WO2021087885A1 - 拍照方法、相机、无人机和存储介质 - Google Patents

拍照方法、相机、无人机和存储介质 Download PDF

Info

Publication number
WO2021087885A1
WO2021087885A1 PCT/CN2019/116327 CN2019116327W WO2021087885A1 WO 2021087885 A1 WO2021087885 A1 WO 2021087885A1 CN 2019116327 W CN2019116327 W CN 2019116327W WO 2021087885 A1 WO2021087885 A1 WO 2021087885A1
Authority
WO
WIPO (PCT)
Prior art keywords
image
camera
time
shooting
similarity
Prior art date
Application number
PCT/CN2019/116327
Other languages
English (en)
French (fr)
Inventor
代宇廷
Original Assignee
深圳市大疆创新科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳市大疆创新科技有限公司 filed Critical 深圳市大疆创新科技有限公司
Priority to PCT/CN2019/116327 priority Critical patent/WO2021087885A1/zh
Priority to CN201980040123.9A priority patent/CN112334387A/zh
Publication of WO2021087885A1 publication Critical patent/WO2021087885A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B19/00Cameras
    • G03B19/02Still-picture cameras
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N23/00Cameras or camera modules comprising electronic image sensors; Control thereof
    • H04N23/60Control of cameras or camera modules
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64UUNMANNED AERIAL VEHICLES [UAV]; EQUIPMENT THEREFOR
    • B64U10/00Type of UAV
    • B64U10/10Rotorcrafts
    • B64U10/13Flying platforms
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64UUNMANNED AERIAL VEHICLES [UAV]; EQUIPMENT THEREFOR
    • B64U2101/00UAVs specially adapted for particular uses or applications
    • B64U2101/30UAVs specially adapted for particular uses or applications for imaging, photography or videography

