WO2021085979A1 - 역전기투석과 산화-환원 반응을 이용한 장치 및 그를 사용하여 약물을 전달하는 방법 - Google Patents

역전기투석과 산화-환원 반응을 이용한 장치 및 그를 사용하여 약물을 전달하는 방법 Download PDF

Info

Publication number
WO2021085979A1
WO2021085979A1 PCT/KR2020/014735 KR2020014735W WO2021085979A1 WO 2021085979 A1 WO2021085979 A1 WO 2021085979A1 KR 2020014735 W KR2020014735 W KR 2020014735W WO 2021085979 A1 WO2021085979 A1 WO 2021085979A1
Authority
WO
WIPO (PCT)
Prior art keywords
electrode pattern
oxidation
reduction reaction
base sheet
reverse electrodialysis
Prior art date
Application number
PCT/KR2020/014735
Other languages
English (en)
French (fr)
Inventor
정민웅
강성구
장명훈
Original Assignee
바이오센서연구소 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 바이오센서연구소 주식회사 filed Critical 바이오센서연구소 주식회사
Publication of WO2021085979A1 publication Critical patent/WO2021085979A1/ko

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61NELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
    • A61N1/00Electrotherapy; Circuits therefor
    • A61N1/18Applying electric currents by contact electrodes
    • A61N1/20Applying electric currents by contact electrodes continuous direct currents
    • A61N1/30Apparatus for iontophoresis, i.e. transfer of media in ionic state by an electromotoric force into the body, or cataphoresis
    • A61N1/303Constructional details
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M37/00Other apparatus for introducing media into the body; Percutany, i.e. introducing medicines into the body by diffusion through the skin
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61NELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
    • A61N1/00Electrotherapy; Circuits therefor
    • A61N1/02Details
    • A61N1/04Electrodes
    • A61N1/0404Electrodes for external use
    • A61N1/0408Use-related aspects
    • A61N1/0428Specially adapted for iontophoresis, e.g. AC, DC or including drug reservoirs
    • A61N1/0432Anode and cathode
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M37/00Other apparatus for introducing media into the body; Percutany, i.e. introducing medicines into the body by diffusion through the skin
    • A61M2037/0007Other apparatus for introducing media into the body; Percutany, i.e. introducing medicines into the body by diffusion through the skin having means for enhancing the permeation of substances through the epidermis, e.g. using suction or depression, electric or magnetic fields, sound waves or chemical agents
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M2205/00General characteristics of the apparatus
    • A61M2205/82Internal energy supply devices
    • A61M2205/8206Internal energy supply devices battery-operated

