方案将现有的系统信息划分为第一系统信息和第二系统信息。可以理解的是,未来的新的通信系统可能引入新的系统信息或是对现有的系统信息进行整合或重新归类,新的系统信息或重新归类的系统信息也可以根据其用途增加到本发明实施例所述的第一系统信息或第二系统信息中。本发明实施例所述的第一系统信息或第二系统信息不限于接下来所列举的现有系统信息。下面分别对第一系统信息和第二系统信息进行说明。
第一系统信息用于终端驻留在小区中。在一个示例中,第一系统信息包括广播信道(Broadcast Channel,简称BCH)的配置信息、运营商信息、 跟踪区信息中的至少一种。其中,广播信道的配置信息包括以下信息中的至少一种:下行带宽信息、系统帧号(System Frame Number,简称SFN)、物理混合自动重传指示信道(Physical Hybrid Automatic Retransmission Request Indication Channel,简称PHICH)的配置信息。运营商信息可以是共用陆地移动网(Public Land Mobile Network,简称PLMN)列表信息。跟踪区信息可以是跟踪区域码(Tracking Area Code,简称TAC)。
在一个示例中,第一系统信息还包括系统信息块(System Information Block,简称SIB)1~SIB5所包含的信息中的至少一种,其中,SIB1包含用于评估是否允许终端接入小区的信息和其它系统信息的调度信息;SIB2包含适用于所有终端的公共无线资源配置信息;SIB3包含适用于同频小区重选、异频小区重选、系统间小区重选中的至少一种的公共信息;SIB4包含需要特定重选参数的小区的信息以及小区黑列表(blacklist)信息,即不允许驻留和接入的小区的列表信息;SIB5包含异频小区重选信息,例如其它演进型通用陆地无线接入网(Evolved Universal Terrestrial Radio Access Network,简称E-UTRAN)的频率信息和异频邻区相关的信息。例如,第一系统信息还包括以下信息中的至少一种:
a、小区选择的配置信息,包括以下信息中的至少一种:小区选择所需的最小参考信号接收功率(Reference Signal Received Power,简称RSRP)等级、小区选择所需的最小RSRP等级偏移;
b、小区重选的配置信息,包括以下信息中的至少一种:重选门限、小区重选优先级、同频小区重选的配置信息、异频小区重选的配置信息;其中,同频小区重选的配置信息包括以下信息中的至少一种:小区重选所需的最小RSRP等级、天线端口1存在指示、邻区配置信息,其中邻区配置信息包括:物理小区标识、小区间偏移、重选时间定时器;异频小区重选的配置信息包括以下信息中的至少一种:载波频率列表的配置信息、下行载波频率、小区选择或小区重选所需的最小RSRP等级偏移、重选时间 定时器、重选门限低值、允许的测量带宽、天线端口1存在指示、邻区配置信息,其中邻区配置信息包括:物理小区标识、小区间偏移;
c、系统配置信息,包括以下信息中的至少一种:时分双工配置、系统值标签、访问类别禁入信息(例如小区禁入指示)、频率或频带指示信息、广播控制信道(Broadcast Control Channel,简称BCCH)的配置信息、小区标识(Cell Identity,简称CI);
d、随机接入配置信息,包括以下信息中的至少一种:物理随机接入信道(Physical Random Access Channel,简称PRACH)的配置信息、随机接入信道(Random Access Channel,简称RACH)的公共配置信息;其中,物理随机接入信道的配置信息包括以下信息中的至少一种:根序列索引、物理随机接入信道的配置索引,随机接入信道的公共配置信息包括前导信息;
e、寻呼信道(Paging Channel,简称PCH)的配置信息,包括以下信息中的至少一种:寻呼记录列表、系统信息改变、UE标识(UE Identity,例如S-TMSI(System Architecture Evolution Temporary Mobile Subscriber Identity,系统架构演进-临时移动用户标识)或IMSI(International Mobile Subscriber Identity,国际移动用户标识))、核心网域(core network-domain,例如电路域或分组域)的信息;
f、物理信道的配置信息:物理下行共享信道(Physical Downlink Shared Channel,简称PDSCH)的公共配置信息、物理上行共享信道(Physical Uplink Shared Channel,简称PUSCH)的公共配置信息、物理上行控制信道(Physical Uplink Control Channel,简称PUCCH)的公共配置信息、上行功率控制(Uplink Power Control,简称UPC)的公共配置信息、上行循环前缀长度。
在一个示例中,当第一系统信息仅包含上述“a~f”所列的信息中的部分信息时,“a~f”所列的信息的优先级为从a至f排序,第一系统信息优先包 含优先级靠前的信息。当然这些信息的优先级也可以按照其他方式排序,本发明实施例不限制“a~f”所列的信息的优先级顺序。
第二系统信息用于终端在小区中进行通信。第二系统信息包括除第一系统信息外的所有系统信息,例如SIB6~SIB19中的信息。其中,SIB6~8为系统间小区重选相关的信息;SIB9包含家庭基站的名字信息;SIB10包含地震海啸警报系统(Earthquake and Tsunami Warning System,简称ETWS)的主通知信息;SIB11包含ETWS的次通知信息;SIB12包含商用移动预警系统(Commercial Mobile Alert System,简称CMAS)的通知信息;SIB13包含多媒体广播多播系统(Multimedia Broadcast Multicast System,简称MBMS);SIB14包含扩展接入控制(Extended Access Barring,简称EAB)参数;SIB15包含MBMS服务区标识(Service Area Identifier,简称SAI)和/或邻区载波频率;SIB16包含全球定位系统(Global Positioning System,简称GPS)时间和协作通用时间;SIB17包含E-UTRAN和无线局域网(Wireless Local Area Network,简称WLAN)的业务引导信息;SIB18指示E-UTRAN支持设备到设备(Device to Device,简称D2D)通信的终端过程信息;SIB19包含E-UTRAN支持D2D发现相关的资源配置信息。
需要说明的是,当上述“a~f”所列的信息中的全部或部分不包含在第一系统信息中时,它们包含在第二系统信息中。
对于上述第一系统信息和第二系统信息中涉及到的各种信息的名称,为了描述清楚,下面以它们的缩略形式进行举例说明:
下行带宽                  dl-Bandwidth
小区禁入                  cell barred
频带指示                  FreqBandIndicator
最小RSRP等级              q-RxLevMin
最小RSRP等级偏移          q-RxLevMinOffset
重选门限                  ThreshServingLow
小区重选优先级              cellReselectionPriority
