WO2021085491A1 - 火工細胞破砕装置および火工細胞破砕方法 - Google Patents

火工細胞破砕装置および火工細胞破砕方法 Download PDF

Info

Publication number
WO2021085491A1
WO2021085491A1 PCT/JP2020/040495 JP2020040495W WO2021085491A1 WO 2021085491 A1 WO2021085491 A1 WO 2021085491A1 JP 2020040495 W JP2020040495 W JP 2020040495W WO 2021085491 A1 WO2021085491 A1 WO 2021085491A1
Authority
WO
WIPO (PCT)
Prior art keywords
pressure
chamber
charge
fluid sample
pyrotechnic
Prior art date
Application number
PCT/JP2020/040495
Other languages
English (en)
French (fr)
Inventor
デイヴィッド マツウラ
アダム アリリー
ジェイコブ メビウス
Original Assignee
株式会社ダイセル
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社ダイセル filed Critical 株式会社ダイセル
Priority to CN202080082931.4A priority Critical patent/CN114761535A/zh
Priority to JP2021553662A priority patent/JPWO2021085491A1/ja
Priority to US17/773,360 priority patent/US20240174971A1/en
Priority to EP20883450.7A priority patent/EP4053261A4/en
Priority to KR1020227017573A priority patent/KR20220088763A/ko
Publication of WO2021085491A1 publication Critical patent/WO2021085491A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12MAPPARATUS FOR ENZYMOLOGY OR MICROBIOLOGY; APPARATUS FOR CULTURING MICROORGANISMS FOR PRODUCING BIOMASS, FOR GROWING CELLS OR FOR OBTAINING FERMENTATION OR METABOLIC PRODUCTS, i.e. BIOREACTORS OR FERMENTERS
    • C12M45/00Means for pre-treatment of biological substances
    • C12M45/02Means for pre-treatment of biological substances by mechanical forces; Stirring; Trituration; Comminuting
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12MAPPARATUS FOR ENZYMOLOGY OR MICROBIOLOGY; APPARATUS FOR CULTURING MICROORGANISMS FOR PRODUCING BIOMASS, FOR GROWING CELLS OR FOR OBTAINING FERMENTATION OR METABOLIC PRODUCTS, i.e. BIOREACTORS OR FERMENTERS
    • C12M47/00Means for after-treatment of the produced biomass or of the fermentation or metabolic products, e.g. storage of biomass
    • C12M47/06Hydrolysis; Cell lysis; Extraction of intracellular or cell wall material
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12MAPPARATUS FOR ENZYMOLOGY OR MICROBIOLOGY; APPARATUS FOR CULTURING MICROORGANISMS FOR PRODUCING BIOMASS, FOR GROWING CELLS OR FOR OBTAINING FERMENTATION OR METABOLIC PRODUCTS, i.e. BIOREACTORS OR FERMENTERS
    • C12M23/00Constructional details, e.g. recesses, hinges
    • C12M23/26Constructional details, e.g. recesses, hinges flexible
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12MAPPARATUS FOR ENZYMOLOGY OR MICROBIOLOGY; APPARATUS FOR CULTURING MICROORGANISMS FOR PRODUCING BIOMASS, FOR GROWING CELLS OR FOR OBTAINING FERMENTATION OR METABOLIC PRODUCTS, i.e. BIOREACTORS OR FERMENTERS
    • C12M35/00Means for application of stress for stimulating the growth of microorganisms or the generation of fermentation or metabolic products; Means for electroporation or cell fusion
    • C12M35/04Mechanical means, e.g. sonic waves, stretching forces, pressure or shear stimuli
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12MAPPARATUS FOR ENZYMOLOGY OR MICROBIOLOGY; APPARATUS FOR CULTURING MICROORGANISMS FOR PRODUCING BIOMASS, FOR GROWING CELLS OR FOR OBTAINING FERMENTATION OR METABOLIC PRODUCTS, i.e. BIOREACTORS OR FERMENTERS
    • C12M41/00Means for regulation, monitoring, measurement or control, e.g. flow regulation
    • C12M41/40Means for regulation, monitoring, measurement or control, e.g. flow regulation of pressure
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N1/00Microorganisms, e.g. protozoa; Compositions thereof; Processes of propagating, maintaining or preserving microorganisms or compositions thereof; Processes of preparing or isolating a composition containing a microorganism; Culture media therefor
    • C12N1/06Lysis of microorganisms
    • C12N1/066Lysis of microorganisms by physical methods