Definitions

  • the present invention relates to an apparatus and a method, and more particularly, to an apparatus using reverse electrodialysis and an oxidation-reduction reaction, and a method of delivering a drug using the same.
  • a sheet mask pack is a product that can obtain moisturizing and cleansing effects by attaching a sheet type manufactured in the shape of a face without the need to apply it by hand. It is available on the market in a variety of forms, such as a sheet divided into two sheets, and sheets tailored to specific areas such as under the eyes, around the eyes, and around the mouth.
  • a general mask pack delivers physiologically active substances locally and transdermally, there is a limit to the delivery of useful substances to the skin.
  • a mask pack In order to deliver useful substances to the skin using a mask pack, it is important to ensure that the mask pack adheres well to the skin.
  • various attempts to further enhance the cosmetic effect and one of them is to use an iontophoresis device.
  • Iontophoresis is a drug delivery method that allows charged molecules to pass through tissues easily.
  • Iontophoresis device is a technology that penetrates ionic materials into the skin by using a direct current.
  • the ionic material with positive characteristics is applied to the'+' electrode.
  • the ionic material having negative characteristics is applied to the'-' electrode so that the ionic material can easily penetrate the skin.
  • iontophoresis devices carry out active transport within an electric field.
  • An object of the present invention is to provide a device using reverse electrodialysis and an oxidation-reduction reaction that improves the absorption of electrical stimulation or drugs and improves stability, and a method of delivering drugs using the same.
  • these problems are exemplary, and the scope of the present invention is not limited thereby.
  • One aspect of the present invention includes a base sheet, a first electrode pattern disposed in one region of the base sheet and continuously connected to each other, and a second electrode pattern disposed in another region of the base sheet and continuously connected to each other. And, a third electrode pattern disposed inside at least one of the first electrode pattern and the second electrode pattern, and one end is electrically connected to the first electrode pattern, and the other end is electrically connected to the second electrode pattern. It provides an apparatus using reverse electrodialysis and an oxidation-reduction reaction including a battery unit connected to each other.
  • An apparatus using reverse electrodialysis and an oxidation-reduction reaction according to an embodiment of the present invention, and a method of delivering a drug using the same, are provided by the electric current supplied from the battery unit and the potential difference generated by the oxidation-reduction reaction. Electrical stimulation may be generated in the skin EP, and the drug may be delivered to the skin EP of the subject.
  • An apparatus using reverse electrodialysis and an oxidation-reduction reaction receives a relatively high level of current from the battery part, and Accordingly, a relatively low level of current can be supplied. Since electric currents of various levels are supplied, electric stimulation of various strengths can be provided to the object, and various kinds of drugs can be delivered to the skin of the object.
  • a potential difference is continuously generated by the arrangement of the electrode pattern, so that the drug is delivered to the subject for a long time. Or electrical stimulation. Since the first electrode pattern and the second electrode pattern are each continuously disposed, and the third electrode pattern is disposed inside the first electrode pattern or the second electrode pattern, it is between the first electrode pattern and the third electrode pattern or the second electrode. Even if an oxidation-reduction reaction is generated between the pattern and the third electrode pattern, a potential difference may be generated again.
  • the device using reverse electrodialysis and oxidation-reduction reaction can be safely activated.
  • the oxidation-reduction reaction is not activated in the electrode pattern, but when the first activating solution is injected into the base sheet, the oxidation-reduction reaction is activated to generate a potential difference.
  • the reverse electrodialysis battery unit is not activated in a dry state, but when the second activation solution is injected into the chamber, a current is generated. Therefore, the user can use the activation solution safely and quickly.
  • FIG. 1 is a diagram showing an apparatus using reverse electrodialysis and an oxidation-reduction reaction according to an embodiment of the present invention.
  • FIG. 2 is an enlarged view showing a partial area of FIG. 1 on an enlarged scale.
  • FIG. 3 is a diagram showing a cross section in which the device using reverse electrodialysis and oxidation-reduction reaction of FIG. 1 is activated.
  • FIG. 4 is a cross-sectional view showing the reverse electrodialysis battery unit of FIG. 1.
  • 5A to 5E are diagrams showing a modified example of the apparatus using reverse electrodialysis and oxidation-reduction reaction of FIG. 1.
  • 6A to 6C are diagrams showing a modified example of the apparatus using the reverse electrodialysis and oxidation-reduction reaction of FIG. 1.
  • FIG. 7 is a cross-sectional view showing an apparatus using reverse electrodialysis and an oxidation-reduction reaction according to another embodiment of the present invention.
  • FIG. 8 is a cross-sectional view showing an apparatus using reverse electrodialysis and an oxidation-reduction reaction according to another embodiment of the present invention.
  • FIG. 9 is an enlarged view showing a partial area of FIG. 8 on an enlarged scale.
  • FIG. 10 is a cross-sectional view showing an apparatus using reverse electrodialysis and an oxidation-reduction reaction according to another embodiment of the present invention.
  • FIG. 11 is an enlarged view showing a partial area of FIG. 10 on an enlarged scale.
  • FIG. 12 is a cross-sectional view showing an apparatus using reverse electrodialysis and an oxidation-reduction reaction according to another embodiment of the present invention.
  • FIG. 13 is a graph showing a potential difference generated when the first electrode pattern and the second electrode pattern of FIG. 9 are activated.
  • FIG. 14 is a flow chart showing a drug delivery method using reverse electrodialysis and an oxidation-reduction reaction according to another embodiment of the present invention.
  • One aspect of the present invention includes a base sheet, a first electrode pattern disposed in one region of the base sheet and continuously connected to each other, and a second electrode pattern disposed in another region of the base sheet and continuously connected to each other. And, a third electrode pattern disposed inside at least one of the first electrode pattern and the second electrode pattern, and one end is electrically connected to the first electrode pattern, and the other end is electrically connected to the second electrode pattern. It provides an apparatus using reverse electrodialysis and an oxidation-reduction reaction including a battery unit connected to each other.
  • the battery unit is activated to transfer current to the first electrode pattern and the second electrode pattern, and an oxidation-reduction reaction is activated in the first electrode pattern and the third electrode pattern, or the second electrode pattern and An oxidation-reduction reaction may be activated in the third electrode pattern.
  • the oxidation-reduction reaction when the base sheet is dry, the oxidation-reduction reaction is not activated, and when the first activating solution is injected into the base sheet, the oxidation-reduction reaction may be activated.
  • the first activation solution includes a drug, and when the oxidation-reduction reaction is activated, the drug may be delivered to the subject.
  • the battery unit is a reversed electrodialysis (RED) battery, and when a second activating solution is injected into the battery unit, the battery unit may be activated.
  • RED reversed electrodialysis
  • a plurality of the first electrode patterns having a closed loop shape are arranged to be connected to each other in the one region of the base sheet, and a plurality of the second electrode patterns having a closed loop shape are disposed at the base.
  • a plurality of third electrode patterns may be disposed to be connected to each other in the other regions of the sheet, and may be spaced apart from the inside of the closed loop of the first electrode pattern or the second electrode pattern.
  • first electrode pattern may be disposed on one surface of the base sheet
  • second electrode pattern may be disposed on one surface or the other surface of the base sheet
  • the third electrode pattern may be disposed on the same surface as the first electrode pattern or the second electrode pattern, or may be disposed on a different surface of the base sheet.
  • At least one of the first electrode pattern, the second electrode pattern, and the third electrode pattern may be disposed inside the base sheet.
  • first electrode pattern and the second electrode pattern may have the same shape.
  • the third electrode pattern includes a 3a electrode pattern disposed inside the first electrode pattern, and a thirdb electrode pattern having a polarity different from that of the 3a electrode pattern, and disposed inside the second electrode pattern. Can be equipped.
  • first electrode pattern and the second electrode pattern may have a polygonal shape or a circular shape.
  • a plurality of electrode ends may be radially disposed.
  • it may further include a drug sheet that includes a drug therein and is attached to one surface of the base sheet to activate the first electrode pattern and the second electrode pattern.
  • a pouch having a first storage space for storing the base sheet, a second storage space for storing drugs injected into the base sheet, and a valve selectively connecting the first storage space and the second storage space. It may further include.
  • Another aspect of the present invention includes the steps of attaching a drug sheet to an object, injecting a second activating solution into an apparatus using reverse electrodialysis and oxidation-reduction reaction to activate the battery unit, and the base sheet to which the battery unit is attached.
  • the device using the reverse electrodialysis and the oxidation-reduction reaction is arranged in one region of the base sheet, the first electrode pattern connected to each other continuously, and the base sheet A second electrode pattern disposed in another area and continuously connected to each other, and a third electrode pattern disposed inside at least one of the first electrode pattern and the second electrode pattern, and the reverse electrodialysis battery
  • the part is disposed on the base sheet, one end is electrically connected to the first electrode pattern, and the other end is electrically connected to the second electrode pattern. It provides a drug delivery method using reverse electrodialysis and an oxidation-reduction reaction.
  • an oxidation-reduction reaction is activated in the first electrode pattern and the third electrode pattern, or an oxidation-reduction reaction is activated in the second electrode pattern and the third electrode pattern.
  • the reverse electrodialysis battery unit is activated so that current may be transferred to the first electrode pattern and the second electrode pattern.
  • the drug sheet includes a first activating solution, and when the first activating solution is absorbed by the base sheet to activate the oxidation-reduction reaction, the drug may be delivered to the subject.
  • a plurality of the first electrode patterns having a closed loop shape are arranged to be connected to each other in the one region of the base sheet, and a plurality of the second electrode patterns having a closed loop shape are disposed at the base.
  • a plurality of third electrode patterns may be disposed to be connected to each other in the other regions of the sheet, and may be spaced apart from the inside of the closed loop of the first electrode pattern or the second electrode pattern.
  • FIG. 1 is a view showing an apparatus 100 using reverse electrodialysis and an oxidation-reduction reaction according to an embodiment of the present invention
  • FIG. 2 is an enlarged view showing a partial area of FIG. 1
  • FIG. 3 Is a diagram showing a cross section in which the apparatus 100 using reverse electrodialysis and oxidation-reduction reaction of FIG. 1 is activated.
  • an apparatus 100 using reverse electrodialysis and an oxidation-reduction reaction is an apparatus using a current supplied from a battery unit and a current generated in an oxidation-reduction reaction.
  • the apparatus 100 using reverse electrodialysis and oxidation-reduction reaction when the battery unit is activated, a relatively high level electric field (HLEF) is formed or a relatively high level micro-current is generated.
  • HLEF relatively high level electric field
  • HLMC is a device that is formed.
  • the device 100 using reverse electrodialysis and an oxidation-reduction reaction may deliver a drug to an object by using electrical energy generated by a reverse electrodialysis battery.
  • the device 100 using reverse electrodialysis and oxidation-reduction reaction forms a relatively low level electric field (LLEF) when the oxidation-reduction reaction is activated, or a relatively low level of microcurrent ( It is a device that forms a low level micro-current (LLMC).
  • the device 100 using reverse electrodialysis and an oxidation-reduction reaction may deliver a drug to a subject using electrical energy generated by an oxidation reaction and a reduction reaction of a galvanic cell.
  • activation is defined as the supply of current to the device 100 using reverse electrodialysis and oxidation-reduction reaction.
  • activation of the battery part is defined as the current supplied from the battery part of the apparatus 100 using reverse electrodialysis and oxidation-reduction reaction.
  • activation of an oxidation-reduction reaction is defined as generating an oxidation-reduction reaction in the electrode pattern.
  • the "first activating solution” is defined as a solution capable of activating an oxidation-reduction reaction in the apparatus 100 using reverse electrodialysis and an oxidation-reduction reaction.
  • the first activating solution may be a drug, and in another embodiment, a drug and an added solution may be used.
  • the "second activation solution” is defined as a solution for driving the battery part in order to receive current from the battery part in the apparatus 100 using reverse electrodialysis and oxidation-reduction reaction.
  • a device 100 using reverse electrodialysis and an oxidation-reduction reaction is attached to the object, and a drug is delivered using an electrical reaction or an electrical stimulation is applied to the skin.
  • a drug is delivered using an electrical reaction or an electrical stimulation is applied to the skin.
  • the skin of an animal or human I can.
  • the device 100 using reverse electrodialysis and oxidation-reduction reaction is attached to an object, and can deliver a drug to the object upon activation.
  • the device 100 using reverse electrodialysis and an oxidation-reduction reaction may increase the absorption rate of drugs by electrically stimulating the skin of an object, improve blood circulation, and amplify protein synthesis.
  • the apparatus 100 using reverse electrodialysis and oxidation-reduction reaction may be attached to a wound of an object, so that the regeneration speed of the affected area may be improved by electrical stimulation.
  • ions move to the base sheet and electrons move to the skin EP of an object, but embodiments of the present invention are not limited thereto. Since both the active base sheet and the skin EP have electrical conductivity, ions can move to the base sheet and/or the skin EP, and electrons can move to the base sheet and/or the skin EP. In addition, ions and electrons may move in opposite directions in either of the base sheet and the skin EP. However, hereinafter, for convenience of explanation, an embodiment in which ions move to the base sheet and the former move to the skin EP of an object will be described.
  • the apparatus 100 using reverse electrodialysis and oxidation-reduction reaction may include a base sheet 110, a first electrode pattern 120, a second electrode pattern 130, and a third electrode pattern 140.
  • the base sheet 110 may be formed of a sheet having a predetermined thickness formed to be attached to the skin of an object. One side of the base sheet 110 is in close contact with the user's skin, and the other side is exposed to the outside.
  • the base sheet 110 may have various sizes and shapes depending on the location of the object to which the device 100 using reverse electrodialysis and oxidation-reduction reaction is attached. For example, if the device 100 using reverse electrodialysis and oxidation-reduction reaction is used as a mask pack, the base sheet 110 may have openings corresponding to the eyes and mouth, and may have an incision line. In another embodiment, if the device 100 using reverse electrodialysis and oxidation-reduction reaction is used as a medical patch, the base sheet may be a polygonal or circular shape depending on the shape of a portion requiring electrical stimulation or a portion requiring drug delivery. It can be formed as However, in the following description, for convenience of description, a case in which the base sheet 110 has a shape of a mask pack will be mainly described.
  • the base sheet 110 may be formed of a material having biocompatibility. Since the base sheet 110 maintains contact with the skin of the object, it may be formed of a safe material having biocompatibility.
  • the base sheet 110 is stored in a dry state when the device 100 using reverse electrodialysis and oxidation-reduction reaction is not used, and is kept wet when the device 100 using reverse electrodialysis and oxidation-reduction reaction is used. It is activated.
  • the base sheet 110 is wetted by the first activation solution, and may be formed of a material that can be maintained in a wet state for a certain period of time.
  • the base sheet 110 may be formed of a woven material or a non-woven material.
  • the base sheet 110 may mean a general sheet for use as a conventional mask pack or medical band.
  • the base sheet 110 is formed of a flexible material and may be deformed in shape while being attached to the skin of the object.
  • the base sheet 110 may be formed of a material that can be deformed in shape by an external force applied by a user.
  • the base sheet 110 is preferably made of a material that is deformed by an external force and has a resilience, and, for example, a polymer such as natural rubber, polyisoprene, polysilmoxine, polybutadiene, polyacrylamide.
  • Polyvinyl alcohol polyacrylic acid, polyethylene, polypropylene and copolymers thereof, polyester, fluororesin, polyvinylpyrrolidone and carboxyvinyl polymer, polyacrylic acid and copolymers thereof, polyhydroxymethyl cellulose (poly (hydroxyl methyl cellulose)), poly(hydroxyl alkylmethacrylate) and copolymers thereof, polyethylene glycol (poly(ethylene glycoloxide)) and copolymers thereof, polyethylene glycol-polycaprolactone Block copolymers, polycaprolactone and copolymers thereof, polylactide and copolymers thereof, polyglycolide and copolymers thereof, poly(methyl methacrylate), and It may be made of a copolymer thereof, polystyrene, polydimethylsiloxane (PDMS), a copolymer thereof, and a combination thereof.
  • PDMS polydimethylsiloxane
  • the base sheet 110 may be divided into a first region S1 that is one region and a second region S2 that is another region according to the arrangement of the electrode patterns.
  • the first area S1 is an area in which the first electrode pattern 120 is disposed
  • the second area S2 is an area in which the second electrode pattern 130 is disposed.
  • the first region S1 and the second region S2 may be variously disposed according to the arrangement of the electrode pattern.
  • the separation area 111 may be disposed between the first area S1 and the second area S2 to separate the first area S1 and the second area S2.
  • the first electrode pattern 120 is disposed in the first region S1 of the base sheet 110 and may be connected to each other continuously.
  • the first electrode pattern 120 may have a closed loop shape.
  • each of the first electrode patterns 120 has a hexagonal closed loop shape that is continuously connected, and is connected to other first electrode patterns 120 adjacent to each other.
  • a plurality of first electrode patterns 120 may be disposed over the entire first region S1 of the base sheet 110.
  • the device 100 using reverse electrodialysis and the oxidation-reduction reaction is performed in the first region of the base sheet 110 ( Throughout S1), electrical stimulation and drug delivery can be performed to the skin of the subject.
  • a plurality of first electrode patterns 120 may be disposed only in a partial region of the first region S1.
  • An oxidation-reduction reaction is generated in the first electrode pattern 120 and the 3a electrode pattern 141, and the apparatus 100 using reverse electrodialysis and oxidation-reduction reaction Electrical stimulation and drug delivery can be performed on the skin.
  • one of the first electrode patterns 120 may be disposed in the first region S1 of the base sheet 110.
  • a number of first electrode patterns 120 may be disposed in the first region S1 of the base sheet 110, and the 3a electrode patterns 141 may be disposed therein.
  • An oxidation-reduction reaction is generated in the first electrode pattern 120 and the 3a electrode pattern 141, and the apparatus 100 using reverse electrodialysis and oxidation-reduction reaction Electrical stimulation and drug delivery can be performed on the skin.
  • the second electrode patterns 130 are disposed in the second region S2 of the base sheet 110 and may be connected to each other continuously.
  • the second electrode pattern 130 may have a closed loop shape.
  • the second electrode pattern 130 may have the same shape as the first electrode pattern 120.
  • Each of the second electrode patterns 130 has a hexagonal closed loop shape that is continuously connected, and is connected to other second electrode patterns 130 adjacent to each other.
  • a plurality of second electrode patterns 130 may be disposed over the entire second region S2 of the base sheet 110.
  • the device 100 using reverse electrodialysis and the oxidation-reduction reaction is performed in the second region (S2) of the base sheet 110. ), it is possible to perform electrical stimulation and drug delivery to the skin of the subject.
  • a plurality of second electrode patterns 130 may be disposed only in a partial area of the second area S2.
  • An oxidation-reduction reaction is generated in the second electrode pattern 130 and the third electrode pattern 142, and the device 100 using reverse electrodialysis and oxidation-reduction reaction Electrical stimulation and drug delivery can be performed on the skin.
  • one of the second electrode patterns 130 may be disposed in the second region S2 of the base sheet 110.
  • a number of second electrode patterns 130 may be disposed in the second region S2 of the base sheet 110, and the 3b electrode patterns 142 may be disposed therein.
  • An oxidation-reduction reaction is generated in the second electrode pattern 130 and the third electrode pattern 142, and the device 100 using reverse electrodialysis and oxidation-reduction reaction Electrical stimulation and drug delivery can be performed on the skin.
  • the third electrode pattern 140 may be disposed inside at least one of the first electrode pattern 120 and the second electrode pattern 130.
  • a plurality of third electrode patterns 140 may be spaced apart from the inside of the closed loop of the first electrode pattern 120 or the second electrode pattern 130.
  • the third electrode pattern 140 may have a shape corresponding to the first electrode pattern 120 or the second electrode pattern 130 in FIG. 2.
  • the third electrode pattern 140 may also have a hexagonal closed loop shape like the first electrode pattern 120 and the second electrode pattern 130.
  • the third electrode pattern 140 has a 3a electrode pattern 141 disposed inside the first electrode pattern 120 and a 3b electrode pattern 142 disposed inside the second electrode pattern 130.
  • the 3a electrode pattern 141 is disposed in the first region S1 and the thirdb electrode pattern 142 is disposed in the second region S2.
  • the 3a electrode pattern 141 and the 3b electrode pattern 142 may have different polarities.
  • the 3a electrode pattern 141 has a polarity different from that of the first electrode pattern 120
  • the 3b electrode pattern 142 has a polarity different from that of the second electrode pattern 130. Since the first electrode pattern 120 and the second electrode pattern 130 have different polarities, the 3a electrode pattern 141 and the 3b electrode pattern 142 also have different polarities.
  • the third electrode pattern 140 is disposed to be spaced apart from each other.
  • the 3a electrode pattern 141 is not connected to the first electrode pattern 120 and is disposed inside the first electrode pattern 120 while being spaced apart at a predetermined interval.
  • the 3b electrode pattern 142 is not connected to the second electrode pattern 130 and is disposed inside the second electrode pattern 130 while being spaced apart at a predetermined interval.
  • the oxidation-reduction reaction may be activated in the first electrode pattern 120 and the third electrode pattern 140, or the oxidation-reduction reaction may be activated in the second electrode pattern 130 and the third electrode pattern 140.
  • the oxidation-reduction reaction is activated in the first electrode pattern 120 and the 3a electrode pattern 141, and at this time, the first electrode pattern 120 and the 3a electrode pattern 141 are activated with different polarities.
  • the first electrode pattern 120 and the 3a electrode pattern 141 may be disposed on one surface of the base sheet 110 to contact the skin EP of the object. Since the first electrode pattern 120 and the third electrode pattern 141 are in contact with the skin EP, electrical stimulation may be effectively generated on the skin EP.
  • the 3a electrode patterns 141 are arranged in a number corresponding to the first electrode pattern 120. Since the 3a electrode pattern 141 is disposed inside the first electrode pattern 120, it may be preferably disposed equal to the number of the first electrode patterns 120.
  • the oxidation-reduction reaction is activated in the second electrode pattern 130 and the 3b electrode pattern 142, and at this time, the second electrode pattern 130 and the 3b electrode pattern 142 are activated with different polarities.
  • the second electrode pattern 130 and the 3b electrode pattern 142 may be disposed on one surface of the base sheet 110 to contact the skin EP of the object. Since the second electrode pattern 130 and the 3b electrode pattern 142 are in contact with the skin EP, electrical stimulation can be effectively generated on the skin EP.
  • the 3b electrode patterns 142 are arranged in a number corresponding to the second electrode pattern 130. Since the 3b electrode pattern 142 is disposed inside the second electrode pattern 130, it may be preferably disposed equal to the number of the second electrode patterns 130.
  • the first electrode pattern 120 and the second electrode pattern 130 are printed on at least one surface of the base sheet 110.
  • the first electrode pattern 120 is printed to be continuous with each other in the first region S1 of the base sheet 110
  • the second electrode pattern 130 is continuous with each other in the second region S2 of the base sheet 110. It is printed to do.
  • the first electrode pattern 120 and the third electrode pattern 140 may generate electromotive force with a galvanic battery, and the second electrode pattern 130 and the third electrode pattern 140 may also generate electromotive force with a galvanic battery. have.
  • the first electrode pattern 120, the second electrode pattern 130, and the third electrode pattern 140 are not limited to a specific material, and may be formed of various materials capable of generating a potential difference.
  • the first electrode pattern 120, the second electrode pattern 130, and the third electrode pattern 140 are zinc-silver, zinc-silver oxide, zinc-silver halide, zinc-silver chloride, zinc-silver bromide, zinc-silver iodide, and Includes, but is not limited to, zinc-silver fluoride.
  • the battery unit 150 may have one end electrically connected to the first electrode pattern 120 and the other end electrically connected to the second electrode pattern 130.
  • the battery unit 150 is activated so that current can be transferred to the first electrode pattern 120 and the second electrode pattern 130.
  • the battery unit 150 is installed in the separation area 111 of the base sheet 110, is electrically connected to the first electrode pattern 120 and the second electrode pattern 130, and when activated, the first electrode pattern 120 ) And the second electrode pattern 130 have different polarities.
  • the battery unit 150 is not limited to a specific battery, and various batteries capable of generating current may be used.
  • the battery unit may include a reverse electrodialysis cell, a primary cell, or a secondary cell, and in detail, a flexible battery, an alkaline cell, a dry cell, a mercury cell, a lithium cell, a nickel-cadmium cell , A nickel-hydrogen battery, a lithium ion secondary battery, and a lithium ion polymer secondary battery.
  • the battery unit 150 may preferably be a reverse cell dialysis cell.
  • the battery unit 150 is a reverse electrodialysis battery will be mainly described.
  • FIG. 4 is a cross-sectional view showing the reverse electrodialysis battery unit 150 of FIG. 1.
  • the reverse electrodialysis battery unit 150 includes a cation exchange membrane 151, an anion exchange membrane 152, a cathode 153, an anode 154, a first chamber C1 and a second chamber C2. Includes.
  • the reverse electrodialysis battery unit 150 is connected to the negative electrode 153 and the positive electrode 154 by the connection part 156 of the intermediate sheet 155, respectively.
  • the cathode 153 and the anode 154 may include a conductive material, for example, silver, silver epoxy, palladium, copper, aluminum, gold, titanium, palladium, chromium, nickel, platinum, silver/silver chloride, It may be silver/silver ions, or mercury/mercury oxide.
  • a conductive material for example, silver, silver epoxy, palladium, copper, aluminum, gold, titanium, palladium, chromium, nickel, platinum, silver/silver chloride, It may be silver/silver ions, or mercury/mercury oxide.
  • the cation exchange membrane 151 and the anion exchange membrane 152 are disposed to be spaced apart, and spaces created by being spaced apart become the first chamber C1 and the second chamber C2. That is, the first chamber C1 and the second chamber C2 are defined by the cation exchange membrane 151 and the anion exchange membrane 152.
  • an oxidation reaction occurs to produce electrons in the cathode 153 to compensate for a relatively insufficient cation, and a reduction reaction is performed in the anode 154 to compensate for the relatively insufficient anions. It wakes up and consumes electrons. Accordingly, the reverse electrodialysis battery unit 150 generates an ionic current and outputs the current.
  • Reversed ElectroDialysis may mean a salinity gradient energy resulting from a difference in salt concentration between two solutions.
  • reverse electrodialysis may mean a phenomenon in which current flows through the first electrode pattern 120 and the second electrode pattern 130.
  • the reverse electrodialysis battery unit 150 may refer to a device that generates current using reverse electrodialysis.
  • the reverse electrodialysis battery unit 150 may generate an electric current by a difference in ion concentration of an electrolyte in a solution between a high concentration electrolyte solution and a low concentration electrolyte solution.
  • electrolyte may refer to a material that is dissolved in a solvent such as water and dissociated into ions to allow current to flow
  • the electrolyte solution may refer to a solution such as water in which an electrolyte is dissolved.
  • the electrolyte may be included in an electrolyte solution.
  • the reverse electrodialysis battery unit 150 generates a current through a difference between a high concentration electrolyte solution and a low concentration electrolyte solution, and the amount of the electrolyte in the first chamber C1 containing the electrolyte at a high concentration is determined by the amount of the electrolyte at a low concentration. It may be higher than the amount of the electrolyte in the second chamber (C2).
  • the second chamber C2 in which the electrolyte is contained in a low concentration may include one that does not contain an electrolyte.
  • the electrolyte is contained in an electrolyte solution
  • the first chamber C1 containing the electrolyte at a high concentration is about 0.1 to about 20 mol/L, about 0.5 to about 15 mol/L, about 0.7 to about 10 mol/L, about 1.0 to about 8.0 mol/L, about 1.0 to about 2.0 mol/L, or about 1.2 to about 1.8 mol/L of an ionic concentration of an electrolyte solution, wherein the electrolyte is contained in a low concentration.
  • Two chamber (C2) does not contain an electrolyte, or about 0.005 to about 10 mol/L, about 0.005 to about 8 mol/L, about 0.01 to about 6 mol/L, about 0.05 to about 6.0 mol/L, about 0.1 To about 4.0 mol/L, or about 0.1 to about 2.0 mol/L, and the ion concentration of the electrolyte solution in the first chamber C1 in which the electrolyte is contained in a high concentration is a low concentration of the electrolyte. It may be higher than the ion concentration of the electrolyte solution in the second chamber 4 included as.
  • the first chamber C1 and the second chamber C2 may include an electrolyte paste.
  • the electrolyte paste may include a water-soluble polymer binder and an electrolyte.
  • the water-soluble polymer binder is, for example, selected from the group consisting of cellulose-based resin, xanthan gum, polyvinylpyrrolidone, polyvinyl alcohol, water-soluble (meth)acrylic resin, polyether-polyol, and polyetherurea-polyurethane. There can be more than one.
  • a chamber containing the electrolyte paste may be manufactured. When the electrolyte paste is applied, the internal resistance of the reverse electrodialysis battery unit 150 can be lowered and the fluidity of the electrolyte in the chamber can be improved.
  • the first chamber C1 and the second chamber C2 may contain hydrogels containing an electrolyte.
  • the first chamber C1 containing the electrolyte at a high concentration accommodates a solid material containing a high concentration electrolyte or a hydrogel containing a high concentration electrolyte
  • a second chamber containing the electrolyte at a low concentration may be empty or containing a solid material containing a low-concentration electrolyte or a hydrogel containing a low-concentration electrolyte.
  • the solid material or hydrogel When the solid material or hydrogel is included, for example, when salt (NaCl) in a solid state is included, when water flows into the chamber, the solid material or hydrogel is dissolved in water to form an aqueous electrolyte solution. By forming a flow of ions can occur.
  • the solid material or hydrogel may be used without limitation as long as it has water-soluble or ionic permeability, and has appropriate mechanical properties.
  • the solid material or hydrogel include agar, polyethylene glycol diacrylate (PEGDA), poly(2-hydroxyethyl methacrylate) (PHEMA), alginic acid, such as sodium alginate, calcium alginate, or potassium alginate. can do.
  • the solid material or hydrogel may include a solid powder formulation of an ionic binding material.
  • the first chamber C1 and the second chamber C2 may be made of a woven or non-woven fabric capable of absorbing an aqueous solution.
  • the non-woven fabric may be a non-woven fabric.
  • the electrolyte may be included in the chamber in the form of a powder.
  • the electrolyte is present in the form of a powder on the fabric, when the second activating solution, for example, water is introduced into the chamber, the electrolyte is dissolved in water to form an aqueous electrolyte solution, whereby the flow of ions may occur.
  • first chamber C1 and the second chamber C2 may be fabric or non-woven fabric impregnated with an electrolyte.
  • the electrolyte-impregnated fabric or non-woven fabric may be prepared, for example, through a hot air rolling process after putting the nonwoven fabric in a NaCl solution.
  • the first chamber C1 containing an electrolyte at a high concentration may be prepared through a hot air rolling process after putting a fabric or non-woven fabric capable of absorbing an aqueous solution in a high concentration NaCl solution, and containing an electrolyte at a low concentration.
  • the second chamber C2 may be manufactured through a hot air rolling process after putting a woven or non-woven fabric capable of absorbing an aqueous solution in a low NaCl concentration solution.
  • the second chamber C2 containing the electrolyte at a low concentration may be made of a woven or non-woven fabric capable of absorbing an aqueous solution without impregnating NaCl.
  • the "ion-exchange membrane” may refer to a membrane having a strong tendency to pass through either cations or anions.