Definitions

  • the invention relates to the field of image processing, in particular to a photographing method, a camera, an unmanned aerial vehicle and a storage medium.
  • Many cameras also called shooting equipment
  • the camera continuously performs image shooting and video synthesis during the shooting process, which consumes a lot of power, resulting in a shorter overall working time of the camera.
  • the invention provides a photographing method, a camera, an unmanned aerial vehicle and a storage medium, which can reduce the power consumption of the camera and prolong the shooting time of the camera.
  • the first aspect of the present invention provides a photographing method, including:
  • control the camera In response to the activation of the time-lapse photography function, control the camera to be in a dormant state after the first image is taken;
  • the corresponding video is generated based on the captured images.
  • the second aspect of the present invention provides a camera, which is characterized by comprising:
  • a memory storing executable code
  • One or more processors working individually or collectively, execute the executable code to implement:
  • control the camera In response to the activation of the time-lapse photography function, control the camera to be in a dormant state after the first image is taken;
  • the corresponding video is generated based on the captured images.
  • a third aspect of the present invention provides an unmanned aerial vehicle including the camera as described in the second aspect.
  • a fourth aspect of the present invention provides a computer-readable storage medium having executable code stored in the computer-readable storage medium, and the executable code is used to implement the photographing method described in the first aspect.
  • the timelapse function of the camera when the timelapse function of the camera is activated, first, determine the image shooting interval of the interval shooting image, and then, when the first image is taken, the camera is controlled to be in a dormant state immediately ,
  • the sleep duration is the duration of the image capture interval.
  • wake up the camera to take the next image again which is the second image
  • control the camera to enter the sleep state again and wake up again after the sleep duration reaches the aforementioned image capture interval.
  • the camera captures the next image, and this loop is iteratively executed until the iteration cut-off condition is met.
  • the corresponding video is synthesized from the multiple saved images.
  • the camera is in a dormant state immediately after the image is taken during the interval shooting of images, which reduces the power consumption of the camera.
  • FIG. 1 is a schematic flowchart of a photographing method provided by an embodiment of the present invention
  • FIG. 2 is a schematic flowchart of another photographing method provided by an embodiment of the present invention.
  • FIG. 3 is a schematic diagram of an interface for selecting an image shooting interval according to an embodiment of the present invention.
  • FIG. 4 is a schematic diagram of another interface for selecting an image shooting interval provided by an embodiment of the present invention.
  • FIG. 5 is a schematic diagram of the composition structure of a camera provided by an embodiment of the present invention.
  • Fig. 6 is a schematic structural diagram of an unmanned aerial vehicle provided by an embodiment of the present invention.
  • FIG. 1 is a schematic flowchart of a photographing method provided by an embodiment of the present invention. As shown in FIG. 1, the photographing method may include the following steps:
  • control the camera In response to the activation of the time-lapse photography function, control the camera to be in a sleep state after the first image is taken.
  • step 103 Determine whether the iteration cutoff condition is met, if not, repeat step 102, and if yes, perform step 104.
  • the photographing method provided in the present invention can be applied to the photographing process after the camera is activated with the timelapse function.
  • time-lapse photography is simply a photography technique that takes images at a lower frame rate and then plays the images at a normal or faster rate.
  • the image capture interval length of the interval capture image may be set in the camera by default, such as 2 minutes (min), so that the image capturing interval may be used for image capturing.
  • the camera captures the first image, and then the camera can be controlled to be in the sleep state to reduce the power consumption of the camera. At this time, the time the camera is in the sleep state is the determined image capture The length of the interval.
  • controlling the camera to be in a sleep state optionally, controlling the camera's memory to perform self-refresh (Self Refresh, referred to as SR), controlling the power off of the external circuit of the camera's image processing chip, and turning off the timing related functions in the image processing chip Of the device. Since the camera is in the dormant state, there is a time limit. When the image processing chip is used to count the dormant time, in order to reduce power consumption, during the period of the camera in the dormant state, in addition to the devices related to the timing function, other devices in the image processing chip They are all closed and not working.
  • Self Refresh Self Refresh
  • controlling the camera to be in the dormant state can also be implemented as: reducing the discharge voltage and/or current of the battery of the camera. After taking an image, reducing the battery discharge voltage and/or current before taking the next image can reduce battery power consumption, thereby prolonging the working time of the battery, that is, prolonging the working time of the camera.
  • the power consumption of the camera is extremely low, it will not cause the camera to heat up, and the camera will not work abnormally due to the high temperature in the outdoor hot scene.
  • the camera After taking the first image and controlling the camera to sleep, if the camera has been in sleep for the duration of the image capture interval, such as 2 minutes, then wake up the camera to capture the second image, where waking up the camera means that the camera is in a normal state Working status. After the second image is captured, the camera is controlled to be in a dormant state again, and iterates in this way until the iteration cutoff condition is met.
  • the duration of the image capture interval such as 2 minutes
  • the iteration cut-off condition may be: the remaining power of the camera reaches the power threshold, or the total shooting time reaches the set time, or the time-lapse photography function is turned off.
  • the total shooting time may refer to the total time counted after the user triggers the shooting instruction, for example, 30 minutes.
  • the power threshold may be a preset value, such as 5%.
  • the camera is in a dormant state immediately after the image is taken during the interval shooting of images, so that power consumption can be reduced and the overall working time of the camera can be prolonged.
  • FIG. 2 is a schematic flowchart of a photographing method provided by an embodiment of the present invention. As shown in FIG. 2, the photographing method may include the following steps:
  • step 204 Determine whether the iteration cutoff condition is met, if not, repeat step 203, and if yes, perform step 205.
  • the image capture interval corresponding to the time-lapse photography function in the camera can be a preset fixed value. However, in practical applications, it can also be determined in real time each time the time-lapse photography function is used. The length of the interval between the image captures.
  • determining the image capture interval time can be achieved in the following manner:
  • the selected image capturing interval duration is determined.
  • the camera or other electronic equipment used with the camera may have a display screen, and the selection interface containing the above-mentioned multiple image shooting intervals may be displayed to the user through the display screen. select.
  • multiple image shooting intervals are pre-configured in the camera, such as: 0.5min, 1min, 1.5min, 2min, 2.5min, 3min..., with 0.5min as the step length until 10min. Therefore, the user can select an image shooting interval according to actual needs, for example, 2 minutes.
  • each selectable image shooting interval can be associated with a selection control, such as the box shown in FIG. 3, for the user to operate the selection control to select a certain image shooting interval.
  • the above selection interface may also include an input box for the user to directly input the image capturing interval to be used in the input box according to the provided multiple image capturing interval durations.
  • the determination of the image capturing interval can also be implemented in the following manner:
  • the selected image shooting interval time is determined.
  • a corresponding relationship between the shooting scene type and the image shooting interval is preconfigured, so that the user can select the image shooting interval according to the shooting scene type currently used for shooting with the camera.
  • the shooting scene types are assumed to be divided into static shooting scenes and dynamic shooting scenes.
  • the image shooting interval corresponding to the static shooting scene is longer than the image shooting interval corresponding to the dynamic shooting scene.
  • the image shooting interval corresponding to the static shooting scene includes: 2min, 2.5min, 3min Etc.
  • the image shooting interval corresponding to the dynamic shooting scene includes: 0.5min, 1min, 1.5min, 2min, etc.
  • the so-called static shooting scene means that the object being photographed is relatively static, such as woods and lakes in a certain area.
  • a dynamic shooting scene means that the object being photographed is moving, such as in a certain area. Live animals on the grass.
  • static shooting scenes can be specific scenes such as sunrise, sunset, etc.
  • the shooting interval will increase correspondingly due to the slow motion of the shooting scene and the long time required for shooting; while the dynamic shooting scenes can be, for example, A certain highlight of a basketball game.
  • shooting scenes can also have other division dimensions. For example, it can also list some commonly used shooting scenes: equipment monitoring, moving body tracking, and other shooting scenes. And can increase according to actual application, or add more scene types through each software upgrade.
  • the first image can be captured based on the user-triggered instruction to start capturing. Then, control the camera to enter the sleep state, and the sleep time is the selected image shooting interval. Wherein, the first image can be considered as the first image taken.
  • the determination of the image capturing interval can also be implemented in the following manner:
  • this implementation mode can be regarded as the camera automatically determining the required image capturing interval length.
  • the user can first start the time-lapse photography function and trigger a shooting start instruction.
  • the camera captures the first image.