Definitions

  • the present invention relates to a pyrotechnic cell crushing apparatus and a pyrotechnic cell crushing method.
  • Cell destruction also known as cell disruption, is used to destroy the outer border or cell membrane in order to release intracellular substances such as DNA, RNA, proteins or organelles from cells.
  • intracellular substances such as DNA, RNA, proteins or organelles from cells.
  • the release of such intracellular substances is important for various types of molecular diagnostics.
  • diagnoses include pathogen detection platforms, immunological measurements for point-of-care diagnostics, protein purification to study protein function and structure, cancer diagnostics, drug screening, and mRNA transs, to name a few.
  • Cryptom determination and analysis of individual or complex composition in specific proteins, lipids, and nucleic acids may be included.
  • Patent Documents 1, 2 and the like disclose a point of care device for detecting nucleic acids.
  • the point of care device disclosed in Patent Documents 1, 2, etc. is adapted to accept a sample, includes an extraction chamber containing a lysate and a heater for extracting and dissolving the sample, and dissolves the sample in the extraction chamber. By doing so, the nucleic acid is released.
  • the small sample size has many advantages, especially when taken from humans or animals. Not only does it enable a less invasive sampling method, it also reduces the risk of polluting the environment. Smaller sample sizes also allow for a higher degree of automation. In addition, the (small size) sample has a low risk of contaminating the sample before the test, has a low risk of contaminating the environment, can be safely disposed of after the test is completed, and is transported into the device. It's easier to do. In addition, the small sample size is suitable for complying with various regulatory standards for clinical testing. Handling these samples may also allow for some less trained technicians, as the risks associated with smaller sample sizes are lower. Small sample sizes work well for disposable point-of-care devices (POCs) where size and unit price are important.
  • POCs point-of-care devices
  • samples may be plants and fungi.
  • farmers may want to know which pathogen or bioengineered drug is affecting their crops.
  • Food safety and testing are other areas where small sample sizes are suitable.
  • Microfluidic technology involves handling and manipulating very small fluids, such as microliters or less, with low reagent volumes, high specific surface area (surface to volume ratio), low cost, and ease of small fluids suitable for cell analysis It provides various advantages such as proper handling. Microfluidic devices have also been proposed for cell destruction. However, cell disruption with very small fluids presents various challenges, one of which is how to increase the pressure. Also, some cell disruption methods may require increasing pressure over a period of time to relieve that pressure in order to optimize efficiency. However, when cell disruption is performed by a hydraulic press, it takes time to increase the pressure, and a large-scale device may be required.
  • the igneous cell crusher contains a igneous charge configured to be ignited and burned upon ignition and a fluid sample containing cells and ignites and burns the igneous charge. It comprises a pressure chamber, including an internal space configured to be pressurized at times.
  • the technique according to the present disclosure it is possible to provide a technique capable of improving the crushing of cells contained in a fluid sample as compared with the conventional technique.
  • FIG. 1 shows a schematic cross-sectional view of the first aspect of the first pyrotechnic cell crusher before pressurization.
  • FIG. 2 shows a schematic cross-sectional view according to a second aspect after pressurization of the first pyrotechnic cell crusher.
  • FIG. 3 shows a schematic cross-sectional view according to the first aspect before pressurization of the second pyrotechnic cell crusher.
  • FIG. 4 shows a schematic cross-sectional view according to a second aspect after pressurization of the second pyrotechnic cell crusher.
  • FIG. 5 shows a schematic cross-sectional view according to the first aspect before pressurization of the third pyrotechnic cell crusher.
  • FIG. 6 shows a schematic cross-sectional view according to a second aspect after pressurization of the third pyrotechnic cell crusher.
  • FIG. 7 shows a schematic cross-sectional view according to the first aspect before pressurization of the fourth pyrotechnic cell crusher.
  • FIG. 8 shows a schematic cross-sectional view according to a second aspect after pressurization of the fourth pyrotechnic cell crusher.
  • FIG. 9 shows an exploded view of the pyrotechnic cell crushing apparatus according to the fifth embodiment.
  • FIG. 10 shows a schematic cross-sectional view of the pyrotechnic cell crushing apparatus according to the fifth embodiment.
  • FIG. 11 shows a perspective perspective view of the pyrotechnic cell crushing apparatus according to the sixth embodiment.
  • FIG. 12 shows a schematic cross-sectional view of the pyrotechnic cell crushing apparatus according to the sixth embodiment.
  • FIG. 13 shows a schematic cross-sectional view of a pyrotechnic cell crushing apparatus including a sample chip according to a seventh embodiment.
  • FIG. 14 shows a cross-sectional view and a plan view as shown in FIG. 13 in a state where the clamp is removed in the first aspect before pressurization.
  • FIG. 15 shows a cross-sectional view and a plan view as shown in FIG. 13 in a state where the clamp is removed in the second aspect after pressurization.
  • FIG. 16 shows a schematic cross-sectional view of a pyrotechnic cell crushing apparatus including a sample chip with a downstream treatment according to an eighth embodiment.
  • FIG. 17 shows a cross-sectional view and a plan view as shown in FIG. 16 in a state where the clamp is removed in the first aspect before pressurization.
  • FIG. 18 shows a cross-sectional view and a plan view as shown in FIG. 16 in a state where the clamp is removed in the second aspect after pressurization.
  • FIG. 19 shows an exploded view of the pyrotechnic cell crushing apparatus according to the ninth embodiment.
  • FIG. 20 shows a schematic cross-sectional view of the pyrotechnic cell crushing apparatus according to the ninth embodiment.
  • FIG. 21 shows a cross-sectional view of only the chips shown in FIGS. 19 and 20 for explaining the first step of the cell disruption method.
  • FIG. 22 shows a cross-sectional view of only the chips shown in FIGS.
  • FIG. 23 is similar to FIGS. 19 to 22, but shows a cross-sectional view of a tenth embodiment in which the chip is an integrated portion of the lower housing.
  • FIG. 24 shows a plan view of the lower housing portion forming the chip in the tenth embodiment shown in FIG. 23.
  • FIG. 25 shows a cross-sectional view of the chip only to illustrate the first step of the cell disruption method.
  • FIG. 26 shows a cross-sectional view of the chip only to illustrate the second step of the cell disruption method.
  • FIG. 27 shows a schematic cross-sectional view of a pyrotechnic cell crushing apparatus including the sample chip according to the eleventh embodiment.
  • FIG. 28 shows a cross-sectional view and a plan view as shown in FIG. 27 in a state where the clamp is removed in the first aspect before pressurization.
  • FIG. 29 shows a cross-sectional view and a plan view as shown in FIG. 27 in a state where the clamp is removed in the second aspect after pressurization.
  • the explosive cell crushing apparatus disclosed in each embodiment described below contains an explosive charge (explosive) configured to be ignited and burned at the time of ignition, and a fluid sample containing cells, and of the explosive charge. It comprises a pressure chamber configured to be pressurized during ignition and combustion. Further, the method for crushing a fire cell according to each embodiment is to house a fluid sample containing cells in a pressure chamber configured to be pressurized by the fire charge, and to ignite and burn the fire charge. This involves pressurizing the fluid sample contained in the pressure chamber.
  • cell crushing can be realized in an extremely short time by mainly using the fuel gas of the fire engineer as a pressurizing source when pressurizing the fluid sample.
  • cell disruption can be realized in an extremely short time as compared with the case where the fluid sample is pressurized by the hydraulic press.
  • the cells are not exposed to excessive heat for a long period of time, so that damage to the cells can be suppressed.
  • cell disruption can be performed without using a chemical substance which is not easy to handle.
  • the pyrotechnic cell crushing device can be provided with an initiator (igniter) having a housing for accommodating the pyrotechnic charge.
  • the initiator can preferably use, for example, an initiator for operating an airbag of a vehicle, and controls ignition of a fire engine charge by receiving an operating power supply from an external power source.
  • the igneous charge is not particularly limited, but for example, ZPP (zirconium / potassium perchlorate), ZWPP (zirconium / tungsten / potassium perchlorate), THPP (titanium hydride / potassium perchlorate), lead styphnate and the like can be used. Can be mentioned.
  • the fluid sample contained in the pressure chamber according to the present disclosure is not particularly limited as long as it is a fluid sample containing cells, but is, for example, a cell suspension in which cells are dispersed in a liquid.
  • the cells contained in the fluid sample are not particularly limited, and may be cells collected from humans or animals, plant cells, fungi, or other cells.
  • the dose (scale, size) of the fluid sample contained in the pressure chamber is not particularly limited, but for example, an extremely small dose on the order of microliter ( ⁇ L) can be adopted.
  • the dose of the fluid sample may be 10 ⁇ L or more and 500 ⁇ L or less.
  • any one of 20 ⁇ L, 50 ⁇ L, 100 ⁇ L, 150 ⁇ L, 200 ⁇ L, and 300 ⁇ L may be adopted as the upper limit value or the lower limit value in the dose of the fluid sample.
  • the dose of the fluid sample can be on the order of milliliters (mL) or larger.
  • the number of cells contained in the fluid sample is not particularly limited.
  • the number of cells contained in the fluid sample may be 1 ⁇ 10 2 cells / cm 3 or more and 1 ⁇ 10 9 cells / cm 3 or less.
  • 1 ⁇ 10 3 cells / cm 3 , 1 ⁇ 10 4 cells / cm 3 , 1 ⁇ 10 5 cells / cm 3 , 1 ⁇ 10 6 cells / cm 3 , 1 ⁇ 10 7 cells / cm 3 , 1 Any of ⁇ 10 8 cells / cm 3 may be adopted as the upper limit value or the lower limit value in the number of cells contained in the fluid sample.
  • the time required for igniting and burning a fireworks charge to pressurize a fluid sample containing cells contained in a pressure chamber and crush the cells is It is very short, and the time that the cells contained in the fluid sample are exposed to heat during pressurization can also be extremely short.
  • the time during which cells are exposed to heat during pressurization of a fluid sample is not particularly limited, but is, for example, 0.1 ms (millisecond) or more and 500 ms or less. You may.
  • the time from the start of the operation of the thermal cell crushing apparatus according to the present disclosure to the completion of the crushing treatment of the cells contained in the fluid sample (crushing treatment duration) is not particularly limited, but is, for example, 0.1 ms. It may be more than 1 s (second) or less. Further, for example, any one of 1 ms, 10 ms, 100 ms, and 500 ms may be adopted as the upper limit value or the lower limit value of the crushing treatment duration.
  • the pressure chamber of the pyrotechnic cell crusher according to the present disclosure can accommodate any material other than the fluid sample in addition to the fluid sample.
  • Materials other than the fluid sample contained in the pressure chamber include water, any other liquid, or other materials such as water-absorbent polymers, which may be filled in the pressure chamber.
  • the fire cell crushing apparatus may be provided with an orifice for circulating the fluid sample after pressurizing the fluid sample contained in the pressure chamber with the combustion gas of the fire charge.
  • the orifice is a fine passage through which a pressurized fluid sample flows in the pressure chamber.
  • the orifice may be, for example, a precision orifice formed as a channel having an orifice diameter and a flow path length that is a plurality of times longer than the orifice diameter.
  • the diameter of the orifice can be set to a size that allows the flow of the fluid sample and allows a sufficient shear stress to be applied to the fluid sample during the flow.
  • the diameter of the orifice can be set to different dimensions depending on the size, number, type, etc.
  • the fluid sample may be, for example, 1 ⁇ m or more and 500 ⁇ m or less. Further, for example, any one of 10 ⁇ m, 20 ⁇ m, 30 ⁇ m, 40 ⁇ m, 50 ⁇ m, 60 ⁇ m, 70 ⁇ m, 80 ⁇ m, 90 ⁇ m, 100 ⁇ m, 200 ⁇ m, 300 ⁇ m, and 400 ⁇ m may be adopted as the upper limit value or the lower limit value of the orifice diameter.
  • the fire cell crushing apparatus can be provided with a pressure release unit that releases pressure from the pressure chamber after pressurizing the fluid sample contained in the pressure chamber with the combustion gas of the fire charge.
  • the pressure release section can include a pressure release valve that opens the pressure chamber to the external space, a rupture disc, and the like.
  • the pressure value at which the pressure release valve is opened or the pressure value at which the rupture disc bursts is not particularly limited, but may be set to, for example, a pressure value of 20,000 psi or more and 50,000 psi or less.
  • any of 25,000 psi, 30,000 psi, 35,000 psi, 40,000 psi, and 45,000 psi is adopted as the upper limit value or the lower limit value of the pressure value at which the pressure release valve is opened or the pressure value at which the rupture disc bursts. You may.
  • FIG. 1 shows a schematic cross-sectional view of the first aspect of the first pyrotechnic cell crusher before pressurization.
  • the first fire cell crusher includes a cylinder body 1 having a piston 2 that pushes a fluid sample 3 through a precision orifice 4 and releases (releases) the sample to atmospheric pressure.
  • the precision orifice 4 is formed inside a separate portion 10 that is glued or press-fitted into the pressure chamber outlet, such as the release channel 9.
  • the pressure source is not hydraulic, but is generated by igniting the explosive charge (explosive) 5.
  • the pyrotechnic cell crusher further comprises a cap 6 that allows the device to be opened and closed, for example, to fill the device with a fluid sample 3 or to include a pyrotechnic charge 5.
  • the low pressure space 7 of the pressure chamber 15 may be provided between the piston 2 and the fluid sample 3.
  • the apparatus becomes the second aspect as shown in FIG.
  • the low-pressure space 7 shown in the embodiment shown in FIG. 1 changes into a high-pressure space 8 having a smaller volume and a higher pressure.
  • no space may be provided between the piston and the sample.
  • the low pressure space 7 may be filled with not only various different materials such as liquids but also other materials such as water-absorbent polymers. The latter smoothes the pressure shock wave to some extent to help achieve the desired cell disruption result.
  • the sample can be filled after removing the cap and piston, but it is also possible to fill the sample through the release channel 9, especially after removing the insert containing the precision orifice 4.
  • the precision orifice 4 generates shear stress when cells pass through the precision orifice 4.
  • the cells are then rapidly depressurized after passing through the precision orifice 4.
  • the sample size can be reduced, for example, to 150 ⁇ L, or, for example, to 10 ⁇ L. It is also possible to have a larger sample size, such as 1 milliliter. Given that the sample size is typically very small, the release time through the precision orifice 4 is very short.
  • the gas including the gas in the low pressure space 7 that is rapidly compressed after the ignition of the igneer charge 5, is heated in a very short time by the compression and is very short before its release (release) through the precision orifice 4. Is exposed to the heat for a short time. This time is short enough to prevent damage to the cell material, but long enough to aid in the cell disruption process.
  • the fire charge is housed in a separate fire charge chamber housing 16 that also includes the first piston 12.
  • a fire charge chamber housing 16 can include a first cylinder chamber 13 that houses the fire charge 5 and the first piston 12.
  • the first piston 12 is movable relative to the first cylinder chamber 13 under the pressure generated by igniting and burning the fire engineer charge 5.
  • the first piston 12 is connected to a second piston, here the aforementioned piston 2 provided in the pressure chamber 15.
  • the piston 2 is provided in the pressure chamber 15 so as to form one wall of the pressure chamber 15.
  • the first cylinder chamber 13 is provided in a firework charge chamber housing 16 in which at least a part thereof is housed in the pressure chamber 15.
  • the first fire cell crushing device D1 (see FIGS. 1 and 2) according to the first embodiment is a fire charge 5 (explosive) configured to be ignited and burned at the time of ignition.
  • a pressure chamber 15 (low pressure space 7 / high pressure space 8) configured to accommodate the fluid sample 3 and to be pressurized during ignition and combustion of the explosive charge 5, and the pressure chamber 15 (low pressure space 7).
  • a release channel 9 for connecting the high pressure space 8) to the external space is provided.
  • the release channel 9 has a precision orifice 4 configured as a passage for the fluid sample 3.
  • the first pyrotechnic cell crusher D1 includes a cylinder body 1 having a pressure chamber 15 inside. As shown in FIGS.
  • the cylinder body 1 has a bottomed cylinder shape having an open end at the top, and a cap 6 is removable at the open end.
  • the cylinder body 1 may be a housing member having a bottomed cylinder shape.
  • the firework charge chamber housing 16 is integrally fixed to, for example, the inner surface side of the cap 6.
  • the fluid sample 3 is housed in the pressure chamber 15 by placing the fluid sample 3 on the bottom of the cylinder body 1.
  • the first pyrotechnic cell crushing device D1 When the first pyrotechnic cell crushing device D1 is activated, the ignition control of the pyrotechnic charge 5 is performed, and for example, the pyrotechnic charge 5 burns.
  • the first pyrotechnic cell crushing device D1 includes an initiator (igniter) for controlling the ignition of the pyrotechnic charge 5, and the pyrotechnic charge 5 and the housing holding the initiator form a part of the initiator. You may be doing it.
  • the initiator further has, for example, a wire connected to an external power source, and can perform ignition control of the firework charge 5 by receiving an operating power supply from the external power source.
  • the first fire cell crusher D1 has the fire charge 5 and the fire charge 5 and the first cylinder chamber 13 formed in the fire charge chamber housing 16 in which at least a part thereof is housed in the cylinder body 1.
  • the first piston 12 is housed. Therefore, the fireworks charge chamber housing 16 can also be referred to as a "first cylinder chamber housing" forming the first cylinder chamber 13.
  • the pyrotechnic charge 5 is housed in the upper region of the first cylinder chamber 13 and in the lower region thereof. At least a part of the first piston 12 is housed. As shown in FIG.
  • the fire charge 5 is defined by a fire charge chamber housing 16 arranged separately from the cylinder body 1 of the pressure chamber 15 before the operation of the first fire cell crushing device D1. It is housed in the first cylinder chamber 13.
  • the first cylinder chamber 13 can be specified as a "fireworks charge chamber” that houses the fireworks charge 5.
  • the first piston 12 includes a head portion 121 and a rod portion 122 that extends downward from the head portion 121 and is integrated with the head portion 121.
  • a rod insertion hole 161 is formed through the bottom of the firework charge chamber housing 16. Then, in a state where the rod portion 122 of the first piston 12 is inserted into the rod insertion hole 161 into the piston 2 (second piston) housed in the pressure chamber 15 (outside the first cylinder chamber 13). The lower end of the rod portion 122 is connected.
  • the first piston 12 is configured to be movable along the vertical direction of, for example, the first cylinder chamber 13 with the head portion 121 housed in the firework charge chamber housing 16. Further, the diameter of the head portion 121 in the first piston 12 may be larger than the diameter of the rod insertion hole 161 so that the head portion 121 does not fall out of the first cylinder chamber 13.
  • the region sandwiched between the bottom of the cylinder body 1 and the piston 2 (second piston) is also referred to as a "second cylinder chamber".
  • the second cylinder chamber in the pressure chamber 15 forms a low pressure space 7 (see FIG. 1) in the first aspect before pressurization (before operation) of the first fire cell crusher D1 and pressurizes.
  • the high pressure space 8 is formed (see FIG. 2).
  • the combustion charge 5 burns to generate combustion gas, and as a result, the first cylinder chamber The pressure in 13 rises.
  • the head portion 121 of the first piston 12 is pressed under the pressure generated by the combustion of the fire engine charge 5, and the first piston 12 moves downward with respect to the first cylinder chamber 13. ..
  • the piston 2 (second piston) connected to the rod portion 122 of the first piston 12 also moves downward (bottom side of the cylinder body 1) in conjunction with it.
  • the volume of the second cylinder chamber in the pressure chamber 15 becomes smaller, and the second cylinder chamber changes from the low pressure low pressure space 7 to the high pressure high pressure space 8.
  • the fluid sample 3 housed in the second cylinder chamber (here, the high pressure space 8) in the pressure chamber 15 is pressurized, and the cells contained in the fluid sample 3 (for example, the outer shell (cell membrane) of the cells) are pressurized. , Cell wall, etc.) can be crushed.
  • "low pressure space 7 / high pressure space 8" together refers to the same space in the pressure chamber 15, that is, fire.
  • the industrial cell crushing device D1 Before the operation of the industrial cell crushing device D1 (before pressurization), it is formed as a low-pressure low-pressure space 7, and after the operation of the device (after pressurization), the low-pressure space 7 changes to a high-pressure high-pressure space 8.
  • the fluid sample 3 housed in the pressure chamber 15 (high pressure space 8) pressurized by the piston 2 (second piston) as described above is connected to the release (release) channel 9 communicating with the high pressure space 8. It is pushed in and discharged to the outside of the device through the release channel 9.
  • the fluid sample 3 that has passed through the release channel 9 is collected in a collection container (not shown) under atmospheric pressure, for example. Since the precision orifice 4 has a very small diameter, a shear stress is generated when the fluid sample 3 passes through the precision orifice 4, and the shear stress is applied to the fluid sample 3.
  • the cells can be suitably crushed by applying the shear stress generated when passing through the precision orifice 4 to the cells contained in the fluid sample 3.
  • the fluid sample 3 that has passed through the precision orifice 4 is rapidly depressurized by being exposed to atmospheric pressure.
  • the expansion pressure can promote the crushing of the cells contained in the fluid sample 3.
  • the cells contained in the fluid sample 3 are crushed, and intracellular substances such as DNA, RNA, protein or organelles are separated from the cells. By doing so, various cell analysis, cell diagnosis and the like can be performed.
  • the first pyrotechnic cell crusher D1 it can be obtained by igniting and burning a pyrotechnic charge 5 instead of a hydraulic type as a pressure source for pressurizing the fluid sample 3.
  • a pyrotechnic charge 5 instead of a hydraulic type as a pressure source for pressurizing the fluid sample 3.
  • the pistons first piston 12 and second piston
  • the combustion gas generated by the ignition of the explosive charge 5 explosive
  • the high pressure space 8 is instantly created in the pressure chamber 15. It can be formed to rapidly pressurize the fluid sample 3 and release it to the outside through the precision orifice 4. This makes it possible to realize efficient cell disruption in a short time.
  • the fluid sample 3 can be pressurized in a short time as described above, so that the cells contained in the fluid sample 3 have a high temperature for a long time. It is possible to suppress exposure to. As a result, damage to the cells contained in the fluid sample 3 can be suitably suppressed.
  • the pyrotechnic charge 5 (explosive) is used as the pressure source for pressurizing the fluid sample 3
  • efficient cell crushing is realized with a small amount of pressure source. be able to.
  • the pyrotechnic cell crusher can be made compact.
  • the explosive charge 5 (explosive) used as a pressure source for pressurizing the fluid sample 3 can be said to be a material suitable for precise control of the generated pressure (output). Therefore, even if the size of the fluid sample 3 housed in the pressure chamber 15 is on the order of microliters, the pressure control when pressurizing the cells contained in the fluid sample 3 can be performed with high accuracy.
  • the fluid sample 3 can be made into an extremely small size, it is possible to collect cells having low invasiveness, especially when cells are collected from humans or animals. ..
  • the sample size can be reduced, the risk of polluting the environment can be reduced, and more advanced automation becomes possible.
  • the small sample size works well for disposable point-of-care devices (POCs) where size and unit price are important, so it is possible to provide a pyrotechnic cell disruptor suitable for point-of-care.
  • POCs point-of-care devices
  • FIG. 3 shows a schematic cross-sectional view of the first aspect of the second pyrotechnic cell crusher before pressurization
  • FIG. 4 shows a second aspect of the second pyrotechnic cell crusher after pressurization.
  • a schematic cross-sectional view relating to the above is shown.
  • the embodiments shown in FIGS. 3 and 4 are essentially variants of the embodiments shown in FIGS. 1 and 2. Similar elements are indicated by the same reference number.
  • the embodiment according to FIGS. 3 and 4 does not include a piston, but instead includes a deformable diaphragm 14 that divides the low pressure space 7 and the corresponding high pressure space 8 into two parts. As a result, the pressure chamber 15, as shown in FIG.
  • a deformable diaphragm 14 configured to deform under the pressure generated by the fire charge 5 upon ignition and combustion of the fire charge 5. At least partially defined by.
  • the diaphragm 14 reduces the volume of the pressure chamber during deformation and, as a result, pressurizes the pressure chamber during deformation.
  • the fireworks charge chamber housing 16 includes a predetermined break portion (break point) 17 at the lower end of the pressure release channel 18 of the fireworks charge.
  • the fluid sample 3 can be inserted into the apparatus shown in FIGS. 3 and 4 by splitting the housing into two parts at the diaphragm position, removing the diaphragm, and assembling the housing to hold the diaphragm in place.
  • the advantage of the embodiments shown in FIGS. 3 and 4 is that the diaphragm 14 airtightly seals the fluid sample 3 from the fire charge 5, so that the by-product of the fire charge 5 after ignition mixes with the fluid sample 3. Is to suppress.
  • the diaphragm is preferably made of metal, but may be other materials such as PE, PP, or other plastically deformable or other polymers.
  • Another option is a composite structure such as a coated cloth or polymer coated glass that holds the glass together with a polymer coating even if the glass breaks.
  • the bellows-like structure can be useful as a diaphragm.
  • a further option is to use a mesh screen that helps capture the particles and protect the sample from debris, but does not act as a pressure bulkhead, which is essentially shown in FIGS. 3 and 5. It is a combination of embodiments.
  • the second pyrotechnic cell crusher D2 (see FIGS. 3 and 4) according to the second embodiment is a separate pyrotechnic device separated from the pressure chamber 15 formed inside the cylinder body 1.
  • the pyrotechnic charge 5 is housed in the medicine chamber 11.
  • the fire charge chamber 11 is formed inside the fire charge chamber housing 16, and as shown in FIG. 3, a pressure release channel 18 is provided at the bottom of the fire charge chamber housing 16.
  • the pressure release channel 18 is a channel 18 for releasing the pressure generated in the fire charge chamber housing 16 at the time of ignition and combustion of the fire charge 5 to the pressure chamber 15 in which the diaphragm 14 is arranged.
  • the pressure chamber 15 is partitioned into two spaces by the diaphragm 14.
  • the space on the fireworks charge chamber housing 16 side is called the "first internal space S1", and the space on the bottom side of the cylinder body 1 on which the fluid sample 3 is placed is called “first internal space S1". It is called “second internal space S2".
  • the first internal space S1 of the pressure chamber 15 does not include the internal space of the firework charge chamber housing 16.
  • the fluid sample 3 is housed in the second internal space S2 of the pressure chamber 15.
  • the release channel 9 having the precision orifice 4 is connected to the second internal space S2 of the pressure chamber 15, and the second internal space S2 can communicate with the external space via the release channel 9 having the precision orifice 4. It has become.
  • the pressure release channel 18 of the fire charge chamber housing 16 is the first of the pressure chamber 15. It does not communicate with the internal space S1 and is blocked by a break portion 17 formed at the bottom of the firework charge chamber housing 16 facing the first internal space S1 (pressure chamber 15).
  • the pressure release channel 18 may be formed as, for example, a recess formed at the bottom of the firework charge chamber housing 16, and the fractured portion 17 may be formed by a portion thinned by the formation of the pressure release channel 18. It may be formed.
  • the broken portion 17 in the firework charge chamber housing 16 is formed as a fragile portion that is more fragile than other portions.
  • the break portion 17 in the firework charge chamber housing 16 is arranged so as to face the first internal space S1.
  • the pressure of the fire charge chamber 11 is increased by the combustion gas generated by the fire charge 5, and the broken portion 17 is formed. Burst.
  • the fireworks charge chamber 11 and the first internal space S1 of the pressure chamber 15 communicate with each other via the pressure release channel 18, and the combustion gas of the fireworks charge 5 is introduced into the first internal space S1.
  • the diaphragm 14 is deformed from the first internal space S1 side toward the second internal space S2 side, and the volume of the first internal space S1 is increased as compared with the state shown in FIG. Then, the volume of the second internal space S2 is reduced.
  • the pressure in the second internal space S2 in which the fluid sample 3 is housed increases, and the pressure changes from the low pressure space 7 to the high pressure space 8.
  • the volume of the first internal space S1 is larger than that shown in FIG. 3, the combustion gas of the fire engine charge 5 flows in through the pressure release channel 18, so that the second fire cell crusher D2
  • the first internal space S1 also changes from the low pressure space 7 to the high pressure space 8 with the operation.
  • the cap 6 is detachably provided with respect to the upper end opening of the cylinder body 1, and the fire engine charge 5 is housed inside the cap 6.
  • the fireworks charge chamber housing 16 can be fixed.
  • the fluid sample 3 housed in the second internal space S2 of the pressure chamber 15 is pressurized. As a result, the cells contained in the fluid sample 3 can be crushed. Further, as described above, since the release (release) channel 9 including the precision orifice 4 is connected to the second internal space S2 of the pressure chamber 15, the pressurized fluid sample 3 is connected to the release (release) channel 9. Be pushed in. Then, the shear stress generated when the fluid sample 3 passes through the precision orifice 4 is applied to the fluid sample 3, so that the cells contained in the fluid sample 3 are crushed.
  • the fluid sample 3 thus subjected to the cell disruption treatment can be collected in a collection container as in the first embodiment.
  • the second pyrotechnic cell crushing device D2 in the present embodiment the same effect as that of the first pyrotechnic cell crushing device D1 can be obtained.
  • the diaphragm 14 is formed of a metal material, for example, aluminum, cast iron, stainless steel, or the like may be used as the material.
  • FIG. 5 shows a schematic cross-sectional view of the first aspect of the third pyrotechnic cell crusher before pressurization
  • FIG. 6 shows a second aspect of the third pyrotechnic cell crusher after pressurization.
  • a schematic cross-sectional view relating to the above is shown.
  • This third embodiment is very similar to the second embodiment, except that the diaphragm 14 is completely omitted. Therefore, the separate fire charge chamber housing 16 is opened directly into the pressure chamber during ignition and combustion of the fire charge. This embodiment simplifies the loading of the sample into the device and minimizes sealing and moving parts, but exposes the sample to by-products of the fire engine after ignition.
  • the intracellular molecule does not chemically interact with the by-products or compromises proper detection / diagnosis. In some cases it can be tolerated.
  • chemical interactions with the by-products of the fireworks charge can be used advantageously if the by-products allow / enhance cell lysis. Certain chemicals and detergents are used alone to lyse cells.
  • the heat generated by the fireworks charge can also be advantageous in enabling / enhancing cell lysis.
  • the device can also take advantage of mechanical failure by adding hard beads or other projectiles / stirrers to the reaction chamber. Similar to the embodiments of FIGS. 1 to 4, in this third embodiment, similar reference numbers are used for similar elements as compared to the first and second embodiments.
  • the inside of the pressure chamber 15 is not partitioned by a diaphragm or the like.
  • the pressure chamber 15 is formed as a low pressure space 7 before the operation (before pressurization) of the third pyrotechnic cell crushing device D3. Further, after the operation of the third pyrotechnic cell crushing device D3 (after pressurization), the internal pressure of the pressure chamber 15 increases, so that the low pressure space 7 changes to the high pressure space 8. Further, as is clear from FIG.
  • the thermal charge chamber housing 16 is provided with a pressure release channel 18 and a break portion 17.
  • the pressure release channel 18 does not communicate with the internal space (low pressure space 7) of the pressure chamber 15 before the operation (before pressurization) of the third pyrotechnic cell crushing device D3. Then, the fire charge 5 is ignited with the operation of the device, and the fragile break portion 17 bursts under the pressure of the combustion gas generated by the combustion of the fire charge 5.
  • the fireworks charge chamber housing 16 (fireworks charge chamber 11) opens directly into the pressure chamber 15 (low pressure space 7), and the pressure in the fireworks charge chamber housing 16 is released (released).