  • the ion exchange membrane may be a synthetic resin, for example, the synthetic resin may be crosslinked. Since the cation exchange membrane 151 has a negative charge, ions having a negative charge can pass through the ions having a positive charge without repelling and passing through the ions, and may be, for example, the cation exchange membrane 151 having a sulfone group.
  • the anion exchange membrane 152 has a positive charge, ions having a positive charge repel and pass through the ions having a negative charge without passing through, and may be, for example, the anion exchange membrane 152 having a tetravalent ammonium.
  • the kind of monomer forming the cation exchange membrane 151 is a sulfonic acid-type monomer, for example, 2-(meth)acrylamide-2-methylpropanesulfonic acid (2-(meth)acrylamide-2-methylpropanesulfonic acid).
  • Carboxylic acid-type monomers such as 2-(meth)acryloylethylphthalic acid (2-(meth)acryloylethylphthalic acid), 2-(meth)acryloylethylsuccinic acid (2-(meth)acryloylethylsuccinic acid) , 2-(meth)acryloylethylmaleic acid (2-(meth)acryloylethylmaleic acid), 2-(meth)acryloylethyl-2-hydroxyethylphthalic acid (2-(meth)acryloylethyl-2-hydroxyethylphthalic acid) ), 11-(meth)acryloyloxydecyl-1,1-dicarboxylic acid (11-(meth)acryloyloxydecyl-1,1-dicarboxylic acid), and salts thereof; Carboxylic acid-type monomers such as 2-(meth)acryloylethylphthalic acid (2-(meth)acryloyle
  • Types of monomers forming the anion exchange membrane 152 are N,N-dimethylaminoethyl (meth)acrylate, N,N-diethylaminoethyl (meth)acrylate (N,N-diethylaminoethyl(meth)acrylate), N,N-dimethylaminoethyl (meth)acrylate/methyl chloride (N,N-dimethylaminoethyl(meth)acrylate/methyl chloride), and N,N-diethylamino It may include ethyl (meth) acrylate / methyl chloride (N,N-diethylaminoethyl (meth) acrylate / methyl chloride).
  • the ion exchange capacity (IEC) of the cation exchange membrane 151 or the anion exchange membrane 152 is about 0.5 meg/g or more, or about 1.0 meg/g or more, for example, about 0.5 to about 20.0 meg/g. , About 1.0 to about 10.0 meg/g, about 2.0 to about 10.0 meg/g, and about 5.0 to about 10.0 meg/g.
  • the permeation selectivity of the cation exchange membrane 151 or the anion exchange membrane 152 is about 70% or about 80% or more, for example, about 80 to about 100%, about 90 to about 100%, or about 95 to about 100 It can be %.
  • the reverse electrodialysis battery unit 150 may further include a spacer (not shown) for separating the cation exchange membrane 151 and the anion exchange membrane 152.
  • the spacer may be substantially the same as the first chamber C1 and the second chamber C2 accommodating the electrolyte.
  • the spacer may serve to prevent the ion exchange membranes from sticking, and may include, for example, a mesh made of polypropylene or polyethylone, a sponge, an adhesive tape, or a fabric, such as a cloth, a nonwoven fabric, and the like. I can.
  • the spacer may serve as a support for supporting the cation and anion exchange membrane 152 and the first chamber C1 and the second chamber C2.
  • the reverse electrodialysis battery unit 150 may further include a container for accommodating the first chamber C1 and the second chamber C2.
  • the container may include a hole in order to administer a second activation solution for activating the reverse electrodialysis battery unit 150 or may be configured to expose a part of the reverse electrodialysis battery unit 150.
  • the intermediate sheet 155 may be configured to allow the current generated from the battery unit 150 to flow to the base sheet 110.
  • the intermediate intermediate sheet 155 partially includes an insulating portion, and the current generated from the negative electrode 153 and the positive electrode 154 of the reverse electrodialysis battery unit 150 by the insulating portion of the intermediate intermediate sheet 155 is It may not be electrically connected.
  • the intermediate sheet 155 may be partially coated or printed in a mesh structure including a conductive material to form a circuit.
  • the circuit may form two separate circuits, one circuit connected to the positive electrode and the other connected to the negative electrode.
  • the intermediate media sheet 155 may at least partially contain a conductive material, be coated with a conductive material, or be composed of a conductive fabric (woven) or a conductive non-woven fabric (e.g., a nonwoven fabric). have.
  • the intermediate media sheet 155 may be in a dry form.
  • the material of the intermediate media sheet 155 is synthetic resin, for example, acrylic resin, urethane resin, silicone resin, styrene resin, aniline resin, amino resin, aminoalkyd resin, vinyl acetate resin, alkyd resin, epoxy resin, toluene. Resin, or a combination thereof.
  • the conductive material may be selected from the group consisting of carbon, gold, silver, aluminum, copper, SUS (Steel Use Stainless), and combinations thereof.
  • any one paste selected from the group consisting of carbon paste, gold paste, silver paste, aluminum paste, copper paste, SUS paste, and combinations thereof may be used.
  • the coating or printing of the conductive material may be coated by a method that is obvious to a person skilled in the art, and may be coated by, for example, a method such as gravure printing, offset printing, digital printing, or transfer.
  • a method such as gravure printing, offset printing, digital printing, or transfer.
  • One of ordinary skill in the art can determine the appropriate manner and amount of paste to be printed on the intermediate intermediate sheet to obtain the desired conductivity value.
  • the intermediate sheet 155 may further include a connection part 156 for electrically connected to the reverse electrodialysis battery part 150.
  • the intermediate sheet 155 may serve to allow the current generated in the reverse electrodialysis battery unit 150 to flow to the base sheet 110.
  • the reverse electrodialysis battery unit 150 may be activated when the second activating solution is injected.
  • the second activating solution is injected into the first chamber C1 and the second chamber C2
  • a flow of ions is generated in the first chamber C1 and the second chamber C2
  • the reverse electrodialysis battery unit 150 a current is generated.
  • the first electrode pattern 120, the second electrode pattern 130, and the third electrode pattern 140 are not activated.
  • the first activating solution is injected into the base sheet 110, the oxidation-reduction reaction is activated in the first region S1 and the second region S2 of the base sheet 110, respectively.
  • an oxidation-reduction reaction is generated in the first electrode pattern 120 and the third electrode pattern 141.
  • the first electrode pattern 120 is a cathode electrode
  • the 3a electrode pattern 141 is an anode electrode. If silver chloride (AgCl) is used as the cathode electrode and zinc is used as the anode electrode, the oxidation-reduction reaction is generated as follows.
  • Electrons generated from the 3a electrode pattern 141 move to the first electrode pattern 120, and chloride ions generated from the first electrode pattern 120 move to the 3a electrode pattern 141.
  • an oxidation-reduction reaction is generated in the second electrode pattern 130 and the third electrode pattern 142.
  • the second electrode pattern 130 is an anode electrode
  • the 3a electrode pattern 141 is a cathode electrode. If silver chloride (AgCl) is used as the cathode electrode and zinc is used as the anode electrode, the oxidation-reduction reaction is generated as follows.
  • Electrons generated from the second electrode pattern 130 move to the 3b electrode pattern 142, and chloride ions generated from the 3b electrode pattern 142 move to the second electrode pattern 130.
  • the reverse electrodialysis battery unit 150 may supply the source current to the source region in the first region S1 and the sink current to the sink region in the second region S2.
  • the oxidation-reduction reaction When a drug is stored in the base sheet 110, when the first activating solution is injected, the oxidation-reduction reaction is activated in the first region S1 and the second region S2, respectively, so that the drug D becomes the base. It may be transferred from the sheet 110 to the skin EP of the object.
  • the first activating solution contains the drug (D)
  • the drug (D) when the oxidation-reduction reaction is activated in the first region (S1) and the second region (S2), the drug (D) is transferred from the base sheet 110 to the object. Can be delivered to the skin (EP) of the person.
  • the first activating solution is defined as a solution capable of generating an oxidation-reduction reaction by being injected into the base sheet 110.
  • the first activation solution may be variously set according to the purpose of the device 100 using reverse electrodialysis and oxidation-reduction reaction.
  • the activation solution may contain medical drugs, cosmetic drugs, drugs that stimulate intracellular proteins, drugs that stimulate intracellular DNA synthesis, and the like.
  • an electrolyte for generating an oxidation-reduction reaction may be included.
  • the first electrode pattern 120 and the third electrode pattern 141 have polarities, respectively, and the second electrode pattern 130 and the third electrode pattern 142 Since silver has different polarities, the drug (D) having polarity can be delivered to the skin (EP) by repulsive force.
  • an electric field and a magnetic field are generated in the first region S1 and the second region S2 by an oxidation-reduction reaction, and the drug D may be transmitted to the skin EP by being affected by the electric and magnetic fields. .
  • an osmotic pressure may be generated between the base sheet 110 in which the drug is stored and the skin EP.
  • water which is a solvent, moves to the skin, and a non-polar drug may also move together.
  • the first point P1 adjacent to the 3a electrode pattern 141 is The electron density decreases, and the electron density increases along the first electrode pattern 120.
  • the electron density is formed with the highest electron density at the second point P2 where the neighboring first electrode patterns 120 intersect.
  • the arrangement of the first electrode pattern 120 and the 3a electrode pattern 141 according to the present invention creates a potential difference once again after the oxidation-reduction reaction. Accordingly, the first electrode pattern 120 and the 3a electrode pattern 141 may continuously generate a potential difference.
  • the device 100 using reverse electrodialysis and an oxidation-reduction reaction can continuously deliver the drug (D) to the skin (EP) by the potential difference between the first point (P1) and the second point (P2), It can generate electrical impulses continuously.
  • the electron density in the fourth region P4 adjacent to the 3b electrode pattern 142 increases.
  • the electron density decreases along the second electrode pattern 130.
  • the electron density is formed at the lowest level in the third region P3 where the adjacent second electrode patterns 130 intersect.
  • the arrangement of the second electrode pattern 130 and the 3b electrode pattern 142 according to the present invention creates a potential difference once again after the oxidation-reduction reaction. Accordingly, the second electrode pattern 130 and the 3b electrode pattern 142 may continuously generate a potential difference.
  • the device 100 using reverse electrodialysis and an oxidation-reduction reaction can continuously deliver the drug D to the skin EP due to the potential difference between the third region P3 and the fourth region P4, It can generate electrical impulses continuously.
  • the reverse battery dialysis battery unit 150 may supply current to the first electrode pattern 120 and the second electrode pattern 130. When a current is generated in the reverse electrodialysis battery unit 150, a relatively high current is supplied to the entire first region S1 and the second region S2.
  • the reverse electrodialysis battery unit 150 may be activated when the second activation solution is injected.
  • the second activating solution is defined as a solution that allows the reverse electrodialysis battery unit 150 to supply current, and is specifically injected into the first chamber C1 or the second chamber C2 to generate a difference in ion concentration. It is a solution.
  • the reverse electrodialysis battery unit 150 is not activated when the first chamber C1 and the second chamber C2 are dry, but when the second activation solution is injected, the first chamber C1 and the second chamber C2 ), a difference in ion concentration is generated to generate an electric current.
  • the generated current may be transferred to the first electrode pattern 120 and the second electrode pattern 130 through the connection portion 156 of the intermediate sheet 155.
  • the first electrode pattern 120 and the second electrode pattern 130 When current is supplied to the first electrode pattern 120 and the second electrode pattern 130, the first electrode pattern 120 and the second electrode pattern 130 have different polarities.
  • the drug D having polarity may be delivered to the skin EP by a repulsive force generated by the first electrode pattern 120 or the second electrode pattern 130.
  • an electric field and a magnetic field are generated in the first electrode pattern 120 and the second electrode pattern 130 by the supplied current, and the drug D may be transmitted to the skin EP by being affected by the electric and magnetic fields. have.
  • an osmotic pressure may be generated between the base sheet 110 in which the drug is stored and the skin EP.
  • water which is a solvent, moves to the skin, and a non-polar drug may also move together.
  • the reverse battery dialysis battery unit 150 electrically connects the first region S1 and the second region S2. Since the reverse electrodialysis battery unit 150 supplies electrons to the first electrode pattern 120, the first region S1 may be defined as a source region. In addition, since the reverse electrodialysis battery unit 150 receives electrons from the second electrode pattern 130, the second region S2 may be defined as a sink region. The movement of electrons in the entire area of the base sheet 110 may be activated by the source area and the sink area.
  • electricity is applied to the skin EP of the subject by the electric current supplied from the battery unit and the potential difference generated by the oxidation-reduction reaction.
  • a stimulus may be generated and a drug may be delivered to the subject's skin EP.
  • a relatively high level of current is supplied from the battery unit, and a relatively low level is obtained by the oxidation-reduction reaction of the electrode pattern.
  • the device 100 using reverse electrodialysis and oxidation-reduction reaction since a potential difference is continuously generated by the arrangement of the electrode pattern, it is possible to deliver drugs or electric stimulation to the object for a long time. have. Since the first electrode pattern 120 and the second electrode pattern 130 are each continuously disposed, and the third electrode pattern 140 is disposed inside the first electrode pattern 120 or the second electrode pattern 130, Even if an oxidation-reduction reaction is generated between the first electrode pattern 120 or the second electrode pattern 130 and the third electrode pattern 140, a potential difference may be generated again.
  • the device 100 using reverse electrodialysis and oxidation-reduction reaction can be safely activated.
  • the oxidation-reduction reaction is not activated in the electrode pattern, but when the first activating solution is injected into the base sheet, the oxidation-reduction reaction is activated to generate a potential difference.
  • the reverse electrodialysis battery unit 150 is not activated in a dry state, but when the second activation solution is injected into the chamber, a current is generated. Therefore, the user can use the activation solution safely and quickly.
  • 5A to 5E are diagrams showing a modified example of the apparatus using reverse electrodialysis and oxidation-reduction reaction of FIG. 1.
  • the device 100a using reverse electrodialysis and oxidation-reduction reaction may include a first electrode pattern 120a and a third electrode pattern 140a filled with the inside.
  • the apparatus 100a using reverse electrodialysis and the oxidation-reduction reaction may continuously maintain the oxidation-reduction reaction by increasing the third electrode pattern 140a.
  • the device 100b using reverse electrodialysis and oxidation-reduction reaction may include a first electrode pattern 120b and a circular third electrode pattern 140b.
  • the apparatus 100b using reverse electrodialysis and oxidation-reduction reaction may have a first electrode pattern 120b and a third electrode pattern 140b having different shapes. Since the adjacent distance between the first electrode pattern 120b and the third electrode pattern 140b varies, the device 100b using reverse electrodialysis and oxidation-reduction reactions can form various potential differences.
  • the apparatus 100c using reverse electrodialysis and oxidation-reduction reaction may include a first electrode pattern 120c and a second electrode pattern 120c that is circular and filled with the inside.
  • the apparatus 100c using reverse electrodialysis and the oxidation-reduction reaction may continuously maintain the oxidation-reduction reaction by increasing the third electrode pattern 140c.
  • the apparatus 100c using reverse electrodialysis and oxidation-reduction reaction since the adjacent distance between the first electrode pattern 120c and the third electrode pattern 140c is changed, various potential differences can be formed.
  • the apparatus 100d using reverse electrodialysis and oxidation-reduction reaction may include a circular first electrode pattern 120d and a circular third electrode pattern 140d.
  • the neighboring first electrode patterns 120d may be electrically connected, and the third electrode patterns 140d may be disposed inside the first electrode patterns 120d, respectively. Since the first electrode pattern 120d has a contact section and a non-contact section, various potential differences can be formed.
  • the apparatus 100e using reverse electrodialysis and oxidation-reduction reaction may include a circular first electrode pattern 120e and a circular third electrode pattern 140e therein.
  • the apparatus 100e using reverse electrodialysis and the oxidation-reduction reaction may continuously maintain the oxidation-reduction reaction by increasing the third electrode pattern 140e.
  • the first electrode pattern 120e has a contact section and a non-contact section, various potential differences can be formed.
  • first electrode pattern is a cathode electrode and the third electrode pattern is an anode electrode, but may be disposed in reverse.
  • first electrode pattern and the second electrode pattern may be variously formed in a polygonal shape and a circular shape.
  • the first electrode pattern may be replaced by the second electrode pattern.
  • 6A to 6C are diagrams showing a modified example of the apparatus using the reverse electrodialysis and oxidation-reduction reaction of FIG. 1.
  • the first electrode pattern 120-1 and the third electrode pattern 140-1 are the other surfaces of the base sheet 110. Can be placed on When the oxidation-reduction reaction is generated, since one surface of the base sheet 110 contacts the skin EP, the drug D can be quickly delivered to the skin EP. In particular, the heavy polar drug D disposed between the first electrode pattern 120-1 and the third electrode pattern 140-1 may also be quickly transferred to the skin by repulsive force.
  • the first electrode pattern 120 is disposed on one surface of the base sheet 110, and the third electrode pattern 140-2 ) May be disposed on the other surface of the base sheet 110.
  • the first electrode pattern 120 and the third electrode pattern 140-2 are disposed on different surfaces of the base sheet 110 to maximize a drug delivery effect and an electrical stimulation effect.
  • At least one of the first electrode pattern 120-3 and the third electrode pattern 140-3 is a base sheet 110 ) Can be placed inside. Since the first electrode pattern 120-3 and the third electrode pattern 140-3 are disposed inside the base sheet 110, durability of the electrode pattern may be increased, and an oxidation-reduction reaction may be sustained for a long time.
  • FIGS. 3 and 6A to 6C illustrate a first electrode pattern as a cathode electrode and a third electrode pattern as an anode electrode, but may be disposed in reverse.
  • the first electrode pattern and the second electrode pattern may be disposed by combining the arrangement of the electrode patterns of FIGS. 3 and 6A to 6C.
  • the first electrode pattern may be replaced by the second electrode pattern.
  • FIG. 7 is a diagram showing an apparatus 200 using reverse electrodialysis and an oxidation-reduction reaction according to another embodiment of the present invention.
  • the device 200 using reverse electrodialysis and oxidation-reduction reaction may further include a drug sheet 260.
  • the drug sheet 260 contains a drug (D) therein, and is attached to one surface of the base sheet 110 to provide the first electrode pattern 120, the second electrode pattern 130, and the third electrode pattern 140. Can be activated.
  • the oxidation-reduction reaction can be activated in the device 200 using reverse electrodialysis and oxidation-reduction reaction, and stored in the drug sheet 260
  • the drug (D) can be delivered to the skin (EP). That is, the drug (D) in the drug sheet 260 acts as the first activation solution, and the device 200 using reverse electrodialysis and oxidation-reduction reactions. ) Can be driven.
  • the drug sheet 260 includes the drug (D), but may be maintained in a wet state.
  • a second activation solution is added to the dried base sheet 110 to activate the reverse electrodialysis battery unit 150, and the base sheet 110 is attached to the drug sheet 260.
  • the oxidation-reduction reaction can be activated.
  • the base sheet 110 is attached to the drug sheet 260 to activate the oxidation-reduction reaction, and then the second battery unit 150 is activated.
  • Activation solution can be injected.
  • the drug sheet 260 contains the drug D, and when the first activating solution is injected into the base sheet 110, the drug D from the drug sheet 260 is transferred to the skin EP. Can be delivered.
  • FIG. 8 is a cross-sectional view showing an apparatus 300 using reverse electrodialysis and an oxidation-reduction reaction according to another embodiment of the present invention
  • FIG. 9 is an enlarged view illustrating a partial area of FIG. 8.
  • the apparatus 300 using reverse electrodialysis and oxidation-reduction reaction includes a base sheet 310, a first electrode pattern 320, a second electrode pattern 330, and a third electrode pattern. 340 and a battery unit 350 may be included.
  • the base sheet 310 is divided into a first area S1 and a second area S2 by the separation area 311, and is substantially the same as the base sheet 110 of the above-described exemplary embodiment.
  • the battery unit 350 is substantially the same as the battery unit 150 of the above-described embodiment.
  • the first electrode pattern 320 and the third electrode pattern 340 are disposed in the first region S1, and the oxidation-reduction reaction is similar to the first electrode pattern 120 and the 3a electrode pattern 141 described above. Is created.
  • the first activating solution is injected into the first region S1
  • an oxidation-reduction reaction is generated in the first electrode pattern 320 and the third electrode pattern 340
  • an electrical stimulation is generated in the first region S1 or
  • the drug (D) may be delivered to the skin (EP).
  • the second electrode pattern 330 may be disposed in the second region S2.
  • the second electrode pattern 330 has a pattern similar to the second electrode pattern 130 of the above-described embodiment. However, an additional electrode pattern is not disposed inside the second electrode pattern 330. Therefore, no oxidation-reduction reaction is generated in the second region.
  • the oxidation-reduction reaction is not generated in the second region S2, but electrical stimulation may be provided to the object by the current supplied from the battery unit 150 or the drug D may be delivered to the object.
  • an oxidation-reduction reaction in an apparatus using reverse electrodialysis and an oxidation-reduction reaction, may be activated in the second region S2, and the redox reaction may not be activated in the first region S1.
  • the device 300 using reverse electrodialysis and an oxidation-reduction reaction may provide various levels of electrical stimulation to an object or deliver various types of drugs.
  • a region in which the oxidation-reduction reaction is activated is divided, so that the first region S1 receives the oxidation-reduction reaction and current from the battery unit, and the second region S2 receives current from the battery unit.
  • the amount of current delivered in each region the size of the electrical stimulation or the amount of drug delivered can be adjusted.
  • FIG. 10 is a cross-sectional view showing an apparatus 400 using reverse electrodialysis and an oxidation-reduction reaction according to another embodiment of the present invention
  • FIG. 11 is an enlarged view illustrating a partial area of FIG. 10.
  • the device 400 using reverse electrodialysis and oxidation-reduction reaction includes a base sheet 410, a first electrode pattern 420 disposed in the first region S1, and a second region.
  • a second electrode pattern 430 disposed in (S2), a first electrode pattern 420, or a third electrode pattern 440 disposed inside the second electrode pattern 430 are provided.
  • the third electrode pattern 440 includes a 3a electrode pattern 441 disposed inside the first electrode pattern 420 and a 3b electrode pattern 442 disposed inside the second electrode pattern 430 can do.
  • a plurality of electrode ends may be radially disposed. 10 illustrates an embodiment having three electrode ends, but is not limited thereto and may have various shapes.
  • the electrode end of the third electrode pattern 440 may be formed to decrease in thickness from the center to the end.
  • the first electrode pattern 420 When the first electrode pattern 420 is activated as a cathode electrode and the 3a electrode pattern 441 is activated as an anode electrode, electrons generated from the 3a electrode pattern 441 are the first electrode pattern. Moving to 420, chloride ions generated in the first electrode pattern 420 move to the 3a electrode pattern 441.
  • the device 400 using reverse electrodialysis and oxidation-reduction reactions can form various potential differences. Since electrons generated in the 3a electrode pattern 441 by the oxidation-reduction reaction move to the first electrode pattern 420, the electron density at the first point Q1 of the 3a electrode pattern 441 is lowered.
  • the density of electrons disposed in the first electrode pattern 420 varies depending on the distance between the first electrode pattern 420 and the 3a electrode pattern 441.
  • the distance between the electrode end of the 3a electrode pattern 441 and the first electrode pattern 420 is d1
  • the distance between the center of the 3a electrode pattern 441 and the first electrode pattern 420 is d2.
  • the second point Q2 of the first electrode pattern 420 has a relatively low electron density
  • the third point Q3 has a relatively low electron density. Is formed high.
  • the device 400 using reverse electrodialysis and the oxidation-reduction reaction generates a potential difference once again after the oxidation-reduction reaction by the shape of the 3a electrode pattern 441. Accordingly, the first electrode pattern 420 and the 3a electrode pattern 441 may continuously generate a potential difference.
  • the device 400 using reverse electrodialysis and an oxidation-reduction reaction may continuously deliver the drug (D) to the skin (EP), and may continuously generate electrical stimulation.
  • the device 400 using reverse electrodialysis and oxidation-reduction reactions can form various potential differences.
  • the fourth point Q4 is formed with a lower electron density than the fifth point Q5, and the sixth point Q6 receives electrons and has a high electron density.
  • the device 400 using reverse electrodialysis and the oxidation-reduction reaction generates a potential difference once again after the oxidation-reduction reaction by the shape of the 3b electrode pattern 442. Accordingly, the second electrode pattern 430 and the 3b electrode pattern 442 may continuously generate a potential difference.
  • the device 400 using reverse electrodialysis and an oxidation-reduction reaction may continuously deliver the drug (D) to the skin (EP), and may continuously generate electrical stimulation.
  • FIG. 12 is a diagram showing an apparatus using reverse electrodialysis and an oxidation-reduction reaction according to another embodiment of the present invention.
  • the storage kit 1 may include a pouch 10 for storing an apparatus 100 using reverse electrodialysis and an oxidation-reduction reaction.
  • the pouch 10 has a first storage space 11 for storing the base sheet 110 and a second storage space 12 for storing drugs, and the first storage space 11 and the second storage space 12 ) Is spatially separated by the separation wall (13).
  • the separation wall 13 may be provided with a valve 14 that selectively connects the first storage space 11 and the second storage space 12 to each other.
  • the device 100 using reverse electrodialysis and oxidation-reduction reaction may be stored in the pouch 10 and used.
  • the device 100 using reverse electrodialysis and oxidation-reduction reactions undergoes oxidation-reduction.
  • the reaction is activated.
  • the user simply attaches the device 100 using the activated reverse electrodialysis and the oxidation-reduction reaction to the skin (EP) of the subject, and delivers the drug (D) to the skin (EP) or electrical stimulation to the skin (EP). Can be created.
  • the base sheet 110 is stored in the pouch 10, and a drug sheet 260 may be separately provided.
  • the redox reaction of the base sheet 110 may be activated.
  • the user may attach the drug sheet 260 to the base sheet 110 to deliver the drug D present in the drug sheet 260 to the skin EP of the object.
  • the first activation solution stored in the pouch 10 is injected into the base sheet 110 to drive the device 100 using reverse electrodialysis and oxidation-reduction reactions. I can make it.
  • the device 100 using reverse electrodialysis and an oxidation-reduction reaction may change color according to whether or not the drug D is absorbed.
  • the base sheet may be provided with ink that changes color when the drug is absorbed.
  • the base sheet may be impregnated with Zion ink, and when the user moves the drug D from the second space 12 of the pouch 10 to the first space 11, the base sheet It is discolored by the change of temperature. Thereby, the user can check the readiness of the device 100 using reverse electrodialysis and oxidation-reduction reaction, and attach the device 100 using reverse electrodialysis and oxidation-reduction reaction with changed color to the skin (EP). Can be used.
  • the user pours the drug into the tray and uses reverse electrodialysis and an oxidation-reduction reaction ( 100) can be activated.
  • FIG. 13 is a graph showing a potential difference generated when the first electrode pattern 320 and the second electrode pattern 330 of FIG. 9 are activated
  • the voltage rapidly increases up to t1.
  • the reverse electrodialysis battery unit 350 has a relatively high voltage and supplies current quickly, so that the voltage rapidly increases to 2.608V until t1. After that, the voltage decreases rapidly until t2, but remains stable at an average of 1.059V after t2.
  • the reverse battery dialysis battery unit 350 may supply a relatively high current, but there is a limit to continuously supplying current. However, when the oxidation-reduction reaction is activated in the electrode pattern, the current can be supplied stably and continuously. Current is provided in the oxidation-reduction reaction, and electrons generated in the oxidation-reduction reaction are supplied back to the reverse cell dialysis cell unit 350, thereby increasing the use time of the reverse cell dialysis cell unit 350.
  • FIG. 14 is a flow chart showing a drug delivery method using reverse electrodialysis and an oxidation-reduction reaction according to another embodiment of the present invention.
  • the drug delivery method using an oxidation-reduction reaction includes attaching a drug sheet to an object (S10), injecting an activating solution into the base sheet (S20), and attaching the base sheet to the drug sheet. (S30) and the step of delivering the drug to the subject (S40).
  • the drug sheet 260 containing the drug is attached to the skin EP of the object.
  • the second activation solution may be injected into the battery unit 150 to activate the battery unit 150.
  • the base sheet 110 is attached to the drug sheet 260 so that an oxidation-reduction reaction occurs in the base sheet 110.
  • the drug can act as an activating solution that activates the oxidation-reduction reaction.
  • the first activation solution may be additionally injected into the base sheet 110 or the drug sheet 260.
  • the device using reverse electrodialysis and oxidation-reduction reaction can deliver the drug to the skin by injecting the drug into the base sheet without the drug sheet.
  • an oxidation-reduction reaction may be activated between the first electrode pattern and the third electrode pattern, and between the second electrode pattern and the third electrode pattern. Thereafter, when the second activating solution is injected into the reverse electrodialysis battery unit 150, current is transferred from the reverse electrodialysis battery unit 150 to the first electrode pattern and the second electrode pattern. Thereafter, the drug may be delivered from the base sheet to the skin of the subject.
  • an apparatus using reverse electrodialysis and oxidation-reduction reaction includes a base sheet, a first electrode pattern continuously connected to each other in a first region of the base sheet, and a second electrode pattern continuously connected to each other in a second region of the base sheet.
  • a second electrode pattern, a third electrode pattern disposed inside at least one of the first electrode pattern, and the second electrode pattern, and a battery unit connected to the first electrode pattern and the second electrode pattern may be provided.
  • a plurality of first electrode patterns in a closed loop shape are arranged to be connected to each other in a first region of the base sheet, and a plurality of second electrode patterns in a closed loop shape are arranged in a second region of the base sheet. They are arranged to be connected to each other.
  • a plurality of third electrode patterns may be spaced apart from the inside of the closed loop of the first electrode pattern or the second electrode pattern.
  • the oxidation-reduction reaction may be activated in electrode patterns disposed in the first region and the second region with a first activation solution.
  • the first activating solution is injected so that the base sheet absorbs or the first activating solution contained in the drug sheet is transferred to the base sheet by attaching the drug sheet to the base sheet Can be.
  • An apparatus using reverse electrodialysis and an oxidation-reduction reaction according to an embodiment of the present invention, and a method of delivering a drug using the same, are provided by the electric current supplied from the battery unit and the potential difference generated by the oxidation-reduction reaction. Electrical stimulation may be generated in the skin EP, and the drug may be delivered to the skin EP of the subject.
  • An apparatus using reverse electrodialysis and an oxidation-reduction reaction receives a relatively high level of current from the battery part, and Accordingly, a relatively low level of current can be supplied. Since electric currents of various levels are supplied, electric stimulation of various strengths can be provided to the object, and various kinds of drugs can be delivered to the skin of the object.
  • a potential difference is continuously generated by the arrangement of the electrode pattern, so that the drug is delivered to the subject for a long time. Or electrical stimulation. Since the first electrode pattern and the second electrode pattern are each continuously disposed, and the third electrode pattern is disposed inside the first electrode pattern or the second electrode pattern, it is between the first electrode pattern and the third electrode pattern or the second electrode. Even if an oxidation-reduction reaction is generated between the pattern and the third electrode pattern, a potential difference may be generated again.
  • the device using reverse electrodialysis and oxidation-reduction reaction can be safely activated.
  • the oxidation-reduction reaction is not activated in the electrode pattern, but when the first activating solution is injected into the base sheet, the oxidation-reduction reaction is activated to generate a potential difference.
  • the reverse electrodialysis battery unit is not activated in a dry state, but when the second activation solution is injected into the chamber, a current is generated. Therefore, the user can use the activation solution safely and quickly.
  • the present invention relates to a device using reverse electrodialysis and an oxidation-reduction reaction, and a method of delivering a drug using the same, and in detail, it can be used in a drug delivery and treatment device used in industry.

