WO2021085351A1 - 蓄電モジュール - Google Patents

蓄電モジュール Download PDF

Info

Publication number
WO2021085351A1
WO2021085351A1 PCT/JP2020/040010 JP2020040010W WO2021085351A1 WO 2021085351 A1 WO2021085351 A1 WO 2021085351A1 JP 2020040010 W JP2020040010 W JP 2020040010W WO 2021085351 A1 WO2021085351 A1 WO 2021085351A1
Authority
WO
WIPO (PCT)
Prior art keywords
power storage
heater
storage module
storage device
storage devices
Prior art date
Application number
PCT/JP2020/040010
Other languages
English (en)
French (fr)
Inventor
洋岳 荻野
澤田 耕一
Original Assignee
パナソニックIpマネジメント株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by パナソニックIpマネジメント株式会社 filed Critical パナソニックIpマネジメント株式会社
Priority to EP20883540.5A priority Critical patent/EP4053972A4/en
Priority to US17/755,314 priority patent/US20220367967A1/en
Priority to CN202080072008.2A priority patent/CN114556673A/zh
Priority to JP2021553587A priority patent/JPWO2021085351A1/ja
Publication of WO2021085351A1 publication Critical patent/WO2021085351A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/30Arrangements for facilitating escape of gases
    • H01M50/342Non-re-sealable arrangements
    • H01M50/3425Non-re-sealable arrangements in the form of rupturable membranes or weakened parts, e.g. pierced with the aid of a sharp member
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/20Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders
    • H01M50/204Racks, modules or packs for multiple batteries or multiple cells
    • H01M50/207Racks, modules or packs for multiple batteries or multiple cells characterised by their shape
    • H01M50/213Racks, modules or packs for multiple batteries or multiple cells characterised by their shape adapted for cells having curved cross-section, e.g. round or elliptic
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/61Types of temperature control
    • H01M10/615Heating or keeping warm
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/48Accumulators combined with arrangements for measuring, testing or indicating the condition of cells, e.g. the level or density of the electrolyte
    • H01M10/486Accumulators combined with arrangements for measuring, testing or indicating the condition of cells, e.g. the level or density of the electrolyte for measuring temperature
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/65Means for temperature control structurally associated with the cells
    • H01M10/655Solid structures for heat exchange or heat conduction
    • H01M10/6554Rods or plates
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/65Means for temperature control structurally associated with the cells
    • H01M10/656Means for temperature control structurally associated with the cells characterised by the type of heat-exchange fluid
    • H01M10/6561Gases
    • H01M10/6566Means within the gas flow to guide the flow around one or more cells, e.g. manifolds, baffles or other barriers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/65Means for temperature control structurally associated with the cells
    • H01M10/657Means for temperature control structurally associated with the cells by electric or electromagnetic means
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/65Means for temperature control structurally associated with the cells
    • H01M10/657Means for temperature control structurally associated with the cells by electric or electromagnetic means
    • H01M10/6571Resistive heaters
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/65Means for temperature control structurally associated with the cells
    • H01M10/658Means for temperature control structurally associated with the cells by thermal insulation or shielding
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/20Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders
    • H01M50/262Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders with fastening means, e.g. locks
    • H01M50/264Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders with fastening means, e.g. locks for cells or batteries, e.g. straps, tie rods or peripheral frames
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/30Arrangements for facilitating escape of gases
    • H01M50/342Non-re-sealable arrangements
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/30Arrangements for facilitating escape of gases
    • H01M50/35Gas exhaust passages comprising elongated, tortuous or labyrinth-shaped exhaust passages
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/50Current conducting connections for cells or batteries
    • H01M50/569Constructional details of current conducting connections for detecting conditions inside cells or batteries, e.g. details of voltage sensing terminals
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/64Heating or cooling; Temperature control characterised by the shape of the cells
    • H01M10/643Cylindrical cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present disclosure relates to a power storage module including a plurality of power storage devices.
  • Patent Document 1 discloses a power storage module including a plurality of power storage devices, a holding block constituting a side surface of the power storage device, and a heater attached to one of the facing holding blocks. .. The heater heats the power storage device to an appropriate temperature, for example, when the power storage device is started at a low temperature.
  • An object of the present disclosure is to provide a power storage module capable of improving the heating efficiency of a heater that heats a power storage device.
  • the power storage module includes a plurality of power storage devices and a heater for heating the plurality of power storage devices. It has an exhaust unit that discharges to the outside, and the heater faces the exhaust unit.