  • the pressure chamber 15 in which the fluid sample 3 is housed changes from the low pressure space 7 to the high pressure space 8, and the fluid sample 3 is pressurized, so that the cells contained in the fluid sample 3 are crushed.
  • the fluid sample 3 is pushed into the release channel 9 and receives shear stress as it passes through the precision orifice 4, which promotes cell disruption.
  • the fluid sample 3 that has passed through the release (release) channel 9 is rapidly expanded when released under atmospheric pressure to further promote cell disruption, and then is housed in, for example, a collection container.
  • the third pyrotechnic cell crushing device D3 in the present embodiment can also obtain the same effects as the first and second pyrotechnic cell crushing devices D1 and D2.
  • FIG. 7 shows a schematic cross-sectional view of the first aspect of the fourth pyrotechnic cell crusher before pressurization
  • FIG. 8 shows a second aspect of the fourth pyrotechnic cell crusher after pressurization.
  • the schematic cross-sectional view concerning.
  • the embodiments shown in FIGS. 7-8 do not have a precision orifice 4, but are airtight to form a low pressure space 7 prior to ignition of the fire charge. Includes the stopped pressure chamber 15, while the exact same space forms the high pressure space 8 after ignition of the igneous charge, the latter aspect of which is shown in FIG.
  • the sample size can be comparable to FIGS.
  • the fluid sample 3 is provided in a separate sample container 19.
  • the container includes a pressure release section 21 including a pressure release valve 20.
  • the container 19 has sufficient flexibility so that it can be crushed under pressure to pressurize the fluid sample 3.
  • the container may be formed as a sample pouch (see, eg, FIG. 9).
  • the container 19 may not be crushed by the support of the fluid sample 3, but the container is sufficient to pressurize the sample. It should still be flexible.
  • the vessel 19 can also accommodate a different material, such as a water-absorbing polymer, which provides the integrity of the vessel when exposed to the pressure shock waves resulting from the combustion of the igneous charge 5. Helps protect.
  • the container can be configured to explode under pressure from the fire charge.
  • one or more samples (pouches) can be processed simultaneously in the same chamber.
  • the pressure release valve 20 is opened.
  • the release of the pressure release valve 20 also typically occurs rapidly, causing a rapid pressure drop over time, facilitating cell membrane rupture due to cell swelling.
  • the heat generated by the thermal charge 5 can help make the cell membrane vulnerable to rupture and therefore help cell crushing.
  • Various other physical and chemical conditions resulting from the burning of the igneous charge 5 can contribute to cell destruction.
  • the composition of the charge (gunpowder) itself, depending on the combination of the initiator and the gas generator, can be applied to regulate the rate of gas and heat generation.
  • Waste heat can be used for other purposes within the Point of Care (POC) detection system (amplification and detection).
  • the waste gas pressure can be used to move the sample from one location (stage) to another (stage) or can be stored for use in a POC device.
  • POC Point of Care
  • container 19 helps the operator to comply with various regulatory standards for clinical trials as it is protected from exposure to the sample.
  • the container may rupture under pressure or remain intact.
  • the fluid sample 3 can be removed from the apparatus by opening the cap 6 or, if the container 19 is configured to burst, by releasing it via a pressure release valve 20.
  • Such release of the disrupted cell sample can be achieved by turning (rotating) the device and using some residual pressure to release the sample.
  • a spring is provided or the housing is configured to elastically deform and bounce to generate a pressure wave that resonates at a specific frequency and amplitude, and the degree (range) of cytolysis before releasing (releasing) the pressure. ) Can be increased.
  • the entire sample preparation and assay can be performed in a single chamber in the instrument, i.e. a hydrostatic process.
  • This device has a simple structure and can reduce the number of parts. This not only reduces development and manufacturing costs, but also reduces the risk of mechanical failure and contamination. It can also reduce the amount of sample required and / or improve the assay signal by preventing sample waste.
  • the fourth fire cell crusher D4 (see FIGS. 7 and 8) configured as described above contains the fire charge 5 configured to be ignited and burned upon ignition, and the fluid sample 3.
  • the pressure chamber 15 (low pressure space 7 / high pressure space 8) configured to be pressurized during ignition and combustion of the fire charge 5 and the pressure chamber 15 is pressurized by ignition and combustion of the fire charge 5.
  • a pressure release unit 21 (pressure release valve 20) that releases pressure from the pressure chamber 15 after the pressure is released is provided. Further, as is clear from FIG. 7, regarding the structure of the firework charge chamber housing 16 for accommodating the firework charge 5 before the operation (before pressurization) of the fourth fire cell crushing device D4, the second and second Similar to the fire cell crushing devices D2 and D3 of No.
  • the fire charge chamber housing 16 is provided with a pressure release channel 18 and a break portion 17, and is configured to burst when the fire charge 5 is ignited and burned. It is housed in a separate fire charge chamber 11 formed in the fire charge chamber housing 16 and separated from the pressure chamber 15. Then, in the fourth fire cell crushing device D4, as in the third fire cell crushing device D3, the broken portion 17 is formed by the pressure of the combustion gas generated by the ignition of the fire charge 5 during operation. Upon bursting, the fireworks charge chamber housing 16 (fireworks charge chamber 11) opens directly into the pressure chamber 15 (low pressure space 7).
  • the combustion gas of the fire charge 5 flows out from the inside of the fire charge chamber housing 16 into the pressure chamber 15 in which the container 19 for holding (accommodating) the fluid sample 3 is arranged, and the inside of the pressure chamber 15 is filled. It changes from the low pressure space 7 to the high pressure space 8. As a result, the fluid sample 3 contained in the container 19 is pressurized, and the cells contained in the fluid sample 3 can be crushed.
  • the container 19 is formed of a pouch that is flexible and can be filled (accommodated) with the fluid sample 3, and the pouch is used to ignite the pyrotechnic charge. And it is configured so that it does not explode when exposed to burning pressure.
  • the fluid sample 3 filled in the container 19 can be suitably pressurized and the cells can be crushed without destroying the container 19 when the fourth pyrotechnic cell crushing device D4 is operated.
  • the pressure release unit 21 has a pressure release valve 20, and the pressure release valve 20 is, for example, the pyrotechnic charge 5 when the fourth pyrotechnic cell crusher D4 is operated.
  • the valve body may be a valve body that is automatically opened when the elapsed time after ignition has elapsed by a predetermined time.
  • the pressure release valve 20 of the pressure release unit 21 is at a time when the pressure of the pressure chamber 15 (high pressure space 8) in which the container 19 is housed rises to a predetermined pressure, for example, when the fourth fire cell crushing device D4 is operated. It may be a valve body that is automatically opened by.
  • the set value of the pressure at which the pressure release valve 20 is automatically released is not particularly limited, but may be set so as to be released when exposed to a pressure of at least 20,000 psi.
  • the set value of the pressure at which the pressure release valve 20 is automatically released can be appropriately set according to, for example, the amount of the fluid sample 3 contained in the container 19, the type of cells contained in the fluid sample 3, and the like.
  • the pressure release valve 20 may be a valve body that can be manually released.
  • the pressure release unit 21 may have a rupture disc that ruptures when exposed to a predetermined pressure. The rupture disc may be configured to rupture when exposed to pressures of, for example, at least 20,000 psi.
  • the pressure release valve 20 when the pressure release valve 20 is opened from the state where the fluid sample 3 housed in the pressure chamber 15 (high pressure space 8) is pressurized under high pressure, a sudden pressure drop occurs in the high pressure space 8. .. As a result, the cells contained in the fluid sample 3 expand rapidly, and for example, a large shear stress acts on the cells to promote cell disruption.
  • the material of the container 19 for filling (accommodating) the fluid sample 3 is not particularly limited, but a flexible pouch having flexibility may be used. Alternatively, the container 19 may be made of a hard material such as resin or glass. In this case, when the pressure chamber 15 changes from the low pressure space 7 to the high pressure space 8 due to the combustion gas of the thermal charge 5, the container 19 is crushed or broken so that the fluid sample 3 inside is pressurized. It may be.
  • FIG. 9 shows an exploded view of the fifth pyrotechnic cell crusher
  • FIG. 10 shows a schematic cross-sectional view of the fifth pyrotechnic cell crusher.
  • the pressure release portion 21 is formed as a rupture disc assembly 22 including a rupture disc 23 as shown in FIG.
  • the rupture disc releases pressure quickly in a controlled (controlled) manner and within the time frame required to rupture the rupture disc 23.
  • This rupture disc is designed to allow such a time frame required to achieve cell destruction.
  • the sample pouch 24 is provided in the sample cage 25.
  • the cage 25 is not always necessary, but it helps to handle the sample pouch 24 carefully and also helps to insert the sample pouch into the pressure chamber 15. The cage also prevents the sample pouch from accidentally blocking the pressure release vent after the explosive charge explodes.
  • FIGS. 11 and 12 in which the sample is placed outside the direct path between the gas produced by the explosive charge and the vent (exhaust port).
  • Assembly of the device can be accomplished by screwing the pressure chamber 15 containing the sample pouch 24 inserted into the cage 25 together with the gasket 26 and the cap 6 by a high strength bolt 27 or other clamping method. ..
  • the fire charge is provided in the initiator 28 coaxially inserted in the pressure chamber 15. Ignition of the fire charge can be achieved by connecting the initiator 28 to a power source in the initiator 28 that supplies a voltage sufficient to ignite the fire charge via its wire 29.
  • the fifth pyrotechnic cell crushing device D5 in the fifth embodiment more specifically realizes the concept of the fourth pyrotechnic cell crushing device D4 described with reference to FIGS. 7 and 8.
  • similar reference numbers are used for similar elements as compared to the fourth embodiment.
  • the pressure chamber 15 has a pressure vessel 150, and a hollow portion is provided so as to penetrate the pressure vessel 150 along the vertical direction of the pressure vessel 150.
  • An initiator 28 is attached to a portion where the hollow portion opens to the bottom of the pressure vessel 150 so as to airtightly close the opening.
  • the firework charge chamber housing 16 of the initiator 28 is arranged so as to face the inside of the pressure vessel 150.
  • Reference numeral 153 shown in FIG. 9 is a cap fastening portion in the pressure vessel 150.
  • the cap fastening portion 153 is located on the upper side of the pressure vessel 150, and the cap 6 can be detachably attached.
  • the cap fastening portion 152, the gasket 26, and the cap 6 are formed with screw holes for inserting the high-strength bolts 27.
  • the cap 6 can be integrally fastened to the cap fastening portion 153 of the pressure vessel 150.
  • the cap 6 can be detached from the pressure vessel 150 by removing the high-strength bolt 27.
  • an airtight pressure chamber 15 is formed inside the pressure vessel 150.
  • the pressure chamber 15 in the present embodiment includes a sample container accommodating portion 151 extending along the vertical direction (axial direction) of the pressure vessel 150 and coaxially connected, and a pressure channel 30.
  • the sample container accommodating portion 151 is open to the upper surface of the pressure vessel 150, and the lower end of the sample container accommodating portion 151 is connected to the upper end of the pressure channel 30.
  • the pressure channel 30 and the sample container accommodating portion 151 are, for example, hollow portions having a cylindrical shape, and the diameter (cross-sectional area) of the sample container accommodating portion 151 is one size larger than the diameter (cross-sectional area) of the pressure channel 30.
  • the sample container mounting portion 152 is formed by a step extending in the radial direction provided between the accommodating portion 151 and the connecting portion (boundary portion) of the pressure channel 30.
  • a single sample pouch 24 or a sample pouch 24 with a cage 25 attached can be placed on the sample container mounting portion 152.
  • the cage 25 is, for example, a cage-shaped member capable of holding a flexible sample pouch 24. Even when the cage 25 is attached to the sample pouch 24, a part of the sample pouch 24 is maintained in an exposed state.
  • an example in which the fluid sample is housed in the flexible sample pouch 24 is described, but another container filled with the fluid sample is placed on the sample container mounting portion 152 to place the sample. It may be accommodated in the container accommodating portion 151.
  • a fire charge chamber 11 for accommodating the fire charge 5 is formed inside the fire charge chamber housing 16 in the initiator 28, a fire charge chamber 11 for accommodating the fire charge 5 is formed.
  • the igneous charge chamber housing 16 is located in the pressure channel 30.
  • the fire charge chamber housing 16 may be formed of, for example, a cup member that can be burst by energy during ignition and combustion of the fire charge 5.
  • the cup member may be formed of a thin metal member such as aluminum.
  • the pressure channel 30 functions as a ventilation path for supplying the combustion gas of the fire engine charge 5 to the sample container accommodating portion 151 when the initiator 28 is operated.
  • the pressure chamber 15 is formed as a low-pressure low-pressure space 7.
  • the sample container accommodating portion 151 is opened on the upper surface of the pressure vessel 150, and the sample container accommodating portion 151 is covered by the cap 6 by attaching the cap 6 to the pressure vessel 150. It is configured as follows. Further, as shown in FIGS. 9 and 10, the cap 6 is provided with a pressure release portion 21.
  • the pressure release section 21 includes a rupture disk assembly 22 and a pressure release vent 61.
  • the pressure release air passage 61 is an air passage formed so as to penetrate the cap 6 in the axial direction.
  • the rupture disc assembly 22 has a pressure release air passage 22A connected to the pressure release air passage 61, a rupture disc 23 arranged so as to block (block) the middle of the pressure release air passage 22A, and the like.
  • the pressure release vent 22A extends vertically through the rupture disc assembly 22.
  • the pressure release vent passages 61 and 22A communicate the sample container accommodating portion 151 with the external space when the rupture disk 23 bursts after the pressure chamber 15 is pressurized by the ignition and combustion of the fire engine charge 5.
  • the pressure in the pressure chamber 15 is released to the outside.
  • the rupture disc 23 is configured so that the rupture disc 23 bursts when the pressure on the primary side, that is, the pressure in the pressure chamber 15 rises to a predetermined pressure.
  • the pressure at which the rupture disk 23 bursts can be appropriately set according to, for example, the amount of the fluid sample 3 filled in the sample pouch 24, the type of cells contained in the fluid sample 3, and the like. Further, as shown in FIG.
  • the pressure channel 30, the sample vessel accommodating portion 151, and the pressure release vent passages 61 and 22A are arranged coaxially. More specifically, with the cap 6 attached to the pressure vessel 150, the pressure channel 30, the sample vessel accommodating portion 151, and the pressure release vent passages 61 and 22A are aligned with each other through the central axis of the pressure vessel 150. It is arranged coaxially.
  • the fire charge chamber 11 is generated by the combustion gas generated by the combustion of the fire charge 5.
  • the firework charge chamber housing 16 (for example, a cup member) is cleaved by an increase in the internal pressure of the.
  • the combustion gas of the fire charge 5 is introduced from the fire charge chamber 11 to the pressure channel 30 in the pressure chamber 15.
  • the combustion gas of the fire charge 5 is introduced into the sample container storage section 151 of the pressure chamber 15 coaxially connected to the pressure channel 30, and as a result, the sample container storage section 151 in which the sample pouch 24 is housed
  • the pressure increases sharply.
  • the sample container accommodating portion 151 changes from the low-pressure space 7 to the high-pressure high-pressure space 8.
  • a part of the sample pouch 24 is exposed even when the cage 25 is attached to the sample pouch 24.
  • the sample pouch 24 can be exposed to the high pressure in the sample container housing portion 151 that has changed to the high pressure space 8.
  • the fluid sample 3 filled in the sample pouch 24 is rapidly pressurized, and the cells contained in the fluid sample 3 can be crushed.
  • the rupture disk 23 bursts when the pressure of the sample container accommodating portion 151 rises to a predetermined pressure, the sample container accommodating portion 151 is rapidly depressurized.
  • the pressure release air passage 22A of the pressure release unit 21 is blocked by the rupture disk 23 (rupture plate), but it may be replaced with the pressure release valve 20 described in the fourth embodiment. That is, the pressure release valve 20 may be automatically opened when the elapsed time from the ignition of the firework charge 5 has elapsed for a predetermined time, or the pressure is released when the pressure in the pressure chamber 15 rises to a predetermined pressure. The valve 20 may be automatically opened.
  • the pressure channel 30 and the sample container accommodating portion 151 are arranged coaxially, when the initiator 28 is operated to burn the fire charge 5, the pressure is increased. The combustion gas can be smoothly introduced into the sample container housing portion 151 via the channel 30, and the cells contained in the fluid sample 3 filled in the sample pouch 24 can be rapidly crushed. Further, in the fifth fire cell crushing device D5, the pressure channel 30, the sample container accommodating portion 151, and the pressure release vent passages 61 and 22A are arranged coaxially with the cap 6 attached to the pressure vessel 150.
  • the combustion gas is smoothly discharged from the pressure chamber 15 (sample container housing portion 151, pressure channel 30) to the outside through the pressure release vent passages 61 and 22A. be able to.
  • the depressurization in the pressure chamber 15 can be performed in a shorter time.
  • the cells contained in the fluid sample 3 of the sample pouch 24 expand more rapidly, and cell disruption can be further promoted.
  • FIG. 11 shows a perspective view of the pyrotechnic cell disruptor according to the sixth embodiment
  • FIG. 12 shows a schematic cross-sectional view of the sixth pyrotechnic cell disruptor.
  • This sixth embodiment is very similar to the fifth embodiment.
  • the initiator 28 is arranged laterally, and the initiator 28 is connected to the low pressure space / high pressure space 7 and 8 via the pressure channel 30 in the radial direction of the pressure chamber 15.
  • the advantage of the lateral approach according to FIGS. 11 and 12 over the coaxial approach according to FIGS. 9 and 10 is that the sample pouch 24 in the sample cage 25 is directly directed to the gas flow from the initiator 28 after ignition of the igneous charge. Not to be exposed.
  • the pressure channel 30 can intersect the low pressure space / high pressure space 7 and 8 arranged at intervals beyond one axial end in the combination of the sample pouch 24 and the sample cage 25.
  • the other axial end of the combination of the sample pouch 24 and the sample cage 25 can be placed on the bottom of the pressure chamber 15.
  • the pressure generated by the igneous charge also causes the sample pouch 24 and sample cage 25 combination. Push down toward the bottom of the pressure chamber 15. This keeps the combination of the sample pouch 24 and the sample cage 25 firmly in place and avoids unwanted movement of the combination of the sample pouch 24 and the sample cage 25.
  • the sixth pyrotechnic cell crushing device D6 is a modified example of the fifth pyrotechnic cell crushing device D5.
  • similar reference numbers are used for similar elements as compared to the fifth embodiment.
  • the pressure vessel 150 has a bottomed cylinder shape, and the pressure chamber 15 is formed inside the pressure vessel 150.
  • the pressure chamber 15 extends in the first direction and is connected to the pressurizing space portion 155 and the pressurizing space portion 155 by branching from the middle of the pressurizing space portion 155 in a second direction different from the first direction. Includes channel 30.
  • the pressure space portion 155 extends along the vertical direction (axial direction, first direction) of the pressure vessel 150, and the pressure channel 30 extends in the lateral direction (diameter) of the pressure vessel 150.
  • the pressure channel 30 extends in the direction) and branches in the orthogonal direction from the pressure space portion 155.
  • the pressure chamber 15 is formed as a low pressure space 7 before the operation of the sixth pyrotechnic cell crushing device D6, and is formed as a high pressure space 8 after the operation.
  • the sixth pyrotechnic cell crushing device D6 is provided with the same pressure release unit 21 as the fifth pyrotechnic cell crushing device D5 on the cap 6.
  • the pressure release section 21 includes a rupture disk assembly 22 and a pressure release vent 61.
  • the pressure space portion 155 has a proximal end and a distal end with respect to the pressure release portion 21, and the distal end 155B is located at the bottom 157 of the pressure vessel 150.
  • the proximal end of the pressure space portion 155 is open to the upper surface of the pressure vessel 150, and the pressure vessel 150 is attached with the cap 6 so that the pressure space portion 155 is covered by the cap 6. ing.
  • the proximal end of the pressurized space portion 155 is configured to be connected to the pressure release vent passage 61.
  • the pressurized space 155 and the pressure release vent 61 are coaxially arranged through the central axis of the pressure vessel 150.
  • the pressurized space portion 155 includes a sample container accommodating portion 156 for accommodating the sample pouch 24 between the connecting portion 155C with the pressure channel 30 and the distal end.
  • the pouch holding portion 156 refers to a region below the connecting portion P1 in the pressurized space portion 155.
  • the sample pouch 24 equipped with the cage 25 can be placed on the bottom 157 of the pressure vessel 150.
  • a single sample pouch 24 may be placed on the bottom 157 of the pressure vessel 150.
  • the height of the sample container accommodating portion 156 is equal to or larger than the height of the sample pouch 24, and the sample pouch 24 protrudes toward the connecting portion P1 in a state where the sample pouch 24 is accommodating in the sample container accommodating portion 156. It is designed not to be done.
  • the sample pouch 24 can be accommodated in the sample container accommodating portion 156 so that the upper end of the sample pouch 24 is located below the connection portion P1 with the pressure channel 30 in the pressurized space portion 155.
  • the initiator 28 is attached to the side surface of the pressure vessel 150, and the initiator 28 laterally faces the inside of the pressure channel 30 so that the fire charge chamber housing 16 of the initiator 28 faces the inside of the pressure channel 30. Have been placed. That is, the fire engine charge 5 of the initiator 28 is arranged in the pressure channel 30.
  • the following further effects can be obtained as compared with the same effects as those described in the fifth pyrotechnic cell crushing apparatus D5. That is, according to the sixth fire cell crushing device D6 according to the present embodiment, the combustion gas generated by the ignition and combustion of the fire charge 5 during the operation of the initiator 28 is applied via the pressure channel 30. By being supplied to the pressure space portion 155, the pressure space portion 155 changes from the low pressure low pressure space 7 to the high pressure high pressure space 8. At that time, the pressure due to the combustion gas flowing from the connecting portion P1 to the lower sample container accommodating portion 156 pushes the sample pouch 24 equipped with the sample cage 25 toward the bottom of the pressure vessel 150, and is in a pressurized state.
  • the sample pouch 24 can be stably held in the sample container accommodating portion 156. Further, since the upper end of the sample pouch 24 is located below the connecting portion P1 in the pressurized space portion 155, it is possible to prevent the sample pouch 24 from being directly exposed to the combustion gas flow from the fire engineer charge 5.
  • the pressure chamber 15 communicates with the external space, so that the pressure of the pressure chamber 15 is released (released) to the outside through the pressure release vent passages 61 and 22A. To. At that time, most of the gas released from the pressure chamber 15 to the outside through the pressure release vent passages 61 and 22A does not pass through the sample container accommodating portion 156, so that the sample pouch 24 is stabilized when the pressure of the pressure chamber 15 is released. Can be left on the bottom of the pressure vessel 150.
  • ⁇ 7th Embodiment> 13 to 15 show a pyrotechnic cell crushing apparatus including a sample chip according to a seventh embodiment.
  • the clamp 31 holds the fluid sample 3 in the first recess 33 formed in the substrate 34, and forms the expansion chamber 36 in the second recess 35 formed in the substrate 34. It is provided on the upper part (top) and the lower part (bottom) of the chip 32.
  • the igneous charge chamber housing 16 can be formed integrally with one of the clamps 31 or can be provided separately.
  • the pressure release channel 18 may be centered on the top of the fluid sample 3 when the tip is in the clamp position between the clamps 31.
  • the pressure chamber 15 is sealed to the surroundings (environment) by a clamp and / or a firework charge chamber housing 16 or a combination thereof.
  • the precision orifice 4 connects the pressure chamber 15 and the expansion chamber 36 to each other.
  • Such a precision orifice 4 can be created, for example, by a groove in the substrate 34 that is clamped to form a closed channel between the pressure chamber 15 and the expansion chamber 36.
  • a thin film can be glued to the tip 34 to seal the precision orifice 4, expansion chamber 36, and pressure chamber 15.
  • the film may be provided with small holes or fragile parts for pressurization by the fire charge. It is also possible to employ other styles of orifices, such as orifices provided so as to completely penetrate the substrate 34.
  • FIG. 14 shows the state before ignition
  • FIG. 15 shows the mode after the fluid sample 3 is moved from the pressure chamber 15 into the expansion chamber 36 after ignition. It is shown that the fluid sample 3, shown in black in FIG. 14, is dispersed in FIG. 15 on an expansion chamber 36 that collects material from the crushed intracellular.
  • the pressure formed by the substrate 34 and the first recess 33 formed in the substrate 34 is provided.
  • a chip 32 pyrotechnic cell destruction chip
  • the first recess 33 (pressure chamber 15) and the second recess 35 (expansion chamber 36) are formed so as to open on the upper surface side of the substrate 34, and the precision orifice 4 (first).
  • the first recess 33 (pressure chamber 15) and the second recess 35 (expansion chamber 36) are connected by (channel).
  • the precision orifice 4 may be formed by an opening groove that opens on the upper surface of the substrate 34. Further, in the example shown in FIG. 13, the upper surface of the substrate 34 is covered with the thin top layer film 46. For example, the top layer film 46 may be adhered to the upper surface of the substrate 34, and the top layer film 46 seals the opening groove for forming the first recess 33, the second recess 35, and the precision orifice 4. Therefore, the pressure chamber 15, the expansion chamber 36, and the precision orifice 4 can be sealed to the outside.
  • various polymer films can be used, and for example, polypropylene (PP), polyethylene (PE), or other thermoplastic resin may be composited or laminated. It may be formed, and if necessary, a film imparted with heat shrinkage, hydrophilicity, and hydrophobicity can be used.
  • PP polypropylene
  • PE polyethylene
  • thermoplastic resin may be composited or laminated. It may be formed, and if necessary, a film imparted with heat shrinkage, hydrophilicity, and hydrophobicity can be used.
  • the seventh pyrotechnic cell crusher D7 is further clamped by a pair of clamps 31 arranged at the upper part (top) and the lower part (bottom) of the chip 32 (pyrotechnic cell destruction chip).
  • the pair of clamps 31 are, for example, high-strength clamps having rigidity, and can be detachably attached to the chip 32.
  • the seventh fire cell crushing device D7 further includes a fire charge chamber housing 16 forming the fire charge chamber 11, a fire charge 5 housed in the fire charge chamber 11, and the like, and FIG. 13 As shown in the above, the firework charge chamber housing 16 is arranged above the first recess 33 (pressure chamber 15) in the chip 32 (base 34).
  • the igneous charge chamber housing 16 may be formed integrally with the clamp 31 that clamps the upper side of the tip 32, or may be provided separately.
  • a pressure release channel 18 and a break portion 17 are formed at the bottom of the firework charge chamber housing 16.
  • the pressure release channel 18 is formed as a recess that opens to the outside of the firework charge chamber housing 16, and the pressure release channel 18 is positioned at the center of the first recess 33 (pressure chamber 15) in the chip 32 (board 34). Has been done. Further, the firework charge chamber housing 16 is arranged so that the pressure release channel 18 is in close contact with the top layer film 46.
  • FIG. 14 shows a cross-sectional view and a plan view of the seventh fire cell crusher D7 in a state where the clamp is removed in the first aspect before pressurization (before ignition of the fire charge 5), and FIG. 15 shows a plan view.
  • the cross-sectional view and the plan view of the state after pressurizing (after the ignition of the fire engine charge 5) and the state where the clamp is removed in the second aspect are shown.
  • 14 and 15 show a cross-sectional view in the upper row and a plan view in the lower row, respectively. Further, in the plan view shown in the lower part of FIGS. 14 and 15, the upper surface of the substrate 34 is shown through the top layer film 46.
  • the fluid sample 3 is housed in the pressure chamber 15 of the chip 32.
  • the fluid sample 3 housed in the pressure chamber 15 is painted black.
  • the seventh pyrotechnic cell crushing device D7 is activated, the pyrotechnic charge 5 is ignited, and the pyrotechnic charge 5 burns to generate combustion gas.
  • the pressure in the fire charge chamber 11 rises and the broken portion 17 of the fire charge chamber housing 16 bursts (opens), so that the pressure release channel 18 of the fire charge chamber housing 16 becomes the fire charge chamber. Communicate with 11.
  • the pressure in the firework charge chamber 11 breaks the portion of the top layer film 46 facing the pressure release channel 18, and the combustion gas flows into the pressure chamber 15 in the chip 32.
  • the pressure chamber 15 in the chip 32 is rapidly pressurized, and the cells contained in the fluid sample 3 housed in the pressure chamber 15 are crushed.
  • a small hole or a fragile portion may be provided in advance at a portion of the top layer film 46 facing the pressure release channel 18. This facilitates the introduction of the combustion gas of the processing charge 5 into the pressure chamber 15 when the seventh pyrotechnic cell crushing device D7 is operated.
  • the fluid sample 3 is pushed into the precision orifice 4, and the fluid sample 3 moved to the expansion chamber 36 through the precision orifice 4. It is held (collected) in the expansion chamber 36.
  • the fluid sample 3 passes through the precision orifice 4, a large shear stress acts on the cells contained in the fluid sample 3, which promotes cell crushing.
  • the expansion chamber 36 has a larger volume than the pressure chamber 15, and the fluid sample 3 is depressurized when the fluid sample 3 flows from the pressure chamber 15 into the expansion chamber 36 through the precision orifice 4.
  • the tip 32 in the present embodiment may be formed with a vent 48 that communicates the expansion chamber 36 with the outside.
  • the vent 48 can be formed, for example, by a groove that opens on the upper surface of the substrate 34 and an opening of the top layer film 46 that is formed at a position that overlaps the groove.
  • the vent 48 can be ventilated to the outside through the opening of the top layer film 46 and the gap between the top layer film 46 and the clamp 31, and can introduce atmospheric pressure into the expansion chamber 36.
  • a reagent may be added to the fluid sample 3 collected in the expansion chamber 36, and a chemical reaction may be carried out in the expansion chamber 36.
  • the reagent added to the fluid sample 3 is a reagent contained in the fluid sample 3 for causing a chemical reaction in the cells after crushing, for example, polymerase chain reaction PCR, loop-mediated isothermal amplification (LAMP), or any other isothermal. It may be a reagent for achieving the reaction related to amplification.
  • the chip 32 in the present embodiment further includes a detection chamber formed on the substrate 34 in the form of a third recess, and the expansion chamber 36 and the detection chamber may be connected by a channel.
  • the fluid sample 3 after the reaction treatment may be discharged from the expansion chamber 36 to the detection chamber via the channel. Further, a plurality of types of reagents may be added to the fluid sample 3 in the expansion chamber 36.
  • ⁇ 8th Embodiment> 16-18 are very similar to 13-15, but show an eighth embodiment that allows downstream treatment of disrupted cells on the chip. Similar elements are indicated by the same reference numbers as those used in FIGS. 13-15.
  • This eighth embodiment can be applied, for example, as a point of care (POC) device.
  • the first recess 33 in the substrate has a more elongated shape in this embodiment, while the expansion chamber 36 has an elliptical shape, as shown in FIG.
  • the expansion chamber is followed by a downstream reaction chamber 37 containing, for example, a reagent 38 for achieving a polymerase chain reaction (PCR).
  • an optional vent 39 may be provided and may be configured to release the pressure only partially so that the remaining pressure is maintained.
  • the vent 39 facilitates filling of the chamber 37. It may be a hydrophobic vent, so that once the chamber is filled, the vent that is in a hydrostatic lock (hydrolock) state will no longer act like a vent and will have residual pressure behind the liquid. Be maintained. Finally, a valve 40 may be provided that opens after the PCR reaction is complete, allowing the processed sample to be moved into the detection chamber 41.