Landscapes

  • Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • General Health & Medical Sciences (AREA)
  • Veterinary Medicine (AREA)
  • Biomedical Technology (AREA)
  • Public Health (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Animal Behavior & Ethology (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Radiology & Medical Imaging (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Dermatology (AREA)
  • Medical Informatics (AREA)
  • Anesthesiology (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Hematology (AREA)
  • Separation Using Semi-Permeable Membranes (AREA)

Abstract

본 발명은 역전기투석과 산화-환원 반응을 이용한 장치 및 그를 사용하여 약물을 전달하는 방법에 관한 것이다. 본 발명은 베이스 시트와, 상기 베이스 시트의 일 영역에 배치되는 제1 전극 패턴과, 상기 베이스 시트의 타 영역에 배치되고, 서로 연속되게 연결되는 제2 전극 패턴과, 상기 제1 전극 패턴 및 상기 제2 전극 패턴 중 적어도 하나의 패턴 내부에 배치되는 제3 전극 패턴, 및 일단이 상기 제1 전극 패턴과 전기적으로 연결되고, 타단이 상기 제2 전극 패턴과 전기적으로 연결되는 전지부를 포함한다.

Description

역전기투석과 산화-환원 반응을 이용한 장치 및 그를 사용하여 약물을 전달하는 방법
본 발명은 장치 및 방법에 관한 것으로, 더 상세하게 역전기투석과 산화-환원 반응을 이용한 장치 및 그를 사용하여 약물을 전달하는 방법에 관한 것이다.
일반적으로 화장품 분야에서 시트 마스크팩은, 손으로 바를 필요 없이 얼굴 형태로 제작된 시트 타입을 붙이는 것으로 보습 및 청정효과 등을 얻을 수 있는 제품으로, 얼굴 전체를 덮을 수 있는 디자인의 시트나 상, 하단의 2장으로 나뉜 시트, 눈밑, 눈가, 입가 등의 특정 부위에 맞춘 시트 등 다양한 형태로 시장에 나와 있다.
일반적인 마스크팩은 생리 활성 물질을 국소적으로 경피로 전달되므로, 피부에 유용한 물질들의 전달에 한계가 있다. 마스크팩을 이용하여 피부에 유용한 물질들의 전달을 위해서는 마스크팩이 피부에 잘 접착될 수 있도록 하는 것이 중요하다. 또한, 미용 효과를 더욱더 증진시기기 위한 다양한 시도들이 있어왔으며, 그 중 하나가 이온토포레시스 장치를 사용하는 것이다.
이온토포레시스는 전하를 띤 분자들이 조직을 쉽게 통과하도록 하는 약물전달방법이다. 이온토포레시스 장치는 직류 전류를 이용하여 이온 물질을 피부에 침투시키는 기술로서, 동일한 극성의 이온 사이에 작용하는 척력을 이용하기 위해 양의 특성을 갖는 이온 물질에는 '+'전극에 인가하며, 음의 특성을 가지는 이온 물질에는 '-'전극에 인가하여 이온 물질이 피부에 용이하게 침투되도록 한다. 약물이 수동적으로 흡수되는 전통적인 경피투여 방법과 달리, 이온토포레시스 장치에서는 전기장 내에서 능동적인 수송이 이루어진다.
전기 자극 또는 약물을 흡수를 향상시키고 안정성이 향상된 역전기투석과 산화-환원 반응을 이용한 장치 및 그를 사용하여 약물을 전달하는 방법을 제공하는 것을 목적으로 한다. 그러나 이러한 과제는 예시적인 것으로, 이에 의해 본 발명의 범위가 한정되는 것은 아니다.
본 발명의 일측면은 베이스 시트와, 상기 베이스 시트의 일 영역에 배치되고, 서로 연속되게 연결되는 제1 전극 패턴과, 상기 베이스 시트의 타 영역에 배치되고, 서로 연속되게 연결되는 제2 전극 패턴과, 상기 제1 전극 패턴 및 상기 제2 전극 패턴 중 적어도 하나의 패턴 내부에 배치되는 제3 전극 패턴, 및 일단이 상기 제1 전극 패턴과 전기적으로 연결되고, 타단이 상기 제2 전극 패턴과 전기적으로 연결되는 전지부를 포함하는 역전기투석과 산화-환원 반응을 이용한 장치를 제공한다.
본 발명의 일 실시예에 따른 역전기투석과 산화-환원 반응을 이용한 장치 및 그를 사용하여 약물을 전달하는 방법은 전지부에서 공급되는 전류와, 산화-환원 반응으로 생성된 전위차에 의해서, 대상체의 피부(EP)에 전기 자극을 생성하고, 대상체의 피부(EP)로 약물을 전달할 수 있다.
본 발명의 일 실시예에 따른 역전기투석과 산화-환원 반응을 이용한 장치 및 그를 사용하여 약물을 전달하는 방법은 전지부에서 상대적으로 높은 레벨의 전류를 공급받고, 전극 패턴의 산화-환원 반응에 의해서 상대적으로 낮은 레벨의 전류를 공급받을 수 있다. 다양한 레벨의 전류를 공급받으므로, 대상체에 다양한 강도의 전기 자극을 제공하고, 대상체의 피부로 다양한 종류의 약물을 전달할 수 있다.
본 발명의 일 실시예에 따른 역전기투석과 산화-환원 반응을 이용한 장치 및 그를 사용하여 약물을 전달하는 방법은 전극 패턴의 배치에 의해서 지속적으로 전위 차이가 발생하므로, 장시간 동안 대상체에 약물을 전달하거나 전기 자극을 줄 수 있다. 제1 전극 패턴과 제2 전극 패턴은 각각 연속적으로 배치되고, 제3 전극 패턴은 제1 전극 패턴이나 제2 전극 패턴의 내부에 배치되므로, 제1 전극 패턴과 제3 전극 패턴 사이 또는 제2 전극 패턴과 제3 전극 패턴 사이에서 산화-환원 반응이 생성되더라도 다시 전위 차이를 생성할 수 있다.
본 발명의 일 실시예에 따른 역전기투석과 산화-환원 반응을 이용한 장치 및 그를 사용하여 약물을 전달하는 방법은 안전하게 활성화 될 수 있다. 베이스 시트가 건조 상태에서는 전극 패턴에서 산화-환원 반응이 활성화 되지 않으나, 제1 활성화 용액이 베이스 시트에 주입되면 산화-환원 반응이 활성화 되어 전위 차를 생성한다. 또한, 역전기투석 전지부가 건조 상태에서는 활성화되지 않으나, 제2 활성화 용액이 챔버에 주입되면, 전류가 생성된다. 따라서, 사용자는 활성화 용액을 주입하여 안전하고 신속하게 사용할 수 있다.
도 1은 본 발명에 일 실시예에 따른 역전기투석과 산화-환원 반응을 이용한 장치를 도시하는 도면이다.
도 2는 도 1의 일부 영역을 확대하여 도시하는 확대도이다.
도 3은 도 1의 역전기투석과 산화-환원 반응을 이용한 장치가 활성화되는 단면을 도시하는 도면이다.
도 4는 도 1의 역전기투석 전지부를 도시하는 단면도이다.
도 5a 내지 도 5e는 도 1의 역전기투석과 산화-환원 반응을 이용한 장치의 변형예를 도시하는 도면이다.
도 6a 내지 도 6c는 도 1의 역전기투석과 산화-환원 반응을 이용한 장치의 변형예를 도시하는 도면이다.
도 7은 본 발명의 다른 실시예에 따른 역전기투석과 산화-환원 반응을 이용한 장치를 도시하는 단면도이다.
도 8은 본 발명의 또 다른 실시예에 따른 역전기투석과 산화-환원 반응을 이용한 장치를 도시하는 단면도이다.
도 9는 도 8의 일부 영역을 확대하여 도시하는 확대도이다.
도 10은 본 발명의 또 다른 실시예에 따른 역전기투석과 산화-환원 반응을 이용한 장치를 도시하는 단면도이다.
도 11은 도 10의 일부 영역을 확대하여 도시하는 확대도이다.
도 12는 본 발명의 또 다른 실시예에 따른 역전기투석과 산화-환원 반응을 이용한 장치를 도시하는 단면도이다.
도 13은 도 9의 제1 전극 패턴과 제2 전극 패턴이 활성화 시에 생성되는 전위 차이를 도시하는 그래프이다.
도 14는 본 발명의 또 다른 실시예에 따른 역전기투석과 산화-환원 반응을 이용한 약물 전달 방법을 도시하는 순서도이다.
본 발명의 일측면은 베이스 시트와, 상기 베이스 시트의 일 영역에 배치되고, 서로 연속되게 연결되는 제1 전극 패턴과, 상기 베이스 시트의 타 영역에 배치되고, 서로 연속되게 연결되는 제2 전극 패턴과, 상기 제1 전극 패턴 및 상기 제2 전극 패턴 중 적어도 하나의 패턴 내부에 배치되는 제3 전극 패턴, 및 일단이 상기 제1 전극 패턴과 전기적으로 연결되고, 타단이 상기 제2 전극 패턴과 전기적으로 연결되는 전지부를 포함하는 역전기투석과 산화-환원 반응을 이용한 장치를 제공한다.
또한, 상기 전지부가 활성화 되어 상기 제1 전극 패턴과 상기 제2 전극 패턴으로 전류가 전달되며, 상기 제1 전극 패턴과 상기 제3 전극 패턴에서 산화-환원 반응이 활성화 되거나, 상기 제2 전극 패턴과 상기 제3 전극 패턴에서 산화-환원 반응이 활성화될 수 있다.
또한, 상기 베이스 시트가 건조상태에서 산화-환원 반응이 활성화 되지 않으며, 상기 베이스 시트에 제1 활성화 용액이 주입되면, 상기 산화-환원 반응이 활성화될 수 있다.
또한, 상기 제1 활성화 용액은 약물을 포함하며, 상기 산화-환원 반응이 활성화 되면, 상기 약물이 대상체로 전달될 수 있다.
또한, 상기 전지부는 역전기투석(Reversed ElectroDialysis: RED) 전지이며, 상기 전지부에 제2 활성화 용액이 주입되면 상기 전지부가 활성화될 수 있다.
또한, 상기 제1 전극 패턴은 폐 루프(closed loop) 형상인 복수개가 상기 베이스 시트의 상기 일 영역에 서로 연결되게 배치되고, 상기 제2 전극 패턴은 폐 루프(closed loop) 형상인 복수개가 상기 베이스 시트의 상기 타 영역에 서로 연결되게 배치되며, 상기 제3 전극 패턴은 복수개가 상기 제1 전극 패턴 또는 상기 제2 전극 패턴의 폐 루프의 내부에 이격 배치될 수 있다.
또한, 상기 제1 전극 패턴은 상기 베이스 시트의 일면에 배치되며, 상기 제2 전극 패턴은 상기 베이스 시트의 일면 또는 타면에 배치 될 수 있다.
또한, 상기 제3 전극 패턴은 상기 베이스 시트에서 상기 제1 전극 패턴 또는 상기 제2 전극 패턴과 같은 면에 배치되거나, 다른 면에 배치될 수 있다.
또한, 상기 제1 전극 패턴, 상기 제2 전극 패턴 및 상기 제3 전극 패턴 중 적어도 하나는 상기 베이스 시트의 내부에 배치 될 수 있다.
또한, 상기 제1 전극 패턴과 상기 제2 전극 패턴은 같은 형상을 가질 수 있다.
또한, 상기 제3 전극 패턴은 상기 제1 전극 패턴의 내부에 배치되는 제3a 전극 패턴, 및 상기 제3a 전극 패턴과 다른 극성을 가지며, 상기 제2 전극 패턴의 내부에 배치되는 제3b 전극 패턴을 구비할 수 있다.
또한, 상기 제1 전극 패턴 및 상기 제2 전극 패턴은 다각 형상이나 원 형상을 가질 수 있다.
또한, 상기 제3 전극 패턴은 복수개의 전극단이 방사형으로 배치 될 수 있다.
또한, 내부에 약물을 포함하며, 상기 베이스 시트의 일면에 부착되어 상기 제1 전극 패턴과 상기 제2 전극 패턴을 활성화 시키는 약물 시트를 더 포함할 수 있다.
또한, 상기 베이스 시트를 보관하는 제1 저장 공간, 상기 베이스 시트에 주입되는 약물을 저장하는 제2 저장 공간, 및 상기 제1 저장 공간과 상기 제2 저장 공간을 선택적으로 연결하는 밸브를 구비하는 파우치를 더 포함할 수 있다.
본 발명의 다른 측면은, 약물 시트를 대상체에 부착하는 단계와, 역전기투석과 산화-환원 반응을 이용한 장치에 제2 활성화 용액을 주입하여 전지부를 활성화하는 단계와, 상기 전지부가 부착된 베이스 시트를 약물 시트에 부착하는 단계;를 포함하며, 상기 역전기투석과 산화-환원 반응을 이용한 장치는상기 베이스 시트의 일 영역에 배치되고, 서로 연속되게 연결되는 제1 전극 패턴과, 상기 베이스 시트의 타 영역에 배치되고, 서로 연속되게 연결되는 제2 전극 패턴, 및 상기 제1 전극 패턴 및 상기 제2 전극 패턴 중 적어도 하나의 패턴 내부에 배치되는 제3 전극 패턴을 구비하고, 상기 역전기투석 전지부는 상기 베이스 시트에 배치되되, 일단이 상기 제1 전극 패턴과 전기적으로 연결되고, 타단이 상기 제2 전극 패턴과 전기적으로 연결되는 역전기 투석과 산화-환원 반응을 이용한 약물 전달 방법을 제공한다.
또한, 상기 약물 시트에 베이스 시트가 부착되면, 상기 제1 전극 패턴과 상기 제3 전극 패턴에서 산화-환원 반응이 활성화 되거나, 상기 제2 전극 패턴과 상기 제3 전극 패턴에서 산화-환원 반응이 활성화 되며, 상기 제2 활성화 용액이 상기 전지부에 주입되면, 상기 역전기투석 전지부가 활성화 되어 상기 제1 전극 패턴과 상기 제2 전극 패턴으로 전류가 전달될 수 있다.
또한, 상기 약물 시트는 제1 활성화 용액을 포함하며, 상기 제1 활성화 용액이 상기 베이스 시트에 흡수되어 상기 산화-환원 반응이 활성화 되면, 상기 약물이 대상체로 전달될 수 있다.
또한, 상기 제1 전극 패턴은 폐 루프(closed loop) 형상인 복수개가 상기 베이스 시트의 상기 일 영역에 서로 연결되게 배치되고, 상기 제2 전극 패턴은 폐 루프(closed loop) 형상인 복수개가 상기 베이스 시트의 상기 타 영역에 서로 연결되게 배치되며, 상기 제3 전극 패턴은 복수개가 상기 제1 전극 패턴 또는 상기 제2 전극 패턴의 폐 루프의 내부에 이격 배치될 수 있다.
본 발명은 다양한 변환을 가할 수 있고 여러 가지 실시예를 가질 수 있는 바, 특정 실시예들을 도면에 예시하고 상세한 설명에 상세하게 설명하고자 한다. 본 발명의 효과 및 특징, 그리고 그것들을 달성하는 방법은 도면과 함께 상세하게 후술되어 있는 실시예들을 참조하면 명확해질 것이다. 그러나 본 발명은 이하에서 개시되는 실시예들에 한정되는 것이 아니라 다양한 형태로 구현될 수 있다.
이하, 첨부된 도면을 참조하여 본 발명의 실시예들을 상세히 설명하기로 하며, 도면을 참조하여 설명할 때 동일하거나 대응하는 구성 요소는 동일한 도면부호를 부여하고 이에 대한 중복되는 설명은 생략하기로 한다.
이하의 실시예에서, 제1, 제2 등의 용어는 한정적인 의미가 아니라 하나의 구성 요소를 다른 구성 요소와 구별하는 목적으로 사용되었다.
이하의 실시예에서, 단수의 표현은 문맥상 명백하게 다르게 뜻하지 않는 한, 복수의 표현을 포함한다.
이하의 실시예에서, 포함하다 또는 가지다 등의 용어는 명세서상에 기재된 특징, 또는 구성요소가 존재함을 의미하는 것이고, 하나 이상의 다른 특징들 또는 구성요소가 부가될 가능성을 미리 배제하는 것은 아니다.
이하의 실시예에서, 막, 영역, 구성 요소 등의 부분이 다른 부분 위에 또는 상에 있다고 할 때, 다른 부분의 바로 위에 있는 경우뿐만 아니라, 그 중간에 다른 막, 영역, 구성 요소 등이 개재되어 있는 경우도 포함한다.
도면에서는 설명의 편의를 위하여 구성 요소들이 그 크기가 과장 또는 축소될 수 있다. 예컨대, 도면에서 나타난 각 구성의 크기 및 두께는 설명의 편의를 위해 임의로 나타내었으므로, 본 발명이 반드시 도시된 바에 한정되지 않는다.
도 1은 본 발명에 일 실시예에 따른 역전기투석과 산화-환원 반응을 이용한 장치(100)를 도시하는 도면이고, 도 2는 도 1의 일부 영역을 확대하여 도시하는 확대도이며, 도 3은 도 1의 역전기투석과 산화-환원 반응을 이용한 장치(100)가 활성화되는 단면을 도시하는 도면이다.
도 1 내지 도 3을 참조하면, 역전기투석과 산화-환원 반응을 이용한 장치(100)는 전지부에서 공급된 전류와 산화-환원 반응에서 생성되는 전류를 이용하는 장치이다. 역전기투석과 산화-환원 반응을 이용한 장치(100)는 전지부가 활성화되면 상대적으로 높은 레벨의 전기장(high level electric field; HLEF)이 형성되거나, 상대적으로 높은 레벨의 미세 전류(high level micro-current; HLMC)가 형성되는 장치이다. 역전기투석과 산화-환원 반응을 이용한 장치(100)는 역전기투석 전지에서 생성되는 전기 에너지로 약물을 대상체에 전달할 수 있다.
또한, 역전기투석과 산화-환원 반응을 이용한 장치(100)는 산화-환원 반응이 활성화 되면 상대적으로 낮은 레벨의 전기장(low level electric field; LLEF)를 형성하거나, 상대적으로 낮은 레벨의 미세 전류(low level micro-current; LLMC)를 형성하는 장치이다. 역전기투석과 산화-환원 반응을 이용한 장치(100)는 갈바니 전지(Galvanic cell)의 산화 반응과 환원 반응으로 생성되는 전기 에너지로 약물을 대상체에 전달할 수 있다.
이하에서, "활성화"는 역전기투석과 산화-환원 반응을 이용한 장치(100)에 전류가 공급되는 것으로 정의한다. 구체적으로 "전지부의 활성화"는 역전기투석과 산화-환원 반응을 이용한 장치(100)의 전지부에서 전류가 공급되는 것으로 정의한다. 또한, "산화-환원 반응의 활성화"는 전극 패턴에서 산화-환원 반응을 생성되는 것으로 정의한다.
이하에서, "제1 활성화 용액"은 역전기투석과 산화-환원 반응을 이용한 장치(100)에서 산화-환원 반응을 활성화 시킬 수 있는 용액으로 정의한다. 일 실시예로 제1 활성화 용액은 약물일 수 있으며, 다른 실시예로 약물 및 추가되는 용액일 수 있다.
이하에서, "제2 활성화 용액"은 역전기투석과 산화-환원 반응을 이용한 장치(100)에서 전지부로부터 전류를 공급받기 위해서, 전지부를 구동시키는 용액으로 정의한다.
이하에서, 대상체는 역전기투석과 산화-환원 반응을 이용한 장치(100)가 부착되며, 전기적 반응을 이용하여 약물을 전달하거나 피부에 전기 자극을 받는 대상으로, 예컨대 동물의 피부나 사람의 피부 일 수 있다.
역전기투석과 산화-환원 반응을 이용한 장치(100)는 대상체에 부착되며, 활성화 시에 대상체에 약물을 전달할 수 있다. 또한, 역전기투석과 산화-환원 반응을 이용한 장치(100)는 대상체의 피부를 전기 자극하여 약물의 흡수율을 높이고, 혈행 개선 및 단백질 합성을 증폭시킬 수 있다. 또한, 역전기투석과 산화-환원 반응을 이용한 장치(100)는 대상체의 환부(wound)에 부착되어, 전기 자극으로 환부의 재생 속도를 향상시킬 수 있다.
이하의 도면에서는 이온이 베이스 시트로 이동하고, 전자는 대상체의 피부(EP)로 이동하는 것으로 도시하나, 본 발명의 실시예들은 이에 한정되지 않는다. 활성화 상태의 베이스 시트와 피부(EP)는 모두 전기 전도성을 가지므로, 이온은 베이스 시트 및/또는 피부(EP)로 이동할 수 있으며, 전자는 베이스 시트 및/또는 피부(EP)로 이동할 수 있다. 또한, 이온과 전자는 베이스 시트와 피부(EP) 중 어느 하나에서 서로 반대 방향으로 이동할 수 있다. 다만, 이하에서는 설명의 편의를 위해서 이온이 베이스 시트으로 이동하고, 전자는 대상체의 피부(EP)로 이동하는 실시예를 중심으로 설명하기로 한다.
역전기투석과 산화-환원 반응을 이용한 장치(100)는 베이스 시트(110), 제1 전극 패턴(120), 제2 전극 패턴(130) 및 제3 전극 패턴(140)을 구비할 수 있다.
베이스 시트(110)는 대상체의 피부에 부착될 수 있도록 형성된 기 설정된 두께를 갖는 시트로 이루어질 수 있다. 베이스 시트(110)의 일 면은 사용자의 피부에 밀착되고, 타 면은 외부로 노출되도록 이루어진다.
베이스 시트(110)는 역전기투석과 산화-환원 반응을 이용한 장치(100)가 부착되는 대상체의 위치에 따라 다양한 크기와 형상을 가질 수 있다. 일 예로, 역전기투석과 산화-환원 반응을 이용한 장치(100)가 마스크 팩으로 사용되는 경우라면, 베이스 시트(110)에는 눈과 입에 대응하는 개구를 가지고, 절개 라인을 가질 수 있다. 다른 실시예로, 역전기투석과 산화-환원 반응을 이용한 장치(100)가 의료 패치로 사용되는 경우라면, 베이스 시트는 전기 자극이 필요한 부분이나 약물 전달이 필요한 부분의 형상에 따라 다각형 또는 원형 등으로 형성될 수 있다. 다만, 이하에서는 설명의 편의를 위해서 베이스 시트(110)가 마스크 팩의 형상을 가지는 경우를 중심으로 설명하기로 한다.
베이스 시트(110)는 생체 적합성을 가지는 재료로 형성될 수 있다. 베이스 시트(110)는 대상체의 피부와 접촉을 유지하므로, 생체 적합성을 가지는 안전한 물질로 형성될 수 있다.
베이스 시트(110)는 역전기투석과 산화-환원 반응을 이용한 장치(100)를 미사용 시에 건조한 상태로 보관되고, 역전기투석과 산화-환원 반응을 이용한 장치(100)사용 시에 젖은 상태로 활성화 된다. 베이스 시트(110)는 제1 활성화 용액에 의해서 젖으며, 일정한 시간동한 젖은 상태로 유지될 수 있는 재료로 형성될 수 있다. 예컨대, 베이스 시트(110)는 직물재 또는 비직물재로 형성될 수 있다. 베이스 시트(110)는 통상적인 마스크 팩이나 의료 밴드로 사용하기 위한 일반적인 시트를 의미할 수 있다.