  • the heating efficiency of the heater that heats the power storage device can be improved.
  • FIG. 1 is a side sectional view showing the power storage module 10.
  • the power storage module 10 is mainly used as a power source for power.
  • the power storage module 10 is used as a power source for an electric device driven by a motor such as an electric tool, an electric assist bicycle, an electric motorcycle, an electric wheelchair, an electric tricycle, or an electric cart.
  • a motor such as an electric tool, an electric assist bicycle, an electric motorcycle, an electric wheelchair, an electric tricycle, or an electric cart.
  • various electric devices other than electric devices for example, various electric devices used indoors and outdoors such as cleaners, radios, lighting devices, digital cameras, and video cameras. It may be used as a power source for the camera.
  • the power storage module 10 includes a plurality of cylindrical power storage devices 20, a heater 50 for heating the plurality of power storage devices 20, a case 40 as a housing for accommodating the plurality of power storage devices 20 and the heater 50, and the inside of the case 40.
  • An exhaust duct 45 formed on the upper side of the case 40 and communicating with the outside of the case 40, a heat conductive material 60 for conducting heat of the heater 50 to the power storage device 20, and a current collector plate for electrically connecting a plurality of power storage devices 20 respectively.
  • the plurality of power storage devices 20 are packed most densely in the power storage module 10, and adjacent power storage devices 20 are arranged. For example, a plurality of rows may be formed so that the plurality of power storage devices 20 are staggered.
  • the power storage device 20 is a gas generated from the inside of the power storage device 20 when the gas in the power storage device 20 increases and the pressure in the power storage device 20 rises (hereinafter, this state is also referred to as an abnormality of the power storage device 20).
  • the ejected product for example, an inclusion such as an electrolytic solution or a solid substance in the power storage device 20
  • the outside of the power storage device 20 for example, toward the upper side of the power storage device 20 in FIG. 1). Details of the power storage device 20 will be described later.
  • the fact that the power storage device 20 in an abnormal state discharges the gas accumulated inside is also referred to as exhaust.
  • the exhaust duct 45 discharges the gas in the power storage device 20 to the outside of the case 40 when the power storage device 20 is abnormal.
  • the exhaust duct 45 is a duct formed by the upper portion 40A of the case 40 located above the heater 50 and the upper holder 80.
  • the exhaust duct 45 has an exhaust port (not shown) that communicates with the outside of the case 40.
  • the exhaust duct 45 of the present embodiment is a duct formed by the upper portion 40A and the upper holder 80, but is not limited thereto.
  • a space communicating with the outside of the case 40 may be provided on the side where the power storage device 20 is exhausted.
  • the exhaust duct 45 communicates with the inside of the power storage device 20 because the heater 50 and the heat conductive material 60 burst when the power storage device 20 exhausts air. As a result, the exhaust duct 45 can exhaust the gas inside the power storage device 20 to the outside.
  • the heater 50 heats the power storage device 20 to an appropriate temperature when, for example, the power storage device 20 is started at a low temperature.
  • the heater 50 is arranged on the bottom surface of the exhaust duct 45 inside the exhaust duct 45.
  • the heater 50 is arranged above the upper holder 80 via the current collector plate 70. Further, the heater 50 is arranged on the upper side of the power storage device 20 via the heat conductive material 60. When the power storage device 20 exhausts the heater 50, the heater 50 explodes due to the pressure of the exhausted gas. Details of the heater 50 will be described later.
  • the air in the upper portion 40A of the case 40 and the exhaust duct 45 escapes the heat generated in the heater 50 in a direction other than the heat transfer path to the power storage device 20. Suppress. That is, on the upper side of the heater 50, the upper portion 40A of the case 40 and the internal air of the exhaust duct 45 function as a heat insulating material. As a result, when the heater 50 heats the power storage device 20, the heat radiation to the outside of the case 40 is reduced as compared with the configuration in which the heater 50 is in contact with the air in the open space. On the other hand, on the lower side of the heater 50, the heat conductive material 60 promotes the heat conduction of the heater 50.
  • the heater 50 heats the power storage device 20
  • the power storage device 20 can be heated to an appropriate temperature in a short time. It is also possible to reduce the loss of energy required to heat the power storage device 20 to a predetermined temperature.