  • the eighth pyrotechnic cell crushing device D8 (see FIGS. 16 to 18) according to the eighth embodiment is a modification of the seventh pyrotechnic cell crushing device D7 described with reference to FIGS. 13 to 15.
  • FIG. 16 shows a schematic cross-sectional view of the eighth fire cell crushing apparatus D8, and FIG. 17 is a cross-sectional view of the state without the clamp in the first aspect before pressurization (before ignition of the fire charge 5). And a plan view are shown, and FIG. 18 shows a cross-sectional view and a plan view of a state after pressurization (after ignition of the fire engine charge 5) in a state where the clamp is removed in the second aspect.
  • FIGS. 17 and 18 show a cross-sectional view in the upper row and a plan view in the lower row, respectively. Further, in the plan view shown in the lower part of FIGS. 17 and 18, the upper surface of the substrate 34 is shown through the top layer film 46.
  • similar reference numbers are used for similar elements as compared to the embodiments described above.
  • the tip 32 in the eighth pyrotechnic cell crusher D8 has a third recess on the upper surface side of the substrate 34. It further has a reaction chamber 37 formed in the form of a recess in the above, and a detection chamber 41 formed in the form of a fourth recess on the upper surface side of the substrate 34.
  • the reaction chamber 37 is connected to the expansion chamber 36 through a second channel 61. Further, the detection chamber 41 is connected to the reaction chamber 37 through a third channel 62. As shown in FIG.
  • the downstream reaction chamber 37 is arranged in the rear stage (downstream side) of the expansion chamber 36, and the detection chamber 41 is arranged in the rear stage (downstream side) of the reaction chamber 37.
  • the second channel 61 and the third channel 62 may be formed by, for example, a groove opening on the upper surface of the substrate 34. Further, on the upper surface of the substrate 34 of the chip 32, a top layer film that seals the pressure chamber 15, the expansion chamber 36, the precision orifice 4, the reaction chamber 37, the detection chamber 41, the second channel 61, and the third channel 62. 46 is glued. Further, in the example shown in FIG.
  • a vent 39 communicating with the third channel 62 and a valve 40 arranged at a position after the vent 39 in the third channel 62 are provided.
  • the vent 39 can be formed, for example, by a recess opened on the upper surface of the substrate 34 and an opening of the top layer film 46 formed at a position overlapping the recess.
  • the vent 39 can be ventilated to the outside through the opening of the top layer film 46 and the gap between the top layer film 46 and the clamp 31, and waits for the expansion chamber 36, the reaction chamber 37, etc. (outside). ) Can introduce atmospheric pressure to these. Further, when the valve 40 is open, atmospheric pressure is introduced into the detection chamber 41 through the vent 39.
  • the fluid sample 3 in which the cells are crushed by the ignition and combustion of the fire charge 5 is collected in the expansion chamber 36, and then the reaction chamber 37 in the subsequent stage is collected. , Can be sequentially moved to the detection chamber 41.
  • the reaction chamber 37 in the present embodiment contains a reagent 38 contained in the fluid sample 3 for causing a chemical reaction in the cells after crushing.
  • reagent 38 is a reagent for achieving polymerase chain reaction PCR.
  • the valve 40 can be opened to transfer the fluid sample 3 containing the cells after reacting with the reagent 38 through the third channel 62 to the detection chamber 41.
  • the reagent 38 housed in the downstream reaction chamber 37 is not limited to the reagent for achieving the polymerase chain reaction (PCR), for example, loop-mediated isothermal amplification (LAMP) or any other isothermal. It may be a reagent for carrying out the reaction related to amplification. Further, the reaction chamber 37 may contain a plurality of types of reagents.
  • FIG. 19 shows an exploded view of the ninth embodiment in the pyrotechnic cell crushing apparatus based on the concept shown in FIGS. 13 to 15.
  • FIG. 19 shows more structural details.
  • the clamp 31 is formed as an upper housing 42, accommodating an initiator 28 at one end, and at the other end includes a threaded barb connector 43 and a pressure release portion 21 including, for example, an ID tube 44 having a diameter of 3/16 inches.
  • the chip assembly 45 includes a chip 32, a top layer film 46, and a bottom layer film 47. The top layer film 46 and the bottom layer film 47 sandwich (seal) a chip 32 containing a sample provided in the first recess 33. In addition, the chip assembly may be provided with vents 48.
  • the tip assembly 45 When the tip assembly 45 is attached, the tip assembly 45 is sandwiched between the silicone gasket 49, the upper housing 42, the lower housing 50, and the gasket 49.
  • the chip assembly 45 is integrated by positioning the pins in holes provided in diagonally opposed corners of the upper housing 42 and the lower housing 50.
  • FIG. 20 shows a schematic cross-sectional view of the ninth embodiment, showing a pressure release channel 18 and a ventilation channel 51 that releases pressure after the combustion charge is burned.
  • the sample is pushed down through the downward channel 52 and travels along a precision orifice 4 formed in the form of a groove channel within the tip 32 sealed by a gasket 49. Then, it moves into the expansion chamber 36 through the upward channel 54.
  • precision orifices that are not formed in the channel of the tip can be used. Such precision orifices can be made of other suitable materials such as sapphire, ruby, glass or polymers and can be glued or pressed into the recesses of the tip.
  • FIG. 22 shows a second aspect after combustion of the fire charge, the fluid sample 3 is located at the bottom of the expansion chamber 36.
  • the sample currently being processed comprises disrupted cells containing the cell contents released for further treatment with reagents and final detection.
  • the ninth pyrotechnic cell crusher D9 (see FIGS. 19 to 22) according to the ninth embodiment specifies the seventh pyrotechnic cell crusher D7 with a more specific structure. Is. In this embodiment, similar reference numbers are used for similar elements as compared to the embodiments described above.
  • the ninth pyrotechnic cell crusher D9 includes a chip 32 including a substrate, an uppermost layer film 46 covering the upper surface of the chip 32, and a lower surface of the chip 32. It comprises a chip assembly 45 that includes a bottom layer film 47 to cover.
  • 21 and 22 are schematic cross-sectional views of the chip assembly 45 in the ninth pyrotechnic cell crusher D9, FIG. 21 shows the first aspect before combustion of the pyrotechnic charge, and FIG. 22 shows the fire. A second aspect after combustion of the pyrotechnic is shown.
  • the pressure chamber 15 is formed by the first recess 33 on the upper surface of the substrate, and the expansion chamber 36 is formed by the second recess 35, as in the seventh embodiment. Further, as shown in FIG. 19, the tip 32 is provided with a vent 48 communicating with the expansion chamber 36.
  • the first channel 63 includes a precision orifice 4, a downward channel 52, a lateral channel 53, an upward channel 54, and the like.
  • the upper end of the precision orifice 4 is connected to the bottom of the first recess 33 and is connected to the lower end of the precision orifice 4 so that the pressure chamber 15 and the precision orifice 4 communicate with each other.
  • the channel 52 extends to the bottom surface of the chip 32.
  • the upper end of the upward channel 54 of the first channel 63 is connected to the bottom of the second recess 35 forming the expansion chamber 36, extends downward from the bottom of the second recess 35, and the lower end thereof is a tip. It is provided so as to reach the lower surface of 32.
  • the downward channel 52 and the upward channel 54 of the first channel 63 may be formed, for example, by holes extending from the lower surface side of the substrate 34 toward the upper surface side.
  • One end of the lateral channel 53 is connected to the lower end of the downward channel 52, and the other end is connected to the lower end of the upward channel 54.
  • the lateral channel 53 may be formed by, for example, a groove channel that opens on the lower surface of the chip 32.
  • the first recess 33 pressure chamber 15
  • the second recess 35 expansion chamber 36
  • a pair of rigid clamps 31 are formed as a housing form. That is, the pair of clamps 31 includes an upper housing 42 as an upper clamp and a lower housing 50 as a lower clamp.
  • the upper housing 42 (upper clamp) and the lower housing 50 (lower clamp) are formed as a housing having a substantially rectangular parallelepiped shape.
  • the shapes of the upper housing 42 and the lower housing 50 are not particularly limited.
  • on the upper surface side of the lower housing 50 (lower clamp) there is a tip recess 50A capable of accommodating the tip assembly 45 including the tip 32.
  • the lower surface of the upper housing 42 (upper clamp) forms a substantially flat clamp surface 42A facing the loading region of the chip 32.
  • holes for fitting the connecting pins 64 are provided in the diagonally opposed corners of the upper housing 42 and the lower housing 50, respectively.
  • the initiator 28 is attached to one side surface of the upper housing 42 (upper clamp), and the threaded barb connector 43 of the pressure release portion 21 is attached to the opposite side surface.
  • the initiator 28 has a fire charge chamber housing 16 forming the fire charge chamber 11, a fire charge 5 housed in the fire charge chamber 11, a wire 29, and the like.
  • the firework charge chamber housing 16 is housed inside the upper housing 42, and the wire 29 is fixed to the upper housing 42 so as to be exposed to the outside. Further, one end of the pressure release channel 18 is connected to the firework charge chamber housing 16 of the initiator 28.
  • the pressure release channel 18 is formed, for example, by a metal conduit, and the other end is joined from the inside to the clamp surface 42A of the upper housing 42. Further, the opening on the other end side of the pressure release channel 18 communicates with the outside of the upper housing 42 through the gas outlet 42B, which is an opening formed in the clamp surface 42A.
  • the pressure release channel 18 communicates with, for example, the fire charge chamber 11 of the initiator 28 in advance, or is cleaved by the combustion energy of the fire charge 5, so that the gas flow of the clamp surface 42A in the upper housing 42 when the initiator 28 is operated.
  • the combustion gas of the fire engine charge 5 is discharged from the outlet 42B.
  • the open end of the pressure release channel 18 and the gas outlet 42B of the clamp surface 42A may be positioned at the center of the first recess 33 (pressure chamber 15) in the tip 32.
  • the ID tube 44 and the ventilation channel 51 are connected to the threaded barb connector 43 of the pressure release portion 21.
  • the ID tube 44 is a hollow tube and is arranged outside the upper housing 42.
  • the ventilation channel 51 is formed by, for example, a metal conduit.
  • One end of the ventilation channel 51 is connected to the threaded barb connector 43, and the other end is joined to the clamp surface 42A of the upper housing 42 from the inside.
  • the opening on the other end side of the ventilation channel 51 communicates with the outside of the upper housing 42 through the ventilation port 42C which is an opening formed in the clamp surface 42A.
  • the inside of the threaded barb connector 43 is hollow, and a ventilation path is formed inside the ventilation channel 51, the threaded barb connector 43, and the ID tube 44.
  • the chip assembly 45 is housed in the chip recess 50A of the lower housing 50. At that time, as shown in FIG. 19, the chip assembly 45 is housed in the chip recess 50A in a state of being sandwiched between the pair of gaskets 49. After the tip assembly 45 sandwiched between the pair of gaskets 49 is housed in the tip recess 50A, the upper housing 42 and the lower housing 50 are integrally fixed by using a connecting pin 64 to form a ninth.
  • the pyrotechnic cell crusher D9 can be assembled.
  • the connecting structure of the upper housing 42 and the lower housing 50 is not particularly limited.
  • the fire charge 5 is ignited and burned, and the combustion gas is formed on the clamp surface 42A in the upper housing 42 through the fire charge chamber 11 and the pressure release channel 18. It is discharged from the gas outlet 42B.
  • the uppermost film 46 of the chip assembly 45 and the gasket 49 arranged on the upper surface side of the chip assembly 45 have openings for ventilating the combustion gas discharged from the gas outlet 42B into the pressure chamber 15 of the chip 32. The part is formed. As a result, the combustion gas from the pressure release channel 18 flows into the pressure chamber 15, so that the pressure chamber 15 is rapidly pressurized, and the cells contained in the fluid sample 3 housed in the pressure chamber 15 are crushed. ..
  • the fluid sample 3 pressurized in the pressure chamber 15 is sequentially transferred to the expansion chamber 36 through the precision orifice 4, the downward channel 52, the lateral channel 53, and the upward channel 54 of the first channel 63.
  • the fluid sample 3 flows through the precision orifice 4
  • the cells contained in the fluid sample 3 are subjected to a large shear stress, so that the cells are crushed.
  • the uppermost film 46 of the chip assembly 45 and the gasket 49 arranged on the upper surface side of the chip assembly 45 are formed with openings at positions overlapping with the vents 48, and are formed on the clamp surface 42A of the upper housing 42.
  • the vent 42C is also arranged at a position where it overlaps with the vent 48.
  • the expansion chamber 36 of the chip assembly 45 is ventilated through the vent 48 and the pressure release portion 21 (vent channel 51, screwed barb connector 43, ID tube 44), and atmospheric pressure is introduced. Therefore, the fluid sample 3 transferred from the pressure chamber 15 to the expansion chamber 36 through the first channel 63 is depressurized in the expansion chamber 36. As a result, the cells contained in the fluid sample 3 rapidly expand, and the crushing of the cells can be further promoted. As described above, the fluid sample 3 after the cells have been crushed is collected in the expansion chamber 36 of the chip assembly 45 (chip 32).
  • the upper housing 42 and the lower housing 50 in this embodiment are removable.
  • the upper housing 42 and the lower housing 50 are separated by removing the connecting pin 64 or the like, and are housed in the chip recess 50A of the lower housing 50.
  • the chip assembly 45 (chip 32) is exposed.
  • the fluid sample 3 after the cell crushing treatment can be recovered from the expansion chamber 36 by removing the top layer film 46 covering the upper surface of the chip 32, for example.
  • a reagent may be added to the fluid sample 3 collected in the expansion chamber 36, and various reaction treatments may be performed.
  • Embodiment> 23-26 show embodiments very similar to FIGS. 19-22.
  • the chip is replaced by a laser-cut plastic or glass chip having a precision orifice 4 made in the chip shape. Therefore, the chip is essentially an integrated portion of the lower housing 50.
  • This embodiment does not include the specified ventilation, but the ventilation is provided through the gap between the upper housing 42 and the lower housing 50.
  • FIG. 23 shows a cross-sectional view of the tenth pyrotechnic cell crushing apparatus D10 according to the tenth embodiment.
  • the tenth pyrotechnic cell crushing device D10 is a modified example of the ninth pyrotechnic cell crushing device D9.
  • similar reference numbers are used for similar elements as compared to the embodiments described above.
  • the chip 32 is formed in a chip shape by processing the upper surface of the lower housing 50 by a laser cutting technique or the like, and the chip 32 is integrated into the lower housing 50. It has been realized.
  • FIG. 24 is a plan view of a chip forming region in which the chip 32 is formed on the upper surface of the lower housing 50.
  • the chip forming region in the lower housing 50 can be formed of, for example, a polymer material (plastic or the like), glass, or the like.
  • 25 and 26 are schematic cross-sectional views of the chip 32 (chip forming region in the lower housing 50) in the tenth pyrotechnic cell crusher D10, and FIG. 25 shows the first before combustion of the pyrotechnic.
  • FIG. 26 shows a second aspect of the pyrotechnic after combustion.
  • the chip 32 formed by being integrated with the chip forming region of the lower housing 50 has a pressure chamber 15 formed by the first recess 33 and capable of accommodating the fluid sample 3 before the cell crushing treatment, and a second recess 35.
  • the expansion chamber 36 formed by is provided, and the pressure chamber 15 and the expansion chamber 36 are connected via a first channel 63 including a precision orifice 4. Similar to the seventh embodiment, the expansion chamber 36 in the chip 32 has a sufficiently large volume as compared with the pressure chamber 15, and when the fluid sample 3 enters the expansion chamber 36 from the pressure chamber 15, the fluid sample 3 is depressurized. The cells contained in the fluid sample 3 are rapidly expanded.
  • the upper housing 42 in the tenth pyrotechnic cell crushing apparatus D10 is provided with the initiator 28 and the pressure release channel 18 as in the ninth embodiment, but is not provided with the pressure release portion 21. Further, as in the ninth embodiment, the upper housing 42 and the lower housing 50 are provided with holes for fitting the connecting pins, respectively, and the upper housing 42 and the lower housing 50 can be mounted using the pins. It can be integrally connected, and the upper housing 42 and the lower housing 50 can be separated from each other after the device is activated. Further, the upper surface of the chip 32 integrated with the lower housing 50 may be covered with the uppermost layer film 46.
  • a small hole or a fragile portion for ventilating the combustion gas discharged from the gas outlet 42B of the clamp surface 42A of the upper housing 42 to the pressure chamber 15 may be formed in the uppermost layer film 46.
  • a gasket 49 may be interposed between the upper surface of the chip 32 integrated in the lower housing 50 and the clamp surface 42A in the upper housing 42.
  • the gasket An opening may be formed in 49 to supply the combustion gas discharged from the gas outlet 42B of the clamp surface 42A to the pressure chamber 15.
  • the operation of the tenth pyrotechnic cell crushing device D10 configured as described above is basically the same as that of the ninth pyrotechnic cell crushing device D9 according to the ninth embodiment. That is, when the initiator 28 is activated, the fire engine charge 5 is ignited and burned, the combustion gas is supplied to the pressure chamber 15 of the chip 32 through the pressure release channel 18, and the fluid sample 3 housed in the pressure chamber 15 is suddenly released. The pressure causes the cells contained in the fluid sample 3 to be crushed. Then, the fluid sample 3 pressurized in the pressure chamber 15 is transferred to the expansion chamber 36 through the first channel 63 including the precision orifice 4.
  • the tip 32 may be provided with a vent 48 communicating with the expansion chamber 36, and atmospheric pressure may be introduced into the expansion chamber 36 via the vent 48.
  • FIGS. 13 to 15 show a schematic cross-sectional view of the pyrotechnic cell crushing apparatus including the sample chip according to the eleventh embodiment, and FIG. 28 schematically shows the chip in the first aspect before pressurization, FIG. 29. Schematically show the tip in the second aspect after pressurization.
  • This embodiment is similar to the embodiment shown in FIGS. 13 to 15, but does not include the precision orifice 4. Therefore, this embodiment is based on the same concept of hydrostatic shock pressure wave as the embodiment described with reference to FIGS. 5 and 6. Elements similar to those described in FIGS. 13-15 are indicated by the same reference numbers.
  • the eleventh embodiment according to FIGS. 27 to 29 is essentially a chip form of the concept of the third embodiment according to FIGS. 5 and 6. Although only one recess 33 for holding the fluid sample 3 is shown, it is also possible to mount a chip with a plurality of recesses 33 for a plurality of different samples on one single chip. A plurality of fire charge 5s may be applied onto a plurality of sample chips at the same time, or a single fire charge housing can be moved between a plurality of samples, and the fire charge housing can be moved between the samples. May be reloaded.
  • the eleventh pyrotechnic cell crusher D11 shown in FIGS. 27 to 29 is a chip 32 (pyrotechnic cell destruction chip) having a pressure chamber 15 formed by a substrate 34 and a first recess 33 formed in the substrate 34. ) Is provided. Further, the eleventh igneous cell crushing device D11 is arranged on the upper part (top) and the lower part (bottom) of the chip 32 (fire cell destruction chip), respectively, to clamp the chip 32, a pair of clamps 31, and a fire. It includes a firework charge chamber housing 16 forming the work charge chamber 11, a fire work charge 5 housed in the fire charge chamber 11, and the like.
  • FIG. 28 schematically shows a cross-sectional view and a plan view of the eleventh pyrotechnic cell crushing apparatus D11 before operation (before pressurization).
  • the clamp 31 is not shown, and a cross-sectional view is shown in the upper row and a plan view is shown in the lower row.
  • FIG. 29 schematically shows a cross-sectional view and a plan view of the eleventh pyrotechnic cell crushing apparatus D11 after operation (after pressurization).
  • the clamp 31 is not shown, and a cross-sectional view is shown in the upper row and a plan view is shown in the lower row.
  • the upper surface of the substrate 34 is shown through the top layer film 46.
  • the eleventh pyrotechnic cell crushing device D11 configured as described above is activated, the pyrotechnic charge 5 is ignited, and the pyrotechnic charge 5 burns to generate combustion gas.
  • the pressure in the fire charge chamber 11 rises, the broken portion 17 of the fire charge chamber housing 16 bursts, and the pressure release channel 18 communicates with the fire charge chamber 11.
  • the pressure in the firework charge chamber 11 is released, the portion of the top layer film 46 facing the pressure release channel 18 is broken, and the combustion gas flows into the pressure chamber 15 in the chip 32.
  • small holes may be formed in advance in the portion of the top layer film 46 facing the pressure release channel 18, and the combustion gas may be supplied to the pressure chamber 15 through the small holes.
  • the pressure chamber 15 supplied with the combustion gas of the igneer charge 5 is rapidly pressurized, and as a result, the cells contained in the fluid sample 3 housed in the pressure chamber 15 can be crushed.
  • the eleventh pyrotechnic cell crushing device D11 may include the precision orifice 4 and the pressure release unit 21 described in the above-described embodiment.
  • Appendix 1 A fire engineer that is ignited and configured to burn on ignition, A pressure chamber configured to contain a fluid sample containing cells and to be pressurized during ignition and combustion of the pyrotechnic.
  • Appendix 2 A pressure chamber outlet for connecting the pressure chamber to the external space is further provided.
  • the pressure chamber outlet has an orifice that applies shear stress to the fluid sample as it flows.
  • the pyrotechnic cell crushing apparatus according to Appendix 1.
  • Appendix 3 The pyrotechnic cell disruptor according to Appendix 2, wherein the orifice is formed in a separate portion that is adhered to or press-fitted into the pressure chamber outlet.
  • Appendix 4 The pyrotechnic cell crushing apparatus according to any one of Appendix 1 to 3, wherein the pyrotechnic charge is housed in a separate pyrotechnic charge chamber separated from the pressure chamber.
  • Appendix 5 The fire cell crushing apparatus according to Appendix 4, wherein the fire charge chamber is formed in a fire charge chamber housing having a break portion that bursts when the fire charge is ignited and burned.
  • Appendix 6) The pyrotechnic cell crushing apparatus according to Appendix 5, wherein the fractured portion is formed by a fragile portion of the pyrotechnic charge chamber housing facing the pressure chamber, which is fragile as compared with other portions.
  • Appendix 7 The pyrotechnic cell crushing apparatus according to Appendix 6, wherein the fragile portion has a member thickness of the pyrotechnic charge chamber housing thinner than that of other portions.
  • Appendix 8 The pyrotechnic cell crushing apparatus according to any one of Appendix 5 to 7, wherein the pyrotechnic charge chamber opens directly to the pressure chamber when the fractured portion is broken.
  • Appendix 9 A first cylinder chamber for accommodating the fire charge, and A first piston that is at least partially housed in the first cylinder chamber and is movable relative to the first cylinder chamber under the pressure generated by the ignition and combustion of the fire charge.
  • a second piston provided in the pressure chamber and connected to the first piston, Further prepare During ignition and combustion of the fire charge, the fluid sample contained in the pressure chamber is pressurized by interlocking the second piston with the first piston.
  • the pyrotechnic cell crushing apparatus according to any one of Appendix 1 to 3.
  • Appendix 10 The pyrotechnic cell crushing apparatus according to Appendix 9, wherein the first cylinder chamber is formed in a first cylinder chamber housing in which at least a part thereof is housed in the pressure chamber.
  • a diaphragm that divides the pressure chamber into a first internal space into which the combustion gas of the fire charge is introduced at the time of ignition and combustion of the fire charge and a second internal space in which the fluid sample is housed.
  • the diaphragm is deformed by introducing the combustion gas into the first internal space at the time of ignition and combustion of the thermal charge, and the volume of the second internal space is reduced so that the diaphragm is accommodated in the second internal space.
  • the fluid sample is pressurized.
  • the pyrotechnic cell crushing apparatus according to any one of Appendix 1 to 8.
  • a pressure chamber outlet for connecting the second internal space to the external space is further provided.
  • the pressure chamber outlet has an orifice that applies shear stress to the fluid sample as it flows.
  • a pressure release section is further provided to release the pressure from the pressure chamber after the pressure chamber is pressurized by the ignition and combustion of the fire charge.
  • the pyrotechnic cell crushing apparatus according to any one of Appendix 1 to 12.
  • Appendix 14 The pyrotechnic cell crushing apparatus according to Appendix 13, wherein the pressure release portion has a valve body.
  • Appendix 15 The pyrotechnic cell crushing apparatus according to Appendix 14, wherein the valve body is a pressure release valve that is opened under a predetermined pressure.
  • Appendix 16 The pyrotechnic cell crushing apparatus according to Appendix 13, wherein the pressure release unit has a rupture disc that ruptures under a predetermined pressure.
  • Appendix 17 The pyrotechnic cell crushing apparatus according to any one of Appendix 13 to 16, wherein a sample container filled with the fluid sample is housed in the pressure chamber.
  • Appendix 18 The pyrotechnic cell crushing apparatus according to Appendix 17, wherein the sample container is a flexible pouch.
  • Appendix 19 17 or 18, wherein the pressure chamber comprises a pressure channel on which the pyrotechnic charge is located and a sample container accommodating portion coaxially connected to the pressure channel and accommodating the sample container. Fireworks cell crusher.
  • Appendix 20 The pyrotechnic cell crushing apparatus according to Appendix 19, wherein a sample container mounting portion for mounting the sample container is formed at a connection portion with the pressure channel in the sample container housing portion.
  • the cross-sectional area of the sample container accommodating portion is larger than the cross-sectional area of the pressure channel, and the sample container mounting portion is formed by a step formed between the sample container accommodating portion and the pressure channel.
  • the fire cell crusher according to. (Appendix 22) A pressure vessel in which the pressure chamber is formed inside and the sample container accommodating portion opens on the upper surface. A cap on which the pressure release portion is installed and which can be attached to the pressure vessel so as to cover the upper surface of the pressure vessel.
  • the pressure release unit has a pressure release air passage that communicates the sample container accommodating unit and the external space after the pressure chamber is pressurized by the ignition and combustion of the fire engine charge.
  • the pyrotechnic cell crushing apparatus according to any one of Appendix 19 to 21.
  • (Appendix 23) 22 The fire cell crushing apparatus according to Appendix 22, wherein the pressure channel, the sample container accommodating portion, and the pressure release vent are coaxially arranged with the cap attached to the pressure vessel.
  • (Appendix 24) The pressure release air passage is blocked by a rupture plate or a valve body, and when the rupture plate ruptures or the valve body is opened, the sample container accommodating portion and the external space communicate with each other.
  • the pressure chamber extends in the first direction and has a proximal end and a distal end with respect to the pressure release portion, and a second direction different from the first direction from the middle of the pressure space portion.
  • the pressurized space portion has a sample container accommodating portion for accommodating the sample container between the connection portion with the pressure channel and the distal end.
  • the pyrotechnic cell crushing apparatus according to Appendix 17 or 18.
  • the pyrotechnic cell crushing apparatus according to Appendix 25 wherein the first direction and the second direction are orthogonal to each other.
  • Appendix 27 A pressure vessel having a bottomed shape, the pressure chamber being formed inside, and the proximal end of the pressurized space opening on the upper surface.
  • the pressure space portion extends along the vertical direction of the pressure vessel, and the distal end is positioned at the bottom of the pressure vessel so that the sample container can be placed on the bottom.
  • the pyrotechnic cell crusher according to Appendix 25 or 26.
  • the pressure release portion has a pressure release ventilation path that communicates the pressure release portion and the external space after the pressure chamber is pressurized by the ignition and combustion of the firework charge.
  • the proximal end of the pressurized space is connected to the pressure release vent.
  • the pyrotechnic cell crushing apparatus according to any one of Appendix 25 to 27. (Appendix 29) 28.
  • the pyrotechnic cell crushing apparatus according to Appendix 28, wherein the pressurized space and the pressure release vent are coaxially arranged with the cap attached to the pressure vessel.
  • Appendix 30 The pressure release air passage is blocked by a rupture plate or a valve body, and when the rupture plate ruptures or the valve body is opened, the sample container accommodating portion and the external space communicate with each other.
  • Appendix 31 With a chip with a substrate, The pressure chamber is formed by a first recess provided on the surface of the substrate.
  • the pyrotechnic cell crushing apparatus according to Appendix 1.
  • Appendix 32 A film covering the surface of the substrate is provided.
  • the pyrotechnic cell crushing apparatus according to Appendix 31, wherein the pressure chamber is sealed by covering the first recess with the film.
  • Appendix 33 Further provided with a fire charge chamber housing for accommodating the fire charge.
  • the fire charge chamber housing is located above the pressure chamber, The pyrotechnic cell crushing apparatus according to Appendix 31.
  • Appendix 34 The fire charge chamber housing has a break that bursts upon ignition and combustion of the fire charge. The break is arranged to face the pressure chamber, The pyrotechnic cell crushing apparatus according to Appendix 33.
  • (Appendix 35) An expansion chamber formed by a second recess provided on the surface of the substrate, and A first channel provided on the substrate and connecting the pressure chamber and the expansion chamber, Further prepare The first channel has an orifice that applies shear stress to the fluid sample when it is circulated.
  • the pyrotechnic cell crushing apparatus according to any one of Appendix 31 to 34.
  • the expansion chamber has a larger volume than the pressure chamber, and the fluid sample is depressurized as the fluid sample flows from the pressure chamber into the expansion chamber through the orifice.
  • (Appendix 37) The pyrotechnic cell disruptor according to Appendix 35 or 36, wherein the expansion chamber is open to the outside.
  • (Appendix 38) A reaction chamber formed by a third recess provided on the surface of the substrate and containing a reagent for reacting cells contained in the fluid sample, and a reaction chamber. A second channel provided on the substrate and connecting the expansion chamber and the reaction chamber, 35.
  • the pyrotechnic cell crushing apparatus according to any one of Appendix 35 to 37.
  • the pyrotechnic cell disruptor according to Appendix 38, wherein the reaction chamber is open to the outside.
  • (Appendix 40) A detection chamber formed by a fourth recess provided on the surface of the substrate, and A third channel provided on the substrate and connecting the reaction chamber and the detection chamber, 38 or 39, further comprising a pyrotechnic cell disruptor.
  • Appendix 41 The pyrotechnic cell crushing apparatus according to any one of Appendix 31 to 40, further comprising a pair of clamps for clamping the tip.
  • Appendix 42 41.
  • the appendix 41, wherein the pair of clamps includes an upper clamp having a substantially flat clamp surface facing the loading area of the tip and a lower clamp having a tip recess configured to accommodate the tip.
  • Appendix 43 The pyrotechnic cell crushing apparatus according to Appendix 42, wherein the upper clamp and the lower clamp each have a housing form.
  • Appendix 44 A fluid sample containing cells is housed in a pressure chamber configured to be pressurized by a fire engineer.
  • Appendix 47 The fire cell crushing method according to Appendix 46, wherein the external space is an expansion chamber that receives the fluid sample that has passed through the orifice, and expands the fluid sample when the fluid sample is received in the expansion chamber.
  • Appendix 48 The pyrotechnic cell disruption method according to Appendix 47, further comprising adding a reagent to the fluid sample in the expansion chamber and reacting the fluid sample with the reagent.
  • Appendix 49 The method of crushing a fire cell according to Appendix 47, further comprising moving the fluid sample from the expansion chamber into a reaction chamber containing a reagent, and reacting the fluid sample with the reagent in the reaction chamber. ..
  • Appendix 50 The method for disrupting a fire cell according to Appendix 49, further comprising reacting the fluid sample with the reagent in the reaction chamber and then discharging the fluid sample from the reaction chamber into the detection chamber.
  • Appendix 51 The pyrotechnic cell disruption method according to any one of Supplementary note 48 to 50, wherein the reaction with the reagent is a polymerase chain reaction (PCR) or a loop-mediated isothermal amplification (LAMP).
  • Appendix 52 The pyrotechnic cell disruption method according to any one of Supplementary note 44 to 51, wherein the pyrotechnic cell disruption method does not include lysing the cells contained in the fluid sample using a chemical substance.