  • the first image is recognized to determine the shooting scene type corresponding to the first image.
  • the image shooting interval length that needs to be used is determined from a plurality of preset image shooting interval lengths corresponding to the shooting scene type.
  • a classification model can be pre-trained to identify the type of shooting scene corresponding to the first image through the classification model.
  • an image is first collected, and the type of shooting scene is recognized on the image, so as to determine the image shooting interval to be used in combination with the recognized type of shooting scene.
  • the camera is controlled to enter the dormant state, and the dormant time is the determined duration of the image shooting interval.
  • determining the image shooting interval time to be used from the preset multiple image shooting interval time corresponding to the shooting scene type can be realized as follows: according to the remaining battery power of the camera, determine the need to use from the multiple image shooting interval time The length of the interval between image captures. In summary, when the remaining power is large, a shorter image capturing interval can be selected; conversely, when the remaining power is less, a larger image capturing interval can be selected.
  • the camera can be controlled to be in the sleep state to reduce the power consumption of the camera. At this time, the time the camera is in the sleep state is Determine the length of the interval between image captures.
  • the camera After the first image is captured and the camera is controlled to be in the dormant state, if the time that the camera is in the dormant state has reached the image capturing interval, such as 2 min, the camera is awakened to capture the second image. Among them, waking up the camera is to make the camera in a normal working state.
  • this article also provides an image de-duplication processing program.
  • the similarity between the second image and the first image captured previously is calculated to determine whether to store the second image according to the similarity.
  • the similarity is greater than the set threshold
  • the second image is stored.
  • the similarity is less than the set threshold
  • the second image is deleted.
  • the similarity between the first image and the second image can be: acquiring the image features of the objects in the first image and the second image, and determining the first image based on the image features The degree of similarity with the second image, so that if the degree of similarity is greater than the set threshold, the second image is stored.
  • the image feature may be a contour feature, so that the similarity between the contour feature corresponding to the first image and the contour feature corresponding to the second image is calculated, and the similarity is used as the first image and the second image The similarity between. Among them, the more contour features matched in the two images, the higher the similarity.
  • the image feature can also be a color distribution feature, so that the similarity between the color distribution feature corresponding to the first image and the color distribution feature corresponding to the second image can be calculated, and the similarity is used as the first image and the color distribution feature.
  • the similarity between the second images can also be a color distribution feature, so that the similarity between the color distribution feature corresponding to the first image and the color distribution feature corresponding to the second image can be calculated, and the similarity is used as the first image and the color distribution feature. The similarity between the second images.
  • the image feature may also be the position of the corresponding pixel, where the so-called corresponding pixel refers to a pair of pixels in the first image and the second image that have a positional correspondence relationship. Therefore, the distance of the corresponding pixel can be calculated according to the position of the corresponding pixel, and then the similarity between the first image and the second image can be determined according to the distance of the corresponding pixel. For example, assuming that there are N pairs of pixels in two images, the distance between the N pairs of pixels is averaged, and the average value obtained is used as the similarity.
  • the method of calculating the similarity of the two images may also include the following way: representing the image as a vector, and characterizing the similarity of the two images by calculating the cosine distance between the vectors. Calculate the mutual information of two images to characterize the similarity between them.
  • the iterative cut-off condition may be: the remaining power of the camera reaches the power threshold, or the total shooting time reaches the set time, or the time-lapse photography function is turned off.
  • the above-mentioned power threshold may be a certain fixed value set, for example, 5%.
  • the power threshold may also be determined in real time according to the number of images stored in the shooting process. In a nutshell, assuming that since the first image is taken, the number of images that have been stored up to the current moment is N, the required power can be determined according to the time or the amount of calculation required to generate a video composed of these N images. The required power is used as the power threshold to determine whether to terminate the shooting. In other words, if the number of currently stored images N is very large, it means that more time and more calculations are needed to synthesize the video. At this time, more power needs to be reserved for video synthesis.
  • the power threshold should be set higher. Conversely, if the number of stored images N is small, the power threshold can be set smaller. In fact, the corresponding relationship between the number of images and the power threshold can be set to dynamically determine the current required power threshold based on the number of images that have been stored.
  • the corresponding time stamp that is, the shooting time
  • the corresponding time can be marked for the image, so that the corresponding time can be marked according to the stored multiple images. Timestamp, sort the multiple images to determine the order of multiple images in the video.
  • the camera is in a dormant state after the image is taken and the image similarity comparison is completed during the interval shooting of images, so as to reduce power consumption.
  • the similarity between the images taken successively there are no duplicate images in the finally retained image, so that the final synthesized video contains all valid information, and the information redundancy is reduced.
  • FIG. 5 is a schematic diagram of the composition structure of a camera provided by an embodiment of the present invention.
  • the camera includes: a memory 11 storing executable codes; and one or more processors 12, individually or collectively To work.
  • the one or more processors 12 execute the executable code stored in the memory 11 to implement:
  • control the camera In response to the activation of the time-lapse photography function, control the camera to be in a dormant state after the first image is taken;
  • the corresponding video is generated based on the captured images.
  • the processor 12 is further configured to determine the duration of the image shooting interval.
  • the camera further includes: a display screen 13.
  • the processor 12 is further configured to: output a plurality of image shooting intervals through the display screen 13; and determine the selected image shooting interval according to a user's selection operation on the plurality of image shooting intervals The length of the interval.
  • the processor 12 is further configured to: output through the display screen 13 the respective image shooting interval durations corresponding to the multiple shooting scene types; according to the user's respective image shooting interval durations corresponding to the multiple shooting scene types The selection operation determines the duration of the selected image shooting interval.
  • the processor 12 is further configured to: identify the shooting scene type corresponding to the first image; determine the image shooting interval from a plurality of preset image shooting interval durations corresponding to the shooting scene type duration.
  • the processor 12 is further configured to: determine the image shooting interval length from the plurality of image shooting interval lengths according to the remaining power of the camera.
  • the camera includes an image processing chip and an external circuit coupled with the image processing chip; and the communication processing chip includes timing related devices. Therefore, the processor 12 is further configured to: control the memory to perform self-refresh; control the power off of the external circuit of the image processing chip; and turn off other devices in the image processing chip except for the timing-related devices.
  • the camera includes a battery.
  • the processor 12 is further configured to reduce the discharge voltage and/or current of the battery.
  • the processor 12 is further configured to determine whether to store the second image according to the similarity between the first image and the second image.
  • the processor 12 is further configured to: acquire image features of objects in the first image and the second image; determine the relationship between the first image and the second image according to the image features If the similarity is greater than the set threshold, store the second image.
  • the image feature includes a contour feature
  • the processor 12 is further configured to calculate a similarity between the contour feature corresponding to the first image and the contour feature corresponding to the second image.
  • the image feature includes a color distribution feature
  • the processor 12 is further configured to calculate the similarity between the color distribution feature corresponding to the first image and the color distribution feature corresponding to the second image.
  • the image feature includes the position of the corresponding pixel
  • the processor 12 is further configured to: calculate the distance of the corresponding pixel according to the position of the corresponding pixel; determine according to the distance of the corresponding pixel The similarity between the first image and the second image.
  • the iteration cut-off condition includes: the remaining power of the camera reaches a power threshold, or the total shooting time reaches a set time, or the time-lapse photography function is turned off.
  • the processor 12 is further configured to determine the power threshold according to the number of stored images.
  • the processor 12 is further configured to: mark the first image and the second image with a time stamp, and the time stamp is used to determine whether the first image and the second image are in place. Describe the order in the video.
  • FIG. 6 is a schematic structural diagram of an unmanned aerial vehicle provided by an embodiment of the present invention.
  • the unmanned aerial vehicle includes a body and a camera.
  • the camera is the camera provided in the embodiment shown in FIG. 5.