天线端口1存在指示           presenceAntennaPort1
邻区配置                    neighCellConfig
物理小区标识                physCellID
小区间偏移                  q-OffsetCell
重选时间定时器              t-ReselectionEUTRA
载波频率列表的配置信息      InterFreqCarrierFreqList
下行载波频率                dl-CarrierFreq
重选门限低值                threshX-Low
允许的测量带宽              allowedMeasBandwidth
时分双工配置                tdd-Config
系统值标签                  systemInfoValueTag
访问类别禁入信息            ac-BarringInfo
频率指示信息                FreqInfo
根序列索引                  rootSequenceIndex
物理随机接入信道的配置索引  prach-ConfigIndex
前导信息                    preambleInfo
寻呼记录列表                pagingRecordList
系统信息改变                systemInfoModification
上行循环前缀长度            ul-CyslicPrefixLength
传统的蜂窝通信中,基站一般使用全向发射的方式在小区范围内发送所有的系统信息,对基站的功率消耗很大。通过本发明实施例提供的方案,可以按需(on demand)发送系统信息:基站仅需要在存在RRC空闲态的终端的波束范围内发送第一系统信息,在存在RRC连接态的终端的波束范围发送第二系统信息,这种按需发送系统信息的方案大大降低了开销,尤其是在多个RRC空闲态或RRC连接态的终端处于不同波束,基站需要 在该不同波束内发送系统信息时。
下面结合附图2,对本发明的实施例提供的方案进行说明。
在201部分,终端发送上行信号,上行信号用于触发基站发送第一系统信息,第一系统信息用于终端驻留在小区中。其中,上行信号可以是上行发现参考信号(Discovery Reference Signal,简称DRS),也可以是探测参考信号(Sounding Reference Signal,简称SRS),还可以是随机接入前导(random access preamble),或者是预设的专门用于触发基站发送第一系统信息的信号。
在一个示例中,终端发送上行信号之前,还接收基站通过至少一个波束在该小区内发送的下行信号,下行信号包括下行DRS,下行DRS用于终端发现该小区。终端从而可以根据下行DRS判断当前所处位置是否存在小区覆盖,以及可以获取终端当前所在的波束的信息。
在一个示例中,终端发送上行信号之前,还根据下行DRS预判该小区适合驻留。例如,终端根据下行DRS的参考信号强度指示(Reference Signal Strength Indication,简称RSSI)或下行DRS的参考信号接收功率(Reference Signal Received Power,简称RSRP)进行预判。终端从而可以有针对性地向驻留的可能性大的基站发送上行信号。
在一个示例中,终端根据上行信号的配置信息发送上行信号。其中,上行信号的配置信息可以是预设的,从而可以节约基站的下行信令开销;或者,上行信号的配置信息也可以包含在基站发送的下行信号中,终端因此可以更灵活的发送上行信号;或者,上行信号的配置信息也可以是通过其他方式得到的,本发明实施例不对此进行限定。
在202部分,基站接收终端发送的上行信号,上行信号用于触发基站发送第一系统信息,第一系统信息用于终端驻留在小区中。
在一个示例中,基站接收终端发送的上行信号之前,还通过至少一个波束在该小区内发送下行信号,下行信号包括下行DRS,下行DRS用于 终端发现该小区。
在一个示例中,基站接收终端根据上行信号的配置信息发送的上行信号。
202部分中,与201部分相似或对应的内容可以参考201部分中的详细描述,在此不再赘述。
在203部分,基站在终端所在的波束发送第一系统信息。例如,基站可以在接收到终端发送的上行信号后立即向终端所在的波束发送第一系统信息,这样终端可以较快获得第一系统信息;或者,基站也可以根据预设的时间段向终端所在的波束发送第一系统信息。这样可以减少基站向同一波束范围内的多个终端发送第一系统信息的信令开销。
在204部分,终端接收基站在终端所在的波束发送的第一系统信息。
在一个示例中,终端接收基站在终端所在的波束发送的第一系统信息后,还根据该第一系统信息向基站发起RRC连接建立过程。例如,终端可以通过随机接入的方式发起RRC连接建立过程。
在一个示例中,基站在终端所在的波束发送第一系统信息后,还在终端根据第一系统信息发起的RRC连接建立过程中或RRC连接建立过程后在终端所在的波束发送第二系统信息,第二系统信息用于终端在该小区中进行通信。例如,基站可以在接收终端发送的RRC连接建立消息之后发送第二系统信息,或者,基站也可以在接收终端发送的RRC连接建立完成消息之后发送第二系统信息;或者,基站还可以通过专用RRC信令向终端发送第二系统信息。对应的,终端在该RRC连接建立过程中或该RRC连接建立过程后接收基站在该终端所在的波束发送的第二系统信息。例如,终端可以接收基站在发送RRC连接建立消息之后发送的第二系统信息;或者,终端也可以接收基站在接收终端发送的RRC连接建立完成消息之后发送的第二系统信息;或者,终端还可以接收基站通过专用RRC信令发送的第二系统信息。当然,基站也可以在该RRC连接建立过程之 前在终端所在的波束发送第二系统信息,本实施例不对此进行限定。因此,基站可以根据实际情况在合适的时机向终端发送第二系统信息。
在一个示例中,第一系统信息包括广播信道的配置信息、运营商信息、跟踪区信息中的至少一种。可选的,第一系统信息还包括寻呼信道的配置信息,用于终端计算寻呼窗口。其中,寻呼窗口是指用于监听寻呼消息的一个子帧或多个子帧的时间长度,多个子帧可以是连续的或不连续的。从而终端在基站通过波束方式发送系统信息的情况下,不会遗漏寻呼消息。
下面将结合更多的附图,对本发明的实施例做进一步说明。
图3a为本发明实施例提供的一种传输第一系统信息的通信示意图。
在301部分,基站通过至少一个波束在小区内发送下行信号,下行信号包括下行DRS,下行DRS用于终端发现该小区。可选的,下行DRS包括下行同步信号(synchronization signal),下行同步信号用于终端与基站取得下行同步。其中,下行同步信号可以为单个同步信号,也可以包括下行主同步信号(Primary Synchronization Signal,简称PSS)和下行辅同步信号(Secondary Synchronization Signal,简称SSS)。可选的,下行DRS还包括以下信号中的至少一种:小区参考信号(Cell-specific Reference Signal,简称CRS)、信道状态信息参考信号(Channel State Information-Reference Signal,简称CSI-RS)。
在302部分,终端接收基站通过至少一个波束在小区内发送的下行信号后,预判该小区适合驻留。其中,终端可以根据下行DRS预判该小区适合驻留,例如,终端根据下行DRS的参考信号强度指示或下行DRS的参考信号接收功率预判该小区适合驻留。
