WO2021087715A1 - 一种上转换强度高的固体激光器 - Google Patents

一种上转换强度高的固体激光器 Download PDF

Info

Publication number
WO2021087715A1
WO2021087715A1 PCT/CN2019/115530 CN2019115530W WO2021087715A1 WO 2021087715 A1 WO2021087715 A1 WO 2021087715A1 CN 2019115530 W CN2019115530 W CN 2019115530W WO 2021087715 A1 WO2021087715 A1 WO 2021087715A1
Authority
WO
WIPO (PCT)
Prior art keywords
gain medium
solid
state laser
single crystal
crystal
Prior art date
Application number
PCT/CN2019/115530
Other languages
English (en)
French (fr)
Inventor
沈荣存
Original Assignee
南京同溧晶体材料研究院有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 南京同溧晶体材料研究院有限公司 filed Critical 南京同溧晶体材料研究院有限公司
Priority to PCT/CN2019/115530 priority Critical patent/WO2021087715A1/zh
Publication of WO2021087715A1 publication Critical patent/WO2021087715A1/zh

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/14Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range characterised by the material used as the active medium
    • H01S3/16Solid materials

Definitions

  • the invention relates to the field of laser equipment, in particular to a solid-state laser with high up-conversion intensity.
  • Thermal effects can cause problems such as thermal depolarization and thermally induced diffraction loss, which will seriously affect the output power and conversion efficiency of the laser.
  • fiber lasers have the following advantages: its pump structure is relatively simple; the structure of the fiber itself has obvious advantages in beam quality due to the restriction of the mode of the fiber; it can use fiber coupled output and adaptability to the application environment. Very good; based on these advantages, fiber lasers have become one of the main development directions of high-power lasers.
  • the thermal conductivity of the crystal also exceeds ⁇ 11Wm-1K-1, which is several times higher than that of quartz glass; therefore, single crystal can be considered as the matrix of the active fiber, and its high thermal conductivity can be used to improve the heat dissipation performance of the fiber itself and reduce
  • the requirements of the system for refrigeration simplify the complexity of the system and improve the output performance indicators such as the power and beam quality of the laser.
  • the chemical composition of sapphire crystal is aluminum oxide (Al2O3), which is formed by covalent bonding of three oxygen atoms and two aluminum atoms. Its crystal structure is a hexagonal lattice structure. In terms of color, pure aluminum oxide The crystal is transparent and colorless, because different color element ions penetrate into the growing sapphire, so the sapphire shows different colors.
  • the doped sapphire crystal occupies an important position in the field of artificial jewelry.
  • Sapphire crystal has good thermal properties, excellent electrical and dielectric properties, and is resistant to chemical corrosion. It has high temperature resistance, good thermal conductivity, high hardness, infrared transparency, good chemical stability, small size, light weight, and cost. Low, is widely used in many fields of science and technology, national defense and civil industry.
  • Sapphire crystal is an important substrate material in LED products and the cornerstone of the development of semiconductor lighting industry. Its unique lattice structure, excellent mechanical properties, and good thermal properties make sapphire crystal a practical semiconductor GaN/Al2O3 light-emitting diode ( LED), large-scale integrated circuit SOI and SOS, and superconducting nanostructured films are the most ideal substrate materials.
  • the effect of doping elements on sapphire mainly refers to the influence on its structure and color.
  • Sapphire belongs to the corundum type gemstone, its main chemical composition is Al2O3, and usually has iron, titanium and other similar substances to replace aluminum.
  • the color of sapphire is closely related to the content and ratio of the main color-causing elements and the oxygen fugacity when it is formed.
  • Fe3+, Si4+, Co2+ are the main ions that make sapphire blue
  • Cr3+ ions can make sapphire appear orange and green
  • Mn4+ ions can make sapphire appear yellow.
  • Changes in the crystal structure directly lead to changes in sapphire’s lattice integrity, hardness, thermal shock resistance, thermal conductivity, mechanical stability, electrical conductivity, chemical stability and other physical and chemical properties. The research is of great significance.
  • the present invention provides a solid-state laser with high up-conversion intensity.
  • the invention provides a solid-state laser with high up-conversion intensity, which includes a metal heat sink (7), a resonant cavity (8), a side LD pump source (10), and an end face LD pump source (1) arranged in sequence, a coupling Unit (2), input mirror (3), gain medium (4), acousto-optic crystal (5), output mirror (6); the end face LD pump source (1), coupling unit (2), input mirror ( 3)
  • the gain medium (4), the acousto-optic crystal (5), and the output mirror (6) are connected in sequence.
  • the metal heat sink (7) is ringed on the outer side wall of the gain medium (4), and the input mirror (3) ), the gain medium (4), the acousto-optic crystal (5), and the output mirror (6) are arranged in the resonant cavity (8); the side LD pump source (10) is arranged on the side of the gain medium (4).
  • the coupling unit (2) is a focusing optical device.
  • the surface of one end of the gain medium (4) close to the input mirror (3) is coated with a two-color film that is anti-reflection to 808nm and high-reflection to 1064nm.