Landscapes

  • Engineering & Computer Science (AREA)
  • Multimedia (AREA)
  • Signal Processing (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Studio Devices (AREA)

Abstract

一种拍照方法、相机、无人机和存储介质,其中,拍照方法包括:响应于延时摄影功能的启动,拍摄第一图像后控制相机处于休眠状态;迭代执行如下过程,直至满足迭代截止条件:若相机处于休眠状态的时间达到图像拍摄间隔时长,则唤醒相机以拍摄第二图像,控制相机处于休眠状态;在迭代结束后,根据已拍摄的图像生成对应的视频。这种方法使相机在间隔拍摄图像期间,拍完图像后随即处于休眠状态,降低了相机的功耗。

Description

拍照方法、相机、无人机和存储介质 技术领域
本发明涉及图像处理领域,尤其涉及一种拍照方法、相机、无人机和存储介质。
背景技术
很多相机(也可以称为拍摄设备)都具有延时摄影(timelapse)功能,基于该延时摄影功能,相机可以在一段时间内连续间隔拍摄一帧帧图像,进而将拍得的全部图像合成为视频。
目前,相机在拍摄过程中不断进行图像拍摄工作以及视频合成工作,功耗较大,导致相机整体的工作时长较短。
发明内容
本发明提供了一种拍照方法、相机、无人机和存储介质,能够降低相机的功耗,延长相机的拍摄时长。
本发明的第一方面提供了一种拍照方法,包括:
响应于延时摄影功能的启动,拍摄第一图像后控制相机处于休眠状态;
迭代执行如下过程,直至满足迭代截止条件:
若所述相机处于休眠状态的时间达到图像拍摄间隔时长,则唤醒所述相机以拍摄第二图像;
控制相机处于休眠状态;
在迭代结束后,根据已拍摄的图像生成对应的视频。
本发明的第二方面提供了一种相机,其特征在于,包括:
存储器,存储有可执行代码;以及,
一个或多个处理器,单独地或共同地工作,执行所述可执行代码以用于实 现:
响应于延时摄影功能的启动,拍摄第一图像后控制相机处于休眠状态;
迭代执行如下过程,直至满足迭代截止条件:
若所述相机处于休眠状态的时间达到图像拍摄间隔时长,则唤醒所述相机以拍摄第二图像;
控制相机处于休眠状态;
在迭代结束后,根据已拍摄的图像生成对应的视频。
本发明的第三方面提供了一种无人机,包括如第二方面所述的相机。
本发明的第四方面提供了一种计算机可读存储介质,所述计算机可读存储介质中存储有可执行代码,所述可执行代码用于实现上述第一方面所述的拍照方法。
在本发明提供的拍照方法中,当相机的延时摄影(timelapse)功能被启动时,首先,确定间隔拍摄图像的图像拍摄间隔时长,之后,当拍摄到第一图像后随即控制相机处于休眠状态,休眠时长即为该图像拍摄间隔时长,待达到休眠时长时,唤醒相机再次拍摄下一张图像即第二图像,之后,控制相机再次进入休眠状态,休眠时长达到上述图像拍摄间隔时长后再次唤醒相机拍摄获得下一张图像,如此循环迭代执行,直到满足迭代截止条件为止。最终,由保存下来的多张图像合成对应的视频。
在上述方案中,相机在间隔拍摄图像期间,拍完图像后随即处于休眠状态,降低了相机的功耗。
附图说明
此处所说明的附图用来提供对本申请的进一步理解,构成本申请的一部分,本申请的示意性实施例及其说明用于解释本申请,并不构成对本申请的不当限定。在附图中:
图1为本发明实施例提供的一种拍照方法的流程示意图;
图2为本发明实施例提供的另一种拍照方法的流程示意图;
图3为本发明实施例提供的一种图像拍摄间隔时长的选择界面示意图;
图4为本发明实施例提供的另一种图像拍摄间隔时长的选择界面示意图;
图5为本发明实施例提供的一种相机的组成结构示意图;
图6为本发明实施例提供的一种无人机的结构示意图。
具体实施方式
为使本发明实施例的目的、技术方案和优点更加清楚,下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
除非另有定义,本文所使用的所有的技术和科学术语与属于本发明的技术领域的技术人员通常理解的含义相同。本文中在本发明的说明书中所使用的术语只是为了描述具体的实施例的目的,不是旨在于限制本发明。
图1为本发明实施例提供的一种拍照方法的流程示意图,如图1所示,该拍照方法可以包括如下步骤:
101、响应于延时摄影功能的启动,拍摄第一图像后控制相机处于休眠状态。
102、若相机处于休眠状态的时间达到图像拍摄间隔时长,则唤醒相机以拍摄第二图像,控制相机处于休眠状态。
103、确定是否满足迭代截止条件,若否,则重复执行步骤102,若是,则执行步骤104。
104、根据已拍摄的多张图像生成对应的视频。
在本发明提供的拍照方法可以适用于相机被启动延时摄影(timelapse)功能后的拍摄处理过程中。其中,延时摄影,简单来说就是:以一种较低的帧率拍摄图像,然后用正常或者较快的速率播放图像的摄影技术。
在使用延时摄影功能进行图像拍摄时,需要间隔地不断拍摄一张张图像,从而,首先需要确定的是间隔拍摄图像的图像拍摄间隔时长。在一可选方式中,相机内可以默认设置好了图像拍摄间隔时长,比如2分钟(min),从而,可以采用该图像拍摄间隔时长进行图像拍摄。
实际应用中,当用户触发开始拍摄指令后,相机拍摄得到第一图像,随后可以控制相机处于休眠状态,以降低相机的功耗,此时,相机处于休眠状态的时间即为确定出的图像拍摄间隔时长。
其中,控制相机处于休眠状态,可选地,可以是控制相机的内存进行自刷新(Self Refresh,简称SR),控制相机的图像处理芯片的外部电路断电,以及关闭图像处理芯片内除定时相关的器件。由于相机处于休眠状态是有时间限制的,当由图像处理芯片进行休眠时间的计时时,为了降低功耗,在相机处于休眠状态期间,图像处理芯片内除了与定时功能相关的器件外,其他器件都被关闭处于不工作状态。
可选地,控制相机处于休眠状态,还可以实现为:降低相机的电池的放电电压和/或电流。在拍摄完一张图像后,在拍摄下一张图像前,降低电池放电电压和/或电流,可以使得电池的耗电降低,从而延长电池的工作时长,亦即可以延长相机的工作时长。
在休眠状态下,相机的功耗极低,不会引起相机的发热,在室外炎热的场景下也不会因为温度过高导致相机工作异常。
在拍得第一图像并控制相机处于休眠状态后,若相机处于休眠状态的时间已经达到图像拍摄间隔时长,比如2min,则唤醒相机以拍摄第二图像,其中,唤醒相机即为使得相机处于正常的工作状态。在拍摄得到第二图像后,继而再次控制相机处于休眠状态,如此循环迭代,直到满足迭代截止条件。
实际应用中,迭代截止条件可以是:相机的剩余电量达到电量阈值,或者,拍摄总时长达到设定时长,或者,延时摄影功能被关闭。
其中,拍摄总时长可以是指从用户触发开始拍摄指令后的计时总时长,比如为30min。电量阈值可以是预设值,比如为5%。