베이스 시트(110)는 플렉서블한 재료로 형성되고, 대상체의 피부에 부착된 상태로 형상이 변형될 수 있다. 베이스 시트(110)는 사용자에 의하여 인가되는 외력에 의하여 형상이 변형될 수 있는 재질로 형성될 수 있다.
베이스 시트(110)는 외력에 의하여 변형되고 복원력이 있는 재질로 이루어지는 것이 바람직하며, 예를 들어 고분자로 천연고무, 폴리이소프렌, 폴리실목세인, 폴리부타디엔, 폴리아크릴아미드. 폴리비닐알코올, 폴리아크릴산, 폴리에틸렌, 폴리프로필렌 및 이의 공중합체, 폴리에스테르, 불소수지, 폴리비닐피롤리돈 및 카르복시비닐폴리머, 폴리아크릴산(polyacrylic acid) 및 이의 공중합체, 폴리 히드록시메틸 셀룰로오스(poly(hydroxyl methyl cellulose)), 폴리 히드록시 알킬 메타크릴레이트(poly(hydroxyl alkylmethacrylate)) 및 이의 공중합체, 폴리에틸렌 글리콜(poly(ethylene glycoloxide)) 및 이의 공중합체, 폴리에틸렌 글리콜-폴리카프로락톤(polycaprolactone) 다중 블록 공중합체, 폴리카프로락톤(polycaprolactone) 및 이의 공중합체, 폴리 락티드(polylactide) 및 이의 공중합체, 폴리 글리콜리드(polyglycolide) 및 이의 공중합체, 폴리 메틸 메타크릴레이트(poly(methyl methacrylate)) 및 이의 공중합체, 폴리 스티렌(polystyrene), PDMS(polydimethylsiloxane) 및 이의 공중합체 등 및 이들의 조합으로 이루어질 수 있다.
베이스 시트(110)는 전극 패턴의 배치에 따라서 일 영역인 제1 영역(S1)과 타 영역인 제2 영역(S2)으로 구분될 수 있다. 제1 영역(S1)은 제1 전극 패턴(120)이 배치되는 영역이며, 제2 영역(S2)은 제2 전극 패턴(130)이 배치되는 영역이다. 제1 영역(S1)과 제2 영역(S2)은 전극 패턴의 배치에 따라 다양하게 배치될 수 있다. 제1 영역(S1)과 제2 영역(S2)을 구분하도록, 분리영역(111)은 제1 영역(S1)과 제2 영역(S2) 사이에 배치될 수 있다.
제1 전극 패턴(120)은 베이스 시트(110)의 제1 영역(S1)에 배치되고, 서로 연속되게 연결될 수 있다. 제1 전극 패턴(120)은 폐 루프(closed loop) 형상을 가질 수 있다. 도 2에서 제1 전극 패턴(120)은 각각 연속적으로 연결된 육각형의 폐 루프 형상을 가지며, 서로 이웃하는 다른 제1 전극 패턴(120)과 연결된다.
일 실시예에서, 도 1과 같이 제1 전극 패턴(120)은 복수개가 베이스 시트(110)의 제1 영역(S1)의 전체에 걸쳐서 배치될 수 있다. 제1 전극 패턴(120)과 제3 a 전극 패턴(141)에서 산화-환원 반응이 생성되면, 역전기투석과 산화-환원 반응을 이용한 장치(100)는 베이스 시트(110)의 제1 영역(S1)의 전체에 걸쳐서 대상체의 피부에 전기 자극 및 약물 전달을 할 수 있다.
다른 실시예에서, 제1 전극 패턴(120)은 복수개가 제1 영역(S1)의 일부 영역에만 배치될 수 있다. 제1 전극 패턴(120)과 제3a 전극 패턴(141)에서 산화-환원 반응이 생성되며, 역전기투석과 산화-환원 반응을 이용한 장치(100)는 베이스 시트(110)의 국소 부분에만 대상체의 피부에 전기 자극 및 약물 전달을 할 수 있다.
또 다른 실시예에서, 제1 전극 패턴(120)은 하나가 베이스 시트(110)의 제1 영역(S1)에 배치될 수 있다. 제1 전극 패턴(120)이 베이스 시트(110)의 제1 영역(S1)에 단수 개 배치되고, 그 내부에 제3a 전극 패턴(141)이 배치될 수 있다. 제1 전극 패턴(120)과 제3a 전극 패턴(141)에서 산화-환원 반응이 생성되며, 역전기투석과 산화-환원 반응을 이용한 장치(100)는 베이스 시트(110)의 일부 영역에서 대상체의 피부에 전기 자극 및 약물 전달을 할 수 있다.
제2 전극 패턴(130)은 베이스 시트(110)의 제2 영역(S2)에 배치되고, 서로 연속되게 연결될 수 있다. 제2 전극 패턴(130)은 폐 루프(closed loop) 형상을 가질 수 있다. 일 실시예로, 도 2에서와 같이 제2 전극 패턴(130)은 제1 전극 패턴(120)과 같은 형상을 가질 수 있다. 제2 전극 패턴(130)은 각각 연속적으로 연결된 육각형의 폐 루프 형상을 가지며, 서로 이웃하는 다른 제2 전극 패턴(130)과 연결된다.
일 실시예에서, 도 1과 같이 제2 전극 패턴(130)은 복수개가 베이스 시트(110)의 제2 영역(S2)의 전체에 걸쳐서 배치될 수 있다. 제2 전극 패턴(130)과 제3 전극 패턴(140)에서 산화-환원 반응이 생성되면, 역전기투석과 산화-환원 반응을 이용한 장치(100)는 베이스 시트(110)의 제2 영역(S2)의 전체에 걸쳐서 대상체의 피부에 전기 자극 및 약물 전달을 할 수 있다.
다른 실시예에서, 제2 전극 패턴(130)은 복수개가 제2 영역(S2)의 일부 영역에만 배치될 수 있다. 제2 전극 패턴(130)과 제3b 전극 패턴(142)에서 산화-환원 반응이 생성되며, 역전기투석과 산화-환원 반응을 이용한 장치(100)는 베이스 시트(110)의 국소 부분에만 대상체의 피부에 전기 자극 및 약물 전달을 할 수 있다.
또 다른 실시예에서, 제2 전극 패턴(130)은 하나가 베이스 시트(110)의 제2 영역(S2)에 배치될 수 있다. 제2 전극 패턴(130)이 베이스 시트(110)의 제2 영역(S2)에 단수 개 배치되고, 그 내부에 제3b 전극 패턴(142)이 배치될 수 있다. 제2 전극 패턴(130)과 제3b 전극 패턴(142)에서 산화-환원 반응이 생성되며, 역전기투석과 산화-환원 반응을 이용한 장치(100)는 베이스 시트(110)의 일부 영역에서 대상체의 피부에 전기 자극 및 약물 전달을 할 수 있다.
제3 전극 패턴(140)은 제1 전극 패턴(120) 및 제2 전극 패턴(130) 중 적어도 하나의 패턴 내부에 배치될 수 있다. 제3 전극 패턴(140)은 복수개가 제1 전극 패턴(120) 또는 제2 전극 패턴(130)의 폐 루프의 내부에 이격배치 될 수 있다.
제3 전극 패턴(140)은 도 2를 보면 제1 전극 패턴(120) 또는 제2 전극 패턴(130)에 대응하는 형상을 가질 수 있다. 예컨대, 제3 전극 패턴(140)도 제1 전극 패턴(120)과 제2 전극 패턴(130)과 같이 육각형의 폐 루프 형상을 가질 수 있다.
제3 전극 패턴(140)은 제1 전극 패턴(120)의 내부에 배치되는 제3a 전극 패턴(141)과, 제2 전극 패턴(130)의 내부에 배치되는 제3b 전극 패턴(142)을 가질 수 있다. 제3a 전극 패턴(141)은 제1 영역(S1)에 배치되고, 제3b 전극 패턴(142)은 제2 영역(S2)에 배치되어, 제3a 전극 패턴(141)과 제3b 전극 패턴(142)은 서로 이격되게 배치될 수 있다.
제3a 전극 패턴(141)과 제3b 전극 패턴(142)은 서로 다른 극성을 가질 수 있다. 제3a 전극 패턴(141)은 제1 전극 패턴(120)과 다른 극성을 가지고, 제3b 전극 패턴(142)은 제2 전극 패턴(130)과 서로 다른 극성을 가진다. 제1 전극 패턴(120)과 제2 전극 패턴(130)은 서로 다른 극성을 가지므로, 제3a 전극 패턴(141)과 제3b 전극 패턴(142)도 서로 다른 극성을 가진다.
제3 전극 패턴(140)은 제1 전극 패턴(120) 및 제2 전극 패턴(130)과 다르게 서로 이격되게 배치된다. 제3a 전극 패턴(141)은 제1 전극 패턴(120)과 연결되지 않으며, 기 설정된 간격으로 이격되면서, 제1 전극 패턴(120)의 내부에 배치된다. 제3b 전극 패턴(142)은 제2 전극 패턴(130)과 연결되지 않으며, 기 설정된 간격으로 이격되면서 제2 전극 패턴(130)의 내부에 배치된다.
제1 전극 패턴(120)과 제3 전극 패턴(140)에서 산화-환원 반응이 활성화 되거나, 제2 전극 패턴(130)과 제3 전극 패턴(140)에서 산화-환원 반응이 활성화 될 수 있다.
제1 전극 패턴(120)과 제3a 전극 패턴(141)에서 산화-환원 반응이 활성화되며, 이때, 제1 전극 패턴(120)과 제3a 전극 패턴(141)은 서로 다른 극성으로 활성화 된다. 또한, 도 3과 같이 제1 전극 패턴(120)과 제3a 전극 패턴(141)은 베이스 시트(110)의 일면에 배치되어, 대상체의 피부(EP)에 접촉할 수 있다. 제1 전극 패턴(120)과 제3a 전극 패턴(141)이 피부(EP)와 접촉하므로, 피부(EP)에 전기 자극을 효과적으로 생성할 수 있다.
제3a 전극 패턴(141)은 제1 전극 패턴(120)에 대응하는 개수로 배치된다. 제3a 전극 패턴(141)은 제1 전극 패턴(120)의 내부에 배치되므로 바람직하게 제1 전극 패턴(120)의 개수와 동일하게 배치될 수 있다.
제2 전극 패턴(130)과 제3b 전극 패턴(142)에서 산화-환원 반응이 활성화되며, 이때, 제2 전극 패턴(130)과 제3b 전극 패턴(142)은 서로 다른 극성으로 활성화 된다. 또한, 도 3과 같이 제2 전극 패턴(130)과 제3b 전극 패턴(142)은 베이스 시트(110)의 일면에 배치되어, 대상체의 피부(EP)에 접촉할 수 있다. 제2 전극 패턴(130)과 제3b 전극 패턴(142)이 피부(EP)와 접촉하므로, 피부(EP)에 전기 자극을 효과적으로 생성할 수 있다.
제3b 전극 패턴(142)은 제2 전극 패턴(130)에 대응하는 개수로 배치된다. 제3b 전극 패턴(142)은 제2 전극 패턴(130)의 내부에 배치되므로 바람직하게 제2 전극 패턴(130)의 개수와 동일하게 배치될 수 있다.
제1 전극 패턴(120)과 제2 전극 패턴(130)은 베이스 시트(110)의 적어도 일면에 프린팅 된다. 제1 전극 패턴(120)은 베이스 시트(110)의 제1 영역(S1)에서 서로 연속하도록 프린팅되고, 제2 전극 패턴(130)은 베이스 시트(110)의 제2 영역(S2)에서 서로 연속하도록 프린팅 된다.
제1 전극 패턴(120)과 제3 전극 패턴(140)은 갈바닉 전지로 기전력을 생성할 수 있으며, 제2 전극 패턴(130)과 제3 전극 패턴(140)도 갈바닉 전지로 기전력을 생성할 수 있다. 제1 전극 패턴(120), 제2 전극 패턴(130) 및 제3 전극 패턴(140)은 특정 소재에 한정되지 않으며, 전위차를 생성할 수 있는 다양한 소재로 형성될 수 있다. 예컨대, 제1 전극 패턴(120), 제2 전극 패턴(130) 및 제3 전극 패턴(140)은 아연-은, 아연-산화은, 아연-할로겐화은, 아연-염화은, 아연-브롬화은, 아연-요오드화은 및 아연-불화은을 포함하나 이에 한정되지 않는다.
전지부(150)는 일단이 제1 전극 패턴(120)과 전기적으로 연결되고, 타단이 제2 전극 패턴(130)과 전기적으로 연결될 수 있다. 전지부(150)가 활성화되어 제1 전극 패턴(120)과 제2 전극 패턴(130)으로 전류가 전달될 수 있다. 전지부(150)는 베이스 시트(110)의 분리영역(111)에 설치되어, 제1 전극 패턴(120) 및 제2 전극 패턴(130)과 전기적으로 연결되고, 활성화 되면 제1 전극 패턴(120)과 제2 전극 패턴(130)은 서로 다른 극성을 가지게 된다.
일 실시예에서, 전지부(150)는 특정한 배터리에 한정되지 않으며, 전류를 생성할 수 있는 다양한 전지를 사용할 수 있다. 예를 들면, 전지부는 역전기 투석 전지, 1차 전지, 또는 2차 전지를 포함할 수 있고, 상세하게는 플렉서블 배터리(flexible battery), 알칼리 전지, 건전지, 수은 전지, 리튬 전지, 니켈-카드뮴 전지, 니켈-수소 전지, 리튬이온 이차 전지, 및 리튬이온폴리머 이차 전지로 이루어진 군으로부터 선택된 어느 하나의 전지를 포함할 수 있다. 다른 실시예에서, 전지부(150)는 바람직하게 역전지투석 전지일 수 있다. 다만, 이하에서는 설명의 편의를 위해서, 전지부(150)가 역전기투석 전지인 경우를 중심으로 설명하기로 한다.
도 4는 도 1의 역전기투석 전지부(150)를 도시하는 단면도이다.
도 4를 참조하면, 역전기투석 전지부(150)는 양이온 교환막(151), 음이온 교환막(152), 음극(153), 양극(154), 제1 챔버(C1) 및 제2 챔버(C2)를 포함한다. 또한, 역전기투석 전지부(150)는 중간 매개 시트(155)의 연결부(156)에 의해서 음극(153) 및 양극(154)에 각각 연결된다.
음극(153)과 양극(154)은 전도성이 있는 재질을 포함할 수 있으며, 예를 들면 은, 은에폭시, 팔라듐, 구리, 알루미늄, 금, 티타늄, 팔라듐, 크롬, 니켈, 백금, 은/염화은, 은/은이온, 또는 수은/산화수은일 수 있다.
양이온 교환막(151)과 음이온 교환막(152)은 이격되어 배치되고, 이격되어 생성된 공간이 제1 챔버(C1)와 제2 챔버(C2)가 된다. 즉, 제1 챔버(C1)와 제2 챔버(C2)는 양이온 교환막(151) 및 음이온 교환막(152)에 의해서 정의된다.
전해질이 고농도로 포함된 제1 챔버(C1) 내 양이온(Na+)은 양이온 교환막(151)을 투과하여 전해질이 저농도로 포함된 제2 챔버(C2)로 이동한다. 이와 유사한 원리로, 전해질이 고농도로 포함된 제1 챔버(C1) 내 음이온(Cl-)은 음이온 교환막(112)을 투과하여 전해질이 저농도로 포함된 제2 챔버(C2)로 이동하게 된다. 이온의 이동이 양이온 교환막(151), 음이온 교환막(112), 제1 챔버(C1) 및 제2 챔버(C2)에서 일어나게 된다. 이러한 이온의 이동을 기전력으로 하여, 음극(153)에서는 상대적으로 부족한 양이온을 보충하기 위하여, 산화 반응이 일어나서 전자를 생산하게 되고, 양극(154)에서는 상대적으로 부족한 음이온을 보충하기 위하여, 환원 반응이 일어나서 전자를 소모하게 된다. 따라서, 역전기투석 전지부(150)에서는 이온 전류가 발생하여 전류를 출력하게 된다.
본 명세서에서 "역전기투석(Reversed ElectroDialysis: RED)"은 두 용액 사이의 염 농도(salt concentration)의 차이로부터 발생하는 염도 구배 에너지를 의미할 수 있다. 일 구체예에 있어서 역전기투석은 제1 전극 패턴(120)과 제2 전극 패턴(130)에 전류를 흐르게 하는 현상을 의미할 수 있다. 따라서 역전기투석 전지부(150)는 역전기투석을 사용하여 전류를 생성시키는 장치를 의미할 수 있다. 역전기투석 전지부(150)는 고농도 전해질 용액 및 저농도 전해질 용액 간의 용액 내 전해질의 이온 농도 차이에 의해 전류를 발생시키는 것일 수 있다.
본 명세서에서 "전해질(electrolyte)"은 물 등의 용매에 녹아서 이온으로 해리되어 전류를 흐르게 하는 물질을 의미할 수 있고, 상기 전해질 용액은 전해질이 녹아있는 물 등의 용액을 의미할 수 있다. 상기 전해질은 전해질 용액 중에 포함되어 있는 것일 수 있다. 역전기투석 전지부(150)는 고농도 전해질 용액과 저농도 전해질 용액과의 차이를 통해 전류가 발생되는데, 상기 전해질이 고농도로 포함된 제1 챔버(C1) 내의 전해질의 양은 상기 전해질이 저농도로 포함된 제2 챔버(C2) 내의 전해질의 양보다 보다 높은 것일 수 있다. 상기 전해질이 저농도로 포함된 제2 챔버(C2)는 전해질이 포함되어 있지 않은 것도 포함할 수 있다. 예를 들면, 상기 전해질은 전해질 용액 중에 포함되어 있고, 상기 전해질이 고농도로 포함된 제1 챔버(C1)는 약 0.1 내지 약 20 mol/L, 약 0.5 내지 약 15 mol/L, 약 0.7 내지 약 10 mol/L, 약 1.0 내지 약 8.0 mol/L, 약 1.0 내지 약 2.0 mol/L, 또는 약 1.2 내지 약 1.8 mol/L의 전해질 용액의 이온 농도를 포함하고, 상기 전해질이 저농도로 포함된 제2 챔버(C2)는 전해질을 포함하지 않거나, 약 0.005 내지 약 10 mol/L, 약 0.005 내지 약 8 mol/L, 약 0.01 내지 약 6 mol/L, 약 0.05 내지 약 6.0 mol/L, 약 0.1 내지 약 4.0 mol/L, 또는 약 0.1 내지 약 2.0 mol/L의 전해질 용액의 이온 농도를 포함하며, 상기 전해질이 고농도로 포함된 제1 챔버(C1) 내의 전해질 용액의 이온 농도는 상기 전해질이 저농도로 포함된 제2 챔버(4) 내의 전해질 용액의 이온 농도보다 보다 높은 것일 수 있다.
다른 구체예에 있어서, 제1 챔버(C1) 및 제2 챔버(C2)는 전해질 페이스트(paste)를 포함하는 것일 수 있다. 전해질 페이스트는 수용성 고분자 바인더 및 전해질을 포함하는 것일 수 있다. 상기 수용성 고분자 바인더는 예를 들면, 셀룰로오스계 수지, 잔탄검, 폴리비닐피롤리돈, 폴리비닐 알코올, 수용성(메타)아크릴 수지, 폴리에테르-포리올, 및 폴리에테르우레아-폴리우레탄으로 이루어진 군으로부터 선택된 하나 이상일 수 있다. 상기 수용성 고분자 바인더와 전해질을 혼합하여 전해질 페이스트를 제조함으로써 전해질 페이스트를 포함하는 챔버를 제조할 수 있다. 전해질 페이스트를 적용하면, 역전기투석 전지부(150)의 내부 저항을 낮출 수 있으며 챔버 내의 전해질의 유동성을 향상시킬 수 있다.
또 다른 구체예에 있어서, 제1 챔버(C1) 및 제2 챔버(C2)는 전해질이 내포된 히드로겔을 수용하고 있는 것일 수 있다. 예를 들면, 상기 전해질이 고농도로 포함된 제1 챔버(C1)는 고농도의 전해질을 포함하는 고체 물질 또는 고농도의 전해질이 내포된 히드로겔을 수용하고 있거나, 상기 전해질이 저농도로 포함된 제2 챔버(C2)는 비어 있거나 저농도의 전해질을 포함하는 고체 물질 또는 저농도의 전해질이 내포된 히드로겔을 수용하고 있는 것일 수 있다. 상기 고체 물질 또는 히드로겔이 포함되어 있는 경우, 예를 들면, 고체 상태의 소금(NaCl)이 포함되어 있는 경우, 물이 챔버 내로 유입되면 상기의 고체 물질 또는 히드로겔은 물에 용해되어 전해질 수용액을 형성함으로써 이온의 흐름이 발생할 수 있다. 상기 고체 물질 또는 히드로겔은 수용성, 또는 이온성 물질의 투과성을 갖고, 적절한 기계적 특성을 갖는 물질이라면 제한 없이 사용될 수 있다. 상기 고체 물질 또는 히드로겔의 예는 한천(agar), PEGDA(poly ethylene glycol diacrylate), PHEMA(Poly(2-hydroxyethyl methacrylate)), 알긴산, 예를 들면, 소듐 알지네이트, 칼슘 알지네이트, 또는 포타슘 알지네이트를 포함할 수 있다. 또한, 상기 고체 물질 또는 히드로겔은 이온성 결합물질의 고형 파우더 제형을 포함할 수도 있다.
제1 챔버(C1) 및 제2 챔버(C2)는 수용액을 흡수할 수 있는 직물 또는 비-직물로 구성된 것일 수 있다. 예를 들면, 상기 비-직물은 부직포일 수 있다. 제1 챔버(C1) 및 제2 챔버(C2)가 수용액을 흡수할 수 있는 직물로 구성된 경우, 상기 전해질은 분말의 형태로 상기 챔버 내에 포함될 수 있다. 전해질이 직물 상에 분말의 형태로 존재하는 경우에서, 제2 활성화 용액, 예를 들면, 물이 챔버 내로 유입되면 전해질이 물에 용해되어 전해질 수용액을 형성함으로써 이온의 흐름이 발생할 수 있다. 또한, 제1 챔버(C1) 및 제2 챔버(C2)는 전해질이 함침된 직물 또는 비-직물일 수 있다. 상기 전해질 함침된 직물 또는 비-직물은 예를 들면, 부직포를 NaCl 용액에 넣은 후 열풍 롤링 공정을 통해 제조할 수 있다. 예를 들면 전해질을 고농도로 포함하는 제1 챔버(C1)는 NaCl 고농도 용액에 수용액을 흡수할 수 있는 직물 또는 비-직물을 넣은 후 열풍 롤링 공정을 통해 제조할 수 있고, 전해질을 저농도로 포함하는 제2 챔버(C2)는 NaCl 저농도 용액에 수용액을 흡수할 수 있는 직물 또는 비-직물을 넣은 후 열풍 롤링 공정을 통해 제조할 수 있다. 또한, 전해질을 저농도로 포함하는 제2 챔버(C2)는 NaCl을 함침하지 않고, 수용액을 흡수할 수 있는 직물 또는 비-직물로 구성할 수도 있다.