  • the surface of one end of the gain medium (4) close to the output mirror (6) is coated with an anti-reflection coating for the 1064 nm band.
  • a water cooling device (9) is also included, and the water cooling device (9) is arranged on the outer surface of the metal heat sink (7).
  • the gain medium (4) is a composite single crystal fiber, and the composite single crystal fiber is Eu 4+ /Lu 3+ : BaTiO 3 .
  • the molar ratio of Eu 4+ to Lu 3+ is (2-4): (1-3):1.
  • the ratio of the total number of moles of Eu 4+ and Lu 3+ to the number of moles of BaTiO3 is (1-5):100.
  • the composite single crystal optical fiber and the preparation method thereof include the following steps:
  • the seed crystal is connected to the top of the mold to pull the melt, so that the seed crystal continuously rearranges atoms or molecules at the interface of the melt, and gradually solidifies as the temperature drops to grow a single crystal with the same shape as the edge of the mold.
  • the solid-state laser provided by the present invention is made of a special composite single crystal fiber, has a simple preparation process, has excellent absorption characteristics and up-conversion strength, and greatly improves the application range.
  • Fig. 1 is a schematic diagram of the structure of a solid-state laser with high up-conversion intensity.
  • Figure 2 is a partial enlarged view of a solid-state laser with high up-conversion intensity.
  • the solid-state laser with high up-conversion intensity of the present invention will be further described below.
  • Composite single crystal fiber Eu 4+ /Lu 3+ : BaTiO 3 among them, the molar ratio of Eu 4+ and Lu 3+ is 8:1, and the ratio of the total number of moles of Eu 4+ and Lu 3+ to the number of moles of BaTiO3 is 3:100.
  • the composite single crystal optical fiber and the preparation method thereof include the following steps:
  • the seed crystal is connected to the top of the mold to pull the melt, so that the seed crystal continuously rearranges atoms or molecules at the interface of the melt, and gradually solidifies as the temperature drops to grow a single crystal with the same shape as the edge of the mold.
  • Composite single crystal fiber Eu 4+ /Lu 3+ : BaTiO 3 among them, the molar ratio of Eu 4+ and Lu 3+ is 12:1, and the ratio of the total number of moles of Eu 4+ and Lu 3+ to the number of moles of BaTiO3 is 1:100.
  • the composite single crystal optical fiber and the preparation method thereof include the following steps:
  • the seed crystal is connected to the top of the mold to pull the melt, so that the seed crystal continuously rearranges atoms or molecules at the interface of the melt, and gradually solidifies as the temperature drops to grow a single crystal with the same shape as the edge of the mold.
  • Composite single crystal fiber Eu 4+ /Lu 3+ : BaTiO 3 among them, the molar ratio of Eu 4+ and Lu 3+ is 10:1, and the ratio of the total number of moles of Eu 4+ and Lu 3+ to the number of moles of BaTiO3 is 5:100.
  • the composite single crystal optical fiber and the preparation method thereof include the following steps:
  • the seed crystal is connected to the top of the mold to pull the melt, so that the seed crystal continuously rearranges atoms or molecules at the interface of the melt, and gradually solidifies as the temperature drops to grow a single crystal with the same shape as the edge of the mold.
  • the sample is made into a cylindrical optical fiber with a diameter of 1.0mm and a length of 4mm. The two sides are carefully polished and placed in a fiber coupler.
  • the quartz lamp is used as the light source for measurement.
  • the measurement spectrum ranges from 500 to 1000 nm.
  • a 650nm semiconductor laser was used as the pump light source to pump the sample and measure the up-conversion spectrum of each sample.
  • the results show that BaTiO 3 has an up-conversion spectrum, but the intensity is very weak; however, the composite single crystal fiber Eu 4+ /Lu 3+ : BaTiO 3 of Examples 1 to 3 has an up-conversion spectrum that is much stronger than BaTiO 3 .
  • a solid-state laser with high up-conversion intensity including a metal heat sink (7), a resonant cavity (8), a water cooling device (9), a side LD pump source (10), and an end face LD pump source (1), coupled in sequence Unit (2), input mirror (3), gain medium (4), acousto-optic crystal (5), output mirror (6); the end face LD pump source (1), coupling unit (2), input mirror ( 3)
  • the gain medium (4), the acousto-optic crystal (5), and the output mirror (6) are connected in sequence.
  • the metal heat sink (7) is ringed on the outer side wall of the gain medium (4), and the input mirror (3) ), the gain medium (4), the acousto-optic crystal (5), and the output mirror (6) are arranged in the resonant cavity (8); the side LD pump source (10) is arranged on the side of the gain medium (4).
  • the water cooling device (9) is arranged on the outer surface of the metal heat sink (7).
  • the coupling unit (2) is a focusing optical device.
  • the surface of one end of the gain medium (4) close to the input mirror (3) is plated with a dual-color film for antireflection to 808nm and high reflection to 1064nm; the surface of one end of the gain medium (4) close to the output mirror (6) is plated with a pair of Anti-reflection coating in the 1064nm band.
  • the gain medium (4) is the composite single crystal fiber Eu 4+ /Lu 3+ : BaTiO 3 of Examples 1 to 3.