在一个示例中,下行信号还包括PLMN信息、小区选择信息和小区重选信息中的至少一种,终端根据下行DRS取得与基站的下行同步后,根据PLMN信息、小区选择信息和小区重选信息中的至少一种预判该小区适合驻留。可以理解的是,终端可能检测到不同基站的波束,从而接收到不 同基站发送的下行信号,当下行信号中包括PLMN信息、小区选择信息和小区重选信息中的至少一种时,终端可以根据不同基站发送的PLMN信息、小区选择信息和小区重选信息中的至少一种进行初步判断,然后针对适合驻留的小区向对应基站发送上行DRS,以触发对应基站发送第一系统信息,而不用针对检测到的所有基站发送上行DRS并接收到所有基站发送的第一系统信息后再进行判断,从而能够减小时延且开销较小。例如,终端可以根据一个基站的上行DRS的配置信息发送上行DRS,触发该基站向终端发送第一系统信息。或者,多个基站使用相同的上行DRS的配置信息,终端发送的上行DRS可以触发多个基站向终端所在的波束发送第一系统信息;多个基站之间可以协作向终端发送第一系统信息的时频域资源,从而终端可以分别或同时接收来自多个基站的第一系统信息;终端可以根据第一系统信息选择驻留在多个基站中的一个基站所提供的小区,甚至可以同时驻留在多个小区,网络可以通过一个或多个小区向终端发送寻呼消息。
在303部分,终端向基站发送上行DRS,上行DRS用于触发基站发送第一系统信息。
在一个示例中,上行DRS是小区特定的或者波束特定的,不区分不同的终端,因此不同的终端可以选择相同的上行DRS以及对应的上行资源发送给基站。
在一个示例中,基站发送的下行信号中还包括上行DRS的配置信息,如果终端准备驻留在该小区,终端根据基站发送的该上行DRS的配置信息向基站发送上行DRS;或者,终端也可以根据预设的上行DRS的配置信息向基站发送上行DRS;或者,终端还可以根据下行DRS生成相应的上行DRS并向基站发送。需要说明的是,如果终端在其所在的波束上已经接收到第一系统信息,则终端可以不发送上行DRS。
在一个示例中,终端还在上行DRS中携带波束标识,波束标识用于 标识该终端所在的波束。
在304部分,基站接收终端发送的上行DRS后,在终端所在的波束发送第一系统信息,第一系统信息用于终端驻留在该小区。
可以理解的是,如果基站发送的下行信号中包括PLMN信息、小区选择信息和小区重选信息中的至少一种,则针对这三种信息,对于下行信号中已包括的部分,该部分不包括在基站发送的第一系统信息中;对于下行信号中未包括的部分,该部分包括在基站发送的第一系统信息中。例如,若下行信号中包括PLMN信息,不包括小区选择信息和小区重选信息,则此处第一系统信息中包括小区选择信息和小区重选信息;或者,若下行信号中包括PLMN信息和小区选择信息,则此处第一系统信息中包括小区重选信息;又或者,若下行信号中包括PLMN信息、小区选择信息和小区重选信息,则第一系统信息中不包括这三种信息中的任何一种。
在一个示例中,基站可以通过以下方式之一判断终端所在的波束:
第一种方式:若上行DRS中包含波束标识,则基站根据该波束标识判断终端所在的波束;
第二种方式:基站利用信道互易性,对终端发送的上行DRS进行信道估计,从而判断终端在下行方向上所在的波束。
在一个示例中,基站在预设的时间段内通过至少一个波束发送第一系统信息,并按照预设的次数进行发送。例如,如图3b所示,对于某个波束,在预设的时间段t0~ts内,在预设的发送时机ts之前,基站可能接收到多个终端(例如终端1~终端n)发送的上行DRS,则基站判断该波束范围内存在终端且该终端期望驻留后,在预设的发送时机ts时在该波束的范围内发送一次或多次第一系统信息,以避免针对每个发送上行DRS的终端发送第一系统信息,从而降低了开销。
在一个示例中,当基站接收到不同波束范围内的终端发送的上行DRS时,基站通过该不同波束发送第一系统信息的发送时机可以相同或不同, 其中,发送时机相同,是指基站同时在不同波束范围内发送第一系统信息;发送时机不同是指,例如对于波束1和波束2,基站在发送时机1在波束1的范围内发送第一系统信息,在发送时机2在波束2的范围内发送第一系统信息,其中,发送时机1和发送时机2可以位于相同或不同的子帧的不同符号位置。
对应的,终端接收基站在终端所在的波束发送的第一系统信息。若终端发送上行DRS后,在预设的时间段内没有接收到第一系统信息,则终端重新向基站发送上行DRS。可选的,终端重新选择上行DRS和对应的上行资源后进行发送。
需要说明的是,基站也可以在接收到终端发送的上行DRS后,立即向该终端发送第一系统信息,例如,通过专用RRC信令向终端发送第一系统信息。
本发明实施例中,对于RRC空闲态的终端,可以执行301~304部分中的步骤;对于RRC连接态的终端,可以不执行301~304部分中的步骤,也可以仅执行304部分中的对应步骤,即基站在终端所在的波束发送第一系统信息,对应的,终端接收基站发送的第一系统信息。
在一个示例中,若第一系统信息发生了改变,则基站在小区范围内的所有波束内发送改变后的第一系统信息,从而小区范围内的所有终端都可以接收到改变后的第一系统信息。可以理解的是,第一系统信息的变化不会很频繁,因此开销不大,从而避免了基站维护终端所在的波束的信息的开销。
图4为本发明实施例提供的一种传输第二系统信息的通信示意图。
终端根据第一系统信息向基站发起RRC连接建立过程,此处以终端通过随机接入的方式发起RRC连接建立过程为例进行说明。需要说明的是,图4中的405部分和407部分为可选部分,选择其中一个部分执行即可。
在401部分,终端向基站发送随机接入前导。
在402部分,基站向终端发送随机接入响应消息。
在403部分,终端向基站发送RRC连接请求消息。可选的,终端在RRC连接请求消息中请求基站向终端所在的波束发送第二系统信息。
在404部分,基站向终端发送RRC连接建立消息。
在405部分,基站向终端所在的波束内发送第二系统信息。基站发送第二系统信息的具体实现过程与基站在终端所在的波束发送第一系统信息的过程相似,可以参考304部分中的详细描述,在此不再赘述。
在406部分,终端向基站发送RRC连接建立完成消息。可选的,终端在RRC连接建立完成消息中请求基站向终端所在的波束发送第二系统信息。
在407部分,基站向终端所在的波束内发送第二系统信息,该407部分与405部分相似,可以参考405部分中的详细描述,在此不再赘述。
需要说明的是,基站可以根据RRC连接请求或RRC连接建立完成消息中终端的请求向终端所在的波束发送第二系统信息,也可以直接向终端所在的波束发送第二系统信息,即无论终端是否请求,基站均向终端所在的波束发送第二系统信息。
在一个示例中,对于405部分和407部分中的步骤,基站均不执行,而是基站通过专用RRC信令向终端发送第二系统信息,例如,基站在RRC连接建立消息中携带包含第二系统信息的RRC信令,或者,基站在接收到终端发送的RRC连接建立完成消息之后向终端发送包含第二系统信息的RRC信令。
在一个示例中,若第二系统信息发生改变,由于基站知道RRC连接态的终端所在的波束,可以仅向存在RRC连接态的终端的波束发送改变后的第二系统信息,从而降低了开销。
当第一系统信息包括寻呼信道的配置信息时,终端还可以根据寻呼信 道的配置信息计算寻呼窗口,并在寻呼窗口内接收基站发送的寻呼消息。进一步的,终端还可以在接收寻呼消息后确定寻呼时机。图5为本发明实施例提供的一种寻呼的方法的流程示意图。
在501部分,终端根据寻呼信道的配置信息计算寻呼窗口。在一个示例中,终端通过确定寻呼窗口的起始子帧和时间长度来计算寻呼窗口。例如,终端根据寻呼信道的配置信息计算预估的寻呼时机(Paging Occasion,简称PO)所在的寻呼帧和寻呼子帧,将该寻呼子帧作为监听寻呼消息的寻呼窗口的起始子帧,并将小区的波束数乘以波束的切换时间的总时长作为寻呼窗口的时间长度。