본 명세서에서 "이온 교환막(ion-exchange membrane)"은 양이온 또는 음이온 중 어느 하나를 통과시키는 경향이 강한 막을 의미할 수 있다. 상기 이온 교환막은 합성수지일 수 있으며, 예를 들면, 상기 합성수지는 가교된 것일 수 있다. 양이온 교환막(151)은 음전하를 띠고 있어, 음전하를 갖는 이온은 반발하여 통과시키지 않고 양전하를 갖는 이온을 통과시킬 수 있고, 예를 들면, 설폰기를 갖는 양이온 교환막(151)일 수 있다. 반대로 음이온 교환막(152)은 양전하를 띠고 있어, 양전하를 갖는 이온은 반발하여 통과시키지 않고 음전하를 갖는 이온을 통과시킬 수 있고, 예를 들면, 4가 암모늄을 갖는 음이온 교환막(152)일 수 있다. 상기 양이온 교환막(151)을 형성하는 단량체의 종류는 설폰산-타입 단량체, 예를 들면, 2-(메타)아크릴아마이드-2-메틸프로판설폰산(2-(meth)acrylamide-2-methylpropanesulfonic acid), 3-설포프로판(메타)아크릴레이트(3-sulfopropane(meth)acrylate), 10-설포데카인(메타)아크릴레이트) 및 그들의 염; 카르복실산-타입 단량체, 예를 들면, 2-(메타)아크릴로일에틸프탈산(2-(meth)acryloylethylphthalic acid), 2-(메타)아크릴로일에틸숙신산(2-(meth)acryloylethylsuccinic acid), 2-(메타)아크릴로일에틸말레산(2-(meth)acryloylethylmaleic acid), 2-(메타)아크릴로일에틸-2-히드록시에틸프탈산(2-(meth)acryloylethyl-2-hydroxyethylphthalic acid), 11-(메타)아크릴로일옥시데실-1,1-디카르복실산(11-(meth)acryloyloxydecyl-1,1-dicarboxylic acid), 및 그들의 염; 및 황산-타입 단량체, 예를 들면, 2-(메타)아크릴로일옥시에틸 디히드로겐포스페이트(2-(meth)acryloyloxyethyl dihydrogenphosphate), 2-(메타)아크릴로일옥시에틸 페닐 히드로겐포스페이트(2-(meth)acryloyloxyethyl phenyl hydrogenphosphate), 10-(메타)아클로일옥시데실 디히드로겐포스페이트(10-(meth)acryloyloxydecyl dihydrogenphosphate), 6-(메타)아크롤로일옥시헥시 디히드로겐포스페이트(6-(meth)acryloyloxyhexyl dihydrogenphosphate), 및 그들의 염을 포함할 수 있다. 상기 음이온 교환막(152)을 형성하는 단량체의 종류는 N,N-디메틸아미노에틸(메타)아크릴레이트(N,N-dimethylaminoethyl(meth)acrylate), N,N-디에틸아미노데틸(메타)아크릴레이트(N,N-diethylaminoethyl(meth)acrylate), N,N-디메틸아미노에틸(메타)아크릴레이트/메틸 클로라이드(N,N-dimethylaminoethyl(meth)acrylate/methyl chloride), 및 N,N-디에틸아미노에틸(메타)아크릴레이트/메틸 클로라이드(N,N-diethylaminoethyl(meth)acrylate/methyl chloride)를 포함할 수 있다. 상기 양이온 교환막(151) 또는 음이온 교환막(152)의 이온 교환능(Ion Exchange Capacity: IEC)은 약 0.5 meg/g 이상, 또는 약 1.0 meg/g 이상, 예를 들면, 약 0.5 내지 약 20.0 meg/g, 약 1.0 내지 약 10.0 meg/g, 약 2.0 내지 약 10.0 meg/g, 약 5.0 내지 약 10.0 meg/g일 수 있다. 또한 상기 양이온 교환막(151) 또는 음이온 교환막(152)의 투과선택성은 약 70% 또는 약 80% 이상, 예를 들면, 약 80 내지 약 100%, 약 90 내지 약 100%, 또는 약 95 내지 약 100%일 수 있다.
또 다른 구체예에서, 역전기투석 전지부(150)는 양이온 교환막(151) 및 음이온 교환막(152)을 이격시키기 위한 스페이서(미도시)를 더 포함할 수 있다. 스페이서는 상기 전해질을 수용하는 제1 챔버(C1) 및 제2 챔버(C2)와 실질적으로 동일한 것일 수 있다. 상기 스페이서는 상기 이온 교환막들이 달라붙는 것을 방지하는 역할을 할 수 있으며, 예를 들면, 폴리프로필렌 또는 폴리에틸론으로 이루어진 망체, 스폰지, 접착 테이프, 또는 직물, 예를 들면 천, 부직포 등을 포함할 수 있다. 또한, 상기 스페이서는 양이온 및 음이온 교환막(152), 제1 챔버(C1) 및 제2 챔버(C2)를 지지하기 위한 지지체 역할을 하는 것일 수 있다.
또 다른 구체예에서, 역전기투석 전지부(150)는 제1 챔버(C1)와 제2 챔버(C2)를 수용하기 위한 용기를 더 포함할 수 있다. 용기는 역전기투석 전지부(150)를 활성화시키기 위한 제2 활성화 용액이 투여되기 위해 구멍을 포함하거나 역전기투석 전지부(150)의 일부가 노출되도록 구성된 것일 수 있다.
중간 매개 시트(155)는 상기 전지부(150)로부터 발생된 전류가 베이스 시트(110)로 흐르게 하도록 구성된 것일 수 있다. 중간 매개 시트(155)는 부분적으로 절연 부위를 포함하고 있고, 중간 매개 시트(155)의 절연 부위에 의해 역전기투석 전지부(150)의 음극(153) 및 양극(154)으로부터 발생된 전류가 전기적으로 연결되지 않는 것일 수 있다. 예를 들면, 중간 매개 시트(155)는 부분적으로 전도성 물질을 포함하는 메쉬 구조로 코팅 또는 인쇄되어, 회로를 형성할 수 있다. 상기 회로는 두 개의 구분된 회로를 형성할 수 있고, 하나의 회로는 양극에 연결되고, 다른 하나는 음극에 연결될 수 있다.
중간 매개 시트(155)는 적어도 부분적으로 전도성 물질을 포함하거나, 전도성 물질로 코팅되거나, 또는 전도성 직물(woven), 또는 전도성 비-직물(non-woven)(예를 들면, 부직포)로 구성된 것일 수 있다. 또한, 예를 들면, 상기 중간 매개 시트(155)는 건조 형태(dry form)일 수 있다.
중간 매개 시트(155)의 재질은 합성 수지, 예를 들면, 아크릴 수지, 우레탄 수지, 실리콘 수지, 스타이렌수지, 아닐린 수지, 아미노 수지, 아미노알키드 수지, 아세트산비닐 수지, 알키드 수지, 에폭시 수지, 톨루엔수지, 또는 그들의 조합을 포함할 수 있다. 상기 전도성 물질은 탄소, 금, 은, 알루미늄, 구리, SUS(Steel Use Stainless) 및 그들의 조합으로 이루어진 군으로부터 선택된 것일 수 있다.
전도성 물질은 탄소 페이스트, 금 페이스트, 은 페이스트, 알루미늄 페이스트, 구리 페이스트, SUS 페이스트 및 그들의 조합으로 이루어진 군으로부터 선택된 어느 하나의 페이스트를 사용할 수 있다. 전도성 물질의 코팅 또는 인쇄는 본 발명의 통상의 기술자에게 자명한 방법으로 코팅될 수 있으며, 예를 들면, 그라비아 인쇄, 옵셋 인쇄, 디지털 프린팅, 또는 전사 등의 방법에 의해 코팅될 수 있다. 통상의 기술자는 목적하는 도전성 값을 얻기 위해 중간 매개 시트 상에 인쇄되는 적절한 방식과 페이스트의 양을 결정할 수 있다.
중간 매개 시트(155)는 상기 역전기투석 전지부(150)와 전기적으로 연결되기 위한 연결부(156)를 더 포함할 수 있다. 일 구체예에 있어서, 중간 매개 시트(155)는 역전기투석 전지부(150)에서 발생된 전류가 베이스 시트(110)로 흐르게 하는 역할을 수행할 수 있다.
역전기투석 전지부(150)는 제2 활성화 용액이 주입되면 전지부가 활성화 될 수 있다. 제1 챔버(C1)와 제2 챔버(C2)에 제2 활성화 용액이 주입되면, 제1 챔버(C1)와 제2 챔버(C2)에서 이온의 흐름이 생성되고, 역전기투석 전지부(150)에서 전류가 생성된다.
다시 도 2 및 도 3을 참조하면, 역전기투석과 산화-환원 반응을 이용한 장치(100)에서 전지부에서 공급하는 전류와, 산화-환원 반응으로 생성된 전류에 의해서 대상체에 전기 자극을 주거나, 약물이 전달되는 것을 설명하면 아래와 같다.
<산화-환원 반응에 의한 전류 공급>
베이스 시트(110)가 건조상태에서는 제1 전극 패턴(120), 제2 전극 패턴(130) 및 제3 전극 패턴(140)은 활성화 되지 않는다. 베이스 시트(110)에 제1 활성화 용액이 주입되면, 베이스 시트(110)의 제1 영역(S1)과 제2 영역(S2)에서 각각 산화-환원 반응이 활성화 된다.
제1 영역(S1)을 보면, 제1 전극 패턴(120)과 제3a 전극 패턴(141)에서 산화-환원 반응이 생성된다. 제1 전극 패턴(120)은 캐소드(cathode) 전극이고, 제3a 전극 패턴(141)은 애노드(anode) 전극이다. 캐소드 전극으로 염화은(AgCl)을 사용하고, 애노드 전극으로 아연을 사용한다면 아래와 같이 산화-환원 반응이 생성된다.
(캐소드): AgCl(s) + e- -> Ag(s) + Cl-(aq)
(애노드): Zn(s) -> Zn2+(S) + 2e-
제3a 전극 패턴(141)에서 생성되는 전자는 제1 전극 패턴(120)으로 이동하며, 제1 전극 패턴(120)에서 생성되는 염화 이온은 제3a 전극 패턴(141)으로 이동한다.
제2 영역(S2)을 보면, 제2 전극 패턴(130)과 제3b 전극 패턴(142)에서 산화-환원 반응이 생성된다. 제2 전극 패턴(130)은 애노드(anode) 전극이고, 제3a 전극 패턴(141)은 캐소드(cathode) 전극이다. 캐소드 전극으로 염화은(AgCl)을 사용하고, 애노드 전극으로 아연을 사용한다면 아래와 같이 산화-환원 반응이 생성된다.
(캐소드): AgCl(s) + e- -> Ag(s) + Cl-(aq)
(애노드): Zn(s) -> Zn2+(S) + 2e-
제2 전극 패턴(130)에서 생성되는 전자는 제3b 전극 패턴(142)으로 이동하며, 제3b 전극 패턴(142)에서 생성되는 염화 이온은 제2 전극 패턴(130)으로 이동한다.
또한, 역전기투석 전지부(150)에 의해서 제1 영역(S1)으로는 전자가 유입되고, 제2 영역(S2)에서는 전자가 배출된다. 역전기투석 전지부(150)에 의해서, 제1 영역(S1)은 소스(Source) 영역으로 소스 전류를 공급하고, 제2 영역(S2)은 싱크(Sink) 영역으로 싱크 전류를 공급할 수 있다.
베이스 시트(110)에 약물이 저장되어 있는 경우에 제1 활성화 용액이 주입되면, 제1 영역(S1)과 제2 영역(S2)에 각각 산화-환원 반응이 활성화 되어, 약물(D)이 베이스 시트(110)에서 대상체의 피부(EP)로 전달될 수 있다. 또한, 제1 활성화 용액이 약물(D)을 포함하는 경우에도, 제1 영역(S1)과 제2 영역(S2)에 산화-환원 반응이 활성화 되면 약물(D)이 베이스 시트(110)에서 대상체의 피부(EP)로 전달될 수 있다.
제1 활성화 용액은 베이스 시트(110)에 주입되어 산화-환원 반응을 생성할 수 있는 용액으로 정의된다. 제1 활성화 용액은 역전기투석과 산화-환원 반응을 이용한 장치(100)의 목적에 따라 다양하게 설정될 수 있다. 약물 전달을 위해서 사용되는 경우에는 활성화 용액에 의료용 약물, 미용 약물, 세포 내 단백질을 자극하는 약물이나, 세포 내 DNA 합성을 자극하는 약물 등이 포함될 수 있다. 또한, 환부에 전기 자극을 생성하기 위해서 사용하는 경우에는 산화-환원 반응을 생성하는 전해질이 포함될 수 있다.
제1 활성화 용액에 의해서 산화-환원 반응이 활성화 되면, 제1 전극 패턴(120)과 제3a 전극 패턴(141)은 각각 극성을 가지고, 제2 전극 패턴(130)과 제3b 전극 패턴(142)은 서로 다른 극성을 가지므로, 극성을 가지는 약물(D)이 반발력에 의해서 피부(EP)로 전달될 수 있다. 또한, 산화-환원 반응에 의해서 제1 영역(S1)과 제2 영역(S2)에서 전기장 및 자기장을 생성되고, 약물(D)이 전기장 및 자기장에 영향을 받아 피부(EP)로 전달될 수 있다. 또한, 극성을 띄고 있는 용질이 각 전극의 반발력에 의해서 피부로 들어가게 되면, 약물이 저장된 베이스 시트(110)와 피부(EP) 사이에는 삼투압이 생성될 수 있다. 상기 삼투압을 상쇄하고자 용매인 물이 피부로 이동하면서 무극성인 약물도 함께 이동할 수 있다.
다시 도 2를 보면, 산화-환원 반응으로 제3a 전극 패턴(141)에서 생성된 전자가 제1 전극 패턴(120)으로 이동하므로, 제3a 전극 패턴(141)에 인접한 제1 지점(P1)은 전자 밀도가 낮아지고, 제1 전극 패턴(120)을 따라서 전자 밀도가 높아진다. 특히, 이웃하는 제1 전극 패턴(120)이 교차하는 제2 지점(P2)에는 전자 밀도가 가장 높게 형성된다.
본 발명에 따른 제1 전극 패턴(120)과 제3a 전극 패턴(141)의 배치는 산화-환원 반응 이후에 다시 한번 전위 차이를 생성한다. 따라서, 제1 전극 패턴(120)과 제3a 전극 패턴(141)은 지속적으로 전위차를 생성할 수 있다. 제1 지점(P1)과 제2 지점(P2) 사이의 전위차에 의해서 역전기투석과 산화-환원 반응을 이용한 장치(100)는 약물(D)을 지속적으로 피부(EP)로 전달 될 수 있으며, 전기 자극을 지속적으로 생성할 수 있다.
또한, 산화-환원 반응으로 제2 전극 패턴(130)에서 생성된 전자가 제3b 전극 패턴(142)으로 이동하므로, 제3b 전극 패턴(142)에 인접한 제4 영역(P4)은 전자 밀도가 높아지고, 제2 전극 패턴(130)을 따라서 전자 밀도가 낮아진다. 특히, 이웃하는 제2 전극 패턴(130)이 교차하는 제3 영역(P3)에는 전자 밀도가 가장 낮게 형성된다.
본 발명에 따른 제2 전극 패턴(130)과 제3b 전극 패턴(142)의 배치는 산화-환원 반응 이후에 다시 한번 전위 차이를 생성한다. 따라서, 제2 전극 패턴(130)과 제3b 전극 패턴(142)은 지속적으로 전위차를 생성할 수 있다. 제3 영역(P3)과 제4 영역(P4) 사이의 전위차에 의해서 역전기투석과 산화-환원 반응을 이용한 장치(100)는 약물(D)을 지속적으로 피부(EP)로 전달 될 수 있으며, 전기 자극을 지속적으로 생성할 수 있다.
<역전지투석 전지에 의한 전류 공급>
역전지투석 전지부(150)는 제1 전극 패턴(120)과 제2 전극 패턴(130)에 전류를 공급할 수 있다. 역전기투석 전지부(150)에서 전류가 생성되면, 제1 영역(S1)과 제2 영역(S2)에 전체에 걸쳐서 상대적으로 높은 전류가 공급된다.
역전기투석 전지부(150)는 제2 활성화 용액이 주입되면 활성화 될 수 있다. 제2 활성화 용액은 역전기투석 전지부(150)가 전류를 공급하도록 하는 용액으로 정의되며, 구체적으로 제1 챔버(C1)나 제2 챔버(C2)에 주입되어 이온 농도의 차이를 생성할 수 있는 용액이다.
역전기투석 전지부(150)는 제1 챔버(C1)와 제2 챔버(C2)가 건조한 생태에서는 활성화 되지 않으나, 제2 활성화 용액이 주입되면, 제1 챔버(C1)와 제2 챔버(C2)에서 이온 농도 차이가 생성되어 전류가 생성된다. 생성된 전류는 중간 매개 시트(155)의 연결부(156)를 통해서 제1 전극 패턴(120)과 제2 전극 패턴(130)으로 전달될 수 있다.
제1 전극 패턴(120)과 제2 전극 패턴(130)에 전류가 공급되면, 제1 전극 패턴(120)과 제2 전극 패턴(130)은 서로 다른 극성을 가지게 된다. 극성을 가지는 약물(D)은 제1 전극 패턴(120) 또는 제2 전극 패턴(130)이 생성하는 반발력에 의해서 피부(EP)로 전달될 수 있다. 또한, 공급되는 전류에 의해서 제1 전극 패턴(120)과 제2 전극 패턴(130)에서 전기장 및 자기장을 생성되고, 약물(D)이 전기장 및 자기장에 영향을 받아 피부(EP)로 전달될 수 있다. 또한, 극성을 띄고 있는 용질이 각 전극의 반발력에 의해서 피부로 들어가게 되면, 약물이 저장된 베이스 시트(110)와 피부(EP) 사이에는 삼투압이 생성될 수 있다. 상기 삼투압을 상쇄하고자 용매인 물이 피부로 이동하면서 무극성인 약물도 함께 이동할 수 있다.
또한, 역전지투석 전지부(150)는 제1 영역(S1)과 제2 영역(S2)을 전기적으로 연결한다. 역전기투석 전지부(150)이 전자를 제1 전극 패턴(120)에 공급하므로, 제1 영역(S1)은 소스 영역으로 정의할 수 있다. 또한, 역전기투석 전지부(150)이 제2 전극 패턴(130)에서 전자를 공급받으므로, 제2 영역(S2)은 싱크 영역으로 정의할 수 있다. 소스 영역과 싱크 영역에 의해서 베이스 시트(110)의 전체 영역에서 전자의 이동을 활성화 할 수 있다.
본 발명의 일 실시예에 따른 역전기투석과 산화-환원 반응을 이용한 장치(100)는 전지부에서 공급되는 전류와, 산화-환원 반응으로 생성된 전위차에 의해서, 대상체의 피부(EP)에 전기 자극을 생성하고, 대상체의 피부(EP)로 약물을 전달할 수 있다.
본 발명의 일 실시예에 따른 역전기투석과 산화-환원 반응을 이용한 장치(100)는 전지부에서 상대적으로 높은 레벨의 전류를 공급받고, 전극 패턴의 산화-환원 반응에 의해서 상대적으로 낮은 레벨의 전류를 공급받을 수 있다. 다양한 레벨의 전류를 공급받으므로, 대상체에 다양한 강도의 전기 자극을 제공하고, 대상체의 피부로 다양한 종류의 약물을 전달할 수 있다.
본 발명의 일 실시예에 따른 역전기투석과 산화-환원 반응을 이용한 장치(100)는 전극 패턴의 배치에 의해서 지속적으로 전위 차이가 발생하므로, 장시간 동안 대상체에 약물을 전달하거나 전기 자극을 줄 수 있다. 제1 전극 패턴(120)과제2 전극 패턴(130)은 각각 연속적으로 배치되고, 제3 전극 패턴(140)은 제1 전극 패턴(120)이나 제2 전극 패턴(130)의 내부에 배치되므로, 제1 전극 패턴(120) 또는 제2 전극 패턴(130)과 제3 전극 패턴(140)사이에서 산화-환원 반응이 생성되더라도 다시 전위 차이를 생성할 수 있다.
본 발명의 일 실시예에 따른 역전기투석과 산화-환원 반응을 이용한 장치(100)는 안전하게 활성화 될 수 있다. 베이스 시트(110)가 건조 상태에서는 전극 패턴에서 산화-환원 반응이 활성화 되지 않으나, 제1 활성화 용액이 베이스 시트에 주입되면 산화-환원 반응이 활성화 되어 전위 차를 생성한다. 또한, 역전기투석 전지부(150)가 건조 상태에서는 활성화되지 않으나, 제2 활성화 용액이 챔버에 주입되면, 전류가 생성된다. 따라서, 사용자는 활성화 용액을 주입하여 안전하고 신속하게 사용할 수 있다.
도 5a 내지 도 5e는 도 1의 역전기투석과 산화-환원 반응을 이용한 장치의 변형예를 도시하는 도면이다.
도 5a를 보면, 역전기투석과 산화-환원 반응을 이용한 장치(100a)는 제1 전극 패턴(120a)과 내부가 채워진 제3 전극 패턴(140a)을 구비할 수 있다. 역전기투석과 산화-환원 반응을 이용한 장치(100a)는 제3 전극 패턴(140a)을 증가하여 산화-환원 반응을 지속적으로 유지할 수 있다.
도 5b를 보면, 역전기투석과 산화-환원 반응을 이용한 장치(100b)는 제1 전극 패턴(120b)과 원형의 제3 전극 패턴(140b)을 구비할 수 있다. 역전기투석과 산화-환원 반응을 이용한 장치(100b)는 서로 다른 형상을 가지는 제1 전극 패턴(120b)과 제3 전극 패턴(140b)을 가질 수 있다. 제1 전극 패턴(120b)과 제3 전극 패턴(140b) 사이의 인접 거리가 변화하므로, 역전기투석과 산화-환원 반응을 이용한 장치(100b)는 다양한 전위차를 형성할 수 있다.
도 5c를 보면, 역전기투석과 산화-환원 반응을 이용한 장치(100c)는 제1 전극 패턴(120c)과 원형이며 내부가 채워진 제2 전극 패턴(120c)을 구비할 수 있다. 역전기투석과 산화-환원 반응을 이용한 장치(100c)는 제3 전극 패턴(140c)을 증가하여 산화-환원 반응을 지속적으로 유지할 수 있다. 또한, 역전기투석과 산화-환원 반응을 이용한 장치(100c)는 제1 전극 패턴(120c)과 제3 전극 패턴(140c) 사이의 인접 거리가 변화하므로, 다양한 전위차를 형성할 수 있다.
도 5d를 보면, 역전기투석과 산화-환원 반응을 이용한 장치(100d)는 원형의 제1 전극 패턴(120d)과 원형의 제3 전극 패턴(140d)을 구비할 수 있다. 이웃하는 제1 전극 패턴(120d)은 전기적으로 연결되고, 제3 전극 패턴(140d)은 제1 전극 패턴(120d)의 내부에 각각 배치될 수 있다. 제1 전극 패턴(120d)이 접촉구간과 비접촉 구간을 가지므로, 다양한 전위차를 형성할 수 있다.
도 5e를 보면, 역전기투석과 산화-환원 반응을 이용한 장치(100e)는 원형의 제1 전극 패턴(120e)과 원형이며 내부가 제3 전극 패턴(140e)을 구비할 수 있다. 역전기투석과 산화-환원 반응을 이용한 장치(100e)는 제3 전극 패턴(140e)을 증가하여 산화-환원 반응을 지속적으로 유지할 수 있다. 또한, 제1 전극 패턴(120e)이 접촉구간과 비접촉 구간을 가지므로, 다양한 전위차를 형성할 수 있다.