Landscapes

  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Engineering & Computer Science (AREA)
  • Plasma & Fusion (AREA)
  • Optics & Photonics (AREA)
  • Lasers (AREA)

Abstract

一种上转换强度高的固体激光器,包括金属热沉(7)、谐振腔(8)、侧面LD泵浦源(10)以及依次设置的端面LD泵浦源(1)、耦合单元(2)、输入镜(3)、增益介质(4)、声光晶体(5)、输出镜(6);金属热沉(7)环设于增益介质(4)外侧壁上,输入镜(3)、增益介质(4)、声光晶体(5)、输出镜(6)设置于谐振腔(8)内;侧面LD泵浦源(10)设置于增益介质(4)侧面。固体激光器采用复合单晶光纤制得,制备工艺简单,具有优异的吸收特性和上转换强度,大大提高了应用范围。

Description

一种上转换强度高的固体激光器 技术领域
本发明涉及激光设备领域,特别一种上转换强度高的固体激光器。
背景技术
热效应会导致热退偏、热致衍射损耗等问题,严重影响激光器的输出功率、转换效
率以及光束质量等主要性能指标,严重时甚至引起增益介质的损坏,是高功率激光器性能的最主要限制因素。为缓解热效应带来的影响,相关领域的技术人员通过采用板条、DISK 和光纤等形式的增益介质,增加增益介质的表面积体积比,大幅提高散热效率,从而极大地推进了激光器的功率输出能力。与板条和 DISK 激光器相比,光纤激光器具有如下几方面的优势 :其泵浦结构较为简单 ;光纤本身的结构对于模式的限制作用使之在光束质量方面也存在明显优势 ;能够采用光纤耦合输出,应用环境适应性很好 ;基于这些优点,光纤激光器已成为高功率激光器的主要发展方向之一。
    然而,高功率光纤激光器发展的一个明显障碍在于,目前广泛用作有源光纤基质的石英玻璃导热系数很小,仅为 1.4-1.6W m-1K-1,小导热系数对散热带来巨大的不利影响,因此光纤激光器高功率运转时仍然对于制冷有较高的要求,也限制了其功率的继续提升。对于单晶激光增益介质而言,常用的激光晶体钇铝石榴石 (YAG) 晶体导热系数~ 14Wm-1K-1,铝酸钇 (YAP) 晶体的导热系数也超过~ 11Wm-1K-1,高于石英玻璃数倍 ;因此,可考虑采用单晶作为有源光纤的基质,利用其高导热系数改善光纤本身的散热性能,降低系统对于制冷的要求,简化系统的复杂性,提升激光器的功率和光束质量等输出性能指标。
    蓝宝石晶体的化学成分为氧化铝(Al2O3),是由三个氧原子和两个铝原子以共价键形式结合而成,其晶体结构为六方晶格结构,就颜色而言,单纯的氧化铝结晶是呈现透明无色的,因不同显色元素离子渗透于生长中的蓝宝石,因而使蓝宝石显出不同的颜色。掺质的蓝宝石晶体在人工珠宝领域占有重要的地位。蓝宝石晶体有着很好的热特性,极好的电气特性和介电特性,并且防化学腐蚀,它耐高温,导热好,硬度高,透红外,化学稳定性好,且体积小、重量轻、成本低,被广泛地应用于科学技术、国防与民用工业的许多领域。
    蓝宝石晶体是LED产品中重要的衬底材料,是半导体照明产业发展的基石,其独特的晶格结构、优异的力学性能、良好的热学性能使蓝宝石晶体成为实际应用的半导体GaN/Al2O3发光二极管(LED),大规模集成电路SOI和SOS及超导纳米结构薄膜等最为理想的衬底材料。