需要说明的是,在第一系统信息未改变的情况下,终端在接收第一系统信息后,仅需要根据第一系统信息中包括的寻呼信道的配置信息计算一次寻呼窗口。若终端已计算过寻呼窗口,可以不执行501部分,直接执行502部分。
在502部分,终端在该寻呼窗口内接收寻呼消息。
在503部分,终端将寻呼消息所在的子帧作为实际的寻呼时机。在一个示例中,终端根据自身所在的波束的波束标识计算寻呼消息所在的子帧,并将该子帧作为实际的寻呼时机。终端确定实际的寻呼时机后,仅需要在实际的寻呼时机所在的子帧监听和接收寻呼消息,因此可以减少终端监听寻呼消息的时间,从而减少终端的电量消耗。
需要说明的是,在第一系统信息未改变的情况下,终端仅需要确定一次实际的寻呼时机。若终端已确定过实际的寻呼时机,终端可以不执行上述确定实际的寻呼时机的步骤以及确定实际的寻呼时机之前的步骤,直接在已确定的实际的寻呼时机接收寻呼消息即可。
本发明实施例中,可以仅执行501部分和502部分;也可以执行501~503部分。
在本发明实施例提供的另一种传输系统信息的方法中,终端发送上行 信号,上行信号用于触发基站发送第一系统信息和第二系统信息;基站接收终端发送的上行信号后,在终端所在的波束发送第一系统信息和第二系统信息;对应的,终端接收基站在终端所在的波束发送的第一系统信息和第二系统信息。本实施例中,与前述实施例相同或相似的内容可以参考前述实施例中的详细描述,在此不再赘述。如图6所示,下面以上行信号为RRC连接建立请求为例进行说明。
在601部分,终端发送RRC连接建立请求。在一个示例中,RRC连接建立请求消息中包含请求信息,用于请求基站发送第一系统信息和第二系统信息;在另一个示例中,RRC连接建立请求消息用于触发基站发送第一系统信息和第二系统信息。
在602部分,基站接收终端发送的RRC连接建立请求之后,在终端所在的波束发送第一系统信息和第二系统信息。在一个示例中,基站根据终端的请求发送第一系统信息和第二系统信息;在另一个示例中,基站接收RRC连接建立请求消息之后即在终端所在的波束发送第一系统信息和第二系统信息。对应的,终端接收终端发送的第一系统信息和第二系统信息。从而终端可以在接收第一系统信息和第二系统信息后在小区中迅速建立通信业务。
上述主要从各个网元之间交互的角度对本发明实施例提供的方案进行了介绍。可以理解的是,各个网元,例如终端、基站等为了实现上述功能,其包含了执行各个功能相应的硬件结构和/或软件模块。本领域技术人员应该很容易意识到,结合本文中所公开的实施例描述的各示例的单元及算法步骤,本发明能够以硬件或硬件和计算机软件的结合形式来实现。某个功能究竟以硬件还是计算机软件驱动硬件的方式来执行,取决于技术方案的特定应用和设计约束条件。专业技术人员可以对每个特定的应用来使用不同方法来实现所描述的功能,但是这种实现不应认为超出本发明的范围。
图7示出了上述实施例中所涉及的基站的一种可能的结构示意图。
基站包括发射器/接收器701,还可以包括控制器/处理器702,存储器703以及通信单元704。所述发射器/接收器701用于支持基站与上述实施例中的所述的终端之间收发信息,以及支持所述终端与其他终端之间进行无线电通信。所述控制器/处理器702执行各种用于与终端通信的功能。在上行链路,来自所述终端的上行链路信号经由天线接收,由接收器701进行调解,并进一步由控制器/处理器702进行处理来恢复终端所发送的业务数据和信令信息。在下行链路上,业务数据和信令消息由控制器/处理器702进行处理,并由发射器701进行调解来产生下行链路信号,并经由天线发射给终端。控制器/处理器702还执行图2至图6中涉及基站的处理过程和/或用于本申请所描述的技术的其他过程。存储器703用于存储基站的程序代码和数据。通信单元704用于支持基站与其他网络实体进行通信。
可以理解的是,图7仅仅示出了基站的简化设计。在实际应用中,基站可以包含任意数量的发射器,接收器,处理器,控制器,存储器,通信单元等,而所有可以实现本发明的基站都在本发明的保护范围之内。
图8示出了上述实施例中所涉及的终端的一种可能的设计结构的简化示意图。所述终端包括发射器801,接收器802,还可以包括控制器/处理器803,存储器804和调制解调处理器805。
发射器801调节(例如,模拟转换、滤波、放大和上变频等)输出采样并生成上行链路信号,该上行链路信号经由天线发射给上述实施例中所述的基站。在下行链路上,天线接收上述实施例中基站发射的下行链路信号。接收器802调节(例如,滤波、放大、下变频以及数字化等)从天线接收的信号并提供输入采样。在调制解调处理器805中,编码器806接收要在上行链路上发送的业务数据和信令消息,并对业务数据和信令消息进行处理(例如,格式化、编码和交织)。调制器807进一步处理(例如,符号映射和调制)编码后的业务数据和信令消息并提供输出采样。解调器809处理(例 如,解调)该输入采样并提供符号估计。解码器808处理(例如,解交织和解码)该符号估计并提供发送给终端的已解码的数据和信令消息。编码器806、调制器807、解调器809和解码器808可以由合成的调制解调处理器805来实现。这些单元根据无线接入网采用的无线接入技术(例如,LTE及其他演进系统的接入技术)来进行处理。
控制器/处理器803对终端的动作进行控制管理,用于执行上述实施例中由终端进行的处理。例如用于控制终端根据下行DRS预判小区适合驻留和/或本发明所描述的技术的其他过程。作为示例,控制器/处理器803用于支持终端执行图3a中的过程302,图5中的过程501和503,。存储器804用于存储用于终端的程序代码和数据。
用于执行本发明上述基站、终端功能的控制器/处理器可以是中央处理器(CPU),通用处理器、数字信号处理器(DSP)、专用集成电路(ASIC),现场可编程门阵列(FPGA)或者其他可编程逻辑器件、晶体管逻辑器件,硬件部件或者其任意组合。其可以实现或执行结合本发明公开内容所描述的各种示例性的逻辑方框,模块和电路。所述处理器也可以是实现计算功能的组合,例如包含一个或多个微处理器组合,DSP和微处理器的组合等等。
结合本发明公开内容所描述的方法或者算法的步骤可以硬件的方式来实现,也可以是由处理器执行软件指令的方式来实现。软件指令可以由相应的软件模块组成,软件模块可以被存放于RAM存储器、闪存、ROM存储器、EPROM存储器、EEPROM存储器、寄存器、硬盘、移动硬盘、CD-ROM或者本领域熟知的任何其它形式的存储介质中。一种示例性的存储介质耦合至处理器,从而使处理器能够从该存储介质读取信息,且可向该存储介质写入信息。当然,存储介质也可以是处理器的组成部分。处理器和存储介质可以位于ASIC中。另外,该ASIC可以位于终端中。当然,处理器和存储介质也可以作为分立组件存在于终端中。
本领域技术人员应该可以意识到,在上述一个或多个示例中,本发明所描述的功能可以用硬件、软件、固件或它们的任意组合来实现。当使用软件实现时,可以将这些功能存储在计算机可读介质中或者作为计算机可读介质上的一个或多个指令或代码进行传输。计算机可读介质包括计算机存储介质和通信介质,其中通信介质包括便于从一个地方向另一个地方传送计算机程序的任何介质。存储介质可以是通用或专用计算机能够存取的任何可用介质。
以上所述的具体实施方式,对本发明的目的、技术方案和有益效果进行了进一步详细说明,所应理解的是,以上所述仅为本发明的具体实施方式而已,并不用于限定本发明的保护范围,凡在本发明的技术方案的基础之上,所做的任何修改、等同替换、改进等,均应包括在本发明的保护范围之内。