在上述方案中,相机在间隔拍摄图像期间,拍完图像后随即处于休眠状态,从而可以降低功耗,延长相机的整体工作时长。
图2为本发明实施例提供的一种拍照方法的流程示意图,如图2所示,该拍照方法可以包括如下步骤:
201、响应于延时摄影功能的启动,确定图像拍摄间隔时长。
202、拍摄第一图像后控制相机处于休眠状态。
203、若相机处于休眠状态的时间达到图像拍摄间隔时长,则唤醒相机以拍摄第二图像,根据第一图像与第二图像之间的相似度确定是否存储第二图像,控制相机处于休眠状态。
204、确定是否满足迭代截止条件,若否,则重复执行步骤203,若是,则执行步骤205。
205、生成与已存储的多张图像对应的视频。
前述实施例中提到,相机中延时摄影功能所对应的图像拍摄间隔时长可以是预先设置好的固定值,但是,实际应用中,也可以在每次使用该延时摄影功能时实时地确定该图像拍摄间隔时长。
可选地,确定图像拍摄间隔时长,可以通过如下方式实现:
输出多个图像拍摄间隔时长;
根据用户对多个图像拍摄间隔时长的选择操作,确定被选择的图像拍摄间隔时长。
可以理解的是,在该实现方式下,相机或者与该相机搭配使用的其他电子设备上可以具有显示屏,包含上述多个图像拍摄间隔时长的选择界面可以通过该显示屏显示给用户以供其选择。如图3所示,假设相机内被预先配置有多个图像拍摄间隔时长,比如为:0.5min、1min、1.5min、2min、2.5min、3min……,以0.5min为步长,直到10min。从而,用户可以根据实际需求从中选择一种图像拍摄间隔时长,比如2min。
当然,每个可以被选择的图像拍摄间隔时长都可以关联有选择控件,比如图3中示意的选框,以供用户对该选择控件进行操作以选择某个图像拍摄间 隔时长。另外,如图3中所示,上述选择界面中还可以包含一个输入框,以供用户根据提供的多个图像拍摄间隔时长直接在该输入框中输入所要使用的图像拍摄间隔时长。
可选地,确定图像拍摄间隔时长,还可以通过如下方式实现:
输出多个拍摄场景类型各自对应的图像拍摄间隔时长;
根据用户对多个拍摄场景类型各自对应的图像拍摄间隔时长的选择操作,确定被选择的图像拍摄间隔时长。
在该实现方式中,预先配置有拍摄场景类型与图像拍摄间隔时长之间的对应关系,以便用户可以根据当前使用相机进行拍摄的拍摄场景类型进行图像拍摄间隔时长的选择。
如图4所示,拍摄场景类型假设分为静态拍摄场景和动态拍摄场景。静态拍摄场景对应的图像拍摄间隔时长相比于动态拍摄场景所对应的图像拍摄间隔时长更长,比如图4中示意的,静态拍摄场景所对应的图像拍摄间隔时长包括:2min、2.5min、3min等;动态拍摄场景所对应的图像拍摄间隔时长包括:0.5min、1min、1.5min、2min等。其中,可以理解的是,所谓静态拍摄场景是指被拍摄的对象是相对静止的,比如为某区域的树林、湖泊等,相对地,动态拍摄场景是指被拍摄的对象是移动的,比如在草地上活动的动物。例如,静态拍摄场景可以例如日出、日落等具体场景,在这种场景下,由于拍摄景物运动缓慢、拍摄所需的时长较长,因此拍摄间隔时长会相应增加;而动态拍摄场景可以是例如篮球比赛中某段精彩片段,而这种场景下通常人物运动迅速、拍摄所需的时长较短,因此拍摄间隔时长会相应减小。
当然,拍摄场景除了可以按照上述动态、静态进行分类划分外,还可以有其他的划分维度,比如还可以是罗列一些常用的拍摄场景:设备监测、移动体跟踪等等拍摄场景。并且可以根据实际运用增加,或通过每次的软件升级补充更多的场景类型。
在上述两种可选实现方式下,当基于用户的选择操作确定出被选择的图像拍摄间隔时长后,基于用户触发的开始拍摄指令,便可以进行第一图像的 拍摄,在拍得第一图像后,控制相机进入休眠状态,休眠的时间即为被选择的图像拍摄间隔时长。其中,该第一图像可以认为是拍得的第一张图像。
可选地,确定图像拍摄间隔时长,还可以通过如下方式实现:
识别第一图像对应的拍摄场景类型;
从预设的与拍摄场景类型对应的多个图像拍摄间隔时长中确定需使用的图像拍摄间隔时长。
相比于前述两种通过用户选择图像拍摄间隔时长的方式,本实现方式可以认为是由相机自动确定出所需使用的图像拍摄间隔时长。
具体地,在该实现方式下,首先,用户可以先启动延时摄影功能,并触发开始拍摄指令,此时,相机拍摄第一图像。进而,对该第一图像进行识别,以确定第一图像对应的拍摄场景类型。之后,从预设的与该拍摄场景类型对应的多个图像拍摄间隔时长中确定需要使用的图像拍摄间隔时长。实际应用中,可以预先训练一个分类模型,以通过该分类模型识别第一图像对应的拍摄场景类型。
也就是说,在该实现方式下,先采集一张图像,通过对该图像进行拍摄场景类型的识别,以便结合识别出的拍摄场景类型来决定采用的图像拍摄间隔时长。在采集得到第一图像后,控制相机进入休眠状态,休眠的时间即为确定出的该图像拍摄间隔时长。
其中,从预设的与拍摄场景类型对应的多个图像拍摄间隔时长中确定需要使用的图像拍摄间隔时长,可以实现为:根据相机的剩余电量,从该多个图像拍摄间隔时长中确定需要使用的图像拍摄间隔时长。概括来说,当剩余电量较多时,可以选择较短的图像拍摄间隔时长;相反地,当剩余电量较少时,可以选择较大的图像拍摄间隔时长。
当然,也可以随机地从上述多个图像拍摄间隔时长中确定一个作为需要使用的图像拍摄间隔时长。
在通过上述提供的一些可选实现方式确定出图像拍摄间隔时长,并拍摄得到第一图像后,可以控制相机处于休眠状态,以降低相机的功耗,此时, 相机处于休眠状态的时间即为确定出的图像拍摄间隔时长。
在拍得第一图像并控制相机处于休眠状态后,若相机处于休眠状态的时间已经达到图像拍摄间隔时长,比如2min,则唤醒相机以拍摄第二图像。其中,唤醒相机即为使得相机处于正常的工作状态。
相机拍得的图像最终被用于合成一段视频以供用户观看。如果在拍摄过程中因为画面中的对象很久没有变化,使得拍下来的图像有很多是重复的,那么最终合成出来的视频中无效信息将会较多,不能快速地使用户看到有效信息。为此,本文还提供了图像去重处理方案。
具体地,在拍得第二图像后,计算第二图像与前一次拍得的第一图像之间的相似度,以根据该相似度确定是否存储该第二图像。其中,当该相似度大于设定阈值时,存储该第二图像,相对地,如果该相似度小于该设定阈值,则删除该第二图像。处理完成后,控制相机再次处于休眠状态,休眠时间仍为确定出的图像拍摄间隔时长。
实际应用中,计算第一图像与第二图像之间的相似度的方式可以有多种,比如可以是:获取第一图像和第二图像中物体的图像特征,根据该图像特征确定第一图像与第二图像之间的相似度,从而,若相似度大于设定阈值,则存储第二图像。
其中,可选地,该图像特征可以是轮廓特征,从而,计算第一图像对应的轮廓特征与第二图像对应的轮廓特征之间的相似度,以该相似度作为第一图像与第二图像之间的相似度。其中,两个图像中匹配的轮廓特征越多,相似度越高。