    作为窗口级蓝宝石,掺杂元素对蓝宝石的作用主要是指对其结构、颜色等方面的影响。蓝宝石属于刚玉类宝石,其主要化学成分为Al2O3,通常有铁、钛等类质同象替代铝。其中蓝宝石的颜色与主要致色元素的含量及其比值以及形成时的氧逸度有着密切的关系。如Fe3+、Si4+、Co2+是使蓝宝石呈现蓝色的主要离子,Cr3+离子可以使蓝宝石呈现出橙色和绿色,Mn4+离子可使蓝宝石呈现黄色。晶体结构方面的变化直接导致蓝宝石的晶格完整度,硬度,抗热冲击性,导热性,机械稳定性、导电性、化学稳定性等理化性能发生改变,研究意义十分重大。
技术问题
为了解决现有技术的缺陷,本发明提供了一种上转换强度高的固体激光器。
技术解决方案
本发明提供的一种上转换强度高的固体激光器,包括金属热沉(7)、谐振腔(8)、侧面LD泵浦源(10)以及依次设置的端面LD泵浦源(1)、耦合单元(2)、输入镜(3)、增益介质(4)、声光晶体(5)、输出镜(6);所述端面LD泵浦源(1)、耦合单元(2)、输入镜(3)、增益介质(4)、声光晶体(5)、输出镜(6)依次连接,所述金属热沉(7)环设于增益介质(4)外侧壁上,所述输入镜(3)、增益介质(4)、声光晶体(5)、输出镜(6)设置于谐振腔(8)内;所述侧面LD泵浦源(10)设置于增益介质(4)侧面。
作为改进,所述耦合单元(2)为聚焦光器件。
作为另一种改进,所述增益介质(4)靠近输入镜(3)的一端表面镀有对808nm增透和对1064nm高反的双色膜。
作为另一种改进,所述增益介质(4)靠近输出镜(6)的一端表面镀有对1064nm波段的增透膜。
作为另一种改进,还包括水冷装置(9),所述水冷装置(9)设置于金属热沉(7)外表面。
作为另一种改进,所述增益介质(4)为复合单晶光纤,所述所述复合单晶光纤为Eu 4+/Lu 3+: BaTiO 3
作为进一步改进,复合单晶光纤中,Eu 4+、Lu 3+的摩尔比为(2-4):(1-3):1。
作为进一步改进,所述Eu 4+、Lu 3+的总摩尔数与BaTiO3摩尔数之比为(1-5):100。
作为进一步改进,复合单晶光纤及其制备方法,包括以下步骤:
(1)在坩埚中部放置中部设有毛细管的晶体生长模具,将原料BaTiO 3、Eu 2O 3、Lu 2O 3置于坩埚中,加热坩埚使原料熔化形成熔体;
(2)在模具顶部接籽晶提拉熔体,使籽晶在熔体的交界面上不断进行原子或分子重排,随降温逐渐凝固而生长出与模具边缘形状相同的单晶。
有益效果
本发明提供的固体激光器采用特殊的复合单晶光纤制得,制备工艺简单,具有优异的吸收特性和上转换强度,大大提高了应用范围。
附图说明
图1为上转换强度高的固体激光器的结构示意图。
图2为上转换强度高的固体激光器的局部放大图。
本发明的最佳实施方式
下面对本发明上转换强度高的固体激光器作出进一步说明。
实施例1
       复合单晶光纤Eu 4+/Lu 3+: BaTiO 3;其中,Eu 4+、Lu 3+的摩尔比为8:1,Eu 4+、Lu 3+的总摩尔数与BaTiO3摩尔数之比为3:100。
    上述复合单晶光纤及其制备方法,包括以下步骤:
    (1)在坩埚中部放置中部设有毛细管的晶体生长模具,将原料BaTiO 3、Eu 2O 3、Lu 2O 3置于坩埚中,加热坩埚使原料熔化形成熔体;
    (2)在模具顶部接籽晶提拉熔体,使籽晶在熔体的交界面上不断进行原子或分子重排,随降温逐渐凝固而生长出与模具边缘形状相同的单晶。
实施例2