Claims (35)

  1. 一种发送系统信息的方法,其特征在于,包括:
    基站接收终端发送的上行信号,所述上行信号用于触发所述基站发送第一系统信息,所述第一系统信息用于所述终端驻留在小区中;
    所述基站在所述终端所在的波束发送所述第一系统信息。
  2. 根据权利要求1所述的方法,其特征在于,所述基站接收终端发送的上行信号之前,所述方法还包括:
    所述基站通过至少一个波束在所述小区内发送下行信号,所述下行信号包括下行发现参考信号DRS,所述下行DRS用于所述终端发现所述小区。
  3. 根据权利要求2所述的方法,其特征在于,所述基站接收所述终端发送的上行信号,包括:
    所述基站接收所述终端根据预设的所述上行信号的配置信息发送的所述上行信号。
  4. 根据权利要求2所述的方法,其特征在于,所述下行信号还包括所述上行信号的配置信息,所述基站接收所述终端发送的上行信号,包括:
    所述基站接收所述终端根据所述基站发送的所述上行信号的配置信息发送的所述上行信号。
  5. 根据权利要求1至4中任一项所述的方法,其特征在于,所述基站在所述终端所在的波束发送所述第一系统信息之后,所述方法还包括:
    所述基站在所述终端根据所述第一系统信息发起的无线资源控制RRC连接建立过程中或RRC连接建立过程后在所述终端所在的波束发送第二系统信息,所述第二系统信息用于所述终端在所述小区中进行通信。
  6. 根据权利要求5所述的方法,其特征在于,所述基站在所述终端根据所述第一系统信息发起的RRC连接建立过程中或RRC连接建立过程后在所述终端所在的波束发送第二系统信息包括如下情形之一:
    所述基站在发送RRC连接建立消息之后发送所述第二系统信息;
    所述基站在接收所述终端发送的RRC连接建立完成消息之后发送所述第二系统信息。
  7. 根据权利要求1至4中任一项所述的方法,其特征在于,所述第一系统信息包括广播信道的配置信息、运营商信息、跟踪区信息中的至少一种。
  8. 根据权利要求7所述的方法,其特征在于,所述第一系统信息还包括寻呼信道的配置信息,用于所述终端计算寻呼窗口。
  9. 一种接收系统信息的方法,其特征在于,包括:
    终端发送上行信号,所述上行信号用于触发基站发送第一系统信息,所述第一系统信息用于所述终端驻留在小区中;
    所述终端接收所述基站在所述终端所在的波束发送的所述第一系统信息。
  10. 根据权利要求9所述的方法,其特征在于,所述终端发送上行信号之前,所述方法还包括:
    所述终端接收所述基站通过至少一个波束在所述小区内发送的下行信号,所述下行信号包括下行发现参考信号DRS,所述下行DRS用于所述终端发现所述小区。
  11. 根据权利要求10所述的方法,其特征在于,所述终端发送上行信号之前,所述方法还包括:
    所述终端根据所述下行DRS预判所述小区适合驻留。
  12. 根据权利要求11所述的方法,其特征在于,所述终端发送上行信号,包括:
    所述终端根据预设的所述上行信号的配置信息,向所述基站发送所述上行信号。
  13. 根据权利要求11所述的方法,其特征在于,所述下行信号还包括所述上行信号的配置信息,所述终端发送上行信号,包括:
    所述终端根据所述基站发送的所述上行信号的配置信息,向所述基站发送所述上行信号。
  14. 根据权利要求9至13中任一项所述的方法,其特征在于,所述终端接收所述基站在所述终端所在的波束发送的所述第一系统信息之后,所述方法还包括:
    所述终端根据所述第一系统信息向所述基站发起无线资源控制RRC连接建立过程;
    所述终端在所述RRC连接建立过程中或所述RRC连接建立过程后接收所述基站在所述终端所在的波束发送的第二系统信息,所述第二系统信息用于所述终端在所述小区中进行通信。
  15. 根据权利要求14所述的方法,其特征在于,所述终端在所述RRC连接建立过程中或所述RRC连接建立过程后接收所述基站在所述终端所在的波束发送的第二系统信息包括如下情形之一:
    所述终端接收所述基站在发送RRC连接建立消息之后发送的所述第二系统信息;
    所述终端接收所述基站在接收所述终端发送的RRC连接建立完成消息之后发送的所述第二系统信息。
  16. 根据权利要求9至13中任一项所述的方法,其特征在于,所述第一系统信息包括广播信道的配置信息、运营商信息、跟踪区信息中的至少一种。
  17. 根据权利要求16所述的方法,其特征在于,所述第一系统信息还包括寻呼信道的配置信息,用于所述终端计算寻呼窗口,所述终端接收所述基站在所述终端所在的波束发送的所述第一系统信息之后,所述方法还包括:
    所述终端根据所述寻呼信道的配置信息计算寻呼窗口。
  18. 一种基站,其特征在于,包括:
    接收器,用于接收终端发送的上行信号,所述上行信号用于触发所述基站发送第一系统信息,所述第一系统信息用于所述终端驻留在小区中;
    发射器,用于在所述终端所在的波束发送所述第一系统信息。
  19. 根据权利要求18所述的基站,其特征在于,所述发射器还用于在所述接收器接收所述终端发送的上行信号之前,通过至少一个波束在所述小区内发送下行信号,所述下行信号包括下行发现参考信号DRS,所述下行DRS用于所述终端发现所述小区。
  20. 根据权利要求19所述的基站,其特征在于,所述接收器具体用于接收所述终端根据预设的所述上行信号的配置信息发送的所述上行信号。
  21. 根据权利要求19所述的基站,其特征在于,所述下行信号还包括所述上行信号的配置信息,所述接收器具体用于接收所述终端根据所述发射器发送的所述上行信号的配置信息发送的所述上行信号。
  22. 根据权利要求18至21中任一项所述的基站,其特征在于,所述发射器还用于在所述终端所在的波束发送所述第一系统信息之后,在所述终端根据所述第一系统信息发起的无线资源控制RRC连接建立过程中或RRC连接建立过程后在所述终端所在的波束发送第二系统信息,所述第二系统信息用于所述终端在所述小区中进行通信。
  23. 根据权利要求22所述的基站,其特征在于,所述发射器在所述终端根据所述第一系统信息发起的RRC连接建立过程中或RRC连接建立过程后在所述终端所在的波束发送第二系统信息包括如下情形之一:
    所述发射器在发送RRC连接建立消息之后发送所述第二系统信息;
    所述发射器在所述接收器接收所述终端发送的RRC连接建立完成消 息之后发送所述第二系统信息。
  24. 根据权利要求18至21中任一项所述的基站,其特征在于,所述第一系统信息包括广播信道的配置信息、运营商信息、跟踪区信息中的至少一种。
  25. 根据权利要求24所述的基站,其特征在于,所述第一系统信息还包括寻呼信道的配置信息,用于所述终端计算寻呼窗口。
  26. 一种终端,其特征在于,包括:
    发射器,用于发送上行信号,所述上行信号用于触发基站发送第一系统信息,所述第一系统信息用于所述终端驻留在小区中;
    接收器,用于接收所述基站在所述终端所在的波束发送的所述第一系统信息。
  27. 根据权利要求26所述的终端,其特征在于,所述接收器还用于在所述发射器发送所述上行信号之前,接收所述基站通过至少一个波束在所述小区内发送的下行信号,所述下行信号包括下行发现参考信号DRS,所述下行DRS用于所述终端发现所述小区。
  28. 根据权利要求27所述的终端,其特征在于,所述终端还包括:
    至少一个处理器,用于根据所述下行DRS预判所述小区适合驻留。
  29. 根据权利要求28所述的终端,其特征在于,所述发射器具体用于根据预设的所述上行信号的配置信息向所述基站发送所述上行信号。
  30. 根据权利要求28所述的终端,其特征在于,所述下行信号还包括所述上行信号的配置信息,所述发射器具体用于根据所述基站发送的所述上行信号的配置信息向所述基站发送所述上行信号。
  31. 根据权利要求28至30中任一项所述的终端,其特征在于,
    所述至少一个处理器还用于在所述接收器接收所述基站在所述终端所在的波束发送的所述第一系统信息之后,根据所述第一系统信息向所述 基站发起无线资源控制RRC连接建立过程;
    所述接收器还用于在所述RRC连接建立过程中或所述RRC连接建立过程后接收所述基站在所述终端所在的波束发送的第二系统信息,所述第二系统信息用于所述终端在所述小区中进行通信。
  32. 根据权利要求31所述的终端,其特征在于,所述接收器在所述RRC连接建立过程中或所述RRC连接建立过程后接收所述基站在所述终端所在的波束发送的第二系统信息包括如下情形之一:
    所述接收器接收所述基站在发送RRC连接建立消息之后发送的所述第二系统信息;
    所述接收器接收所述基站在接收所述终端发送的RRC连接建立完成消息之后发送的所述第二系统信息。
  33. 根据权利要求28至30中任一项所述的终端,其特征在于,所述第一系统信息包括广播信道的配置信息、运营商信息、跟踪区信息中的至少一种。
  34. 根据权利要求33所述的终端,其特征在于,所述第一系统信息还包括寻呼信道的配置信息,用于所述终端计算寻呼窗口,所述至少一个处理器还用于根据所述寻呼信道的配置信息计算寻呼窗口。
  35. 一种通信系统,其特征在于,包括如权利要求18至21中任一项所述的基站和如权利要求26至30中任一项所述的终端。
PCT/CN2016/101914 2015-10-29 2016-10-12 传输系统信息的方法及基站、终端和系统 WO2017071473A1 (zh)