可选地,该图像特征还可以是颜色分布特征,从而,可以计算第一图像对应的颜色分布特征与第二图像对应的颜色分布特征之间的相似度,以该相似度作为第一图像与第二图像之间的相似度。
可选地,该图像特征还可以是对应像素点的位置,其中,所谓对应像素点即为第一图像与第二图像中具有位置对应关系的一对对像素点。从而,可以根据对应像素点的位置计算该对应像素点的距离,进而根据对应像素点的 距离确定第一图像与所述第二图像之间的相似度。比如,假设两个图像中具有N对像素点,对N对像素点的距离进行均值处理,即得到的均值作为相似度。
除此之外,计算两张图像的相似度的方法还可以包括如下方式:把图像表示成一个向量,通过计算向量之间的余弦距离来表征两张图像的相似度。计算两张图像的互信息来表征他们之间的相似度。
在拍摄第二图像,并完成第二图像与第一图像的相似度计算以确定是否保存第二图像后,再次控制相机处于休眠状态,待休眠时间达到上述确定出的图像拍摄间隔时长后,再次唤醒相机以拍摄下一张图像,假设称为第三图像,进而再通过计算第三图像与第二图像之间的相似度以确定是否存储第三图像,之后再次控制相机处于休眠状态,如此迭代下去,直到满足迭代截止条件。
如前文所述,迭代截止条件可以是:相机的剩余电量达到电量阈值,或者,拍摄总时长达到设定时长,或者,延时摄影功能被关闭。
其中,上述电量阈值可以是设定的某个固定值,比如为5%。但是,可选地,也可以实时地根据本次拍摄过程中已存储的图像数量确定该电量阈值。概括来说,假设从拍摄第一图像开始,截止当前时刻已经存储的图像数量为N,可以根据生成由这N张图像组成的视频所需的时间或计算量来确定所需的电量,以该所需的电量作为电量阈值,以用于判断是否终止拍摄。也就是说,如果当前已经存储的图像数量N很大,说明需要更多的时间、更多的计算量来合成视频,此时需要预留出更多一点的电量以供视频合成使用,那么在相机的剩余电量仍旧高于合成视频所需的电量的情况下,电量阈值应该设置的高一些。相反地,如果存储的图像数量N较小,则电量阈值可以设置的小一些。实际上,可以设置图像数量与电量阈值的对应关系以供根据已经存储的图像数量动态地确定当前所需的电量阈值。
另外,值得说明的是,为便于进行视频合成处理,在每拍得一张图像时,可以为该图像标注上对应的时间戳即拍摄时间,从而,可以根据已存储的多张图像各自对应的时间戳,对该多张图像进行排序,从而确定多张图像在视 频中的顺序。
综上,在上述方案中,相机在间隔拍摄图像期间,拍完图像并完成图像相似度比较后随即处于休眠状态,以降低功耗。并且,通过进行先后拍得的图像之间的相似度比较,使得最终保留下来的图像中不存在重复图像,使得最终合成的视频中包含的都是有效信息,降低信息冗余度。
图5为本发明实施例提供的一种相机的组成结构示意图,如图5所示,该相机包括:存储器11,存储有可执行代码;以及,一个或多个处理器12,单独地或共同地工作。该一个或多个处理器12执行存储器11中存储的可执行代码,以用于实现:
响应于延时摄影功能的启动,拍摄第一图像后控制相机处于休眠状态;
迭代执行如下过程,直至满足迭代截止条件:
若所述相机处于休眠状态的时间达到图像拍摄间隔时长,则唤醒所述相机以拍摄第二图像;
控制相机处于休眠状态;
在迭代结束后,根据已拍摄的图像生成对应的视频。
可选地,所述处理器12还用于:确定所述图像拍摄间隔时长。
可选地,所述相机还包括:显示屏13。
可选地,所述处理器12还用于:通过所述显示屏13输出多个图像拍摄间隔时长;根据用户对所述多个图像拍摄间隔时长的选择操作,确定被选择的所述图像拍摄间隔时长。
可选地,所述处理器12还用于:通过所述显示屏13输出多个拍摄场景类型各自对应的图像拍摄间隔时长;根据用户对所述多个拍摄场景类型各自对应的图像拍摄间隔时长的选择操作,确定被选择的所述图像拍摄间隔时长。
可选地,所述处理器12还用于:识别所述第一图像对应的拍摄场景类型;从预设的与所述拍摄场景类型对应的多个图像拍摄间隔时长中确定所述图像拍摄间隔时长。
可选地,所述处理器12还用于:根据所述相机的剩余电量,从所述多个 图像拍摄间隔时长中确定所述图像拍摄间隔时长。
可选地,所述相机中包括图像处理芯片、与所述图像处理芯片耦合的外部电路;所述通信处理芯片内包括定时相关器件。从而,所述处理器12还用于:控制内存进行自刷新;控制所述图像处理芯片的所述外部电路断电;关闭所述图像处理芯片内除所述定时相关器件外的其他器件。
所述相机中包括电池,可选地,所述处理器12还用于:降低所述电池的放电电压和/或电流。
可选地,所述处理器12还用于:根据所述第一图像与所述第二图像之间的相似度,确定是否存储所述第二图像。
可选地,所述处理器12还用于:获取所述第一图像和所述第二图像中物体的图像特征;根据所述图像特征确定所述第一图像与所述第二图像之间的相似度;若所述相似度大于设定阈值,则存储所述第二图像。
可选地,所述图像特征包括轮廓特征,所述处理器12还用于:计算所述第一图像对应的轮廓特征与所述第二图像对应的轮廓特征之间的相似度。
可选地,所述图像特征包括颜色分布特征,所述处理器12还用于:计算所述第一图像对应的颜色分布特征与所述第二图像对应的颜色分布特征之间的相似度。
可选地,所述图像特征包括对应像素点的位置,所述处理器12还用于:根据所述对应像素点的位置计算所述对应像素点的距离;根据所述对应像素点的距离确定所述第一图像与所述第二图像之间的相似度。
可选地,所述迭代截止条件包括:所述相机的剩余电量达到电量阈值,或者,拍摄总时长达到设定时长,或者,所述延时摄影功能被关闭。
可选地,所述处理器12还用于:根据已存储的图像数量确定所述电量阈值。
可选地,所述处理器12还用于:为所述第一图像和所述第二图像标注上时间戳,所述时间戳用于确定所述第一图像和所述第二图像在所述视频中的排序。
图6为本发明实施例提供的一种无人机的结构示意图,如图6所示,该无人机包括机体以及相机。其中,该相机即为图5所示实施例中提供的相机。
以上各个实施例中的技术方案、技术特征在不相冲突的情况下均可以单独,或者进行组合,只要未超出本领域技术人员的认知范围,均属于本申请保护范围内的等同实施例。
以上所述仅为本发明的实施例,并非因此限制本发明的专利范围,凡是利用本发明说明书及附图内容所作的等效结构或等效流程变换,或直接或间接运用在其他相关的技术领域,均同理包括在本发明的专利保护范围内。
最后应说明的是:以上各实施例仅用以说明本发明的技术方案,而非对其限制;尽管参照前述各实施例对本发明进行了详细的说明,本领域的普通技术人员应当理解:其依然可以对前述各实施例所记载的技术方案进行修改,或者对其中部分或者全部技术特征进行等同替换;而这些修改或者替换,并不使相应技术方案的本质脱离本发明各实施例技术方案的范围。