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Wood Science & Technology (AREA)
  • Organic Chemistry (AREA)
  • Zoology (AREA)
  • Biotechnology (AREA)
  • Genetics & Genomics (AREA)
  • General Health & Medical Sciences (AREA)
  • Biochemistry (AREA)
  • General Engineering & Computer Science (AREA)
  • Microbiology (AREA)
  • Biomedical Technology (AREA)
  • Sustainable Development (AREA)
  • Cell Biology (AREA)
  • Molecular Biology (AREA)
  • Mechanical Engineering (AREA)
  • Clinical Laboratory Science (AREA)
  • Analytical Chemistry (AREA)
  • Mycology (AREA)
  • Medicinal Chemistry (AREA)
  • Tropical Medicine & Parasitology (AREA)
  • Virology (AREA)
  • Apparatus Associated With Microorganisms And Enzymes (AREA)
  • Sampling And Sample Adjustment (AREA)

Abstract

火工細胞破砕装置は、点火され且つ点火時に燃焼するように構成された火工装薬と、細胞を含む流体試料を収容し且つ火工装薬の点火および燃焼時に加圧されるように構成された圧力チャンバと、を備える。

Description

火工細胞破砕装置および火工細胞破砕方法
 本発明は、火工細胞破砕装置および火工細胞破砕方法に関する。
 細胞破砕としても知られる細胞破壊は、細胞からDNA、RNA、タンパク質又は細胞小器官などの細胞内物質を放出するために、外部境界又は細胞膜を破壊するために使用される。このような細胞内物質の放出は、様々なタイプの分子診断にとって重要である。いくつか例を挙げると、このような診断は、病原体検出プラットフォーム、ポイントオブケア診断のための免疫学的測定、タンパク質の機能および構造を研究するためのタンパク質精製、癌診断、薬剤スクリーニング、mRNAトランスクリプトーム決定、ならびに特定の蛋白質、脂質、および核酸における個々の又は複合体としての組成の分析を包含し得る。
 特許文献1、2等には、核酸を検出するためのポイントオブケアデバイスが開示されている。特許文献1、2等に開示されているポイントオブケアデバイスは、試料を受け入れるように適合され、試料を抽出および溶解するための溶解液およびヒーターを含む抽出チャンバを備え、抽出チャンバにおいて試料を溶解することで核酸を放出させる。
国際公開第2016/004539号 国際公開第2017/117666号
 小さな試料サイズは、特にヒト又は動物から採取した場合、多くの利点を有する。侵襲性の低いサンプリング方法を可能にするだけでなく、環境を汚染する危険性も低減される。試料サイズが小さいと、より高度な自動化も可能となる。さらに、(サイズが小さな)試料は、試験前に試料を汚染する危険性が低く、環境を汚染する危険性が低く、試験が完了した後に安全に廃棄することができるだけでなく、装置内に輸送するのがより容易である。さらに、試料サイズが小さいことは、臨床検査に対する種々の規制基準に準拠するのに適している。小さな試料サイズに伴うリスクがより低いため、これらの試料を取り扱うことは、ある程度少ない訓練を受けた技術者をも可能にし得る。小さな試料サイズは、サイズおよび単価が重要な使い捨てのポイントオブケア装置(POC)のために良く機能する。
 他の種類の試料は、植物および真菌であってもよい。例えば、農業従事者は、どの病原体又は生物工学で作られた薬剤が作物に影響を及ぼしているかを知りたい場合がある。食品の安全性および検査は、試料サイズが小さいことが適しているその他の分野である。
 マイクロ流体技術はマイクロリットル以下のような非常に少量の流体の取り扱いと操作を含み、少ない試薬量、高い比表面積(表面対体積比)、低コスト、および細胞分析に適した少量の流体の容易な取り扱いなど、種々の利点を提供する。また、マイクロ流体装置は、細胞破壊のために提案されている。しかしながら、非常に少量の流体での細胞破砕には種々の課題が伴い、そのうちの1つは、圧力をどのように増大させるかである。また、いくつかの細胞破砕方法では、効率最適化のために、一定の短期間に亘って圧力を高め、その圧力を解放することを必要とし得る。しかしながら、油圧プレスによって細胞破砕を行う場合には、圧力を高めるために時間を要し、また、大型の装置が必要となり得る。
 別の要因は熱である。細胞の内部から抽出されることが望ましいタンパク質に損傷を与える可能性があるため、長期間にわたる過度の熱は望ましくない場合があるが、圧力と組み合わせた短期間の熱への暴露は、細胞破砕への更なるプラスの効果を有し得る。
 また、熱溶解による細胞破壊はかなりの電力を必要とする。また、化学的溶解は、KOHなどの強アルカリ性材料を使用する。化学的リジン試薬は溶解した試料が下流の分析に適する前に、緩衝/中和の追加工程が必要とする場合がある。
 本発明の一態様によれば、火工細胞破砕装置は、点火され且つ点火時に燃焼するように構成された火工装薬と、細胞を含む流体試料を収容し且つ前記火工装薬の点火および燃焼時に加圧されるように構成された内部空間を含む圧力チャンバと、を備える。
 本開示に係る技術によれば、流体試料に含まれる細胞の破砕を従来に比べて改善することのできる技術を提供できる。
図1は、第1の火工細胞破砕装置の加圧前における第1の態様に係る概略断面図を示す。 図2は、第1の火工細胞破砕装置の加圧後における第2の態様に係る概略断面図を示す。 図3は、第2の火工細胞破砕装置の加圧前における第1の態様に係る概略断面図を示す。 図4は、第2の火工細胞破砕装置の加圧後における第2の態様に係る概略断面図を示す。 図5は、第3の火工細胞破砕装置の加圧前における第1の態様に係る概略断面図を示す。 図6は、第3の火工細胞破砕装置の加圧後における第2の態様に係る概略断面図を示す。 図7は、第4の火工細胞破砕装置の加圧前における第1の態様に係る概略断面図を示す。 図8は、第4の火工細胞破砕装置の加圧後における第2の態様に係る概略断面図を示す。 図9は、第5実施形態に係る火工細胞破砕装置の分解図を示す。 図10は、第5実施形態に係る火工細胞破砕装置の概略断面図を示す。 図11は、第6実施形態に係る火工細胞破砕装置の透視斜視図を示す。 図12は、第6実施形態に係る火工細胞破砕装置の概略断面図を示す。 図13は、第7実施形態に係る試料チップを含む火工細胞破砕装置の概略断面図を示す。 図14は、加圧前の第1の態様におけるクランプを除いた状態の図13のような断面図および平面図を示す。 図15は、加圧後の第2の態様におけるクランプを除いた状態の図13のような断面図および平面図を示す。 図16は、第8実施形態に係る下流処理を伴う試料チップを含む火工細胞破砕装置の概略断面図を示す。 図17は、加圧前の第1の態様におけるクランプを除いた状態の図16のような断面図および平面図を示す。 図18は、加圧後の第2の態様におけるクランプを除いた状態の図16のような断面図および平面図を示す。 図19は、第9実施形態に係る火工細胞破砕装置の分解図を示す。 図20は、第9実施形態に係る火工細胞破砕装置の概略断面図を示す。 図21は、細胞破砕方法の第1のステップを説明するための、図19および20に示されるチップのみの断面図を示す。 図22は、細胞破砕方法の第2のステップを説明するための、図19および20に示されるチップのみの断面図を示す。 図23は、図19~図22と同様であるが、チップが下部ハウジングの一体化された部分である第10実施形態の断面図を示す。 図24は、図23に示す第10実施形態において、チップを形成する下部ハウジング部の平面図を示す。 図25は、細胞破砕方法の第1のステップを説明するためにチップのみの断面図を示す。 図26は、細胞破砕方法の第2のステップを説明するためにチップのみの断面図を示す。 図27は、第11実施形態に係る試料チップを含む火工細胞破砕装置の概略断面図を示す。 図28は、加圧前の第1の態様におけるクランプを除いた状態の図27のような断面図および平面図を示す。 図29は、加圧後の第2の態様におけるクランプを除いた状態の図27のような断面図および平面図を示す。
 以下に説明する各実施形態で開示する火工細胞破砕装置は、点火され且つ点火時に燃焼するように構成された火工装薬(火薬)と、細胞を含む流体試料を収容し且つ火工装薬の点火および燃焼時に加圧されるように構成された圧力チャンバと、を備える。また、各実施形態で開示する火工細胞破砕方法は、火工装薬によって加圧されるように構成された圧力チャンバに細胞を含む流体試料を収容することと、火工装薬を点火および燃焼させることにより圧力チャンバに収容された流体試料を加圧することと、を含む。
 このように、流体試料を加圧する際の加圧源として主に火工装薬の燃料ガスを利用することで、極めて短時間で細胞破砕を実現することができる。これにより、油圧プレスによって流体試料を加圧する場合に比べて極めて短時間で細胞破砕を実現することができる。また、熱溶解法のように長時間に亘って過度の熱を細胞に曝すことがないため、細胞が損傷することを抑制できる。また、化学物質を用いる化学的溶解法と異なり、取り扱いが容易でない化学物質を用いずに細胞破砕を行うことができる。
 また、本開示に係る火工細胞破砕装置は、火工装薬を収容するハウジングを有するイニシエータ(点火器)を備えることができる。イニシエータは、例えば、車両のエアバッグを作動させるためのイニシエータを好適に利用でき、外部電源からの作動電力の供給を受けることで火工装薬の点火制御を行う。火工装薬は、特に限定されないが、例えば、ZPP(ジルコニウム・過塩素酸カリウム)、ZWPP(ジルコニウム・タングステン・過塩素酸カリウム)、THPP(水素化チタン・過塩素酸カリウム)、鉛トリシネート等が挙げられる。
 本開示に係る圧力チャンバに収容される流体試料は、細胞を含む流体の試料であれば特に限定されないが、例えば細胞を液体中に分散させた細胞懸濁液である。流体試料に含まれる細胞は特に限定されず、ヒト又は動物から採取した細胞であっても良いし、植物細胞、真菌、その他の細胞であっても良い。
 本開示において、圧力チャンバに収容される流体試料の用量(スケール、サイズ)は特に限定されないが、例えば、マイクロリットル(μL)オーダーの極めて少ない用量を採用することができる。例えば、流体試料の用量は、10μL以上500μL以下であっても良い。また、例えば、20μL、50μL、100μL、150μL、200μL、300μLの何れかを流体試料の用量における上限値または下限値として採用しても良い。勿論、流体試料の用量は、ミリリットル(mL)オーダーやそれ以上の大きなスケールを採用することも可能である。
 また、流体試料に含まれる細胞の数についても特に限定されない。例えば、流体試料に含まれる細胞数は、1×102 cells/cm3以上1×109 cells/cm3以下であっても良い。また、例えば、1×103 cells/cm3、1×104 cells/cm3、1×105cells/cm3、1×106 cells/cm3、1×107 cells/cm3、1×108 cells/cm3の何れかを流体試料に含まれる細胞数における上限値または下限値として採用しても良い。
 本開示に係る火工細胞破砕装置および火工細胞破砕方法は、火工装薬を点火および燃焼させて圧力チャンバ内に収容した細胞を含む流体試料を加圧し、細胞を破砕するために要する時間は非常に短く、且つ、加圧時に流体試料に含まれる細胞が熱に曝される時間も極めて短くすることができる。本開示に係る火工細胞破砕装置および火工細胞破砕方法において、流体試料の加圧時に細胞が熱に曝される時間は特に限定されないが、例えば、0.1ms(ミリ秒)以上500ms以下であっても良い。また、例えば、1ms、10ms、20ms、30ms、40ms、50ms、60ms、70ms、80ms、90ms、100ms、200ms、300ms、400msの何れかを、流体試料が加圧時に熱に曝される時間の上限値または下限値として採用しても良い。また、本開示に係る火工細胞破砕装置の作動を開始してから、流体試料に含まれる細胞の破砕処理が完了するまでの時間(破砕処理持続時間)は特に限定されないが、例えば、0.1ms以上1s(秒)以下であっても良い。また、例えば、1ms、10ms、100ms、500msの何れかを、破砕処理持続時間の上限値または下限値として採用しても良い。
 本開示に係る火工細胞破砕装置の圧力チャンバは、流体試料に加えて、当該流体試料とは別の任意の材料を収容しておくことができる。圧力チャンバに収容する流体試料以外の材料としては、水、その他の任意の液体、或いは、吸水性ポリマーのような他の材料などが挙げられ、これらを圧力チャンバ内に充填しても良い。このようにすることで、火工装薬を点火および燃焼させて圧力チャンバ内を加圧した際、その圧力衝撃波を平滑化することができる。
 本開示に係る火工細胞破砕装置は、火工装薬の燃焼ガスによって圧力チャンバに収容される流体試料を加圧した後、当該流体試料を流通させるオリフィスを備えることができる。オリフィスは、圧力チャンバ内で加圧された流体試料を流通させる微細な通路である。
 オリフィスは、例えば、オリフィス直径を有し、且つ、オリフィス直径よりも複数倍長い流路長を有するチャネルとして形成された精密オリフィスであっても良い。オリフィスの直径は、流体試料の流通を許容し、且つ、流通時に流体試料に十分な剪断応力を作用させることのできる寸法に設定することができる。オリフィスの直径は、流体試料に含まれる細胞の大きさ、数、種類等に応じて異なる寸法に設定できるが、例えば、1μm以上500μm以下であっても良い。また、例えば、10μm、20μm、30μm、40μm、50μm、60μm、70μm、80μm、90μm、100μm、200μm、300μm、400μmの何れかを、オリフィスの直径の上限値または下限値として採用しても良い。
 本開示に係る火工細胞破砕装置は、火工装薬の燃焼ガスによって圧力チャンバに収容された流体試料を加圧した後、圧力チャンバから圧力を解放する圧力解放部を備えることができる。圧力解放部は、圧力チャンバを外部空間に開放する圧力解放弁、破裂板などを含むことができる。圧力解放弁が開放される圧力値、或いは、破裂板が破裂する圧力値は特に限定されないが、例えば20,000psi以上、50,000psi以下の圧力値に設定されていても良い。また、例えば、25,000psi、30,000psi、35,000psi、40,000psi、45,000psiの何れかを、圧力解放弁が開放される圧力値、或いは、破裂板が破裂する圧力値の上限値または下限値として採用しても良い。
 以下に、図面を参照して本開示に係る実施形態について説明する。なお、各実施形態における各構成及びそれらの組み合わせ等は、一例であって、本発明の主旨から逸脱しない範囲内で、適宜、構成の付加、省略、置換、及びその他の変更が可能である。本開示は、実施形態によって限定されることはなく、請求の範囲によってのみ限定される。
<第1実施形態>
 図1は、第1の火工細胞破砕装置の加圧前における第1の態様に係る概略断面図を示す。この第1の火工細胞破砕装置は、精密オリフィス4を通して流体試料3を押し込み、大気圧に試料を放出解放(放出)するピストン2を有するシリンダ本体1を含む。精密オリフィス4は、解放(放出)チャネル9のような圧力チャンバ出口に接着又は圧入される別個の部分10の内部に形成されている。圧力源は油圧式ではなく、火工装薬(火薬)5を点火することによって生じている。火工細胞破砕装置は、例えば、当該装置に流体試料3を充填するため又は火工装薬5を含めるために装置を開閉することを可能にするキャップ6を更に備える。
 加圧前の装置を示す第1の態様では、ピストン2と流体試料3との間に圧力チャンバ15の低圧空間7が提供されていても良い。火工装薬5を点火した後、本装置は図2に示すような第2の態様となる。ここで、図1にかかる態様に示す低圧空間7は、より小さな容積で且つより高い圧力の高圧空間8に変化する。別の態様として、ピストンと試料との間に空間を設けないようにしても良い。また、低圧空間7は、液体のような種々の異なる材料だけでなく、吸水性ポリマーのような他の材料で充填されても良い。後者は、所望の細胞破砕結果を達成するのに役立つように、圧力衝撃波をある程度平滑化する。試料は、キャップ及びピストンを取り外した後に充填することができるが、特に精密オリフィス4を含むインサートを取り外した後に、解放チャネル9を通して試料を充填することも可能である。
 精密オリフィス4は、細胞が当該精密オリフィス4を通過する際に剪断応力を発生させる。次いで、細胞は、精密オリフィス4を通過した後、急速に減圧される。試料サイズは、例えば150μLまで小さくすることができ、或いは、例えば、10μLまで小さくすることも可能である。また、1ミリリットルのような、より大きな試料サイズとすることも可能である。試料サイズが典型的には非常に小さいことを考えると、精密オリフィス4を通じた解放(放出)時間は非常に短い。火工装薬5の点火後に迅速に圧縮される低圧空間7内のガスを含め、当該ガスは、圧縮によって非常に短時間で加熱され、精密オリフィス4を通じたその解放(放出)に先立って、非常に短時間だけその熱に曝される。この時間は、細胞材料の損傷を防ぐには十分に短いが、細胞破砕処理を助けるには十分に長い。
 火工装薬は、第1のピストン12も含む別個の火工装薬チャンバハウジング16内に収容される。このような火工装薬チャンバハウジング16は、火工装薬5および第1のピストン12を収容する第1のシリンダチャンバ13を含むことができる。第1のピストン12は、火工装薬5を点火および燃焼させることによって生成される圧力下において第1のシリンダチャンバ13に対して移動可能である。第1のピストン12は、第2のピストン、ここでは圧力チャンバ15内に設けられた前述のピストン2に接続されている。ピストン2は、圧力チャンバ15の1つの壁を形成するように、圧力チャンバ15内に設けられている。第1のシリンダチャンバ13は、少なくとも一部が圧力チャンバ15内に収容された火工装薬チャンバハウジング16内に設けられている。
 以上のように、第1実施形態に係る第1の火工細胞破砕装置D1(図1および図2を参照)は、点火され且つ点火時に燃焼するように構成された火工装薬5(火薬)と、流体試料3を収容して且つ火工装薬5の点火および燃焼時に加圧されるように構成された圧力チャンバ15(低圧空間7/高圧空間8)と、この圧力チャンバ15(低圧空間7/高圧空間8)を外部空間に接続する解放チャネル9を備えている。解放チャネル9は、流体試料3の通路として構成された精密オリフィス4を有する。第1の火工細胞破砕装置D1は、圧力チャンバ15を内部に有するシリンダ本体1を備える。シリンダ本体1は、例えば、図1および図2に示すように上部が開口端となった有底筒形状を有し、その開口端にキャップ6が着脱自在である。シリンダ本体1は、有底筒形状を有するハウジング部材であっても良い。また、火工装薬チャンバハウジング16は、例えばキャップ6の内面側に一体に固定されている。また、図1および図2に示す例では、シリンダ本体1の底部上に流体試料3が載置されることで、流体試料3が圧力チャンバ15内に収容されている。
 第1の火工細胞破砕装置D1が作動すると、火工装薬5の点火制御が行われ、例えば火工装薬5が燃焼する。ここで、第1の火工細胞破砕装置D1は、火工装薬5の点火制御を行うためのイニシエータ(点火器)を備え、火工装薬5およびこれを保持するハウジングがイニシエータの一部を構成していても良い。イニシエータは、例えば、外部電源に接続されるワイヤ等を更に有し、外部電源から作動電力の供給を受けることで火工装薬5の点火制御を行うことができる。
 上記の通り、第1の火工細胞破砕装置D1は、シリンダ本体1内に少なくとも一部が収容された火工装薬チャンバハウジング16内に形成された第1のシリンダチャンバ13に火工装薬5および第1のピストン12が収容されている。従って、火工装薬チャンバハウジング16は、第1のシリンダチャンバ13を形成する「第1のシリンダチャンバハウジング」ということもできる。図1に示すように、第1の火工細胞破砕装置D1における第1の態様(加圧前)において、第1のシリンダチャンバ13における上部領域に火工装薬5が収容され、その下部領域に第1のピストン12の少なくとも一部が収容されている。図1に示すように、火工装薬5は、第1の火工細胞破砕装置D1の作動前において、圧力チャンバ15のシリンダ本体1から分離して配置された火工装薬チャンバハウジング16によって画定される第1のシリンダチャンバ13内に収容されている。ここで、第1のシリンダチャンバ13は、火工装薬5を収容する「火工装薬チャンバ」と特定することができる。
 ここで、第1のピストン12は、ヘッド部121と当該ヘッド部121から下方に延びると共にヘッド部121と一体のロッド部122を含んでいる。そして、火工装薬チャンバハウジング16の底部にはロッド挿通孔161が貫通形成されている。そして、第1のピストン12におけるロッド部122がロッド挿通孔161に挿通された状態で、圧力チャンバ15内(第1のシリンダチャンバ13の外部)に収容されたピストン2(第2のピストン)にロッド部122の下端が接続されている。第1のピストン12は、ヘッド部121が火工装薬チャンバハウジング16内に収容された状態で、例えば、第1のシリンダチャンバ13の上下方向に沿って移動可能に構成されている。また、第1のピストン12におけるヘッド部121の直径は、ロッド挿通孔161の直径よりも大きく、ヘッド部121が第1のシリンダチャンバ13の外部に抜け落ちないように構成されていても良い。
 圧力チャンバ15のうち、シリンダ本体1の底部とピストン2(第2のピストン)に挟まれた領域を「第2のシリンダチャンバ」とも呼ぶ。圧力チャンバ15における第2のシリンダチャンバは、第1の火工細胞破砕装置D1の加圧前(作動前)における第1の態様においては低圧空間7を形成し(図1を参照)、加圧後(作動後)における第2の態様(図2を参照)においては高圧空間8を形成する(図2を参照)。
 第1の火工細胞破砕装置D1の作動時に、例えばイニシエータによる火工装薬5の点火制御が行われると、火工装薬5が燃焼することで燃焼ガスが生成される結果、第1のシリンダチャンバ13内における圧力が上昇する。その結果、火工装薬5が燃焼することで生成される圧力下において第1のピストン12のヘッド部121が押圧され、第1のピストン12が第1のシリンダチャンバ13に対して下方に移動する。これに伴い、第1のピストン12のロッド部122に接続されているピストン2(第2のピストン)も連動して下方(シリンダ本体1の底部側)に向かって移動する。これにより、圧力チャンバ15における第2のシリンダチャンバの容積が小さくなり、第2のシリンダチャンバが低圧の低圧空間7から高圧の高圧空間8へと変化する。その結果、圧力チャンバ15における第2のシリンダチャンバ(ここでは、高圧空間8)内に収容されている流体試料3が加圧され、流体試料3に含まれる細胞(例えば、細胞の外殻(細胞膜、細胞壁など)を破砕することができる。なお、本明細書において「低圧空間7/高圧空間8」と併記しているのは、圧力チャンバ15内における同じ空間を指すものである。つまり、火工細胞破砕装置D1の作動前(加圧前)においては低圧の低圧空間7として形成され、同装置の作動後(加圧後)においては当該低圧空間7が高圧の高圧空間8に変化することを意味しており、以下の実施形態においても同様である。
 また、上記のようにピストン2(第2のピストン)によって加圧された圧力チャンバ15(高圧空間8)に収容されている流体試料3は、高圧空間8に連通する解放(放出)チャネル9に押し込まれ、解放チャネル9を通じて装置外部に放出される。解放チャネル9を通過した流体試料3は、例えば大気圧下において図示しない収集容器に収集される。精密オリフィス4は、その直径が非常に小さいため、流体試料3が精密オリフィス4を通過する際に剪断応力を発生させ、その剪断応力を流体試料3に作用させる。本実施形態においては、精密オリフィス4を通過する際に発生する剪断応力を流体試料3に含まれる細胞に付与することによって、細胞を好適に破砕することができる。更に、精密オリフィス4を通過した流体試料3は、大気圧に晒されることによって急激に減圧される。その結果、流体試料3が急激に膨張する結果、その膨張圧によって流体試料3に含まれる細胞の破砕を促進させることができる。以上のようにして、第1の火工細胞破砕装置D1によれば、流体試料3に含まれる細胞を破砕し、当該細胞から例えばDNA、RNA、タンパク質又は細胞小器官などといった細胞内物質を分離することで、種々の細胞分析、細胞診断などを行うことができる。
 そして、第1の火工細胞破砕装置D1によれば、流体試料3を加圧する圧力源として、油圧式ではなく火工装薬5を点火、燃焼させることによって得ることができる。このように、火工装薬5(火薬)の着火によって生成される燃焼ガスによってピストン(第1のピストン12および第2のピストン)を作動させることで、圧力チャンバ15内に高圧空間8を瞬時に形成し、迅速に流体試料3を加圧すると共に精密オリフィス4を通じて外部に放出させることができる。これにより、短時間で効率的な細胞破砕を実現することが可能となる。更に、第1の火工細胞破砕装置D1によれば、上記のように流体試料3への加圧を短時間でおこなうことができるため、流体試料3に含まれる細胞が長時間に亘って高温に晒されることを抑制できる。これにより、流体試料3に含まれる細胞が損傷することを好適に抑制できる。
 更に、第1の火工細胞破砕装置D1によれば、流体試料3を加圧する圧力源として火工装薬5(火薬)を使用するため、少量の加圧源で効率的な細胞破砕を実現することができる。その結果、火工細胞破砕装置のコンパクト化を実現できる。更に、流体試料3を加圧する圧力源として使用する火工装薬5(火薬)は、生成する圧力(出力)の精密制御に適した材料と言える。そのため、圧力チャンバ15内に収容する流体試料3のサイズをマイクロリットルオーダーとしても、流体試料3に含まれる細胞を加圧する際の圧力制御を精度良く行うことができる。これにより、従来の細胞破砕装置(例えば、フレンチプレス(登録商標))では実現できなかった試料サイズの少量化を実現することができる。このように、本実施形態によれば、流体試料3を極めて小さなサイズとすることが可能であるため、特にヒト又は動物から細胞を採取する場合には侵襲性の低い細胞の採取が可能となる。また、試料サイズを小さくすることができるため、環境を汚染する危険性も低減することができ、また、より高度な自動化も可能となる。更に、試料サイズを小さくすることで、熟練者でなくてもその取扱いが容易なものとなる。また、小さな試料サイズは、サイズおよび単価が重要な使い捨てのポイントオブケア装置(POC)のために良く機能するため、ポイントオブケアに適した火工細胞破砕装置を提供することができる。
<第2実施形態>
 図3は、第2の火工細胞破砕装置の加圧前における第1の態様に係る概略断面図を示し、図4は、第2の火工細胞破砕装置の加圧後における第2の態様に係る概略断面図を示す。図3および図4に示す実施形態は、本質的に、図1および図2に示す実施形態の変形例である。同様の要素は、同じ参照番号によって示される。図3および図4による実施形態は、ピストンを備えておらず、そのピストンに代えて、低圧空間7およびそれに応じた高圧空間8を2つの部分に分割する変形可能なダイヤフラム14を備えている。その結果、圧力チャンバ15は、図4に示されるように、火工装薬5の点火および燃焼の際に火工装薬5によって生成される圧力下で変形するように構成される変形可能なダイヤフラム14によって少なくとも部分的に規定される。ダイヤフラム14は、変形の際に圧力チャンバの容積を減少させ、その結果、変形時に圧力チャンバを加圧する。
 火工装薬チャンバハウジング16は、火工装薬の圧力解放チャネル18の下端に所定の破断部(破壊点)17を含む。ダイヤフラム位置においてハウジングを2つの部分に分割し、ダイヤフラムを取り外し、ダイヤフラムを適所に保持するハウジングを組み立てることによって、図3および図4に示す装置に流体試料3を挿入することができる。
 図3および図4に示す実施形態の利点は、ダイヤフラム14が火工装薬5から流体試料3を気密封止するため、点火後における火工装薬5の副生成物が流体試料3と混合するのを抑制することにある。ダイヤフラムは、好ましくは金属から作られるが、他の材料、例えば、PE、PP、または他の塑性変形可能なポリマーや他のポリマーであっても良い。他の選択肢としては、ガラスが破損した場合であってもポリマーコーティングによってガラスを一体に保持するコーティングされた布又はポリマーコーティングされたガラスのような複合構造である。また、ベローズ状構造体は、ダイヤフラムとして有益であり得る。更なる選択肢としては、粒子を捕捉して破片から試料を保護するのに役立つが、圧力障壁とはならないメッシュスクリーンを使用することであり、これは本質的に、図3および図5に示される実施形態の組み合わせである。
 以上のように、第2実施形態に係る第2の火工細胞破砕装置D2(図3および図4を参照)は、シリンダ本体1の内部に形成された圧力チャンバ15から分離した別個の火工装薬チャンバ11に火工装薬5が収容されている。火工装薬チャンバ11は、火工装薬チャンバハウジング16の内部に形成されており、図3に示すように、火工装薬チャンバハウジング16の底部には圧力解放チャネル18が設けられている。圧力解放チャネル18は、火工装薬5の点火および燃焼時に火工装薬チャンバハウジング16内で生成される圧力を、ダイヤフラム14が配置されている圧力チャンバ15に解放するためのチャネル18である。第2の火工細胞破砕装置D2においては、圧力チャンバ15が、ダイヤフラム14によって2つの空間に区画されている。ダイヤフラム14によって区画された圧力チャンバ15のうち、火工装薬チャンバハウジング16側の空間を「第1内部空間S1」と呼び、流体試料3が載置されるシリンダ本体1の底部側の空間を「第2内部空間S2」と呼ぶ。なお、圧力チャンバ15の第1内部空間S1は、火工装薬チャンバハウジング16の内部空間を含まない。図3および図4に示すように、流体試料3は、圧力チャンバ15の第2内部空間S2に収容される。また、精密オリフィス4を有する解放チャネル9は、圧力チャンバ15の第2内部空間S2に接続されており、精密オリフィス4を有する解放チャネル9を介して第2内部空間S2が外部空間と連通可能となっている。
 第2の火工細胞破砕装置D2は、作動前(加圧前)の状態(図3に示す第1の態様)において、火工装薬チャンバハウジング16の圧力解放チャネル18が圧力チャンバ15の第1内部空間S1とは連通しておらず、第1内部空間S1(圧力チャンバ15)に対向する火工装薬チャンバハウジング16の底部に形成された破断部17によって遮断されている。なお、圧力解放チャネル18は、例えば火工装薬チャンバハウジング16の底部に形成される凹部として形成されていても良く、圧力解放チャネル18が形成されることで薄肉化された部位によって破断部17が形成されていても良い。この場合、火工装薬チャンバハウジング16における破断部17は、他の部位よりも脆弱な脆弱部として形成される。火工装薬チャンバハウジング16における破断部17は、第1内部空間S1に面して配置されている。
 第2の火工細胞破砕装置D2の作動時において、火工装薬5が点火および燃焼すると、火工装薬5によって生成された燃焼ガスによって火工装薬チャンバ11の圧力が上昇し、破断部17が破裂する。その結果、圧力解放チャネル18を介して火工装薬チャンバ11と圧力チャンバ15の第1内部空間S1が連通し、火工装薬5の燃焼ガスが第1内部空間S1に導入される。これにより、図4に示すように、第1内部空間S1側から第2内部空間S2側に向かってダイヤフラム14が変形し、図3に示す状態に比べて、第1内部空間S1の容積が増大し、第2内部空間S2の容積が減少する。その結果、流体試料3が収容されている第2内部空間S2の圧力が高まり、低圧空間7から高圧空間8に変化することとなる。なお、第1内部空間S1は、図3に示す状態に比べて容積が増大するものの、圧力解放チャネル18を通じて火工装薬5の燃焼ガスが流入するため、第2の火工細胞破砕装置D2の作動に伴って第1内部空間S1も低圧空間7から高圧空間8に変化する。なお、本実施形態においても、第1および第2実施形態と同様、キャップ6はシリンダ本体1の上端開口に対して着脱自在に設けられており、キャップ6の内側に火工装薬5を収容する火工装薬チャンバハウジング16を固定することができる。
 以上のようにして、第2の火工細胞破砕装置D2が作動することで、圧力チャンバ15の第2内部空間S2に収容されている流体試料3が加圧される。その結果、流体試料3に含まれる細胞を破砕することができる。また、上記のように、精密オリフィス4を含む解放(放出)チャネル9は圧力チャンバ15の第2内部空間S2に接続されているため、加圧された流体試料3は解放(放出)チャネル9に押し込まれる。そして、精密オリフィス4を流体試料3が通過する際に発生する剪断応力が流体試料3に付与されることによって流体試料3に含まれる細胞の破砕が促進される。そして、流体試料3が精密オリフィス4を通過した後、装置外部に放出された際に大気圧に晒されることで急激に減圧、膨張することで細胞破砕が更に促進される。このようにして細胞破砕処理がなされた流体試料3は、第1実施形態と同様、収集容器に収集することができる。本実施形態における第2の火工細胞破砕装置D2によれば、第1の火工細胞破砕装置D1と同様の効果が得られる。なお、ダイヤフラム14を金属材料によって形成する場合、その材料として例えばアルミニウム、鋳鉄又はステンレス等を使用しても良い。
<第3実施形態>
 図5は、第3の火工細胞破砕装置の加圧前における第1の態様に係る概略断面図を示し、図6は、第3の火工細胞破砕装置の加圧後における第2の態様に係る概略断面図を示す。この第3実施形態は、ダイヤフラム14を完全に省略することを除いて、第2実施形態と非常に類似している。したがって、別個の火工装薬チャンバハウジング16は、火工装薬の点火および燃焼の際に圧力チャンバ内に直接開口される。この実施形態は、装置内への試料の負荷を単純化し、密封部材および可動部品を最小限に抑えるが、点火後における火工装薬の副生成物に試料を曝露させる。しかしながら、これは、特定の試料および所望の目的の細胞内分子に応じて、細胞内分子が上記副産物と化学的に相互作用しない場合、又は適切な検出/診断が妥協される程度に汚染される場合には許容され得る。また、火工装薬の副生成物との化学的相互作用は、当該副生成物が細胞の溶解を可能にする/増強する場合、有利に使用できる。特定の化学物質と界面活性剤は、細胞を溶解するために単独で使用される。さらに、火工装薬によって生成される熱もまた、細胞の溶解を可能にする/増強する際に有利であり得る。この装置では、反応室に硬質ビーズまたは他の発射体/攪拌機を追加することによって、機械的破壊を利用することもできる。図1~図4の実施形態と同様に、この第3実施形態では、第1および第2実施形態と比較して同様の要素には同様の参照番号が使用される。