       复合单晶光纤Eu 4+/Lu 3+: BaTiO 3;其中,Eu 4+、Lu 3+的摩尔比为12:1,Eu 4+、Lu 3+的总摩尔数与BaTiO3摩尔数之比为1:100。
       上述复合单晶光纤及其制备方法,包括以下步骤:
    (1)在坩埚中部放置中部设有毛细管的晶体生长模具,将原料BaTiO 3、Eu 2O 3、Lu 2O 3置于坩埚中,加热坩埚使原料熔化形成熔体;
    (2)在模具顶部接籽晶提拉熔体,使籽晶在熔体的交界面上不断进行原子或分子重排,随降温逐渐凝固而生长出与模具边缘形状相同的单晶。
实施例3
       复合单晶光纤Eu 4+/Lu 3+: BaTiO 3;其中,Eu 4+、Lu 3+的摩尔比为10:1,Eu 4+、Lu 3+的总摩尔   数与BaTiO3摩尔数之比为5:100。
    上述复合单晶光纤及其制备方法,包括以下步骤:
    (1)在坩埚中部放置中部设有毛细管的晶体生长模具,将原料BaTiO 3、Eu 2O 3、Lu 2O 3置于坩埚中,加热坩埚使原料熔化形成熔体;
    (2)在模具顶部接籽晶提拉熔体,使籽晶在熔体的交界面上不断进行原子或分子重排,随降温逐渐凝固而生长出与模具边缘形状相同的单晶。
    测试BaTiO 3、实施例1至3的复合单晶光纤Eu 4+/Lu 3+: BaTiO 3的吸收特性。
    将样品制成直径1.0mm,长4mm的圆柱形光纤,两面经过仔细抛光后放到光纤耦合器中,以石英灯光源作为光源进行测量,测量光谱范围500-1000nm。结果显示,BaTiO 3、实施例1至3的复合单晶光纤Eu 4+/Lu 3+: BaTiO 3在650nm附近均具有明显的吸收峰,而且,实施例1的复合单晶光纤Eu 4+/Lu 3+: BaTiO 3在650nm附近的吸收峰最大,实施例2和3的复合单晶光纤Eu 4+/Lu 3+: BaTiO 3在650nm附近的吸收峰少小;证明:复合单晶光纤Eu 4+/Lu 3+: BaTiO 3具有比BaTiO 3更优异的吸收特性。
    测试BaTiO 3、实施例1至3的复合单晶光纤Eu 4+/Lu 3+: BaTiO 3的上转换效率。
       用650nm的半导体激光器作为泵浦光源,对样品泵浦,并测量个样品的上转换光谱。结果显示:BaTiO 3有上转换光谱,但强度非常弱;然而,但是实施例1至3的复合单晶光纤Eu 4+/Lu 3+: BaTiO 3上转换光谱强度比BaTiO 3明显增强很多。
实施例4
上转换强度高的固体激光器,包括金属热沉(7)、谐振腔(8)、水冷装置(9)、侧面LD泵浦源(10)以及依次设置的端面LD泵浦源(1)、耦合单元(2)、输入镜(3)、增益介质(4)、声光晶体(5)、输出镜(6);所述端面LD泵浦源(1)、耦合单元(2)、输入镜(3)、增益介质(4)、声光晶体(5)、输出镜(6)依次连接,所述金属热沉(7)环设于增益介质(4)外侧壁上,所述输入镜(3)、增益介质(4)、声光晶体(5)、输出镜(6)设置于谐振腔(8)内;所述侧面LD泵浦源(10)设置于增益介质(4)侧面。所述水冷装置(9)设置于金属热沉(7)外表面。
所述耦合单元(2)为聚焦光器件。
所述增益介质(4)靠近输入镜(3)的一端表面镀有对808nm增透和对1064nm高反的双色膜;所述增益介质(4)靠近输出镜(6)的一端表面镀有对1064nm波段的增透膜。
所述增益介质(4)为实施例1至3的复合单晶光纤Eu 4+/Lu 3+: BaTiO 3