Claims (34)

  1. 一种拍照方法,其特征在于,包括:
    响应于延时摄影功能的启动,拍摄第一图像后控制相机处于休眠状态;
    迭代执行如下过程,直至满足迭代截止条件:
    若所述相机处于休眠状态的时间达到图像拍摄间隔时长,则唤醒所述相机以拍摄第二图像;
    控制相机处于休眠状态;
    在迭代结束后,根据已拍摄的图像生成对应的视频。
  2. 根据权利要求1所述的方法,其特征在于,所述方法还包括:
    确定所述图像拍摄间隔时长。
  3. 根据权利要求2所述的方法,其特征在于,所述确定图像拍摄间隔时长,包括:
    输出多个图像拍摄间隔时长;
    根据用户对所述多个图像拍摄间隔时长的选择操作,确定被选择的所述图像拍摄间隔时长。
  4. 根据权利要求2所述的方法,其特征在于,所述确定图像拍摄间隔时长,包括:
    输出多个拍摄场景类型各自对应的图像拍摄间隔时长;
    根据用户对所述多个拍摄场景类型各自对应的图像拍摄间隔时长的选择操作,确定被选择的所述图像拍摄间隔时长。
  5. 根据权利要求2所述的方法,其特征在于,所述确定图像拍摄间隔时长,包括:
    识别所述第一图像对应的拍摄场景类型;
    从预设的与所述拍摄场景类型对应的多个图像拍摄间隔时长中确定所述图像拍摄间隔时长。
  6. 根据权利要求5所述的方法,其特征在于,所述从预设的与所述拍摄场景类型对应的多个图像拍摄间隔时长中确定所述图像拍摄间隔时长,包括:
    根据所述相机的剩余电量,从所述多个图像拍摄间隔时长中确定所述图像拍摄间隔时长。
  7. 根据权利要求1所述的方法,其特征在于,所述控制相机处于休眠状态,包括:
    控制内存进行自刷新;
    控制图像处理芯片的外部电路断电;
    关闭所述图像处理芯片内除定时相关器件外的其他器件。
  8. 根据权利要求1所述的方法,其特征在于,所述控制相机处于休眠状态,包括:
    降低所述相机的电池的放电电压和/或电流。
  9. 根据权利要求1所述的方法,其特征在于,所述方法还包括:
    根据所述第一图像与所述第二图像之间的相似度,确定是否存储所述第二图像。
  10. 根据权利要求9所述的方法,其特征在于,所述根据所述第一图像与所述第二图像之间的相似度,确定是否存储所述第二图像,包括:
    获取所述第一图像和所述第二图像中物体的图像特征;
    根据所述图像特征确定所述第一图像与所述第二图像之间的相似度;
    若所述相似度大于设定阈值,则存储所述第二图像。
  11. 根据权利要求10所述的方法,其特征在于,所述图像特征包括轮廓特征;所述根据所述图像特征确定所述第一图像与所述第二图像之间的相似度,包括:
    计算所述第一图像对应的轮廓特征与所述第二图像对应的轮廓特征之间的相似度。
  12. 根据权利要求10所述的方法,其特征在于,所述图像特征包括颜色分布特征;所述根据所述图像特征确定所述第一图像与所述第二图像之间的相似度,包括:
    计算所述第一图像对应的颜色分布特征与所述第二图像对应的颜色分布 特征之间的相似度。
  13. 根据权利要求10所述的方法,其特征在于,所述图像特征包括对应像素点的位置;所述根据所述图像特征确定所述第一图像与所述第二图像之间的相似度,包括:
    根据所述对应像素点的位置计算所述对应像素点的距离;
    根据所述对应像素点的距离确定所述第一图像与所述第二图像之间的相似度。
  14. 根据权利要求1所述的方法,其特征在于,所述迭代截止条件包括:所述相机的剩余电量达到电量阈值,或者,拍摄总时长达到设定时长,或者,所述延时摄影功能被关闭。
  15. 根据权利要求14所述的方法,其特征在于,所述方法还包括:
    根据已存储的图像数量确定所述电量阈值。
  16. 根据权利要求1所述的方法,其特征在于,所述方法还包括:
    为所述第一图像和所述第二图像标注上时间戳,所述时间戳用于确定所述第一图像和所述第二图像在所述视频中的排序。
  17. 一种相机,其特征在于,包括:
    存储器,存储有可执行代码;以及,
    一个或多个处理器,单独地或共同地工作,执行所述可执行代码以用于实现:
    响应于延时摄影功能的启动,拍摄第一图像后控制相机处于休眠状态;
    迭代执行如下过程,直至满足迭代截止条件:
    若所述相机处于休眠状态的时间达到图像拍摄间隔时长,则唤醒所述相机以拍摄第二图像;
    控制相机处于休眠状态;
    在迭代结束后,根据已拍摄的图像生成对应的视频。
  18. 根据权利要求17所述的相机,其特征在于,所述处理器还用于:
    确定所述图像拍摄间隔时长。
  19. 根据权利要求18所述的相机,其特征在于,所述处理器还用于:
    输出多个图像拍摄间隔时长;
    根据用户对所述多个图像拍摄间隔时长的选择操作,确定被选择的所述图像拍摄间隔时长。
  20. 根据权利要求18所述的相机,其特征在于,所述处理器还用于:
    输出多个拍摄场景类型各自对应的图像拍摄间隔时长;
    根据用户对所述多个拍摄场景类型各自对应的图像拍摄间隔时长的选择操作,确定被选择的所述图像拍摄间隔时长。
  21. 根据权利要求18所述的相机,其特征在于,所述处理器还用于:
    识别所述第一图像对应的拍摄场景类型;
    从预设的与所述拍摄场景类型对应的多个图像拍摄间隔时长中确定所述图像拍摄间隔时长。
  22. 根据权利要求21所述的相机,其特征在于,所述处理器还用于:
    根据所述相机的剩余电量,从所述多个图像拍摄间隔时长中确定所述图像拍摄间隔时长。
  23. 根据权利要求17所述的相机,其特征在于,所述相机中包括图像处理芯片、与所述图像处理芯片耦合的外部电路;所述通信处理芯片内包括定时相关器件;所述处理器还用于:
    控制内存进行自刷新;
    控制所述图像处理芯片的所述外部电路断电;
    关闭所述图像处理芯片内除所述定时相关器件外的其他器件。
  24. 根据权利要求17所述的相机,其特征在于,所述相机中包括电池,所述处理器还用于:
    降低所述电池的放电电压和/或电流。
  25. 根据权利要求17所述的相机,其特征在于,所述处理器还用于:
    根据所述第一图像与所述第二图像之间的相似度,确定是否存储所述第二图像。
  26. 根据权利要求25所述的相机,其特征在于,所述处理器还用于:
    获取所述第一图像和所述第二图像中物体的图像特征;
    根据所述图像特征确定所述第一图像与所述第二图像之间的相似度;
    若所述相似度大于设定阈值,则存储所述第二图像。
  27. 根据权利要求26所述的相机,其特征在于,所述图像特征包括轮廓特征,所述处理器还用于:
    计算所述第一图像对应的轮廓特征与所述第二图像对应的轮廓特征之间的相似度。
  28. 根据权利要求26所述的相机,其特征在于,所述图像特征包括颜色分布特征,所述处理器还用于:
    计算所述第一图像对应的颜色分布特征与所述第二图像对应的颜色分布特征之间的相似度。
  29. 根据权利要求26所述的相机,其特征在于,所述图像特征包括对应像素点的位置,所述处理器还用于:
    根据所述对应像素点的位置计算所述对应像素点的距离;
    根据所述对应像素点的距离确定所述第一图像与所述第二图像之间的相似度。
  30. 根据权利要求17所述的相机,其特征在于,所述迭代截止条件包括:所述相机的剩余电量达到电量阈值,或者,拍摄总时长达到设定时长,或者,所述延时摄影功能被关闭。
  31. 根据权利要求30所述的相机,其特征在于,所述处理器还用于:
    根据已存储的图像数量确定所述电量阈值。
  32. 根据权利要求17所述的相机,其特征在于,所述处理器还用于:
    为所述第一图像和所述第二图像标注上时间戳,所述时间戳用于确定所述第一图像和所述第二图像在所述视频中的排序。
  33. 一种无人机,其特征在于,包括机体以及如权利要求17至32中任一项所述的相机。
  34. 一种计算机可读存储介质,其特征在于,所述计算机可读存储介质中存储有可执行代码,所述可执行代码用于实现权利要求1至16中任一项所述的拍照方法。
PCT/CN2019/116327 2019-11-07 2019-11-07 拍照方法、相机、无人机和存储介质 WO2021087885A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/CN2019/116327 WO2021087885A1 (zh) 2019-11-07 2019-11-07 拍照方法、相机、无人机和存储介质
CN201980040123.9A CN112334387A (zh) 2019-11-07 2019-11-07 拍照方法、相机、无人机和存储介质