Priority Applications (7)

Application Number Priority Date Filing Date Title
JP2018522040A JP7050670B2 (ja) 2015-10-29 2016-10-12 システム情報を送信するための方法、基地局、端末、およびシステム
AU2016345125A AU2016345125B2 (en) 2015-10-29 2016-10-12 Method for transmitting system information, base station, terminal, and system
EP16858909.1A EP3358777B1 (en) 2015-10-29 2016-10-12 Method, base station, terminal and system for transmitting system information
ES16858909T ES2833498T3 (es) 2015-10-29 2016-10-12 Método, estación base, terminal y sistema para transmitir información de sistema
BR112018008560-0A BR112018008560B1 (pt) 2015-10-29 2016-10-12 Método e aparelho para receber informações de sistema, método e aparelho para transmitir informações de sistema, e meio de armazenamento legível por computador
KR1020187014685A KR102181447B1 (ko) 2015-10-29 2016-10-12 시스템 정보를 전송하는 방법, 기지국, 단말 및 시스템
US15/965,137 US10588064B2 (en) 2015-10-29 2018-04-27 Method for transmitting system information, base station, terminal, and system

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201510718080.9 2015-10-29
CN201510718080.9A CN106656442B (zh) 2015-10-29 2015-10-29 传输系统信息的方法及基站、终端和系统

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US15/965,137 Continuation US10588064B2 (en) 2015-10-29 2018-04-27 Method for transmitting system information, base station, terminal, and system

Publications (1)

Publication Number Publication Date
WO2017071473A1 true WO2017071473A1 (zh) 2017-05-04

Family

ID=58629854

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2016/101914 WO2017071473A1 (zh) 2015-10-29 2016-10-12 传输系统信息的方法及基站、终端和系统

Country Status (9)