Claims (6)

  1. 一种上转换强度高的固体激光器,其特征在于:包括金属热沉(7)、谐振腔(8)、侧面LD泵浦源(10)以及依次设置的端面LD泵浦源(1)、耦合单元(2)、输入镜(3)、增益介质(4)、声光晶体(5)、输出镜(6);所述端面LD泵浦源(1)、耦合单元(2)、输入镜(3)、增益介质(4)、声光晶体(5)、输出镜(6)依次连接,所述金属热沉(7)环设于增益介质(4)外侧壁上,所述输入镜(3)、增益介质(4)、声光晶体(5)、输出镜(6)设置于谐振腔(8)内;所述侧面LD泵浦源(10)设置于增益介质(4)侧面;所述增益介质(4)为复合单晶光纤,所述复合单晶光纤为Eu 4+/Lu 3+: BaTiO 3,复合单晶光纤中,Eu 4+、Lu 3+的摩尔比为(8-12):1,所述Eu 4+、Lu 3+的总摩尔数与BaTiO3摩尔数之比为(1-5):100。
  2. 根据权利要求1所述的一种上转换强度高的固体激光器,其特征在于:所述耦合单元(2)为聚焦光器件。
  3. 根据权利要求1所述的一种上转换强度高的固体激光器,其特征在于:所述增益介质(4)靠近输入镜(3)的一端表面镀有对808nm增透和对1064nm高反的双色膜。
  4. 根据权利要求1所述的一种上转换强度高的固体激光器,其特征在于:所述增益介质(4)靠近输出镜(6)的一端表面镀有对1064nm波段的增透膜。
     
  5. 根据权利要求1所述的一种上转换强度高的固体激光器,其特征在于:还包括水冷装置(9),所述水冷装置(9)设置于金属热沉(7)外表面。
  6. 根据权利要求1所述的一种上转换强度高的固体激光器,其特征在于:复合单晶光纤及其制备方法,包括以下步骤:
    (1)在坩埚中部放置中部设有毛细管的晶体生长模具,将原料BaTiO 3、Eu 2O 3、Lu 2O 3置于坩埚中,加热坩埚使原料熔化形成熔体;
    (2)在模具顶部接籽晶提拉熔体,使籽晶在熔体的交界面上不断进行原子或分子重排,随降温逐渐凝固而生长出与模具边缘形状相同的单晶。
PCT/CN2019/115530 2019-11-05 2019-11-05 一种上转换强度高的固体激光器 WO2021087715A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/CN2019/115530 WO2021087715A1 (zh) 2019-11-05 2019-11-05 一种上转换强度高的固体激光器

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2019/115530 WO2021087715A1 (zh) 2019-11-05 2019-11-05 一种上转换强度高的固体激光器

Publications (1)

Publication Number Publication Date
WO2021087715A1 true WO2021087715A1 (zh) 2021-05-14

Family

ID=75848718

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/115530 WO2021087715A1 (zh) 2019-11-05 2019-11-05 一种上转换强度高的固体激光器