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2019/116327 WO2021087885A1 (zh) 2019-11-07 2019-11-07 拍照方法、相机、无人机和存储介质

Publications (1)

Publication Number Publication Date
WO2021087885A1 true WO2021087885A1 (zh) 2021-05-14

Family

ID=74319966

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/116327 WO2021087885A1 (zh) 2019-11-07 2019-11-07 拍照方法、相机、无人机和存储介质

Country Status (2)

Country Link
CN (1) CN112334387A (zh)
WO (1) WO2021087885A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113873161A (zh) * 2021-10-11 2021-12-31 维沃移动通信有限公司 拍摄方法、装置及电子设备

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023000333A1 (zh) * 2021-07-23 2023-01-26 深圳市大疆创新科技有限公司 延时摄影的拍摄方法、摄像控制装置、摄像装置及存储介质
CN113840122B (zh) * 2021-11-25 2022-03-08 南方电网数字电网研究院有限公司 监拍控制方法、装置、电子设备和存储介质

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015098418A1 (ja) * 2013-12-27 2015-07-02 富士フイルム株式会社 撮像装置及びタイムラプス撮像方法
CN106101563A (zh) * 2016-08-15 2016-11-09 杨珊珊 无人飞行器延时拍摄装置及其延时拍摄方法
CN205945971U (zh) * 2016-08-15 2017-02-08 杨珊珊 无人飞行器延时拍摄装置
US20170171516A1 (en) * 2015-12-15 2017-06-15 Bot Home Organization, Inc. Video on demand for audio/video recording and communication devices
CN107005656A (zh) * 2016-05-30 2017-08-01 深圳市大疆创新科技有限公司 可移动设备及其控制方法和装置、控制终端及拍摄设备
CN107208836A (zh) * 2015-09-16 2017-09-26 深圳市大疆创新科技有限公司 用于支持具有不同效果的摄影术的系统和方法

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5623256B2 (ja) * 2010-11-30 2014-11-12 キヤノン株式会社 撮像装置、その制御方法及びプログラム
US9489979B2 (en) * 2013-08-06 2016-11-08 Casio Computer Co., Ltd. Image processing apparatus for time-lapse moving image, image processing method, and storage medium
CN203645743U (zh) * 2013-10-22 2014-06-11 彭少君 一种低速拍摄数码设备
CN105100631B (zh) * 2015-09-08 2019-03-01 Oppo广东移动通信有限公司 一种自动连续间隔拍照、摄像的方法及移动终端
KR20170055869A (ko) * 2015-11-12 2017-05-22 엘지전자 주식회사 이동단말기 및 그 제어방법
CN108496352B (zh) * 2017-05-24 2021-02-09 深圳市大疆创新科技有限公司 拍摄方法及装置、图像处理方法及装置
CN108182271B (zh) * 2018-01-18 2020-11-17 维沃移动通信有限公司 一种拍照方法、终端及计算机可读存储介质
CN109005350A (zh) * 2018-08-30 2018-12-14 Oppo广东移动通信有限公司 图像重复拍摄提示方法、装置、存储介质及移动终端

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015098418A1 (ja) * 2013-12-27 2015-07-02 富士フイルム株式会社 撮像装置及びタイムラプス撮像方法
CN107208836A (zh) * 2015-09-16 2017-09-26 深圳市大疆创新科技有限公司 用于支持具有不同效果的摄影术的系统和方法
US20170171516A1 (en) * 2015-12-15 2017-06-15 Bot Home Organization, Inc. Video on demand for audio/video recording and communication devices
CN107005656A (zh) * 2016-05-30 2017-08-01 深圳市大疆创新科技有限公司 可移动设备及其控制方法和装置、控制终端及拍摄设备
CN106101563A (zh) * 2016-08-15 2016-11-09 杨珊珊 无人飞行器延时拍摄装置及其延时拍摄方法
CN205945971U (zh) * 2016-08-15 2017-02-08 杨珊珊 无人飞行器延时拍摄装置

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113873161A (zh) * 2021-10-11 2021-12-31 维沃移动通信有限公司 拍摄方法、装置及电子设备

Also Published As

Publication number Publication date
CN112334387A (zh) 2021-02-05

Similar Documents

Publication Publication Date Title
WO2021087885A1 (zh) 拍照方法、相机、无人机和存储介质
US9591211B2 (en) Photographing method and apparatus
US9871970B2 (en) Imaging apparatus, control method, and storage medium storing program
US20100208098A1 (en) Imaging apparatus
CN105120247A (zh) 一种白平衡调整方法及电子设备
US8593566B2 (en) Method and apparatus for controlling light emission of flash and digital photographing apparatus using the method and apparatus
WO2021169686A1 (zh) 一种拍摄控制方法、装置及计算机可读存储介质
US9560270B2 (en) Moving image generating apparatus, moving image generating method, and storage medium
WO2023160496A1 (zh) 拍摄方法、拍摄装置、电子设备和可读存储介质
CN111629146B (zh) 拍摄参数的调整方法、调整装置、调整设备及存储介质
US9609167B2 (en) Imaging device capable of temporarily storing a plurality of image data, and control method for an imaging device
WO2014161386A1 (zh) 一种摄像设备及其实现拍照的方法
CN111050078A (zh) 一种拍照方法、移动终端及计算机存储介质
TW201349854A (zh) 影像擷取裝置及其影像合成方法
CN103780839A (zh) 一种拍照方法及终端
CN108683847B (zh) 拍照方法、装置、终端及存储介质
CN106295659A (zh) 一种智能设备的拍照取色应用方法及系统
WO2024164522A1 (zh) 智能拍摄控制装置及方法
US8416315B2 (en) Imaging apparatus and imaging apparatus control method
US7889266B2 (en) Image capture in auto-focus digital cameras
JP6143181B2 (ja) 撮像装置、及び動画撮影方法、プログラム
JP2013207471A (ja) デジタルカメラ
JP5991495B2 (ja) 画像生成装置、撮像装置およびプログラム
JP6289068B2 (ja) 撮像装置、及びその制御方法
US11736820B2 (en) Image capture apparatus and control method for raw images

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19952009

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19952009

Country of ref document: EP

Kind code of ref document: A1