도 5a 내지 도 5e는 제1 전극 패턴이 캐소드(cathode) 전극이고, 제3 전극 패턴이 애노드(anode) 전극으로 도시하나, 반대로 배치될 수 있다. 또한, 제1 전극 패턴과 제2 전극 패턴은 다각 형상 및 원형상 등으로 다양하게 형성될 수 있다. 또한, 제2 전극 패턴으로 제1 전극 패턴이 대체될 수 있다.
도 6a 내지 도 6c는 도 1의 역전기투석과 산화-환원 반응을 이용한 장치의 변형예를 도시하는 도면이다.
도 6a를 참조하면, 역전기투석과 산화-환원 반응을 이용한 장치(100-1)는 제1 전극 패턴(120-1)과 제3 전극 패턴(140-1)이 베이스 시트(110)의 타면에 배치될 수 있다. 산화-환원 반응이 생성되면, 베이스 시트(110)의 일면이 피부(EP)와 접촉하므로 약물(D)이 신속하게 피부(EP)로 전달 될 수 있다. 특히, 제1 전극 패턴(120-1)과 제3 전극 패턴(140-1) 사이에 배치되는 무거운 극성 약물(D)도 반발력에 의해서 신속하게 피부로 전달될 수 있다.
도 6b를 참조하면, 역전기투석과 산화-환원 반응을 이용한 장치(100-2)는 제1 전극 패턴(120)이 베이스 시트(110)의 일면에 배치되고, 제3 전극 패턴(140-2)이 베이스 시트(110)의 타면에 배치될 수 있다. 제1 전극 패턴(120)과 제3 전극 패턴(140-2)이 베이스 시트(110)의 서로 다른 면에 배치되어, 약물 전달 효과와 전기 자극 효과를 극대화 할 수 있다.
도 6c를 참조하면, 역전기투석과 산화-환원 반응을 이용한 장치(100-3)는 제1 전극 패턴(120-3) 및 제3 전극 패턴(140-3) 중 적어도 하나는 베이스 시트(110)의 내부에 배치될 수 있다. 제1 전극 패턴(120-3)과 제3 전극 패턴(140-3)이 베이스 시트(110)의 내부에 배치되어, 전극 패턴의 내구성을 높이고, 산화-환원 반응이 장시간 지속될 수 있다.
도 6a 내지 도 6c는 제1 전극 패턴이 캐소드(cathode) 전극이고, 제3 전극 패턴이 애노드(anode) 전극으로 도시하나, 반대로 배치될 수 있다. 또한, 도 3, 도 6a 내지 도 6c의 전극 패턴의 배치를 조합하여, 제1 전극 패턴과 제2 전극 패턴이 배치될 수 있다. 또한, 제2 전극 패턴으로 제1 전극 패턴이 대체될 수 있다.
도 7은 본 발명의 또 다른 실시예에 따른 역전기투석과 산화-환원 반응을 이용한 장치(200)를 도시하는 도면이다.
도 7을 참조하면, 역전기투석과 산화-환원 반응을 이용한 장치(200)는 약물 시트(260)를 더 포함할 수 있다. 약물 시트(260)는 내부에 약물(D)을 포함하며, 베이스 시트(110)의 일면에 부착되어 제1 전극 패턴(120), 제2 전극 패턴(130) 및 제3 전극 패턴(140)을 활성화 할 수 있다.
건조한 상태의 베이스 시트(110)에 약물 시트(260)를 부착하여, 역전기투석과 산화-환원 반응을 이용한 장치(200)에서 산화-환원 반응이 활성화 할 수 있으며, 약물 시트(260)에 저장된 약물(D)이 피부(EP)로 전달 될 수 있다.즉, 약물 시트(260)에 있는 약물(D)이 제1 활성화 용액으로 작용하여, 역전기투석과 산화-환원 반응을 이용한 장치(200)를 구동할 수 있다.
상세하게, 약물 시트(260)은 약물(D)을 포함하되, 젖은 상태로 유지될 수 있다. 약물 시트(260)을 대상체에 부착한 다음에, 건조한 베이스 시트(110)에 제2 활성화 용액을 투입하여 역전기투석 전지부(150)를 활성화시키고, 베이스 시트(110)를 약물 시트(260)에 부착하여 산화-환원 반응이 활성화 될 수 있다.
또한, 약물 시트(260)을 대상체에 부착한 다음에, 베이스 시트(110)를 약물 시트(260)에 부착하여 산화-환원 반응을 활성화 시키고, 이후에 전지부(150)를 활성화 시키기 위해서 제2 활성화 용액을 주입할 수 있다.
다른 실시예로, 약물 시트(260)는 약물(D)을 포함되어 있으며, 베이스 시트(110)에 제1 활성화 용액이 주입되면, 약물 시트(260)에서 약물(D)이 피부(EP)로 전달될 수 있다.
도 8은 본 발명의 또 다른 실시예에 따른 역전기투석과 산화-환원 반응을 이용한 장치(300)를 도시하는 단면도이고, 도 9는 도 8의 일부 영역을 확대하여 도시하는 확대도이다.
도 8 및 도 9를 참조하면, 역전기투석과 산화-환원 반응을 이용한 장치(300)는 베이스 시트(310), 제1 전극 패턴(320), 제2 전극 패턴(330), 제3 전극 패턴(340) 및 전지부(350)를 포함할 수 있다.
베이스 시트(310)는 분리영역(311)에 의해서 제1 영역(S1)과 제2 영역(S2)으로 구분되며, 전술한 일 실시예의 베이스 시트(110)와 실질적으로 동일하다. 전지부(350)는 전술한 일 실시예의 전지부(150)와 실질적으로 동일하다.
제1 전극 패턴(320)과 제3 전극 패턴(340)은 제1 영역(S1)에 배치되며, 전술한 제1 전극 패턴(120)과 제3a 전극 패턴(141)과 유사하게 산화-환원 반응이 생성된다. 제1 활성화 용액이 제1 영역(S1)에 주입되면 제1 전극 패턴(320)과 제3 전극 패턴(340)에서 산화-환원 반응이 생성되어, 제1 영역(S1)에서 전기 자극이 생성되거나, 약물(D)이 피부(EP)로 전달될 수 있다.
제2 전극 패턴(330)은 제2 영역(S2)에 배치될 수 있다. 제2 전극 패턴(330)은 전술한 일실시예의 제2 전극 패턴(130)과 유사한 패턴을 가진다. 그러나, 제2 전극 패턴(330)의 내부에서 추가적으로 전극 패턴이 배치되지 않는다. 따라서, 제2 영역에서는 산화-환원 반응이 생성되지 않는다.
즉, 제2 영역(S2)에서는 산화-환원 반응은 생성되지 않지만, 전지부(150)에서 공급되는 전류에 의해서 대상체에 전기 자극을 제공하거나, 대상체에 약물(D)을 전달할 수 있다.
다른 실시예로, 역전기투석과 산화-환원 반응을 이용한 장치는 제2 영역(S2)에서 산화-환원 반응이 활성화되고, 제1 영역(S1)에서 산화 환원 반응이 활성화 되지 않을 수 있다.
본 발명의 일 실시예에 따른 역전기투석과 산화-환원 반응을 이용한 장치(300)는 대상체에 다양한 수준의 전기 자극을 제공하거나, 다양한 종류의 약물을 전달할 수 있다. 산화-환원 반응이 활성화되는 영역을 구분하여, 제1 영역(S1)은 산화-환원 반응과 전지부로부터 전류를 공급받고, 제2 영역(S2)은 전지부로부터 전류를 공급받을 수 있다. 각각의 영역에서 전달되는 전류량을 다르게 하여, 전기 자극의 크기나 약물 전달량을 조절할 수 있다.
도 10은 본 발명의 또 다른 실시예에 따른 역전기투석과 산화-환원 반응을 이용한 장치(400)를 도시하는 단면도이고, 도 11은 도 10의 일부 영역을 확대하여 도시하는 확대도이다.
도 10 및 도 11을 참조하면, 역전기투석과 산화-환원 반응을 이용한 장치(400)는 베이스 시트(410), 제1 영역(S1)에 배치되는 제1 전극 패턴(420), 제2 영역(S2)에 배치되는 제2 전극 패턴(430), 제1 전극 패턴(420) 또는 제2 전극 패턴(430)의 내부에 배치되는 제3 전극 패턴(440)을 구비한다. 제3 전극 패턴(440)은 제1 전극 패턴(420)의 내부에 배치되는 제3a 전극 패턴(441)과, 제2 전극 패턴(430)의 내부에 배치되는 제3b 전극 패턴(442)을 구비할 수 있다.
제3 전극 패턴(440)은 복수개의 전극단이 방사형으로 배치될 수 있다. 도 10에서는 전극단이 3개인 실시예를 도시하나, 이에 한정되지 않고 다양한 형태를 가질 수 있다. 또한, 제3 전극 패턴(440)의 전극단은 중심에서 단부로 갈수록 두께가 줄어들도록 형성될 수 있다.
제1 전극 패턴(420)이 캐소드(cathode) 전극으로 활성화 되고, 제3a 전극 패턴(441)이 애노드(anode) 전극으로 활성화 되면, 제3a 전극 패턴(441)에서 생성되는 전자는 제1 전극 패턴(420)으로 이동하며, 제1 전극 패턴(420)에서 생성되는 염화 이온은 제3a 전극 패턴(441)으로 이동한다.
제1 전극 패턴(420)과 제3a 전극 패턴(441)이 서로 다른 거리를 가지므로, 역전기투석과 산화-환원 반응을 이용한 장치(400)는 다양한 전위차를 형성할 수 있다. 산화-환원 반응으로 제3a 전극 패턴(441)에서 생성된 전자가 제1 전극 패턴(420)으로 이동하므로, 제3a 전극 패턴(441)의 제1 지점(Q1)은 전자 밀도가 낮아진다.
한편, 제1 전극 패턴(420)과 제3a 전극 패턴(441) 사이의 거리에 의해서 제1 전극 패턴(420)에 배치되는 전자의 밀도가 달라진다. 제3a 전극 패턴(441)의 전극단과 제1 전극 패턴(420) 사이의 거리는 d1이고, 제3a 전극 패턴(441)의 중심과 제1 전극 패턴(420) 사이의 거리는 d2이다. 제2 지점(Q2)과 제3 지점(Q3)을 비교하면, 제1 전극 패턴(420)의 제2 지점(Q2)은 상대적으로 전자 밀도가 낮고, 제3 지점(Q3)은 상대적으로 전자 밀도가 높게 형성된다.
역전기투석과 산화-환원 반응을 이용한 장치(400)는 제3a 전극 패턴(441)의 형상에 의해, 산화-환원 반응 이후에 다시 한번 전위 차이를 생성한다. 따라서, 제1 전극 패턴(420)과 제3a 전극 패턴(441)은 지속적으로 전위차를 생성할 수 있다. 역전기투석과 산화-환원 반응을 이용한 장치(400)는 약물(D)을 지속적으로 피부(EP)로 전달 될 수 있으며, 전기 자극을 지속적으로 생성할 수 있다.
제2 전극 패턴(430)이 애노드(anode) 전극으로 활성화 되고, 제3b 전극 패턴(442)이 캐소드(cathode) 전극으로 활성화 되면, 제2 전극 패턴(430)에서 생성된 전자는 제3b 전극 패턴(442)으로 이동하며, 제3b 전극 패턴(442)에서 생성된 염화 이온은 제2 전극 패턴(430)으로 이동한다.
전술한 바와 같이 제2 전극 패턴(430)과 제3b 전극 패턴(442)은 서로 다른 거리를 가지므로, 역전기투석과 산화-환원 반응을 이용한 장치(400)는 다양한 전위차를 형성할 수 있다. 제4 지점(Q4)은 제5 지점(Q5)보다 전자 밀도가 더 낮게 형성되고, 제6 지점(Q6)은 전자를 받아 전자 밀도가 높게 형성된다.
역전기투석과 산화-환원 반응을 이용한 장치(400)는 제3b 전극 패턴(442)의 형상에 의해, 산화-환원 반응 이후에 다시 한번 전위 차이를 생성한다. 따라서, 제2 전극 패턴(430)과 제3b 전극 패턴(442)은 지속적으로 전위차를 생성할 수 있다. 역전기투석과 산화-환원 반응을 이용한 장치(400)는 약물(D)을 지속적으로 피부(EP)로 전달 될 수 있으며, 전기 자극을 지속적으로 생성할 수 있다.
도 12는 본 발명의 또 다른 실시예에 따른 역전기투석과 산화-환원 반응을 이용한 장치를 도시하는 도면이다.
도 11를 참조하면, 저장 키트(1)는 역전기투석과 산화-환원 반응을 이용한 장치(100)를 저장하는 파우치(10)를 구비할 수 있다.
파우치(10)는 베이스 시트(110)를 보관하는 제1 저장 공간(11)과, 약물을 저장하는 제2 저장 공간(12)을 가지며, 제1 저장 공간(11)과 제2 저장 공간(12)은 분리벽(13)에 의해서 공간적으로 분리된다. 분리벽(13)은 제1 저장 공간(11)과 제2 저장 공간(12)을 선택적으로 연결하는 밸브(14)가 설치될 수 있다.
역전기투석과 산화-환원 반응을 이용한 장치(100)는 파우치(10)에 저장되어 사용될 수 있다. 사용자가 밸브(14)를 열어 약물(D)을 제2 저장 공간(12)에서 제1 저장 공간(11)으로 이동시키면, 역전기투석과 산화-환원 반응을 이용한 장치(100)는 산화-환원 반응이 활성화 된다. 사용자는 활성화된 역전기투석과 산화-환원 반응을 이용한 장치(100)를 간단하게 대상체의 피부(EP)에 부착하여, 약물(D)을 피부(EP)에 전달하거나 피부(EP)에 전기 자극을 생성할 수 있다.
다른 실시예로, 역전기투석과 산화-환원 반응을 이용한 장치(100)는 파우치(10)에 베이스 시트(110)가 저장되고, 별도로 약물 시트(260)을 구비할 수 있다. 사용자가 밸브(14)를 열어 제1 활성화 용액을 제2 저장 공간(12)에서 제1 저장공간(11)으로 이동시키면, 베이스 시트(110)는 산화 환원 반응이 활성화 될 수 있다. 사용자는 약물 시트(260)을 베이스 시트(110)에 부착하여 약물 시트(260)에 존재하는 약물(D)을 대상체의 피부(EP)로 전달 할 수 있다. 특히, 약물 시트(260)가 건조한 상태로 보관되는 경우에는 파우치(10)에 저장된 제1 활성화 용액을 베이스 시트(110)에 주입하여 역전기투석과 산화-환원 반응을 이용한 장치(100)를 구동시킬 수 있다.
다른 실시예로, 역전기투석과 산화-환원 반응을 이용한 장치(100)는 약물(D)의 흡수 여부에 따라 색상이 변화할 수 있다. 베이스 시트에는 약물의 흡수되면 색상이 변화하는 잉크를 구비할 수 있다. 역전기투석과 산화-환원 반응을 이용한 장치(100)의 색상 변화를 사용자가 인식하여, 역전기투석과 산화-환원 반응을 이용한 장치(100)의 활성화 여부를 인지할 수 있다.
또 다른 실시예로, 베이스 시트에 시온 잉크가 함침되어 있을 수 있으며, 사용자가 파우치(10)의 제2 공간(12)에서 제1 공간(11)으로 약물(D)를 이동시키면, 베이스 시트는 온도의 변화에 의해서 변색된다. 이로써, 사용자는 역전기투석과 산화-환원 반응을 이용한 장치(100)의 준비상태를 확인할 수 있으며, 색상이 변한 역전기투석과 산화-환원 반응을 이용한 장치(100)를 피부(EP)에 부착하여 사용할 수 있다.
또 다른 실시예로, 역전기투석과 산화-환원 반응을 이용한 장치(100)를 트레이(미도시)에 배치한 뒤에, 사용자가 약물을 트레이에 부어서 역전기투석과 산화-환원 반응을 이용한 장치(100)를 활성화 할 수 있다.
도 13은 도 9의 제1 전극 패턴(320)과 제2 전극 패턴(330)이 활성화 시에 생성되는 전위 차이를 도시하는 그래프이다
도 13을 참조하면, 활성화 용액을 베이스 시트(310)에 뿌려서, 역전기투석과 산화-환원 반응을 이용한 장치(300)가 활성화 되면, t1까지 전압이 급격하게 증가한다. 역전기투석 전지부(350)는 상대적으로 높은 전압을 가지고, 신속하게 전류를 공급하므로 t1까지 전압이 2.608V까지 급격하게 증가한다. 이후 t2까지 전압이 빠르게 감소하나 t2 이후 평균 1.059V로 안정적으로 유지된다.
역전지투석 전지부(350)는 상대적으로 높은 전류를 공급할 수 있으나, 지속적으로 전류를 공급하는데 한계가 있다. 그러나, 산화-환원 반응이 전극 패턴에서 활성화 되면, 전류가 안정적이고 지속적으로 공급할 수 있도록 한다. 산화-환원 반응에서 전류를 제공하고, 산화-환원 반응에서 생성된 전자를 다시 역전지투석 전지부(350)로 공급하여 역전지투석 전지부(350)의 사용시간을 증대할 수 있다.
도 14는 본 발명의 또 다른 실시예에 따른 역전기투석과 산화-환원 반응을 이용한 약물 전달 방법을 도시하는 순서도이다.
도 14를 참조하면, 산화-환원 반응을 이용한 약물 전달 방법은 약물 시트를 대상체에 부착하는 단계(S10), 베이스 시트에 활성화 용액을 주입하는 단계(S20), 베이스 시트를 약물시트에 부착하는 단계(S30) 및 약물이 대상체로 전달되는 단계(S40)을 포함할 수 있다.
약물 시트를 대상체에 부착하는 단계(S10) 약물을 포함하는 약물 시트(260)을 대상체의 피부(EP)에 부착한다.
베이스 시트에 활성화 용액을 주입하는 단계(S20)는 제2 활성화 용액을 전지부(150)에 주입하여, 전지부(150)를 활성화시킬 수 있다.
베이스 시트를 약물 시트에 부착하는 단계(S30)는 베이스 시트(110)를 약물 시트(260)에 부착하여, 베이스 시트(110)에서 산화-환원 반응이 발생한다. 약물이 산화-환원반응을 활성화시키는 활성화 용액으로 작용할 수 있다. 다른 실시예로, 추가적으로 제1 활성화 용액을 베이스 시트(110)나 약물 시트(260)에 주입할 수 있다.
또 다른 실시예로, 역전기투석과 산화-환원 반응을 이용한 장치는 약물 시트 없이 베이스 시트에 약물을 주입하여 피부에 약물을 전달할 수 있다.
상세히, 베이스 시트에 약물을 포함하는 제1 활성화 용액을 주입하여, 제1 전극 패턴과 제3 전극 패턴 사이와 제2 전극 패턴과 제3 전극 패턴 사이에서 산화-환원 반응이 활성화 될 수 있다. 이후, 역전기투석 전지부(150)에 제2 활성화 용액을 주입하면, 역전기투석 전지부(150)에서 제1 전극 패턴과 제2 전극 패턴으로 전류가 전달된다. 이후, 약물이 베이스 시트에서 대상체의 피부로 전달될 수 있다.
역전기투석과 산화-환원 반응을 이용한 장치는 전술한 바와 같이, 베이스 시트, 베이스 시트의 제1 영역에서 서로 연속되게 연결되는 제1 전극 패턴, 베이스 시트의 제2 영역에서 서로 연속되게 연결되는 제2 전극 패턴, 제1 전극 패턴 및 제2 전극 패턴 중 적어도 하나의 내부에 배치되는 제3 전극 패턴, 및 제1 전극 패턴과 제2 전극 패턴에 연결되는 전지부를 구비할 수 있다.
제1 전극 패턴은 폐 루프(closed loop) 형상인 복수개가 베이스 시트의 제1 영역에 서로 연결되도록 배치되며, 제2 전극 패턴은 폐 루프(closed loop) 형상인 복수개가 베이스 시트의 제2 영역에 서로 연결되도록 배치된다.
제3 전극 패턴은 복수개가 제1 전극 패턴이나 제2 전극 패턴의 폐 루프의 내부에 이격 배치될 수 있다. 또한, 역전기투석과 산화-환원 반응을 이용한 장치는 제1 활성화 용액으로 제1 영역과 제2 영역에 배치된 전극 패턴에서 산화-환원 반응이 활성화될 수 있다.
베이스 시트에 제1 활성화 용액을 주입하는 단계(S20)는 제1 활성화 용액을 베이스 시트가 흡수하도록 주입하거나, 약물 시트를 베이스 시트에 부착하여 약물 시트에 포함된 제1 활성화 용액이 베이스 시트로 전달될 수 있다.
본 발명의 일 실시예에 따른 역전기투석과 산화-환원 반응을 이용한 장치 및 그를 사용하여 약물을 전달하는 방법은 전지부에서 공급되는 전류와, 산화-환원 반응으로 생성된 전위차에 의해서, 대상체의 피부(EP)에 전기 자극을 생성하고, 대상체의 피부(EP)로 약물을 전달할 수 있다.
본 발명의 일 실시예에 따른 역전기투석과 산화-환원 반응을 이용한 장치 및 그를 사용하여 약물을 전달하는 방법은 전지부에서 상대적으로 높은 레벨의 전류를 공급받고, 전극 패턴의 산화-환원 반응에 의해서 상대적으로 낮은 레벨의 전류를 공급받을 수 있다. 다양한 레벨의 전류를 공급받으므로, 대상체에 다양한 강도의 전기 자극을 제공하고, 대상체의 피부로 다양한 종류의 약물을 전달할 수 있다.
본 발명의 일 실시예에 따른 역전기투석과 산화-환원 반응을 이용한 장치 및 그를 사용하여 약물을 전달하는 방법은 전극 패턴의 배치에 의해서 지속적으로 전위 차이가 발생하므로, 장시간 동안 대상체에 약물을 전달하거나 전기 자극을 줄 수 있다. 제1 전극 패턴과 제2 전극 패턴은 각각 연속적으로 배치되고, 제3 전극 패턴은 제1 전극 패턴이나 제2 전극 패턴의 내부에 배치되므로, 제1 전극 패턴과 제3 전극 패턴 사이 또는 제2 전극 패턴과 제3 전극 패턴 사이에서 산화-환원 반응이 생성되더라도 다시 전위 차이를 생성할 수 있다.
본 발명의 일 실시예에 따른 역전기투석과 산화-환원 반응을 이용한 장치 및 그를 사용하여 약물을 전달하는 방법은 안전하게 활성화 될 수 있다. 베이스 시트가 건조 상태에서는 전극 패턴에서 산화-환원 반응이 활성화 되지 않으나, 제1 활성화 용액이 베이스 시트에 주입되면 산화-환원 반응이 활성화 되어 전위 차를 생성한다. 또한, 역전기투석 전지부가 건조 상태에서는 활성화되지 않으나, 제2 활성화 용액이 챔버에 주입되면, 전류가 생성된다. 따라서, 사용자는 활성화 용액을 주입하여 안전하고 신속하게 사용할 수 있다.
이와 같이 본 발명은 도면에 도시된 실시예를 참고로 설명되었으나 이는 예시적인 것에 불과하며, 당해 기술분야에서 통상의 지식을 가진 자라면 이로부터 다양한 변형 및 균등한 다른 실시예가 가능하다는 점을 이해할 것이다. 따라서 본 발명의 진정한 기술적 보호 범위는 첨부된 청구범위의 기술적 사상에 의하여 정해져야 할 것이다.
본 발명은 역전기투석과 산화-환원반응을 이용한 장치 및 그를 사용하여 약물을 전달하는 방법에 관한 것으로, 상세하게는 산업상 이용되는 약물전달 및 치료 장치에 이용될 수 있다.