Country Status (1)

Country Link
WO (1) WO2021087715A1 (zh)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101202407A (zh) * 2007-12-07 2008-06-18 华南理工大学 频率上转换光纤激光器
CN101353578A (zh) * 2008-09-05 2009-01-28 浙江大学 一种上转换荧光材料
CN101420100A (zh) * 2008-11-25 2009-04-29 宁波大学 一种蓝绿光输出的上转换光纤激光器
US20120287522A1 (en) * 2011-05-11 2012-11-15 Kilolambda Technologies Ltd. Wavelength-specific wide impinging angle limiter
US20140124715A1 (en) * 2011-01-19 2014-05-08 Kilolambda Technologies Ltd. Enhanced response photochromic composition and device
CN109103742A (zh) * 2018-08-31 2018-12-28 南京同溧晶体材料研究院有限公司 一种固体激光器
CN109269666A (zh) * 2018-08-31 2019-01-25 南京同溧晶体材料研究院有限公司 一种包层光纤温度传感器

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101202407A (zh) * 2007-12-07 2008-06-18 华南理工大学 频率上转换光纤激光器
CN101353578A (zh) * 2008-09-05 2009-01-28 浙江大学 一种上转换荧光材料
CN101420100A (zh) * 2008-11-25 2009-04-29 宁波大学 一种蓝绿光输出的上转换光纤激光器
US20140124715A1 (en) * 2011-01-19 2014-05-08 Kilolambda Technologies Ltd. Enhanced response photochromic composition and device
US20120287522A1 (en) * 2011-05-11 2012-11-15 Kilolambda Technologies Ltd. Wavelength-specific wide impinging angle limiter
CN109103742A (zh) * 2018-08-31 2018-12-28 南京同溧晶体材料研究院有限公司 一种固体激光器
CN109269666A (zh) * 2018-08-31 2019-01-25 南京同溧晶体材料研究院有限公司 一种包层光纤温度传感器

Similar Documents

Publication Publication Date Title
Zhou et al. Single‐Crystal Red Phosphors and Their Core–Shell Structure for Improved Water‐Resistance for Laser Diodes Applications
Tsai et al. Ultra-high thermal-stable glass phosphor layer for phosphor-converted white light-emitting diodes
CN109429533B (zh) 荧光构件及发光模块
CN107056070B (zh) 一种透明Ce:YAG玻璃陶瓷及其制备方法
WO2018090614A1 (zh) 一种发光陶瓷及发光装置
CZ2013301A3 (cs) Dioda emitující bílé světlo s monokrystalickým luminoforem a způsob výroby
CN111072374B (zh) 荧光陶瓷及其制备方法
TW201323582A (zh) 釔鋁石榴石螢光材料、其製作方法、及包含其之發光二極體裝置
CN112159209A (zh) 高显指高热导荧光陶瓷、制备方法及在激光显示中的应用
US9537058B2 (en) Embedded white light LED package structure based on solid-state fluorescence material and manufacturing method thereof
WO2021164103A1 (zh) 一种显示用宽色域背光源
CN109786535B (zh) 深紫外发光装置
CN106486885A (zh) 固体激光器
WO2021087715A1 (zh) 一种上转换强度高的固体激光器
CN107248547A (zh) 一种大功率led芯片集成封装结构及其封装方法
CN112563880B (zh) 一种基于多功能荧光陶瓷的绿光光源
CN109103742A (zh) 一种固体激光器
CN103489976B (zh) 一种提高GaAs衬底AlGaInP四元单面双电极发光二极管亮度的方法
CN105431503A (zh) 大功率高温白光led封装及其制作方法
KR101231529B1 (ko) 액체 나노결정 레이저
CN111041557A (zh) 铥钬双掺氧化镥激光晶体及其生长方法与应用
JP5460923B2 (ja) 白光を発射する透明ガラスセラミック及びその調製方法
JP5509997B2 (ja) 光変換用セラミック複合体の製造方法
CN205282499U (zh) 一种陶瓷荧光基板及发光装置
CN112094054B (zh) 植物生长照明的远红光荧光透明陶瓷及方法、装置和应用

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19951965

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19951965

Country of ref document: EP

Kind code of ref document: A1