 以上のように構成される第3の火工細胞破砕装置D3(図5および図6を参照)は、圧力チャンバ15内がダイヤフラム等で仕切られていない。圧力チャンバ15は、第3の火工細胞破砕装置D3の作動前(加圧前)において低圧空間7として形成される。また、第3の火工細胞破砕装置D3の作動後(加圧後)においては、圧力チャンバ15の内圧が上昇することによって低圧空間7から高圧空間8へと変化する。また、図5から明らかなように、第3の火工細胞破砕装置D3の作動前(加圧前)において火工装薬5を収容する火工装薬チャンバハウジング16の構造については、第2の火工細胞破砕装置D2と同様であり、火工装薬チャンバハウジング16に圧力解放チャネル18および破断部17が設けられている。圧力解放チャネル18は、第3の火工細胞破砕装置D3の作動前(加圧前)においては、圧力チャンバ15の内部空間(低圧空間7)と連通していない。そして、同装置の作動に伴い火工装薬5が点火され、火工装薬5の燃焼によって生成される燃焼ガスによる圧力下において脆弱な破断部17が破裂する。これにより、火工装薬チャンバハウジング16(火工装薬チャンバ11)が圧力チャンバ15(低圧空間7)に直接開口し、火工装薬チャンバハウジング16内の圧力が解放(放出)される。これにより、流体試料3が収容されている圧力チャンバ15が低圧空間7から高圧空間8へと変化し、流体試料3が加圧されることで、流体試料3に含まれる細胞が破砕される。更に、流体試料3は解放(放出)チャネル9に押し込まれ、精密オリフィス4を通過する際に剪断応力を受けることで細胞破砕が促進される。解放(放出)チャネル9を通過した流体試料3は、大気圧下に放出された際に急激に膨張することで細胞破砕が更に促進された後、例えば収集容器等に収容される。本実施形態における第3の火工細胞破砕装置D3においても、第1および第2の火工細胞破砕装置D1,D2と同様な効果を得ることができる。
<第4実施形態>
 図7は、第4の火工細胞破砕装置の加圧前における第1の態様に係る概略断面図を示し、図8は、第4の火工細胞破砕装置の加圧後における第2の態様に係る概略断面図を示す。図1~図6に示される実施形態とは対照的に、図7~図8に示される実施形態は精密オリフィス4を有しないが、火工装薬の点火前に低圧空間7を形成する気密封止された圧力チャンバ15を含み、一方、正確に同じ空間は火工装薬の点火後に高圧空間8を形成し、後者の態様は図8に示されている。試料サイズは図1~図6と同等とすることができ、例えば、1mL、150μL、または10μLである。本実施形態において、流体試料3は、別個の試料容器19内に提供される。さらに、本実施形態において、容器は、圧力解放弁20を備える圧力解放部21を含む。容器19は、圧力下で潰れて流体試料3を加圧することができるように、十分な可撓性を有する。例えば、容器は、試料パウチとして形成されても良い(例えば、図9を参照のこと)。代替として、容器19が気体を含まずに流体試料3によってその全体が充填される場合、流体試料3が支持することで容器が潰れない場合があるが、容器は試料を加圧するために十分な可撓性をなお有するべきである。試料を収容することとは別に、容器19は、異なる材料、例えば吸水性ポリマーを収容することもでき、これは火工装薬5の燃焼から生じる圧力衝撃波に曝されたときに容器の健全性を保護するのに役立つ。反対に、所望であれば、容器は、火工装薬からの圧力下で破裂するように構成することができる。また、1つ又は複数の試料(パウチ)を、同じチャンバ内で同時に処理することができる。
 火工装薬5の点火および燃焼の際に迅速に加圧した後、火工装薬5から発生するガス圧力による急激な圧力上昇に流体試料3が晒された後、細胞破砕のための有効な時間に圧力解放弁20が開放される。圧力解放弁20の開放もまた、典型的には迅速に起こり、時間の経過と共に急速な圧力低下を引き起こし、細胞膨張によって細胞膜の破裂を容易にする。火工装薬5によって生成される熱は、細胞膜を破裂に対して脆弱にすることを助け、それゆえ細胞破砕を助けることができる。火工装薬5の燃焼から生じる種々の他の物理的および化学的条件が、細胞破壊に寄与し得る。装薬(火薬)自体の組成は、場合によってはイニシエータとガス発生器の組み合わせにもよるが、ガスおよび熱発生の速度を調整するために適用することができる。廃熱は、ポイントオブケア(POC)検出システム(増幅および検出)内において他の目的に使用することができる。廃ガス圧力は、ある場所(ステージ)から別の場所(ステージ)に試料を移動させるために使用し、或いは、POCデバイスで使用するために貯蔵することができる。
 容器19の概念は、操作者が試料による暴露から保護されるので、臨床試験に対する様々な規制基準に準拠するのに役立つ。容器19が形成される材料および試料による容器の充填量に応じて、容器は、圧力下で破裂するか、または無傷のままであり得る。
 流体試料3は、キャップ6を開くことによって、または、容器19が破裂するように構成されている場合には圧力解放弁20を介して解放することによって、装置から取り出すことができる。破砕された細胞試料のこのような放出は、デバイスの向きを変え(回転させ)、試料を放出するためにいくらかの残留圧力を使用することによって達成され得る。
 この静水圧衝撃の利点は、シールおよび可動部品を最小限に抑えることにある。また、バネを設けるか、弾性的に変形して跳ね返るようにハウジングを構成し、特定の周波数および振幅で共振する圧力波を生成し、圧力を解放(放出)する前に細胞溶解の度合い(範囲)を増加させることも可能である。
 火工細胞破砕を使用することにより、十分な剪断応力が生じ、十分に迅速な減圧が得られるため、本実施形態では試料を精密オリフィス4に押し通す必要が無い。これは、従来技術のフレンチプレスのような大型機器を単に火工細胞破砕に置き換えるよりも遥かに多くの利点を提供する。具体的には、試料調製およびアッセイ全体を装置における単一のチャンバ、すなわち静水圧プロセスで行うことができる。この装置は構造が単純であり、部品点数を少なくすることが可能である。これにより、開発および製造コストを低減させるだけでなく、機械的な故障や汚染のリスクをより少なくすることができる。これはまた、試料の無駄を防ぐことによって、必要な試料量を少なくすること、および/又はアッセイシグナルの向上をなし得る。
 以上のように構成される第4の火工細胞破砕装置D4(図7および図8を参照)は、点火され且つ点火時に燃焼するように構成された火工装薬5と、流体試料3を収容して且つ火工装薬5の点火および燃焼時に加圧されるように構成された圧力チャンバ15(低圧空間7/高圧空間8)と、火工装薬5の点火および燃焼によって圧力チャンバ15が加圧された後に圧力チャンバ15から圧力を解放する圧力解放部21(圧力解放弁20)を備えている。また、図7から明らかなように、第4の火工細胞破砕装置D4の作動前(加圧前)において火工装薬5を収容する火工装薬チャンバハウジング16の構造については、第2および第3の火工細胞破砕装置D2,D3と同様であり、火工装薬チャンバハウジング16に圧力解放チャネル18および破断部17が設けられており、火工装薬5の点火および燃焼時に破裂するように構成された火工装薬チャンバハウジング16内に形成されると共に圧力チャンバ15から分離された別個の火工装薬チャンバ11内に収容されている。そして、第4の火工細胞破砕装置D4においても、第3の火工細胞破砕装置D3と同様、作動時に火工装薬5が点火されることで生成された燃焼ガスの圧力によって破断部17が破裂し、火工装薬チャンバハウジング16(火工装薬チャンバ11)が圧力チャンバ15(低圧空間7)に直接開口する。その結果、火工装薬チャンバハウジング16内から火工装薬5の燃焼ガスが、流体試料3を保持(収容)する容器19が配置されている圧力チャンバ15内へと流出し、圧力チャンバ15内が低圧空間7から高圧空間8へと変化する。これにより、容器19内に収容されている流体試料3が加圧し、流体試料3に含まれる細胞を破砕することができる。
 また、第4の火工細胞破砕装置D4においては、例えば容器19が可撓性を有すると共に流体試料3を充填(収容)可能なパウチによって形成されており、当該パウチは、火工装薬の点火および燃焼時における圧力に曝されたときに破裂しないように構成されている。これにより、第4の火工細胞破砕装置D4の作動時に容器19を破壊することなく、その内部に充填されている流体試料3を好適に加圧し、細胞を破砕することができる。
 また、第4の火工細胞破砕装置D4において、圧力解放部21は圧力解放弁20を有し、圧力解放弁20は、例えば第4の火工細胞破砕装置D4の作動時に火工装薬5の点火後からの経過時間が所定時間だけ経過した時点で自動開放される弁体であっても良い。或いは、圧力解放部21の圧力解放弁20は、例えば第4の火工細胞破砕装置D4の作動時に、容器19が収容される圧力チャンバ15(高圧空間8)の圧力が所定圧力まで上昇した時点で自動開放される弁体であっても良い。圧力解放弁20が自動で開放される圧力の設定値は特に限定されないが、少なくとも20,000psiの圧力に曝されたときに開放されるように設定されていても良い。圧力解放弁20が自動開放される圧力の設定値は、例えば容器19に収容される流体試料3の量、流体試料3に含まれる細胞の種類等に応じて適宜設定することができる。また、圧力解放弁20は、手動で開放可能な弁体であっても良い。また、圧力解放部21は、所定の圧力に曝されたときに破裂する破裂板を有していても良い。この破裂板は、例えば少なくとも20,000psiの圧力に曝されたときに破裂するように構成されていても良い。
 上記のように、圧力チャンバ15(高圧空間8)に収容される流体試料3が高圧下において加圧された状態から圧力解放弁20が開放されると、高圧空間8に急激な圧力低下が起こる。その結果、流体試料3に含まれる細胞が急激に膨張し、例えば大きな剪断応力が細胞に作用することによって細胞破砕を促進することができる。なお、流体試料3を充填(収容)する容器19の材料は特に限定されないが、可撓性を有する可撓性パウチであっても良い。或いは、容器19は樹脂、ガラス等の硬質材料によって形成されていても良い。この場合、火工装薬5の燃焼ガスによって圧力チャンバ15が低圧空間7から高圧空間8に変化した際に、容器19が潰れ、或いは破断することによって、内部の流体試料3が加圧されるようになっていても良い。
<第5実施形態>
 図9は、第5の火工細胞破砕装置の分解図を示し、図10は、第5の火工細胞破砕装置の概略断面図を示す。圧力解放部21は、図10に示すようなラプチャーディスク23を含むラプチャーディスクアセンブリ22として形成される。このラプチャーディスクは管理(制御)された様式で、且つラプチャーディスク23を破裂させるために必要な時間枠内で圧力を迅速に解放する。このラプチャーディスクは、細胞破壊を達成するために必要なそのような時間枠を可能にするように設計されている。また、試料パウチ24は、試料ケージ25内に設けられている。このケージ25は必ずしも必要ではないが、試料パウチ24を慎重に取り扱うのに役立ち、且つ、試料パウチを圧力チャンバ15内に挿入するのに役立つ。ケージはまた、火工装薬が爆発した後に、試料パウチが圧力解放通気路を偶発的に閉塞することを抑制する。仮にこれが起こった場合、試料は潜在的にエアロゾル化され、周囲に吹き飛ばされる可能性がある。これは、図11および図12に示される実施形態によってさらに軽減され、この実施形態においては火工装薬によって生成されたガスと通気口(排出口)との間の直接経路の外に試料を配置する。装置の組み立ては、高強度ボルト27または他のクランプ(締め付け)方法によって、ケージ25内に挿入された試料パウチ24を含む圧力チャンバ15を、ガスケット26、およびキャップ6と一緒にねじ込むことによって達成できる。火工装薬は、圧力チャンバ15内に同軸に挿入されたイニシエータ28内に設けられている。火工装薬の点火は、イニシエータ28内における火工装薬を点火するのに十分な電圧を供給する電源に、イニシエータ28を、そのワイヤ29を介して接続することによって達成できる。
 第5実施形態における第5の火工細胞破砕装置D5は、図7および図8で説明した第4の火工細胞破砕装置D4の概念を、より具体的に実現したものである。第5実施形態において、第4実施形態と比較して同様の要素には、同様の参照番号が使用される。図10に示すように、圧力チャンバ15は圧力容器150を有し、圧力容器150の上下方向に沿って中空部が圧力容器150を貫通するように設けられている。上記中空部が圧力容器150の底部に開口する部位には、当該開口を気密に塞ぐようにしてイニシエータ28が取り付けられている。図10に示すように、イニシエータ28の火工装薬チャンバハウジング16は、圧力容器150の内部に面して配置されている。
 図9に示す符号153は、圧力容器150におけるキャップ締結部である。図9に示す例では、キャップ締結部153は圧力容器150の上部側に位置しており、キャップ6を着脱自在に取り付けることができる。キャップ締結部152、ガスケット26、およびキャップ6には、高強度ボルト27を挿入するためのねじ穴が形成されている。圧力容器150およびキャップ6の間にガスケット26を挟み込み、各ねじ穴に挿入した高強度ボルト27をねじ込むことによって、圧力容器150のキャップ締結部153に対してキャップ6を一体に締結することができ、逆に、高強度ボルト27を取り外すことで圧力容器150からキャップ6を離脱させることができる。圧力容器150にキャップ6が取り付けられることで、圧力容器150の内部に気密状態の圧力チャンバ15が形成される。
 本実施形態における圧力チャンバ15は、圧力容器150の上下方向(軸方向)に沿って延在し、同軸に接続される試料容器収容部151および圧力チャネル30を含む。図9および図10に示すように、試料容器収容部151は、圧力容器150の上面に開口しており、試料容器収容部151の下端が圧力チャネル30の上端に接続されている。圧力チャネル30および試料容器収容部151は、例えば円柱形状を有する空洞部であり、試料容器収容部151の直径(横断面積)が圧力チャネル30の直径(横断面積)よりも一回り大きく、試料容器収容部151および圧力チャネル30の接続部(境界部)の間に設けられた径方向に延在する段差によって試料容器載置部152が形成されている。試料容器載置部152には、単独の試料パウチ24、或いはケージ25を装着した状態の試料パウチ24を載置することができる。これにより、試料パウチ24を安定して圧力チャンバ15内に収容することができる。なお、ケージ25は、例えば可撓性を有する試料パウチ24を保持可能な籠状部材である。試料パウチ24にケージ25を装着した状態においても、試料パウチ24の一部が露出した状態に維持される。なお、本実施形態においては、流体試料を可撓性の試料パウチ24に収容する例を説明しているが、流体試料を充填する他の容器を試料容器載置部152に載置し、試料容器収容部151に収容しても良い。
 また、イニシエータ28における火工装薬チャンバハウジング16の内部には、火工装薬5を収容する火工装薬チャンバ11が形成されている。火工装薬チャンバハウジング16は、圧力チャネル30に配置されている。火工装薬チャンバハウジング16は、例えば火工装薬5の点火および燃焼時におけるエネルギーによって破裂可能なカップ部材によって形成されていても良い。カップ部材は、例えばアルミニウムなど、薄肉の金属部材によって形成されていても良い。これにより、火工装薬5の点火および燃焼時におけるエネルギーによって火工装薬チャンバ11が圧力チャンバ15内の圧力チャネル30に直接開口し、火工装薬5の燃焼ガスを圧力チャネル30に導入することができる。圧力チャネル30は、イニシエータ28の作動時に、火工装薬5の燃焼ガスを試料容器収容部151に供給するための通気路として機能する。なお、第5の火工細胞破砕装置D5の作動前においては、圧力チャンバ15(圧力チャネル30および試料容器収容部151)は低圧な低圧空間7として形成されている。
 図9および図10に示すように、試料容器収容部151は、圧力容器150の上面に開口されており、圧力容器150にキャップ6が取り付けられることで試料容器収容部151がキャップ6によって覆われるように構成されている。また、図9および図10に示すように、キャップ6には圧力解放部21が設けられている。圧力解放部21は、ラプチャーディスクアセンブリ22および圧力解放通気路61を含む。圧力解放通気路61は、キャップ6を軸方向に貫通するように形成された通気路である。ラプチャーディスクアセンブリ22は、圧力解放通気路61に接続された圧力解放通気路22A、当該圧力解放通気路22Aの途中を遮断(閉塞)するように配置されたラプチャーディスク23等を有している。圧力解放通気路22Aは、ラプチャーディスクアセンブリ22を上下方向に貫通するように延在している。圧力解放通気路61,22Aは、火工装薬5の点火および燃焼によって圧力チャンバ15が加圧された後、ラプチャーディスク23が破裂した際に、試料容器収容部151と外部空間とを連通し、圧力チャンバ15内の圧力を外部に開放する。ラプチャーディスク23は、一次側の圧力、すなわち圧力チャンバ15の圧力が所定の圧力まで上昇した時点でラプチャーディスク23が破裂するように構成されている。ラプチャーディスク23が破裂する時の圧力は、例えば試料パウチ24に充填される流体試料3の量、流体試料3に含まれる細胞の種類等に応じて適宜設定することができる。また、図10に示すように、キャップ6が圧力容器150に取り付けられた状態において、圧力チャネル30、試料容器収容部151、および圧力解放通気路61,22Aが同軸上に配置される。より詳しくは、キャップ6が圧力容器150に取り付けられた状態において、圧力チャネル30、試料容器収容部151、および圧力解放通気路61,22Aが圧力容器150の中心軸を通って一直線に並ぶように同軸配置される。
 上記のように構成される第5の火工細胞破砕装置D5は、イニシエータ28を作動によって火工装薬5を点火させると、火工装薬5の燃焼によって生成された燃焼ガスによって火工装薬チャンバ11の内圧が上昇することで火工装薬チャンバハウジング16(例えば、カップ部材)が開裂する。その結果、火工装薬5の燃焼ガスが、火工装薬チャンバ11から圧力チャンバ15における圧力チャネル30へと導入される。そして、火工装薬5の燃焼ガスは、圧力チャネル30と同軸で接続される圧力チャンバ15の試料容器収容部151へと導入される結果、試料パウチ24が収容されている試料容器収容部151の圧力が急激に増大する。これにより、試料容器収容部151が低圧空間7から高圧の高圧空間8に変化する。試料パウチ24は、ケージ25を装着した状態においても試料パウチ24の一部が露出する。これにより、高圧空間8に変化した試料容器収容部151内の高圧下に試料パウチ24を曝すことができる。その結果、試料パウチ24に充填されている流体試料3が急激に加圧され、流体試料3に含まれる細胞を破砕することができる。更に、試料容器収容部151の圧力が所定の圧力まで上昇した時点でラプチャーディスク23が破裂すると、試料容器収容部151が迅速に減圧される。その結果、試料パウチ24に充填されている流体試料3に含まれる細胞が急激に膨張し、例えば当該細胞に大きな剪断応力が作用することによって、細胞破砕が更に促進される。なお、上記の例では、圧力解放部21の圧力解放通気路22Aをラプチャーディスク23(破裂板)によって遮断する構成としたが、第4実施形態で説明した圧力解放弁20に置き換えても良い。すなわち、火工装薬5の点火後からの経過時間が所定時間だけ経過した時点で圧力解放弁20を自動開放しても良いし、圧力チャンバ15内の圧力が所定圧力まで上昇した時点で圧力解放弁20を自動開放しても良い。
 なお、第5の火工細胞破砕装置D5は、圧力チャネル30および試料容器収容部151が同軸上に配置されているため、イニシエータ28を作動させて火工装薬5を燃焼させた際に、圧力チャネル30を介して試料容器収容部151へと燃焼ガスを円滑に導入し、試料パウチ24内に充填された流体試料3に含まれる細胞の破砕を迅速に行うことができる。更に、第5の火工細胞破砕装置D5は、圧力容器150にキャップ6が取り付けられた状態で圧力チャネル30、試料容器収容部151、圧力解放通気路61,22Aが同軸上に配置されているため、イニシエータ28の作動後、ラプチャーディスク23が破裂した際に、圧力チャンバ15(試料容器収容部151、圧力チャネル30)内から燃焼ガスを圧力解放通気路61,22Aを通じて円滑に外部に放出することができる。これにより、圧力チャンバ15内の減圧をより短時間で行うことができる。その結果、試料パウチ24の流体試料3に含まれる細胞がより急激に膨張し、細胞破砕をより一層促進させることができる。
<第6実施形態>
 図11は、第6実施形態における火工細胞破砕装置の透視図を示し、図12は、第6の火工細胞破壊装置の概略断面図を示す。この第6の実施形態は、第5の実施形態と非常に類似している。しかしながら、イニシエータ28は横方向に配置され、イニシエータ28は圧力チャンバ15の半径方向において圧力チャネル30を介して低圧空間/高圧空間7,8と接続されている。図9および図10による同軸アプローチと比較して、図11および図12による横方向アプローチの利点は、火工装薬の点火後に、試料ケージ25内の試料パウチ24がイニシエータ28からのガス流に直接曝されないことである。また、圧力チャネル30は、試料パウチ24および試料ケージ25の組み合わせにおける一方の軸方向端部を越えて間隔を置いて配置された低圧空間/高圧空間7,8と交差することができる。一方、試料パウチ24および試料ケージ25の組み合わせにおける他方の軸方向端部は、圧力チャンバ15の底部上に載置することができる。ガス流からの試料パウチ24および試料ケージ25の組み合わせの直接的な曝露(露出)を回避することとは別に、火工装薬によって生成される圧力はまた、試料パウチ24および試料ケージ25の組み合わせを圧力チャンバ15の底部に向かって押し下げる。これにより、試料パウチ24および試料ケージ25の組み合わせが適所にしっかりと保持され、試料パウチ24および試料ケージ25の組み合わせの望ましくない移動が回避される。
 第6実施形態に係る第6の火工細胞破砕装置D6は、第5の火工細胞破砕装置D5の変形例である。第6実施形態において、第5実施形態と比較して同様の要素には、同様の参照番号が使用される。第6の火工細胞破砕装置D6は、圧力容器150が有底のシリンダ形状を有しており、その内部に圧力チャンバ15が形成されている。圧力チャンバ15は、第1方向に延在すると共に加圧空間部155と、加圧空間部155の途中から第1方向と異なる第2方向に分岐して加圧空間部155と接続される圧力チャネル30を含む。図11および図12に示す例では、加圧空間部155は、圧力容器150の上下方向(軸方向、第1方向)に沿って延在し、圧力チャネル30は圧力容器150の横方向(径方向)に延在しており、圧力チャネル30が加圧空間部155から直交方向に分岐している。なお、圧力チャンバ15は、第6の火工細胞破砕装置D6の作動前においては低圧空間7として形成され、作動後においては高圧空間8として形成される。
 また、第6の火工細胞破砕装置D6は、第5の火工細胞破砕装置D5と同様の圧力解放部21をキャップ6に備えている。圧力解放部21は、ラプチャーディスクアセンブリ22および圧力解放通気路61を含む。加圧空間部155は、圧力解放部21に対する近位端および遠位端を有し、遠位端155Bは圧力容器150の底部157に位置付けられている。一方、加圧空間部155の近位端は、圧力容器150の上面に開口しており、圧力容器150にキャップ6が取り付けられることで加圧空間部155がキャップ6によって覆われるように構成されている。また、圧力容器150にキャップ6が取り付けられた状態では、加圧空間部155の近位端が圧力解放通気路61に接続されるように構成されている。例えば、加圧空間部155および圧力解放通気路61は、圧力容器150の中心軸を通って同軸に配置される。
 加圧空間部155は、圧力チャネル30との接続部155Cと遠位端との間に試料パウチ24を収容するための試料容器収容部156を含む。言い換えると、パウチ保持部156は、加圧空間部155における接続部P1よりも下方の領域を指す。本実施形態においては、圧力容器150の底部157にケージ25を装着した試料パウチ24を載置することができる。勿論、圧力容器150の底部157に単独の試料パウチ24を載置しても良い。なお、試料容器収容部156の高さは、試料パウチ24の高さ以上の寸法を有し、試料容器収容部156に試料パウチ24を収容した状態において、試料パウチ24が接続部P1側に突出しないようになっている。つまり、試料パウチ24の上端が、加圧空間部155における圧力チャネル30との接続部P1よりも下方に位置にするように試料パウチ24を試料容器収容部156に収容することができる。また、図11および図12に示すように、イニシエータ28は圧力容器150の側面に取り付けられており、イニシエータ28の火工装薬チャンバハウジング16が圧力チャネル30内を臨むようにイニシエータ28が横方向に配置されている。つまり、イニシエータ28の火工装薬5は、圧力チャネル30に配置されている。
 以上のように構成される第6の火工細胞破砕装置D6においては、第5の火工細胞破砕装置D5で述べたものと同様の効果に比べて、以下の更なる効果が得られる。すなわち、本実施形態に係る第6の火工細胞破砕装置D6によれば、イニシエータ28の作動時に火工装薬5が点火および燃焼することによって生成された燃焼ガスが、圧力チャネル30を介して加圧空間部155に供給されることで、加圧空間部155が低圧の低圧空間7から高圧の高圧空間8に変化する。その際、接続部P1から下方の試料容器収容部156に流入する燃焼ガスによる圧力は、試料ケージ25を装着した試料パウチ24を圧力容器150の底部に向かって押し付けることとなり、加圧状態にある試料パウチ24を試料容器収容部156に安定して保持することができる。また、試料パウチ24の上端が加圧空間部155における接続部P1よりも下方に位置するため、火工装薬5からの燃焼ガス流に試料パウチ24が直接曝されることを抑制できる。
 そして、ラプチャーディスクアセンブリ22におけるラプチャーディスク23が破裂した際には、圧力チャンバ15が外部空間と連通することで、圧力チャンバ15の圧力が圧力解放通気路61,22Aを通じて外部に解放(放出)される。その際、圧力チャンバ15から圧力解放通気路61,22Aを介して外部に放出されるガスの多くは、試料容器収容部156を通過しないため、圧力チャンバ15の圧力解放時に試料パウチ24を安定して圧力容器150の底部上に存置しておくことができる。これにより、例えば試料パウチ24が試料容器収容部156から上方側に移動したり、圧力解放通気路61が試料パウチ24によって閉塞されてしまうことを抑制でき、圧力チャンバ15の迅速かつ円滑な減圧が阻害されることを抑制できる。また、本実施形態においては、流体試料を可撓性の試料パウチ24に収容する例を説明しているが、流体試料を充填する他の容器を試料容器収容部156に収容しても良い。
<第7実施形態>
 図13~図15は、第7実施形態に係る試料チップを含む火工細胞破砕装置を示す。図13に示すように、クランプ31が、基板34に形成された第1の凹部33に流体試料3を保持すると共に、基板34に形成された第2の凹部35に膨張チャンバ36を形成しているチップ32の上部(頂部)および下部(底部)に設けられている。火工装薬チャンバハウジング16は、クランプ31の1つと一体的に形成することができ、または別個に設けることができる。圧力解放チャネル18は、チップがクランプ31の間のクランプ位置にあるときに、流体試料3の上部の中央に配置されていても良い。圧力チャンバ15は、クランプおよび/又は火工装薬チャンバハウジング16、又はこれらの組み合わせによって、周囲(環境)に対して密閉されている。精密オリフィス4は、圧力チャンバ15と膨張チャンバ36とを互いに接続している。このような精密オリフィス4は、例えば、圧力チャンバ15と膨張チャンバ36との間に閉じられたチャネルを形成するようにクランプによって閉じられる基板34の溝によって作り出すことができる。薄いフィルムをチップ34に接着し、精密オリフィス4、膨張チャンバ36、および圧力チャンバ15をシールすることができる。火工装薬による加圧のために、フィルムに小孔または脆弱部が設けられてもよい。また、他の様式のオリフィス、例えば基板34を完全に貫通するように設けられたオリフィスも採用することが可能である。
 図14は、点火前の状態を示す一方、図15は、点火後において圧力チャンバ15から膨張チャンバ36内への流体試料3の移動後における態様を示す。これは、図14に黒で示された流体試料3が、図15において、破砕された細胞内からの材料を収集する膨張チャンバ36上に分散されていることが示されている。
 上記のように、第7実施形態に係る第7の火工細胞破砕装置D7(図13~図15を参照)は、基板34、基板34に形成された第1の凹部33によって形成される圧力チャンバ15、基板34に形成された第2の凹部35によって形成される膨張チャンバ36等を備えるチップ32(火工細胞破壊チップ)を備えている。本実施形態において、上述までの実施形態と比較して同様の要素には、同様の参照番号が使用される。図13に示す例では、基板34の上面側に第1の凹部33(圧力チャンバ15)および第2の凹部35(膨張チャンバ36)が開口するように形成されており、精密オリフィス4(第1のチャネル)によって第1の凹部33(圧力チャンバ15)および第2の凹部35(膨張チャンバ36)が接続されている。精密オリフィス4は、基板34の上面に開口する開口溝によって形成されていても良い。また、図13に示す例では、基板34の上面が薄い最上層フィルム46によって覆われている。例えば、最上層フィルム46は基板34の上面に接着されていても良く、最上層フィルム46によって第1の凹部33、第2の凹部35、精密オリフィス4を形成するための開口溝をシールすることで、圧力チャンバ15、膨張チャンバ36および精密オリフィス4を外部に対して密閉することができる。ここで、最上層フィルム46および後述する最下層フィルム47は、各種高分子フィルムを用いることができ、例えばポリプロピレン(PP)、ポリエチレン(PE)、その他の熱可塑性樹脂を複合しまたは積層したものによって形成しても良く、必要に応じて熱収縮性や親水性、疎水性を付与したフィルムを使用することができる。
 第7の火工細胞破砕装置D7は、更に、チップ32(火工細胞破壊チップ)の上部(頂部)および下部(底部)にそれぞれ配置された一対のクランプ31によってクランプされている。一対のクランプ31は、例えば剛性を有する高強度クランプであり、チップ32に対して着脱自在に組み付けることができる。第7の火工細胞破砕装置D7は、更に、火工装薬チャンバ11を形成する火工装薬チャンバハウジング16、火工装薬チャンバ11に収容された火工装薬5等を有しており、図13に示すように火工装薬チャンバハウジング16がチップ32(基板34)における第1の凹部33(圧力チャンバ15)の上部に配置されている。火工装薬チャンバハウジング16は、チップ32の上側をクランプするクランプ31と一体に形成しても良いし、別個に設けられていても良い。
 第2~第4実施形態と同様、火工装薬チャンバハウジング16の底部には圧力解放チャネル18および破断部17が形成されている。圧力解放チャネル18は、火工装薬チャンバハウジング16の外側に開口する凹部として形成されており、圧力解放チャネル18はチップ32(基板34)における第1の凹部33(圧力チャンバ15)の中心に位置付けられている。また、火工装薬チャンバハウジング16は、圧力解放チャネル18が最上層フィルム46に密着するように配置されている。
 図14は、第7の火工細胞破砕装置D7において、加圧前(火工装薬5の点火前)の第1の態様におけるクランプを除いた状態の断面図および平面図を示し、図15は、加圧後(火工装薬5の点火後)の第2の態様におけるクランプを除いた状態の断面図および平面図を示す。図14および図15は、それぞれ上段に断面図、下段に平面図を示している。また、図14および図15の下段に示す平面図では、最上層フィルム46を透視して基板34の上面を示している。また、第7の火工細胞破砕装置D7の作動前において、チップ32における圧力チャンバ15には流体試料3が収容されている。図14において、圧力チャンバ15に収容されている流体試料3は、黒色で塗りつぶされている。一方、第7の火工細胞破砕装置D7が作動すると火工装薬5が点火され、当該火工装薬5が燃焼することで燃焼ガスが生成される。これにより、火工装薬チャンバ11内の圧力が上昇して火工装薬チャンバハウジング16の破断部17が破裂(開裂)することにより、火工装薬チャンバハウジング16の圧力解放チャネル18が火工装薬チャンバ11と連通する。その結果、火工装薬チャンバ11内の圧力によって、最上層フィルム46における圧力解放チャネル18と対向する部位が破れ、燃焼ガスがチップ32における圧力チャンバ15に流入する。これにより、チップ32における圧力チャンバ15が急激に加圧され、圧力チャンバ15に収容されている流体試料3に含まれる細胞が破砕される。なお、最上層フィルム46における圧力解放チャネル18と対向する部位に、小孔または脆弱部が予め設けられていても良い。これにより第7の火工細胞破砕装置D7の作動時に加工装薬5の燃焼ガスを圧力チャンバ15に導入しやすくなる。
 更に、チップ32における圧力チャンバ15が火工装薬5の燃焼ガスによって加圧されることで、流体試料3が精密オリフィス4に押し込まれ、当該精密オリフィス4を通じて膨張チャンバ36に移動した流体試料3が膨張チャンバ36に保持(収集)される。流体試料3が精密オリフィス4を通過する際、流体試料3に含まれる細胞に大きな剪断応力が作用することで、細胞の破砕が促進される。ここで、膨張チャンバ36は、圧力チャンバ15よりも容積が大きく、流体試料3が圧力チャンバ15から精密オリフィス4を通じて膨張チャンバ36に流入する際に流体試料3が減圧を受けるようになっている。これによれば、流体試料3が精密オリフィス4を通じて膨張チャンバ36に流入する際、流体試料3が急激に膨張することで細胞破砕を更に促進させることができる。このようにして細胞破砕処理がなされた流体試料3は、膨張チャンバ36に収集される。また、本実施形態におけるチップ32は、膨張チャンバ36と外部とを連通する通気口48が形成されていても良い。通気口48は、例えば、基板34の上面に開口する溝と、当該溝に重なり合う位置に形成された最上層フィルム46の開口等によって形成することができる。通気口48は、最上層フィルム46の開口と最上層フィルム46とクランプ31との間の隙間を通じて外部に通気可能であり、膨張チャンバ36に大気圧を導入することができる。このように膨張チャンバ36を大気圧下とすることで、圧力チャンバ15から膨張チャンバ36に移送された流体試料3をより急激に減圧および膨張させることで、流体試料3に含まれる細胞の破砕をより一層効率的に行うことができる。
 また、本実施形態においては、膨張チャンバ36内に収集された流体試料3に試薬を添加し、膨張チャンバ36内で化学反応を実行しても良い。流体試料3に添加する試薬は、流体試料3に含まれる破砕後における細胞に化学反応を起こすための試薬であり、例えばポリメラーゼ連鎖反応PCR、ループ媒介等温増幅(LAMP)、又は任意の他の等温増幅に係る反応を達成するための試薬であっても良い。また、本実施形態におけるチップ32は、基板34に第3の凹部の様式で形成される検出チャンバを更に備え、膨張チャンバ36と検出チャンバがチャネルによって接続されていても良い。そして、膨張チャンバ36内の流体試料3に試薬を添加して化学反応を実行した後、チャネルを介して膨張チャンバ36から検出チャンバに反応処理後における流体試料3を放出しても良い。また、膨張チャンバ36内の流体試料3に複数種類の試薬を添加しても良い。
<第8実施形態>
 図16~図18は、図13~図15と非常に類似しているが、チップ上の破砕された細胞の下流処理を可能にする第8実施形態を示している。同様の要素は、図13~図15で使用されるものと同じ参照番号によって示されている。この第8実施形態は、例えば、ポイントオブケア(POC)装置として適用することができる。基板内の第1の凹部33は、図17に示されるように、本実施形態ではより細長い形状を有し、一方、膨張チャンバ36は楕円形状を有する。膨張チャンバの後には、例えばポリメラーゼ連鎖反応(PCR)を達成するための試薬38を含む下流反応チャンバ37が続いている。また、オプションの通気口39を設けても良く、残りの圧力が維持されるように部分的にのみ圧力を解放するように構成することができる。この通気口39は、チャンバ37の充填を容易にする。それは疎水性通気孔であってもよく、その結果、チャンバがいったん満たされると、静水ロック(ハイドロロック)状態にある通気孔は、通気孔のように作用しなくなり、液体の背後の残留圧力が維持される。最終的に、PCR反応が完了した後に開かれるバルブ40を設けても良く、これにより、処理された試料を検出チャンバ41内に移動させることができる。