Country Link
US (1) US10588064B2 (zh)
EP (1) EP3358777B1 (zh)
JP (1) JP7050670B2 (zh)
KR (1) KR102181447B1 (zh)
CN (3) CN111083714A (zh)
AU (1) AU2016345125B2 (zh)
BR (1) BR112018008560B1 (zh)
ES (1) ES2833498T3 (zh)
WO (1) WO2017071473A1 (zh)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109121189A (zh) * 2017-06-26 2019-01-01 中兴通讯股份有限公司 一种系统消息获取方法和装置、计算机可读存储介质
CN109150445A (zh) * 2017-06-16 2019-01-04 电信科学技术研究院 一种下行控制信息发送与接收方法及设备
JP2020519104A (ja) * 2017-05-05 2020-06-25 クアルコム,インコーポレイテッド 残りのシステム情報送信ウィンドウの構成
WO2021027000A1 (zh) * 2019-08-14 2021-02-18 华为技术有限公司 一种系统信息的获取方法、发送方法及装置
EP3641403A4 (en) * 2017-06-15 2021-03-17 ZTE Corporation INFORMATION TRANSFER METHOD AND DEVICE, STORAGE MEDIUM AND PROCESSOR
JP2021526342A (ja) * 2018-06-21 2021-09-30 鴻穎創新有限公司Fg Innovation Company Limited 無線通信システムにおいてセル(再)選択を遂行するための方法及び装置
US11330541B2 (en) * 2016-08-12 2022-05-10 Huawei Technologies Co., Ltd. System information sending method and apparatus
EP3621361B1 (en) * 2017-06-05 2023-05-03 Samsung Electronics Co., Ltd. Method and apparatus for requesting system information by using preamble in next generation mobile communication system

Families Citing this family (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107852580A (zh) * 2016-06-30 2018-03-27 北京小米移动软件有限公司 系统信息传输方法及装置
KR102512849B1 (ko) 2016-09-29 2023-03-24 삼성전자 주식회사 측정을 수행하기 위한 장치 및 방법
CN108347757A (zh) * 2017-01-24 2018-07-31 株式会社Ntt都科摩 按需处理方法、用户设备和基站
WO2018174533A1 (ko) * 2017-03-21 2018-09-27 엘지전자 주식회사 공공 경고 시스템을 수행하는 방법 및 이를 지원하는 장치
CN109121197B (zh) * 2017-06-24 2021-05-28 上海朗帛通信技术有限公司 一种被用于无线通信的用户设备、基站中的方法和装置
CN109392044B (zh) * 2017-08-10 2020-10-23 华为技术有限公司 小区切换的方法和装置
CN107708205B (zh) * 2017-10-31 2020-08-25 武汉虹信通信技术有限责任公司 一种ran寻呼消息处理方法及基站
CN109803287B (zh) * 2017-11-17 2021-03-12 电信科学技术研究院 一种寻呼监听方法及终端
CN111758285B (zh) * 2018-02-14 2022-05-13 华为技术有限公司 通信方法、设备及系统
CN110381546B (zh) * 2018-04-13 2021-07-16 中国移动通信有限公司研究院 一种小区重选的方法、终端及网络设备
WO2019210507A1 (zh) * 2018-05-04 2019-11-07 华为技术有限公司 系统信息确定方法、装置及存储介质
CN111512671B (zh) * 2018-05-10 2022-05-17 Oppo广东移动通信有限公司 无线通信方法和设备
CN110636578B (zh) * 2018-06-21 2023-10-31 中兴通讯股份有限公司 一种请求系统消息的方法、装置、存储介质及终端
CN111417168A (zh) * 2019-01-07 2020-07-14 中国移动通信有限公司研究院 系统信息的传输方法、终端及网络设备
CN114079914B (zh) * 2020-08-12 2023-03-24 中国电信股份有限公司 终端接入基站的方法、基站、终端以及通信系统
US20220104109A1 (en) * 2020-09-28 2022-03-31 Qualcomm Incorporated Techniques for adaptatively requesting on-demand system information
US11895677B2 (en) * 2021-04-30 2024-02-06 Qualcomm Incorporated Transponder signaling for localization on higher bands

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102223690A (zh) * 2011-06-17 2011-10-19 电信科学技术研究院 一种传输系统信息的方法及装置
CN102318409A (zh) * 2009-02-25 2012-01-11 摩托罗拉移动公司 在无线通信网络中传递系统信息
CN104349420A (zh) * 2013-07-30 2015-02-11 上海摩波彼克半导体有限公司 通信终端及其接收系统信息的方法与装置
WO2015113689A1 (en) * 2014-01-29 2015-08-06 Sony Corporation Telecommunications apparatus and methods

Family Cites Families (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102695226B (zh) * 2006-09-28 2014-12-03 富士通株式会社 移动站和无线通信系统
CN101578783A (zh) * 2007-01-10 2009-11-11 Lg电子株式会社 用于在移动通信中构造数据格式的方法及其终端
CN103843387B (zh) * 2011-09-30 2017-08-18 日本电气株式会社 无线通信系统、无线终端、无线站、网络设备和信息收集方法
WO2013068369A1 (en) 2011-11-08 2013-05-16 Koninklijke Kpn N.V. Distribution of system information in a wireless access telecommunications system
CN110225570B (zh) * 2011-11-08 2021-09-07 荷兰皇家Kpn电信集团 无线接入电信系统中的系统信息分配的方法、终端和小区
CN103220704B (zh) * 2012-01-21 2019-02-26 华为技术有限公司 无线通信系统中测量增强的方法和装置
WO2013141541A1 (en) * 2012-03-18 2013-09-26 Lg Electronics Inc. Method and apparatus for acquiring system information in wireless communication system
WO2014009246A1 (en) * 2012-07-09 2014-01-16 Nokia Siemens Networks Oy Millimeterwave access architecture with rapid rerouting
WO2014015472A1 (zh) * 2012-07-23 2014-01-30 华为技术有限公司 一种数据分流的方法、用户设备、宏基站和小节点
EP2912891B1 (en) * 2012-10-29 2019-06-26 Telefonaktiebolaget LM Ericsson (publ) Method for sending or receiving system information
WO2014153756A1 (en) * 2013-03-28 2014-10-02 Nokia Siemens Networks Oy Scaled inter-frequency measurement for cell reselection
US9900872B2 (en) * 2013-04-17 2018-02-20 Futurewei Technologies, Inc. Systems and methods for adaptive transmissions in wireless network
KR102118693B1 (ko) * 2013-06-24 2020-06-03 삼성전자주식회사 무선 통신 시스템에서 랜덤 액세스를 위한 적응적 송신 빔 패턴 결정 장치 및 방법
TWI555413B (zh) * 2013-07-01 2016-10-21 創新音速股份有限公司 在無線通訊系統中處理一測量配置的方法及裝置
JP2015041818A (ja) * 2013-08-20 2015-03-02 株式会社Nttドコモ 同期信号受信方法及び移動局装置
JP6193675B2 (ja) 2013-08-21 2017-09-06 株式会社Nttドコモ 無線基地局、ユーザ端末及び無線通信方法
WO2015045659A1 (ja) 2013-09-30 2015-04-02 ソニー株式会社 通信制御装置、通信制御方法、端末装置及び情報処理装置
JP6321810B2 (ja) * 2014-08-08 2018-05-09 京セラ株式会社 通信方法、ユーザ端末及びプロセッサ
US10616822B2 (en) * 2015-02-10 2020-04-07 Qualcomm Incorporated System information updating
US10200920B2 (en) 2015-02-10 2019-02-05 Qualcomm Incorporated On-demand system information
US9769733B2 (en) 2015-02-10 2017-09-19 Qualcomm Incorporated Incremental transmission of system information