Claims (19)

  1. 베이스 시트;
    상기 베이스 시트의 일 영역에 배치되는 제1 전극 패턴;
    상기 베이스 시트의 타 영역에 배치되고, 서로 연속되게 연결되는 제2 전극 패턴;
    상기 제1 전극 패턴 및 상기 제2 전극 패턴 중 적어도 하나의 패턴 내부에 배치되는 제3 전극 패턴; 및
    일단이 상기 제1 전극 패턴과 전기적으로 연결되고, 타단이 상기 제2 전극 패턴과 전기적으로 연결되는 전지부;를 포함하는, 역전기투석과 산화-환원 반응을 이용한 장치.
  2. 제1 항에 있어서,
    상기 전지부가 활성화 되어 상기 제1 전극 패턴과 상기 제2 전극 패턴으로 전류가 전달되며,
    상기 제1 전극 패턴과 상기 제3 전극 패턴에서 산화-환원 반응이 활성화 되거나, 상기 제2 전극 패턴과 상기 제3 전극 패턴에서 산화-환원 반응이 활성화 되는, 역전기투석과 산화-환원 반응을 이용한 장치.
  3. 제2 항에 있어서,
    상기 베이스 시트가 건조상태에서 산화-환원 반응이 활성화 되지 않으며, 상기 베이스 시트에 제1 활성화 용액이 주입되면, 상기 산화-환원 반응이 활성화 되는, 역전기투석과 산화-환원 반응을 이용한 장치.
  4. 제3 항에 있어서,
    상기 제1 활성화 용액은 약물을 포함하며, 상기 산화-환원 반응이 활성화 되면, 상기 약물이 대상체로 전달되는, 역전기투석과 산화-환원 반응을 이용한 장치.
  5. 제2 항에 있어서,
    상기 전지부는 역전기투석(Reversed ElectroDialysis: RED) 전지이며,
    상기 전지부에 제2 활성화 용액이 주입되면 상기 전지부가 활성화 되는, 역전기투석과 산화-환원 반응을 이용한 장치.
  6. 제1 항에 있어서,
    상기 제1 전극 패턴은 폐 루프(closed loop) 형상인 복수개가 상기 베이스 시트의 상기 일 영역에 서로 연결되게 배치되고,
    상기 제2 전극 패턴은 폐 루프(closed loop) 형상인 복수개가 상기 베이스 시트의 상기 타 영역에 서로 연결되게 배치되며,
    상기 제3 전극 패턴은 복수개가 상기 제1 전극 패턴 또는 상기 제2 전극 패턴의 폐 루프의 내부에 이격 배치되는, 역전기투석과 산화-환원 반응을 이용한 장치.
  7. 제1 항에 있어서,
    상기 제1 전극 패턴은 상기 베이스 시트의 일면에 배치되며,
    상기 제2 전극 패턴은 상기 베이스 시트의 일면 또는 타면에 배치되는, 역전기투석과 산화-환원 반응을 이용한 장치.
  8. 제7 항에 있어서,
    상기 제3 전극 패턴은
    상기 베이스 시트에서 상기 제1 전극 패턴 또는 상기 제2 전극 패턴과 같은 면에 배치되거나, 다른 면에 배치되는, 역전기투석과 산화-환원 반응을 이용한 장치.
  9. 제1 항에 있어서,
    상기 제1 전극 패턴, 상기 제2 전극 패턴 및 상기 제3 전극 패턴 중 적어도 하나는 상기 베이스 시트의 내부에 배치되는, 역전기투석과 산화-환원 반응을 이용한 장치.
  10. 제1 항에 있어서,
    상기 제1 전극 패턴과 상기 제2 전극 패턴은 같은 형상을 가지는, 역전기투석과 산화-환원 반응을 이용한 장치.
  11. 제1 항에 있어서,
    상기 제3 전극 패턴은
    상기 제1 전극 패턴의 내부에 배치되는 제3a 전극 패턴; 및
    상기 제3a 전극 패턴과 다른 극성을 가지며, 상기 제2 전극 패턴의 내부에 배치되는 제3b 전극 패턴;을 구비하는, 역전기투석과 산화-환원 반응을 이용한 장치.
  12. 제1 항에 있어서,
    상기 제1 전극 패턴 및 상기 제2 전극 패턴은 다각 형상이나 원 형상을 가지는, 역전기투석과 산화-환원 반응을 이용한 장치.
  13. 제12 항에 있어서,
    상기 제3 전극 패턴은 복수개의 전극단이 방사형으로 배치되는, 역전기투석과 산화-환원 반응을 이용한 장치.
  14. 제1 항에 있어서,
    내부에 약물을 포함하며, 상기 베이스 시트의 일면에 부착되어 상기 제1 전극 패턴과 상기 제2 전극 패턴을 활성화 시키는 약물 시트;를 더 포함하는, 역전기투석과 산화-환원 반응을 이용한 장치.
  15. 제1 항에 있어서,
    상기 베이스 시트를 보관하는 제1 저장 공간;
    상기 베이스 시트에 주입되는 약물을 저장하는 제2 저장 공간; 및
    상기 제1 저장 공간과 상기 제2 저장 공간을 선택적으로 연결하는 밸브;를 구비하는 파우치;를 더 포함하는, 역전기투석과 산화-환원 반응을 이용한 장치.
  16. 약물 시트를 대상체에 부착하는 단계;
    역전기투석과 산화-환원 반응을 이용한 장치에 제2 활성화 용액을 주입하여 전지부를 활성화하는 단계;
    상기 전지부가 부착된 베이스 시트를 약물 시트에 부착하는 단계;를 포함하며,
    상기 역전기투석과 산화-환원 반응을 이용한 장치는상기 베이스 시트의 일 영역에 배치되고, 서로 연속되게 연결되는 제1 전극 패턴;
    상기 베이스 시트의 타 영역에 배치되고, 서로 연속되게 연결되는 제2 전극 패턴; 및
    상기 제1 전극 패턴 및 상기 제2 전극 패턴 중 적어도 하나의 패턴 내부에 배치되는 제3 전극 패턴;을 구비하고,
    상기 역전기투석 전지부는 상기 베이스 시트에 배치되되, 일단이 상기 제1 전극 패턴과 전기적으로 연결되고, 타단이 상기 제2 전극 패턴과 전기적으로 연결되는, 역전기 투석과 산화-환원 반응을 이용한 약물 전달 방법.
  17. 제16 항에 있어서,
    상기 약물 시트에 베이스 시트가 부착되면, 상기 제1 전극 패턴과 상기 제3 전극 패턴에서 산화-환원 반응이 활성화 되거나, 상기 제2 전극 패턴과 상기 제3 전극 패턴에서 산화-환원 반응이 활성화 되며,
    상기 제2 활성화 용액이 상기 전지부에 주입되면, 상기 역전기투석 전지부가 활성화 되어 상기 제1 전극 패턴과 상기 제2 전극 패턴으로 전류가 전달되는, 역전기 투석과 산화-환원 반응을 이용한 약물 전달 방법.
  18. 제17 항에 있어서,
    상기 약물 시트는 제1 활성화 용액을 포함하며, 상기 제1 활성화 용액이 상기 베이스 시트에 흡수되어 상기 산화-환원 반응이 활성화 되면, 상기 약물이 대상체로 전달되는, 역전기 투석과 산화-환원 반응을 이용한 약물 전달 방법.
  19. 제17 항에 있어서,
    상기 제1 전극 패턴은 폐 루프(closed loop) 형상인 복수개가 상기 베이스 시트의 상기 일 영역에 서로 연결되게 배치되고,
    상기 제2 전극 패턴은 폐 루프(closed loop) 형상인 복수개가 상기 베이스 시트의 상기 타 영역에 서로 연결되게 배치되며,
    상기 제3 전극 패턴은 복수개가 상기 제1 전극 패턴 또는 상기 제2 전극 패턴의 폐 루프의 내부에 이격 배치되는, 역전기 투석과 산화-환원 반응을 이용한 약물 전달 방법.
PCT/KR2020/014735 2019-03-11 2020-10-27 역전기투석과 산화-환원 반응을 이용한 장치 및 그를 사용하여 약물을 전달하는 방법 WO2021085979A1 (ko)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
KR20190027640 2019-03-11
KR1020190136900A KR102347311B1 (ko) 2019-03-11 2019-10-30 역전기투석과 산화-환원 반응을 이용한 장치 및 그를 사용하여 약물을 전달하는 방법
KR10-2019-0136900 2019-10-30

Publications (1)

Publication Number Publication Date
WO2021085979A1 true WO2021085979A1 (ko) 2021-05-06

Family

ID=72707937

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2020/014735 WO2021085979A1 (ko) 2019-03-11 2020-10-27 역전기투석과 산화-환원 반응을 이용한 장치 및 그를 사용하여 약물을 전달하는 방법

Country Status (2)

Country Link
KR (1) KR102347311B1 (ko)
WO (1) WO2021085979A1 (ko)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113577554A (zh) * 2021-07-05 2021-11-02 溥畅(杭州)智能科技有限公司 一种分离式纤维基原电池及其制备方法
US11502323B1 (en) 2022-05-09 2022-11-15 Rahul S Nana Reverse electrodialysis cell and methods of use thereof
US11502322B1 (en) 2022-05-09 2022-11-15 Rahul S Nana Reverse electrodialysis cell with heat pump
US11855324B1 (en) 2022-11-15 2023-12-26 Rahul S. Nana Reverse electrodialysis or pressure-retarded osmosis cell with heat pump

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102357602B1 (ko) * 2020-10-13 2022-02-07 (주) 레지에나 시트 마스크 장치
KR20230015107A (ko) * 2021-07-22 2023-01-31 (주) 레지에나 시트 마스크 장치

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20100003862U (ko) * 2008-10-02 2010-04-12 이생테크노팩 주식회사 마스크 팩용 포장대
KR20170082131A (ko) * 2016-01-05 2017-07-13 바이오센서연구소 주식회사 마스크팩에 장착되는 장치, 그를 포함하는 마스크팩 및 키트
KR20170094220A (ko) * 2014-12-17 2017-08-17 모튼 엠 모워 개선된 상처 치유를 위한 방법 및 장치
KR20190049474A (ko) * 2017-10-31 2019-05-09 주식회사 엑소코바이오 엑소좀 키트 및 이를 이용한 엑소좀의 경피 투과 증진 방법
KR20190104881A (ko) * 2018-03-02 2019-09-11 주식회사 엑소코바이오 피부에 대한 레이저 빔 조사와 줄기세포 유래의 엑소좀 처리를 병용한 피부 미용방법

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20100003862U (ko) * 2008-10-02 2010-04-12 이생테크노팩 주식회사 마스크 팩용 포장대
KR20170094220A (ko) * 2014-12-17 2017-08-17 모튼 엠 모워 개선된 상처 치유를 위한 방법 및 장치
KR20170082131A (ko) * 2016-01-05 2017-07-13 바이오센서연구소 주식회사 마스크팩에 장착되는 장치, 그를 포함하는 마스크팩 및 키트
KR20190049474A (ko) * 2017-10-31 2019-05-09 주식회사 엑소코바이오 엑소좀 키트 및 이를 이용한 엑소좀의 경피 투과 증진 방법
KR20190104881A (ko) * 2018-03-02 2019-09-11 주식회사 엑소코바이오 피부에 대한 레이저 빔 조사와 줄기세포 유래의 엑소좀 처리를 병용한 피부 미용방법

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113577554A (zh) * 2021-07-05 2021-11-02 溥畅(杭州)智能科技有限公司 一种分离式纤维基原电池及其制备方法
CN113577554B (zh) * 2021-07-05 2022-03-25 溥畅(杭州)智能科技有限公司 一种分离式纤维基原电池及其制备方法
US11502323B1 (en) 2022-05-09 2022-11-15 Rahul S Nana Reverse electrodialysis cell and methods of use thereof
US11502322B1 (en) 2022-05-09 2022-11-15 Rahul S Nana Reverse electrodialysis cell with heat pump
US11563229B1 (en) 2022-05-09 2023-01-24 Rahul S Nana Reverse electrodialysis cell with heat pump
US11611099B1 (en) 2022-05-09 2023-03-21 Rahul S Nana Reverse electrodialysis cell and methods of use thereof
US11699803B1 (en) 2022-05-09 2023-07-11 Rahul S Nana Reverse electrodialysis cell with heat pump
US11855324B1 (en) 2022-11-15 2023-12-26 Rahul S. Nana Reverse electrodialysis or pressure-retarded osmosis cell with heat pump

Also Published As

Publication number Publication date
KR20200108765A (ko) 2020-09-21
KR102347311B1 (ko) 2022-01-06

Similar Documents

Publication Publication Date Title
WO2021085979A1 (ko) 역전기투석과 산화-환원 반응을 이용한 장치 및 그를 사용하여 약물을 전달하는 방법
CN108601935B (zh) 安装在面膜上的装置以及包括该装置的面膜和成套工具
EP0532451B1 (en) Transdermal drug delivery device
KR0163014B1 (ko) 이온 영동 전달 장치
EP0774272B1 (en) Electrode for iontophoresis and device using the same
PT97140B (pt) Dispositivo para a administracao de substancias activas farmaceuticas por electroforese ionica
KR100548796B1 (ko) 이온 영동 장치
KR100550492B1 (ko) 전기수송 장치용의 전기화학 반응성 캐소드
AU690012B2 (en) Electrotransport device having reusable controller power saver
CA2126487C (en) Iontophoresis device
KR960701678A (ko) 이온삼투방식 전극(improved electrodes for iontophoresis)
WO2017175936A1 (ko) 이온 영동이 가능한 전기 자극 마스크팩 및 그 제어 방법
ES2104607T3 (es) Aparato para liberacion iontoforetica de farmacos.
KR20010110754A (ko) 이온토포레시스 디바이스
KR0168443B1 (ko) 생체 통전장치
KR20000053270A (ko) 전기적으로 보조되는 리도케인 및 에피네프린의 전달을 위한제제
WO2007086057A1 (en) Power source electrode treatment device
KR20080044259A (ko) 이온토포레시스 장치
JPH04224770A (ja) イオントフォレーシス用装置
US5256137A (en) Biphasic power source for use in an iontophoretic drug delivery system
WO2021085980A1 (ko) 산화-환원반응을 이용한 장치 및 그를 사용하여 약물을 전달하는 방법
WO2017119742A1 (ko) 마스크팩에 장착되는 장치, 그를 포함하는 마스크팩 및 키트
WO2015167107A1 (ko) 전기자극이 가능한 피부미용 압박마스크 및 이를 포함하는 피부미용장치
JPH0217187B2 (ko)
JP2839279B2 (ja) イオントフォレーゼ用デバイス

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20882083

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20882083

Country of ref document: EP

Kind code of ref document: A1