 上記のように、第8実施形態に係る第8の火工細胞破砕装置D8(図16~図18を参照)は、図13~図15で説明した第7の火工細胞破砕装置D7の変形例である。図16は、第8の火工細胞破砕装置D8の概略断面図を示し、図17は、加圧前(火工装薬5の点火前)の第1の態様におけるクランプを除いた状態の断面図および平面図を示し、図18は、加圧後(火工装薬5の点火後)の第2の態様におけるクランプを除いた状態の断面図および平面図を示す。図17および図18は、それぞれ上段に断面図、下段に平面図を示している。また、図17および図18の下段に示す平面図では、最上層フィルム46を透視して基板34の上面を示している。本実施形態において、上述までの実施形態と比較して同様の要素には、同様の参照番号が使用される。
 第8の火工細胞破砕装置D8におけるチップ32は、第1の凹部33(圧力チャンバ15)、第2の凹部35(膨張チャンバ36)および精密オリフィス4に加え、基板34の上面側に第3の凹部の様式で形成された反応チャンバ37、基板34の上面側に第4の凹部の様式で形成された検出チャンバ41を更に有している。反応チャンバ37は、第2のチャネル61を通じて膨張チャンバ36と接続されている。また、検出チャンバ41は、第3のチャネル62を通じて反応チャンバ37と接続されている。図17に示すように、下流反応チャンバ37は膨張チャンバ36の後段(下流側)に配置され、検出チャンバ41は反応チャンバ37の更に後段(下流側)に配置されている。第2のチャネル61および第3のチャネル62は、例えば基板34の上面に開口する溝によって形成されていても良い。また、チップ32における基板34の上面には、圧力チャンバ15、膨張チャンバ36、精密オリフィス4、反応チャンバ37、検出チャンバ41、第2のチャネル61、および第3のチャネル62をシールする最上層フィルム46が接着されている。また、図17に示す例では、チップ32の上面には、第3のチャネル62に連通する通気口39と、第3のチャネル62における通気口39よりも後段位置に配置されるバルブ40が設けられている。通気口39は、例えば、基板34の上面に開口する凹部と、当該凹部に重なり合う位置に形成された最上層フィルム46の開口等によって形成することができる。通気口39は、最上層フィルム46の開口と最上層フィルム46とクランプ31との間の隙間を通じて外部との間で通気することが可能であり、膨張チャンバ36、反応チャンバ37等を待機(外部)に開放することでこれらに大気圧を導入できる。また、バルブ40が開放されているときには、検出チャンバ41にも通気口39を通じて大気圧が導入される。
 以上のように構成される第8の火工細胞破砕装置D8においては、火工装薬5の点火および燃焼によって細胞が破砕された流体試料3を膨張チャンバ36で収集した後、後段の反応チャンバ37、検出チャンバ41に順次移動させることができる。本実施形態においては、チップ32に通気口39が設けられているため、圧力チャンバ15から膨張チャンバ36および反応チャンバ37への流体試料3の移送を容易に行うことができる。また、本実施形態における反応チャンバ37には、流体試料3に含まれる破砕後における細胞に化学反応を起こすための試薬38が収容されている。例えば、試薬38は、ポリメラーゼ連鎖反応PCRを達成するための試薬である。反応チャンバ37においてPCR反応が完了した後、バルブ40を開くことで、第3のチャネル62を通じて試薬38と反応した後の細胞を含む流体試料3を検出チャンバ41に移送することができる。なお、本実施形態においては、下流反応チャンバ37に収容される試薬38は、ポリメラーゼ連鎖反応(PCR)を達成するための試薬に限られず、例えばループ媒介等温増幅(LAMP)または任意の他の等温増幅に係る反応を実行するための試薬であっても良い。また、反応チャンバ37には、複数種類の試薬が収容されていても良い。
<第9実施形態>
 図19は、図13~図15に示される概念に基づく火工細胞破砕装置における第9実施形態の分解図を示す。図19は、より構造的な詳細を示している。クランプ31は上部ハウジング42として形成され、一端にイニシエータ28を収容し、その他端に、ねじ付きバーブコネクタ43と、例えば直径3/16インチのIDチューブ44を含む圧力解放部21を備えている。チップアセンブリ45は、チップ32と、最上層フィルム46と、最下層フィルム47とを含む。最上層フィルム46および最下層フィルム47は、第1の凹部33に設けられた試料を含むチップ32を挟み、これを密閉(シール)している。さらに、チップアセンブリには通気口48を設けることができる。
 チップアセンブリ45が取り付けられる際、チップアセンブリ45は、シリコーンガスケット49、上部ハウジング42、下部ハウジング50、ガスケット49の間に挟まれる。チップアセンブリ45は、上部ハウジング42及び下部ハウジング50における対角線上に対向するコーナーに設けられた穴にピンを位置決めすることによって一体となる。
 図20は、第9実施形態の概略断面図を示し、圧力解放チャネル18、火工装薬の燃焼後に圧力を解放する通気チャネル51が示されている。
 図21および図22に示すように、試料は下向きチャネル52を通って押し下げられ、ガスケット49によって密閉(シール)されたチップ32内の溝チャネルの様式で形成された精密オリフィス4に沿って移動し、次いで、上向きチャネル54を通って膨張チャンバ36内に移動する。別の方法として、チップのチャネルに形成されていない精密オリフィスを使用することができる。このような精密オリフィスは、サファイア、ルビー、ガラス又は高分子等他の適切な材料によって形成することができ、チップの凹部に接着又はプレスすることができる。図22は、火工装薬の燃焼後における第2の態様を示し、流体試料3は膨張チャンバ36の底部に位置している。ここで、現在処理中の試料は、試薬による更なる処理と最終的な検出のために放出された細胞内容物を含む破砕された細胞を含む。
 上記のように、第9実施形態に係る第9の火工細胞破砕装置D9(図19~図22を参照)は、第7の火工細胞破砕装置D7をより具体的な構造で特定したものである。本実施形態において、上述までの実施形態と比較して同様の要素には、同様の参照番号が使用される。図19および図20に示されるように、第9の火工細胞破砕装置D9は、基板を含んで構成されるチップ32と、チップ32の上面を覆う最上層フィルム46と、チップ32の下面を覆う最下層フィルム47を含むチップアセンブリ45を備えている。なお、図21および図22は、第9の火工細胞破砕装置D9におけるチップアセンブリ45の概略断面図であり、図21には火工装薬の燃焼前における第1の態様、図22には火工装着の燃焼後における第2の態様が示されている。
 第9実施形態に係るチップ32は、第7実施形態と同様、基板の上面における第1の凹部33によって圧力チャンバ15が形成され、第2の凹部35によって膨張チャンバ36が形成されている。また、図19に示すように、チップ32には、膨張チャンバ36に連通する通気口48が設けられている。
 また、図21および図22に示されるように、圧力チャンバ15および膨張チャンバ36は第1のチャネル63を介して接続されている。第1のチャネル63は、精密オリフィス4、下向きチャネル52、横向きチャネル53、上向きチャネル54等を含む。図21および図22に示す例では、圧力チャンバ15と精密オリフィス4が連通するように、第1の凹部33の底部に精密オリフィス4の上端が接続され、精密オリフィス4の下端に接続される下向きチャネル52がチップ32の下面まで延在している。一方、第1のチャネル63の上向きチャネル54は、膨張チャンバ36を形成する第2の凹部35の底部に上端が接続され、第2の凹部35の底部から下方に延在すると共にその下端がチップ32の下面に到達するように設けられている。第1のチャネル63の下向きチャネル52および上向きチャネル54は、例えば、基板34の下面から上面側に向かって延設される孔によって形成しても良い。そして、横向きチャネル53は、その一端が下向きチャネル52の下端に接続され、他端が上向きチャネル54の下端に接続されている。横向きチャネル53は、例えば、チップ32の下面に開口する溝チャネルによって形成されていても良い。
 そして、本実施形態においては、チップ32の上面を最上層フィルム46によって被覆することにより、チップ32の上面に開口する第1の凹部33(圧力チャンバ15)、第2の凹部35(膨張チャンバ36)を外部からシールすることができる。また、チップ32の下面を最下層フィルム47によって被覆することにより、第1のチャネル63を外部からシールすることができる。
 図19および図20に示されるように、第9の火工細胞破砕装置D9は、一対の剛性を有するクランプ31がハウジング形態として形成されている。すなわち、一対のクランプ31は、上部クランプとしての上部ハウジング42および下部クランプとしての下部ハウジング50を備えている。図19に示す例では、上部ハウジング42(上部クランプ)および下部ハウジング50(下部クランプ)は略直方体形状を有するハウジングとして形成されている。但し、上部ハウジング42および下部ハウジング50の形状は特に限定されない。ここで、下部ハウジング50(下部クランプ)の上面側には、チップ32を含むチップアセンブリ45を収容可能なチップ凹部50Aを有している。また、上部ハウジング42(上部クランプ)の下面は、チップ32プの装填領域に対向する実質的に平坦なクランプ面42Aを形成している。また、上部ハウジング42および下部ハウジング50における対角線上に対向するコーナーには、連結用のピン64を嵌合するための穴がそれぞれ設けられている。
 図19および図20に示すように、上部ハウジング42(上部クランプ)の一方の側面にイニシエータ28が取り付けられ、その反対側の側面に圧力解放部21のねじ付きバーブコネクタ43が取り付けられている。イニシエータ28は、火工装薬チャンバ11を形成する火工装薬チャンバハウジング16、火工装薬チャンバ11に収容された火工装薬5、ワイヤ29等を有する。イニシエータ28は、火工装薬チャンバハウジング16が上部ハウジング42の内部に収容され、ワイヤ29が外部に露出するように上部ハウジング42に固定される。また、イニシエータ28の火工装薬チャンバハウジング16には、圧力解放チャネル18の一端が接続されている。圧力解放チャネル18は、例えば金属製の導管によって形成されており、その他端は上部ハウジング42のクランプ面42Aに対して内側から接合されている。また、圧力解放チャネル18の他端側の開口部は、クランプ面42Aに形成された開口であるガス流出口42Bを通じて上部ハウジング42の外部に連通している。圧力解放チャネル18は、例えばイニシエータ28の火工装薬チャンバ11に予め連通し、或いは、火工装薬5の燃焼エネルギーによって開裂することで、イニシエータ28の作動時に上部ハウジング42におけるクランプ面42Aのガス流出口42Bから火工装薬5の燃焼ガスを放出する。なお、圧力解放チャネル18の開口端およびクランプ面42Aのガス流出口42Bは、チップ32における第1の凹部33(圧力チャンバ15)の中心に位置付けられていても良い。
 また、図20に示すように、圧力解放部21のねじ付きバーブコネクタ43にはIDチューブ44および通気チャネル51が接続されている。IDチューブ44は中空管であり、上部ハウジング42の外側に配置されている。また、通気チャネル51は、例えば金属製の導管によって形成されている。通気チャネル51は、その一端がねじ付きバーブコネクタ43に接続され、他端が上部ハウジング42のクランプ面42Aに対して内側から接合されている。また、通気チャネル51の他端側の開口部は、クランプ面42Aに形成された開口である通気口42Cを通じて上部ハウジング42の外部に連通している。なお、ねじ付きバーブコネクタ43の内部は中空となっており、通気チャネル51、ねじ付きバーブコネクタ43、IDチューブ44の内部には通気路が形成されている。
 以上のように構成される第9の火工細胞破砕装置D9が組み立てられる際、下部ハウジング50のチップ凹部50Aに、チップアセンブリ45が収納される。その際、図19に示すように、チップアセンブリ45は一対のガスケット49の間に挟み込まれた状態でチップ凹部50Aに収容される。このように一対のガスケット49の間に挟み込まれたチップアセンブリ45をチップ凹部50Aに収容した後、連結用のピン64を用いて上部ハウジング42および下部ハウジング50を一体に固定することで第9の火工細胞破砕装置D9を組み立てることができる。但し、上部ハウジング42および下部ハウジング50の連結構造は特に限定されない。
 第9の火工細胞破砕装置D9のイニシエータ28が作動すると、火工装薬5が点火および燃焼し、その燃焼ガスが火工装薬チャンバ11、圧力解放チャネル18を通じて上部ハウジング42におけるクランプ面42Aに形成されたガス流出口42Bから放出される。ここで、チップアセンブリ45の最上層フィルム46およびチップアセンブリ45の上面側に配置されるガスケット49には、ガス流出口42Bから放出される燃焼ガスをチップ32の圧力チャンバ15に通気させるための開口部が形成されている。これにより、圧力解放チャネル18からの燃焼ガスが圧力チャンバ15に流入することで、圧力チャンバ15が急激に加圧され、圧力チャンバ15に収容されている流体試料3に含まれる細胞が破砕される。
 また、圧力チャンバ15において加圧された流体試料3は、第1のチャネル63の精密オリフィス4、下向きチャネル52、横向きチャネル53、上向きチャネル54を順次通って膨張チャンバ36に移送される。流体試料3が精密オリフィス4を流れる際、流体試料3に含まれる細胞が大きな剪断応力を受けることによって細胞の破砕が促進される。ここで、チップアセンブリ45の最上層フィルム46およびチップアセンブリ45の上面側に配置されるガスケット49には、通気口48と重なり合う位置に開口が形成されており、上部ハウジング42のクランプ面42Aに形成された通気口42Cも通気口48と重なり合う位置に配置されている。これにより、チップアセンブリ45の膨張チャンバ36には、通気口48、圧力解放部21(通気チャネル51、ねじ付きバーブコネクタ43、IDチューブ44)を通じて通気され、大気圧が導入される。そのため、第1のチャネル63を通じて圧力チャンバ15から膨張チャンバ36に移送された流体試料3は、膨張チャンバ36において減圧される。その結果、流体試料3に含まれる細胞が急激に膨張し、細胞の破砕をより一層促進させることができる。以上のようにして、細胞を破砕処理した後の流体試料3がチップアセンブリ45(チップ32)の膨張チャンバ36に収集される。
 勿論、本実施形態における上部ハウジング42および下部ハウジング50は着脱自在である。第9の火工細胞破砕装置D9の作動後(使用後)において、連結用のピン64を取り外すなどして上部ハウジング42と下部ハウジング50を分離し、下部ハウジング50のチップ凹部50Aに収容されているチップアセンブリ45(チップ32)を露出させる。その後、例えば、チップ32の上面を覆う最上層フィルム46を剥離する等、取り除くことによって細胞破砕処理後の流体試料3を膨張チャンバ36から回収することができる。また、本実施形態においても、第7実施形態で説明したように、膨張チャンバ36内に収集された流体試料3に試薬を添加し、各種の反応処理を実行しても良い。
<第10実施形態>
 図23~図26は、図19~図22と非常に類似した実施形態を示す。本実施形態において、チップは、チップ形状に作成された精密オリフィス4を有するレーザーカットされたプラスチック又はガラスのチップによって置換される。したがって、チップは、本質的には下部ハウジング50の一体化された部分である。本実施形態は、指定された通気を含まないが、上部ハウジング42と下部ハウジング50との間の隙間を介して通気が行われる。
 図23は、第10実施形態に係る第10の火工細胞破砕装置D10の断面図を示す。第10の火工細胞破砕装置D10は、第9の火工細胞破砕装置D9の変形例である。本実施形態において、上述までの実施形態と比較して同様の要素には、同様の参照番号が使用される。第10の火工細胞破砕装置D10において、チップ32は、下部ハウジング50の上面をレーザーカット技術によって加工することなどにチップ形状に形成されており、下部ハウジング50にチップ32が統合された様式で実現されている。図24は、下部ハウジング50における上面のうち、チップ32が形成されるチップ形成領域の平面図である。下部ハウジング50におけるチップ形成領域は、例えば高分子素材(プラスチック等)やガラス等によって形成することができる。また、図25および図26は、第10の火工細胞破砕装置D10におけるチップ32(下部ハウジング50におけるチップ形成領域)の概略断面図であり、図25には火工装着の燃焼前における第1の態様、図26には火工装着の燃焼後における第2の態様が示されている。
 下部ハウジング50のチップ形成領域に統合されて形成されるチップ32には、第1の凹部33によって形成されると共に細胞破砕処理前の流体試料3を収容可能な圧力チャンバ15、第2の凹部35によって形成される膨張チャンバ36が設けられており、精密オリフィス4を含む第1のチャネル63を介して圧力チャンバ15および膨張チャンバ36が接続されている。第7実施形態と同様、チップ32における膨張チャンバ36は圧力チャンバ15に比べて容積が十分に大きく、流体試料3が圧力チャンバ15から膨張チャンバ36に入る際に流体試料3が減圧を受け、当該流体試料3に含まれる細胞が急激に膨張するようになっている。
 第10の火工細胞破砕装置D10における上部ハウジング42は、第9実施形態と同様にイニシエータ28および圧力解放チャネル18が設けられている一方、圧力解放部21は設けられていない。また、第9実施形態と同様、上部ハウジング42および下部ハウジング50には、連結用のピンを嵌合するための穴がそれぞれ設けられており、当該ピンを用いて上部ハウジング42および下部ハウジング50を一体に連結することができ、また、装置の作動後においては上部ハウジング42および下部ハウジング50を互いに分離することができる。また、下部ハウジング50に統合されたチップ32の上面は、最上層フィルム46によって被覆されていても良い。この場合、上部ハウジング42におけるクランプ面42Aのガス流出口42Bから放出される燃焼ガスを圧力チャンバ15に通気させるための小孔、或いは脆弱部を最上層フィルム46に形成しておいても良い。また、下部ハウジング50に上部ハウジング42を組み付ける際、下部ハウジング50に統合されたチップ32の上面と上部ハウジング42におけるクランプ面42Aとの間にガスケット49を介在させても良く、この場合、当該ガスケット49に開口部を形成し、クランプ面42Aのガス流出口42Bから放出される燃焼ガスを圧力チャンバ15に供給しても良い。
 上記のように構成される第10の火工細胞破砕装置D10の動作は、基本的に実施形態9に係る第9の火工細胞破砕装置D9と同様である。すなわち、イニシエータ28が作動すると火工装薬5が点火および燃焼し、その燃焼ガスが圧力解放チャネル18を通じてチップ32の圧力チャンバ15に供給され、圧力チャンバ15に収容されている流体試料3が急激に加圧されることで流体試料3に含まれる細胞が破砕される。そして、圧力チャンバ15において加圧された流体試料3は、精密オリフィス4を含む第1のチャネル63を通じて膨張チャンバ36に移送される。流体試料3が精密オリフィス4を流れる際、流体試料3に含まれる細胞が大きな剪断応力を受けることによって細胞の破砕が促進される。流体試料3が第1のチャネル63から容積の大きな膨張チャンバ36に流入すると、減圧を受けることによって流体試料3に含まれる細胞が急激に膨張することで細胞破砕がより一層促進される。このようにして破砕処理後における細胞を含む流体試料3が膨張チャンバ36に収集される。なお、チップ32は、第9実施形態と同様、膨張チャンバ36に連通する通気口48を設け、通気口48を介して膨張チャンバ36に大気圧を導入しても良い。
<第11実施形態>
 図27~図29は、第11実施形態に係る試料チップを含む火工細胞破砕装置の概略断面図を示し、図28は加圧前の第1の態様におけるチップを概略的に示し、図29は、加圧後の第2の態様におけるチップを概略的に示す。本実施形態は、図13~図15に示される実施形態と同様であるが、精密オリフィス4を含まない。したがって、本実施形態は、図5および図6で説明した実施形態と同じ静水圧衝撃圧力波の概念に基づいている。図13~図15に記載されたものと同様の要素は、同じ参照番号によって示される。
 図27~図29によるこの第11の実施形態は、本質的に、図5および図6による第3実施形態の概念をチップ形式にしたものである。流体試料3を保持する1つの凹部33のみが示されているが、複数の異なる試料のための複数の凹部33を有するチップを、1つの単一チップ上に搭載することも可能である。複数の火工装薬5を、複数の試料チップ上に同時に適用しても良いし、単一の火工装薬ハウジングが複数の試料間を移動可能であり、試料間を移動しながら火工装薬ハウジングが再装填されても良い。
 図27~図29に示される第11の火工細胞破砕装置D11は、基板34、基板34に形成された第1の凹部33によって形成される圧力チャンバ15を有するチップ32(火工細胞破壊チップ)を備える。更に、第11の火工細胞破砕装置D11は、チップ32(火工細胞破壊チップ)の上部(頂部)および下部(底部)にそれぞれ配置されることでチップ32をクランプする一対のクランプ31、火工装薬チャンバ11を形成する火工装薬チャンバハウジング16、火工装薬チャンバ11に収容された火工装薬5等を備えている。また、チップ32は、基板34の上面を被覆する薄い最上層フィルム46を有し、最上層フィルム46によって基板34の第1の凹部33(圧力チャンバ15)を外部に対して密閉することができる。なお、図28は、作動前(加圧前)における第11の火工細胞破砕装置D11の断面図および平面図を概略的に示すものである。図28において、クランプ31の図示を省略すると共に、上段に断面図、下段に平面図を示している。また、図29は、作動後(加圧後)における第11の火工細胞破砕装置D11の断面図および平面図を概略的に示すものである。図29において、クランプ31の図示を省略すると共に、上段に断面図、下段に平面図を示している。なお、図28および図29の平面図において、最上層フィルム46を透視して基板34の上面を示している。
 上記のように構成される第11の火工細胞破砕装置D11が作動すると、火工装薬5が点火され、当該火工装薬5が燃焼することで燃焼ガスが生成される。これにより、火工装薬チャンバ11内の圧力が上昇し、火工装薬チャンバハウジング16の破断部17が破裂し、圧力解放チャネル18が火工装薬チャンバ11と連通する。その結果、火工装薬チャンバ11内の圧力が解放され、最上層フィルム46における圧力解放チャネル18と対向する部位が破れ、チップ32における圧力チャンバ15に燃焼ガスが流入する。或いは、最上層フィルム46のうち、圧力解放チャネル18と対向する部位に予め小孔を形成しておき、当該小孔を通じて燃焼ガスを圧力チャンバ15に供給しても良い。火工装薬5の燃焼ガスが供給された圧力チャンバ15は急速に加圧され、その結果、圧力チャンバ15に収容されている流体試料3に含まれる細胞を破砕することができる。また、第11の火工細胞破砕装置D11は、上述した実施形態で説明した精密オリフィス4や圧力解放部21を備えていても良い。
 以上の実施形態に関し、更に以下の付記を示す。
(付記1)
 点火され且つ点火時に燃焼するように構成された火工装薬と、
 細胞を含む流体試料を収容し且つ前記火工装薬の点火および燃焼時に加圧されるように構成された圧力チャンバと、
 を備える、火工細胞破砕装置。
(付記2)
 前記圧力チャンバを外部空間に接続する圧力チャンバ出口を、更に備え、
 前記圧力チャンバ出口は、前記流体試料を流通させる際に剪断応力を当該流体試料に作用させるオリフィスを有する、
 付記1に記載の火工細胞破砕装置。
(付記3)
 前記オリフィスは、前記圧力チャンバ出口に接着または圧入される別個の部分に形成される、付記2に記載の火工細胞破砕装置。
(付記4)
 前記火工装薬は、前記圧力チャンバから分離された別個の火工装薬チャンバ内に収容される、付記1から3の何れかに記載の火工細胞破砕装置。
(付記5)
 前記火工装薬チャンバが、前記火工装薬の点火および燃焼時に破裂する破断部を有する火工装薬チャンバハウジング内に形成されている、付記4に記載の火工細胞破砕装置。
(付記6)
 前記破断部は、前記火工装薬チャンバハウジングのうちの前記圧力チャンバに面する部位が他の部位に比べて脆弱な脆弱部によって形成されている、付記5に記載の火工細胞破砕装置。
(付記7)
 前記脆弱部は、前記火工装薬チャンバハウジングの部材厚さが他の部位に比べて薄肉化されている、付記6に記載の火工細胞破砕装置。
(付記8)
 前記火工装薬チャンバが、前記破断部の破断時に前記圧力チャンバに対して直接開口する、付記5から7の何れかに記載の火工細胞破砕装置。
(付記9)
 前記火工装薬を収容する第1のシリンダチャンバと、
 前記第1のシリンダチャンバに少なくとも一部が収容され、前記火工装薬の点火および燃焼によって生成される圧力下で前記第1のシリンダチャンバに対して移動可能な第1のピストンと、
 前記圧力チャンバ内に設けられ、前記第1のピストンと接続された第2のピストンと、
 を更に備え、
 前記火工装薬の点火および燃焼時に、前記第2のピストンが前記第1のピストンに連動することによって前記圧力チャンバに収容された前記流体試料が加圧される、
 付記1から3の何れかに記載の火工細胞破砕装置。
(付記10)
 前記第1のシリンダチャンバは、前記圧力チャンバ内に少なくとも一部が収容される第1のシリンダチャンバハウジング内に形成されている、付記9に記載の火工細胞破砕装置。
(付記11)
 前記圧力チャンバを、前記火工装薬の点火および燃焼時に当該火工装薬の燃焼ガスが導入される第1内部空間と、前記流体試料が収容される第2内部空間と、に区画するダイヤフラム、を更に備え、
 前記火工装薬の点火および燃焼時に前記燃焼ガスが前記第1内部空間に導入されることによって前記ダイヤフラムが変形し、前記第2内部空間の容積が減少することによって当該第2内部空間に収容される前記流体試料が加圧される、
 付記1から8の何れかに記載の火工細胞破砕装置。
(付記12)
 前記前記第2内部空間を外部空間に接続する圧力チャンバ出口を、更に備え、
 前記圧力チャンバ出口は、前記流体試料を流通させる際に剪断応力を当該流体試料に作用させるオリフィスを有する、
 付記11に記載の火工細胞破砕装置。
(付記13)
 前記火工装薬の点火および燃焼によって前記圧力チャンバが加圧された後、前記圧力チャンバから圧力を解放する圧力解放部を、更に備える、
 付記1から12の何れかに記載の火工細胞破砕装置。
(付記14)
 前記圧力解放部が弁体を有する、付記13に記載の火工細胞破砕装置。
(付記15)
 前記弁体は、所定の圧力下において開放される圧力解放弁である、付記14に記載の火工細胞破砕装置。
(付記16)
 前記圧力解放部は、所定の圧力下において破裂する破裂板を有する、付記13に記載の火工細胞破砕装置。
(付記17)
 前記圧力チャンバには、前記流体試料が充填される試料容器が収容される、付記13から16の何れかに記載の火工細胞破砕装置。
(付記18)
 前記試料容器は可撓性パウチである、付記17に記載の火工細胞破砕装置。
(付記19)
 前記圧力チャンバは、前記火工装薬が配置される圧力チャネルと、前記圧力チャネルと同軸に接続されて且つ前記試料容器を収容するための試料容器収容部と、を含む、付記17または18に記載の火工細胞破砕装置。
(付記20)
 前記試料容器収容部における前記圧力チャネルとの接続部には、前記試料容器を載置するための試料容器載置部が形成されている、付記19に記載の火工細胞破砕装置。
(付記21)
 前記試料容器収容部の横断面積は前記圧力チャネルの横断面積よりも大きく、前記試料容器収容部および前記圧力チャネルの間に形成された段差によって前記試料容器載置部が形成されている、付記20に記載の火工細胞破砕装置。
(付記22)
 前記圧力チャンバが内部に形成され、且つ上面に前記試料容器収容部が開口する圧力容器と、
 前記圧力解放部が設置され、且つ、前記圧力容器の上面を覆うように当該圧力容器に対して取り付け可能なキャップと、
 を備え、
 前記圧力解放部は、前記火工装薬の点火および燃焼によって前記圧力チャンバが加圧された後に前記試料容器収容部と外部空間とを連通する圧力解放通気路を有する、
 付記19から21の何れかに記載の火工細胞破砕装置。
(付記23)
 前記キャップが前記圧力容器に取り付けられた状態において、前記圧力チャネル、前記試料容器収容部、および前記圧力解放通気路が同軸上に配置される、付記22に記載の火工細胞破砕装置。
(付記24)
 前記圧力解放通気路が破裂板または弁体によって遮断されており、前記破裂板が破裂し、或いは前記弁体が開放されることで前記試料容器収容部と外部空間とが連通する、
 付記22または23に記載の火工細胞破砕装置。
(付記25)
 前記圧力チャンバは、第1方向に延在すると共に前記圧力解放部に対する近位端および遠位端を有する加圧空間部と、前記加圧空間部の途中から前記第1方向と異なる第2方向に分岐して前記加圧空間部と接続される圧力チャネルと、を含み、
 前記圧力チャネルには前記火工装薬が配置され、
 前記加圧空間部は、前記圧力チャネルとの接続部と前記遠位端との間に前記試料容器を収容するための試料容器収容部を有している、
 付記17または18に記載の火工細胞破砕装置。
(付記26)
 前記第1方向と前記第2方向が互いに直交する、付記25に記載の火工細胞破砕装置。
(付記27)
 有底形状を有すると共に前記圧力チャンバが内部に形成され、且つ上面に前記加圧空間部の近位端が開口する圧力容器と、
 前記圧力解放部が設置され、且つ、前記圧力容器の上面を覆うように当該圧力容器に対して取り付け可能なキャップと、
 を備え、
 前記加圧空間部が前記圧力容器の上下方向に沿って延在し、前記遠位端が前記圧力容器の底部に位置付けられることで当該底部に前記試料容器を載置可能である、
 付記25または26に記載の火工細胞破砕装置。
(付記28)
 前記圧力解放部は、前記火工装薬の点火および燃焼によって前記圧力チャンバが加圧された後に前記加圧空間部と外部空間とを連通する圧力解放通気路を有し、
 前記加圧空間部の前記近位端が前記圧力解放通気路に接続されている、
 付記25から27の何れかに記載の火工細胞破砕装置。
(付記29)
 前記キャップが前記圧力容器に取り付けられた状態において、前記加圧空間部および前記圧力解放通気路が同軸上に配置される、付記28に記載の火工細胞破砕装置。
(付記30)
 前記圧力解放通気路が破裂板または弁体によって遮断されており、前記破裂板が破裂し、或いは前記弁体が開放されることで前記試料容器収容部と外部空間とが連通する、
 付記28または29に記載の火工細胞破砕装置。
(付記31)
 基板を有するチップを備え、
 前記圧力チャンバは、前記基板の表面に設けられた第1の凹部によって形成されている、
 付記1に記載の火工細胞破砕装置。
(付記32)
 前記基板の表面を覆うフィルムを備え、
 前記第1の凹部が前記フィルムによって覆われることで前記圧力チャンバが密閉される、付記31に記載の火工細胞破砕装置。
(付記33)
 前記火工装薬を収容する火工装薬チャンバハウジングを更に備え、
 前記火工装薬チャンバハウジングが前記圧力チャンバの上部に配置されている、
 付記31に記載の火工細胞破砕装置。
(付記34)
 前記火工装薬チャンバハウジングは、前記火工装薬の点火および燃焼時に破裂する破断部を有し、
 前記破断部が前記圧力チャンバに対向するように配置されている、
 付記33に記載の火工細胞破砕装置。
(付記35)
 前記基板の表面に設けられた第2の凹部によって形成された膨張チャンバと、
 前記基板に設けられ、前記圧力チャンバおよび前記膨張チャンバを接続する第1のチャネルと、
 を更に備え、
 前記第1のチャネルは、前記流体試料を流通させる際に剪断応力を当該流体試料に作用させるオリフィスを有する、
 付記31から34の何れかに記載の火工細胞破砕装置。
(付記36)
 前記膨張チャンバは、前記圧力チャンバよりも容積が大きく、前記流体試料が前記圧力チャンバから前記オリフィスを通じて前記膨張チャンバに流入する際に前記流体試料が減圧を受ける、
 付記35に記載の火工細胞破砕装置。
(付記37)
 前記膨張チャンバが外部に開放されている、付記35または36に記載の火工細胞破砕装置。
(付記38)
 前記基板の表面に設けられた第3の凹部によって形成され、前記流体試料に含まれる細胞を反応させる試薬が収容される反応チャンバと、
 前記基板に設けられ、前記膨張チャンバおよび前記反応チャンバを接続する第2のチャネルと、
 を更に備える、付記35から37の何れかに記載の火工細胞破砕装置。
(付記39)
 前記反応チャンバが外部に開放されている、付記38に記載の火工細胞破砕装置。
(付記40)
 前記基板の表面に設けられた第4の凹部によって形成される検出チャンバと、
 前記基板に設けられ、前記反応チャンバおよび前記検出チャンバを接続する第3のチャネルと、
 を更に備える、付記38または39に記載の火工細胞破砕装置。
(付記41)
 前記チップをクランプする一対のクランプを更に備える、付記31から40の何れかに記載の火工細胞破砕装置。
(付記42)
 前記一対のクランプは、前記チップの装填領域に対向する実質的に平坦なクランプ面を有する上部クランプと、前記チップを収容するように構成されたチップ凹部を有する下部クランプを含む、付記41記載の火工細胞破砕装置。
(付記43)
 前記上部クランプおよび前記下部クランプが、それぞれハウジング形態を有している、付記42記載の火工細胞破砕装置。
(付記44)
 火工装薬によって加圧されるように構成された圧力チャンバに、細胞を含む流体試料を収容することと、
 前記火工装薬を点火および燃焼させることにより、前記圧力チャンバに収容された前記流体試料を加圧することと、
 を含む、火工細胞破砕方法。
(付記45)
 前記火工装薬の燃焼から生じた前記圧力チャンバ内の圧力をある期間に亘って保持することを、更に含む、付記44に記載の火工細胞破砕方法。
(付記46)
 前記圧力チャンバで加圧した前記流体試料を、オリフィスを通して外部空間に放出することを、更に含み、前記オリフィスを通過する際に発生する剪断力を前記流体試料に作用させる、付記44または45に記載の火工細胞破砕方法。
(付記47)
 前記外部空間は、前記オリフィスを通過した前記流体試料を受け入れる膨張チャンバであり、前記流体試料を前記膨張チャンバに受け入れる際に当該流体試料を膨張させる、付記46に記載の火工細胞破砕方法。
(付記48)
 前記膨張チャンバ内の前記流体試料に試薬を添加して、前記流体試料を前記試薬と反応させることを更に含む、付記47に記載の火工細胞破砕方法。
(付記49)
 前記流体試料を前記膨張チャンバから、試薬が収容された反応チャンバ内に移動させることを更に含み、前記反応チャンバ内において前記流体試料を前記試薬と反応させる、付記47に記載の火工細胞破砕方法。
(付記50)
 前記反応チャンバ内で前記流体試料を前記試薬と反応させた後、前記流体試料を前記反応チャンバから検出チャンバ内に放出することを更に含む、付記49に記載の火工細胞破砕方法。
(付記51)
 前記試薬による反応は、ポリメラーゼ連鎖反応(PCR)またはループ媒介等温増幅(LAMP)である、付記48から50の何れかに記載の火工細胞破砕方法。
(付記52)
 前記火工細胞破砕方法は、化学物質を用いて前記流体試料に含まれる細胞を溶解することを含まない、付記44から51の何れかに記載の火工細胞破砕方法。
 本明細書に開示された各々の態様は、本明細書に開示された他のいかなる特徴とも組み合わせることができる。
D1~D11・・・火工細胞破砕装置
1・・・シリンダ本体
2・・・ピストン
3・・・試料
4・・・精密オリフィス
5・・・火工装薬
6・・・キャップ
7・・・低圧空間
8・・・高圧空間
11・・・火工装薬チャンバ
14・・・ダイヤフラム
15・・・圧力チャンバ
16・・・火工装薬チャンバハウジング
20・・・圧力解放弁
28・・・イニシエータ
31・・・クランプ
32・・・チップ
33・・・第1の凹部
34・・・基板
35・・・第2の凹部
36・・・膨張チャンバ
37・・・反応チャンバ
38・・・試薬
41・・・検出チャンバ
 