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102318409A (zh) * 2009-02-25 2012-01-11 摩托罗拉移动公司 在无线通信网络中传递系统信息
CN102223690A (zh) * 2011-06-17 2011-10-19 电信科学技术研究院 一种传输系统信息的方法及装置
CN104349420A (zh) * 2013-07-30 2015-02-11 上海摩波彼克半导体有限公司 通信终端及其接收系统信息的方法与装置
WO2015113689A1 (en) * 2014-01-29 2015-08-06 Sony Corporation Telecommunications apparatus and methods

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3358777A4 *

Cited By (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11330541B2 (en) * 2016-08-12 2022-05-10 Huawei Technologies Co., Ltd. System information sending method and apparatus
JP2020519104A (ja) * 2017-05-05 2020-06-25 クアルコム,インコーポレイテッド 残りのシステム情報送信ウィンドウの構成
US11778647B2 (en) 2017-06-05 2023-10-03 Samsung Electronics Co., Ltd. Method and apparatus for requesting system information by using preamble in next generation mobile communication system
EP3621361B1 (en) * 2017-06-05 2023-05-03 Samsung Electronics Co., Ltd. Method and apparatus for requesting system information by using preamble in next generation mobile communication system
US11800433B2 (en) 2017-06-15 2023-10-24 Xi'an Zhongxing New Software Co., Ltd. Information transmission method and device, storage medium and processor
EP3641403A4 (en) * 2017-06-15 2021-03-17 ZTE Corporation INFORMATION TRANSFER METHOD AND DEVICE, STORAGE MEDIUM AND PROCESSOR
US11323951B2 (en) 2017-06-15 2022-05-03 Xi'an Zhongxing New Software Co., Ltd. Information transmission method and device, storage medium and processor
US11405906B2 (en) 2017-06-16 2022-08-02 Datang Mobile Communications Equipment Co., Ltd. Downlink control information transmission and reception methods and devices
CN109150445A (zh) * 2017-06-16 2019-01-04 电信科学技术研究院 一种下行控制信息发送与接收方法及设备
EP3641202A4 (en) * 2017-06-16 2020-06-03 China Academy of Telecommunications Technology METHOD AND DEVICES FOR TRANSMITTING AND RECEIVING DOWNLINK CONTROL INFORMATION
CN109150445B (zh) * 2017-06-16 2021-08-24 大唐移动通信设备有限公司 一种下行控制信息发送与接收方法及设备
CN109121189A (zh) * 2017-06-26 2019-01-01 中兴通讯股份有限公司 一种系统消息获取方法和装置、计算机可读存储介质
US11272406B2 (en) 2018-06-21 2022-03-08 FG Innovation Company Limited Method and apparatus for performing cell (re)selection in wireless communication system
JP7247232B2 (ja) 2018-06-21 2023-03-28 鴻穎創新有限公司 無線通信システムにおいてセル(再)選択を遂行するための方法及び装置
US11622305B2 (en) 2018-06-21 2023-04-04 FG Innovation Company Limited Method and apparatus for performing cell (re)selection in a wireless communication system
US11382011B2 (en) 2018-06-21 2022-07-05 FG Innovation Company Limited Method and apparatus for performing cell (re)selection in wireless communication system
US11758450B2 (en) 2018-06-21 2023-09-12 FG Innovation Company Limited Method and apparatus for performing cell (re)selection in wireless communication systems
JP2021526342A (ja) * 2018-06-21 2021-09-30 鴻穎創新有限公司Fg Innovation Company Limited 無線通信システムにおいてセル(再)選択を遂行するための方法及び装置
WO2021027000A1 (zh) * 2019-08-14 2021-02-18 华为技术有限公司 一种系统信息的获取方法、发送方法及装置

Also Published As

Publication number Publication date
JP7050670B2 (ja) 2022-04-08
KR20180075585A (ko) 2018-07-04
CN106656442A (zh) 2017-05-10
AU2016345125B2 (en) 2020-01-30
AU2016345125A1 (en) 2018-05-24
CN106656442B (zh) 2020-01-03
BR112018008560B1 (pt) 2024-02-20
BR112018008560A2 (zh) 2018-10-30
ES2833498T3 (es) 2021-06-15
US10588064B2 (en) 2020-03-10
CN111083714A (zh) 2020-04-28
EP3358777A1 (en) 2018-08-08
EP3358777A4 (en) 2019-02-13
EP3358777B1 (en) 2020-08-26
CN110855415B (zh) 2021-10-22
CN110855415A (zh) 2020-02-28
KR102181447B1 (ko) 2020-11-23
JP2018532347A (ja) 2018-11-01
US20180249387A1 (en) 2018-08-30

Similar Documents

Publication Publication Date Title
WO2017071473A1 (zh) 传输系统信息的方法及基站、终端和系统
CN107431544B (zh) 用于设备到设备通信的方法和装置
US10051677B2 (en) Providing, obtaining, and using D2D-related capability of a network node
JP2019532602A (ja) システム情報配信のための方法および装置
WO2015115847A1 (ko) 무선 통신 시스템에서 단말에 의해 수행되는 d2d 동작 방법 및 상기 방법을 이용하는 단말
US10165455B2 (en) Coordination for PBCH
EP3510808B1 (en) Support for a set of mobility modes including uplink-based mobility mode, downlink-based mobility mode and hybrid mobility mode based on synchronization and reference downlink signals
JP2022513947A (ja) システム情報を更新する方法、及びそれを使用するワイヤレス送信/受信ユニット
US9949281B2 (en) Method and radio node for managing resources for D2D discovery in an ad-hoc radio communication network
CN113709833B (zh) 一种终端的测量方法及装置、终端
KR20190019910A (ko) 정보 전송 방법 및 기기
WO2022068797A1 (zh) 网络接入方法、网络接入装置、终端和网络侧设备
EP4195866A1 (en) Communication system and communication terminal
CN112544107A (zh) 无sib1的nr小区的cgi报告过程
CN115669207A (zh) 建立mbs业务的方法及装置、终端设备、网络设备
CN114449571B (zh) 强干扰条件下配置小区接入资源的方法及装置
CN111919473A (zh) 用于在5g系统中操作终端的方法和设备
US20190007925A1 (en) Network Node, Wireless Device and Methods Performed Therein
US11917475B2 (en) Idle mode cell reselection priority configurations
EP4167649A1 (en) Communication system, communication terminal, and management device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16858909

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2018522040

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2016858909

Country of ref document: EP

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112018008560

Country of ref document: BR

ENP Entry into the national phase

Ref document number: 2016345125

Country of ref document: AU

Date of ref document: 20161012

Kind code of ref document: A

Ref document number: 20187014685

Country of ref document: KR

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 112018008560

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20180427