 

Claims (12)

  1.  点火され且つ点火時に燃焼するように構成された火工装薬と、
     細胞を含む流体試料を収容し且つ前記火工装薬の点火および燃焼時に加圧されるように構成された圧力チャンバと、
     を備える、火工細胞破砕装置。
  2.  前記圧力チャンバを外部空間に接続する圧力チャンバ出口を、更に備え、
     前記圧力チャンバ出口は、前記流体試料を流通させる際に剪断応力を当該流体試料に作用させるオリフィスを有する、
     請求項1に記載の火工細胞破砕装置。
  3.  前記火工装薬を収容する第1のシリンダチャンバと、
     前記第1のシリンダチャンバに少なくとも一部が収容され、前記火工装薬の点火および燃焼によって生成される圧力下で前記第1のシリンダチャンバに対して移動可能な第1のピストンと、
     前記圧力チャンバ内に設けられ、前記第1のピストンと接続された第2のピストンと、
     を更に備え、
     前記火工装薬の点火および燃焼時に、前記第2のピストンが前記第1のピストンに連動することによって前記圧力チャンバに収容された前記流体試料が加圧される、
     請求項1または2に記載の火工細胞破砕装置。
  4.  前記圧力チャンバを、前記火工装薬の点火および燃焼時に当該火工装薬の燃焼ガスが導入される第1内部空間と、前記流体試料が収容される第2内部空間と、に区画するダイヤフラム、を更に備え、
     前記火工装薬の点火および燃焼時に前記燃焼ガスが前記第1内部空間に導入されることによって前記ダイヤフラムが変形し、前記第2内部空間の容積が減少することによって当該第2内部空間が加圧される、
     請求項1または2に記載の火工細胞破砕装置。
  5.  前記第2内部空間を外部空間に接続する圧力チャンバ出口を、更に備え、
     前記圧力チャンバ出口は、前記流体試料を流通させる際に剪断応力を当該流体試料に作用させるオリフィスを有する、
     請求項4に記載の火工細胞破砕装置。
  6.  前記火工装薬は、前記圧力チャンバから分離された別個の火工装薬チャンバ内に収容され、
     前記火工装薬チャンバは、前記火工装薬の点火および燃焼時に破裂する破断部を有する火工装薬チャンバハウジング内に形成されており、前記破断部の破断時に前記圧力チャンバに対して直接開口する、
     請求項1または2に記載の火工細胞破砕装置。
  7.  前記火工装薬の点火および燃焼によって前記圧力チャンバが加圧された後、前記圧力チャンバから圧力を解放する圧力解放部を、更に備える、
     請求項1から6の何れか1項に記載の火工細胞破砕装置。
  8.  前記圧力チャンバには、前記流体試料が充填される試料容器が収容される、請求項7に記載の火工細胞破砕装置。
  9.  前記試料容器が可撓性パウチである、請求項8に記載の火工細胞破砕装置。
  10.  基板を有するチップを備え、
     前記圧力チャンバは、前記基板の表面に設けられた第1の凹部によって形成されている、
     請求項1に記載の火工細胞破砕装置。
  11.  前記基板の表面に設けられた第2の凹部によって形成された膨張チャンバと、
     前記基板に設けられ、前記圧力チャンバおよび前記膨張チャンバを接続する第1のチャネルと、
     を更に備え、
     前記第1のチャネルは、前記流体試料を流通させる際に剪断応力を当該流体試料に作用させるオリフィスを有する、
     請求項10に記載の火工細胞破砕装置。
  12.  火工装薬によって加圧されるように構成された圧力チャンバに、細胞を含む流体試料を収容することと、
     前記火工装薬を点火および燃焼させることにより、前記圧力チャンバに収容された前記流体試料を加圧することと、
     を含む、火工細胞破砕方法。
     
     
PCT/JP2020/040495 2019-10-29 2020-10-28 火工細胞破砕装置および火工細胞破砕方法 WO2021085491A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
CN202080082931.4A CN114761535A (zh) 2019-10-29 2020-10-28 火工细胞破碎装置及火工细胞破碎方法
JP2021553662A JPWO2021085491A1 (ja) 2019-10-29 2020-10-28
US17/773,360 US20240174971A1 (en) 2019-10-29 2020-10-28 Pyrotechnic Cell Disruption Apparatus and Pyrotechnic Cell Disruption Method
EP20883450.7A EP4053261A4 (en) 2019-10-29 2020-10-28 PYROTECHNICAL CELL DISSOLUTION DEVICE AND PYROTECHNICAL CELL DISSUSTION METHOD
KR1020227017573A KR20220088763A (ko) 2019-10-29 2020-10-28 화공 세포 파쇄 장치 및 화공 세포 파쇄 방법

Applications Claiming Priority (10)

Application Number Priority Date Filing Date Title
US201962927650P 2019-10-29 2019-10-29
US201962927653P 2019-10-29 2019-10-29
US201962927658P 2019-10-29 2019-10-29
US201962927661P 2019-10-29 2019-10-29
US201962927659P 2019-10-29 2019-10-29
US62/927,650 2019-10-29
US62/927,658 2019-10-29
US62/927,653 2019-10-29
US62/927,659 2019-10-29
US62/927,661 2019-10-29

Publications (1)

Publication Number Publication Date
WO2021085491A1 true WO2021085491A1 (ja) 2021-05-06

Family

ID=75716314

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/040495 WO2021085491A1 (ja) 2019-10-29 2020-10-28 火工細胞破砕装置および火工細胞破砕方法

Country Status (6)

Country Link
US (1) US20240174971A1 (ja)
EP (1) EP4053261A4 (ja)
JP (1) JPWO2021085491A1 (ja)
KR (1) KR20220088763A (ja)
CN (1) CN114761535A (ja)
WO (1) WO2021085491A1 (ja)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0376568A (ja) * 1989-08-16 1991-04-02 Minoru Igari 細胞処理用噴射装置及び同装置のピストン
US20120295356A1 (en) * 2009-02-05 2012-11-22 Gopalan Jagadeesh Apparatus and method for genetically transforming cells
WO2017117666A1 (en) 2016-01-08 2017-07-13 Advanced Theranostics Inc. Fully integrated, stand-alone, point-of-care device to detect target nucleic acids
WO2019156237A1 (ja) * 2018-02-09 2019-08-15 株式会社ダイセル 注入器

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SE334212B (ja) * 1965-09-17 1971-04-19 Biox Ab
CA2991918A1 (en) 2014-07-11 2016-01-14 Advanced Theranostics Inc. Point of care polymerase chain reaction device for disease detection
CN105925472B (zh) * 2016-05-13 2018-06-26 聊城万合工业制造有限公司 一种工业型超高压细胞破碎方法以及细胞破碎机
US20210030467A1 (en) * 2018-02-12 2021-02-04 Flagship Pioneering Innovations V, Inc. Devices and methods for delivering material into a biological tissue or cell

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0376568A (ja) * 1989-08-16 1991-04-02 Minoru Igari 細胞処理用噴射装置及び同装置のピストン
US20120295356A1 (en) * 2009-02-05 2012-11-22 Gopalan Jagadeesh Apparatus and method for genetically transforming cells
WO2017117666A1 (en) 2016-01-08 2017-07-13 Advanced Theranostics Inc. Fully integrated, stand-alone, point-of-care device to detect target nucleic acids
WO2019156237A1 (ja) * 2018-02-09 2019-08-15 株式会社ダイセル 注入器

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP4053261A4

Also Published As

Publication number Publication date
EP4053261A4 (en) 2023-12-06
US20240174971A1 (en) 2024-05-30
CN114761535A (zh) 2022-07-15
EP4053261A1 (en) 2022-09-07
KR20220088763A (ko) 2022-06-28
JPWO2021085491A1 (ja) 2021-05-06

Similar Documents

Publication Publication Date Title
JP4022069B2 (ja) 細胞破壊装置および方法
US9943848B2 (en) Apparatus and method for cell disruption
CA2950739C (en) Sample preparation devices and methods
JP2023100972A5 (ja)
US8268603B2 (en) Apparatus and method for cell disruption
US9073053B2 (en) Apparatus and method for cell disruption
JP4800412B2 (ja) カートリッジ内で化学反応を行わせる方法
WO2021037256A1 (zh) 用于微流控芯片的液囊
US9937496B2 (en) Methods of constructing a diagnostic cartridge and a fluid storage and delivery apparatus therefor
CN111426533A (zh) 流通式高静压的微流样本的预处理设备及其相关方法
CZ95499A3 (cs) Hybridní plynový generátor pro airbag
JPH11342823A (ja) モジュールへの取付け性の向上したハイブリッドインフレータ
US11149265B2 (en) Purification and detection of analytes
JPH08253100A (ja) 自動車における安全システムのためのハイブリツドガス発生器
WO2021085491A1 (ja) 火工細胞破砕装置および火工細胞破砕方法
CN101512284A (zh) 结构中结合有烟火气体发生器的液体推进装置
JP2005021866A (ja) 化学反応用カートリッジ
US20230233768A1 (en) Needleless injector
US7455655B2 (en) Needleless injection device comprising means for regulating the gas pressure level in the combustion chamber
US10105704B2 (en) System and method for microplate pressurization
JPH0958394A (ja) エアバッグ装置用ガス発生装置
US20140144514A1 (en) Dispensing and metering system, in particular of substances in microfluidic systems, and also method and cartridge having the dispensing and metering system
Aeinehvand et al. A new approach for reagent storage-releasing on centrifugal microfluidic platforms using bubblewrap and latex membrane
CN118106052A (zh) 预封装液囊、检测组件以及检测装置
WO2010081018A1 (en) Energetic nanoporous devices for sample preparation

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20883450

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2021553662

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 17773360

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20227017573

Country of ref document: KR

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2020883450

Country of ref document: EP

Effective date: 20220530