  • the outlet portion of the exhaust duct 45 may be sealed when the power storage device 20 is in the normal state. With this configuration, the heat insulating effect between the air inside the exhaust duct 45 and the air outside the case 40 is enhanced, so that the heating efficiency of the heater 50 is further enhanced.
  • the heater 50 may be arranged on the lower side of the power storage module 10 so that the exhaust portion on the bottom side and the heater 50 face each other. Good. Further, the heater 50 may be composed of a pair of heaters 50 arranged so as to sandwich the power storage device 20.
  • the heat conductive material 60 conducts the heat generated by the heater 50 to the power storage device 20 when the power storage device 20 is heated to an appropriate temperature by the heater 50. That is, the heater 50 and the power storage device 20 are thermally connected via the heat conductive material 60.
  • the heat conductive material 60 has an insulating property.
  • the heat conductive material 60 is housed between the heater 50 and the power storage device 20 in the opening 80B of the upper holder 80. When the power storage device 20 ejects a gas, the heat conductive material 60 bursts due to the pressure of the gas.
  • the heat conductive material 60 includes, for example, silicone which is a two-component curing material, pasty silicone, urethane which is a two-component curing material, metal oxide (for example, aluminum oxide, zinc oxide), and metal nitride (for example, aluminum nitride, boron nitride). , Metal nitride metal (for example, aluminum nitride) and the like are used.
  • the current collector plate 70 includes, for example, an insulating substrate 75, a positive electrode current collecting member 71 (first current collecting member) arranged on the insulating substrate 75 and connected to a positive electrode terminal, and a negative electrode collector connected to a negative electrode terminal. It is a plate-shaped member having an electric member 72 (second current collecting member).
  • the current collector plate 70 may be arranged so that the insulating substrate 75 faces the upper holder 80.
  • Each of the positive electrode current collecting member 71 and the negative electrode current collecting member 72 is a metal sheet, and has a current collecting lead for electrically connecting from the edge of the metal sheet to each terminal.
  • Each of the current collector leads extends to each power storage device 20 through the opening 80B of the upper holder 80.
  • the positive electrode current collecting member 71 and the negative electrode current collecting member 72 may be arranged side by side in the main surface direction of the insulating substrate 75. Further, a gap may be provided between the positive electrode current collecting member 71 and the negative electrode current collecting member 72.
  • the current collector plate 70 is provided between the heater 50 and the upper holder 80.
  • the current collector plate 70 is made of a material having good electrical conductivity and thermal conductivity, and a metal plate such as an iron plate whose surface is plated with nickel or the like, a nickel plate, a copper plate, or an aluminum plate is used.
  • the current collector plate that functions as the positive electrode current collector 71 and the current collector plate that functions as the negative electrode current collector 72 are separated, and one of the current collectors is the seal of the power storage device 20. It is arranged on the body side and electrically connected to the sealing body 32, and the other current collector plate is arranged on the bottom side of the outer can 31 (see FIG. 2) of the power storage device 20 and electrically connected to the outer can 31. You may connect.
  • the heat conductive material 60 may be filled in the opening 90B of the lower holder 90.
  • the upper holder 80 holds the upper end portions of the plurality of arranged power storage devices 20 respectively.
  • An accommodating portion 80A in which the upper end portion of the power storage device 20 is accommodated is formed on the lower surface portion of the upper holder 80.
  • the accommodating portion 80A of the upper holder 80 is formed with an opening 80B that communicates the outer surface (upper surface) of the upper holder 80 with the accommodating portion 80A, and the heat conductive material 60 is accommodated.
  • the upper holder 80 is formed of an insulating material such as a thermoplastic resin or a thermosetting resin.
  • a holding material 81 is provided between the accommodating portion 80A of the upper holder 80 and the lower end portion of the power storage device 20.
  • the upper holder 80 may be made of a metal such as aluminum or iron as long as the insulation from the power storage device 20 and the current collector plate 70 can be ensured.
  • the lower holder 90 holds the lower ends of the plurality of arranged power storage devices 20 respectively.
  • An accommodating portion 90A in which the lower end portion of the power storage device 20 is accommodated is formed on the upper surface portion of the lower holder 90.
  • the lower holder 90 is formed of an insulating material such as a thermoplastic resin or a thermosetting resin.
  • a holding material 91 is provided between the accommodating portion 90A of the lower holder 90 and the lower end portion of the power storage device 20.
  • an epoxy-based adhesive, a silicone-based elastic adhesive, or the like is used as the holding material 91.
  • the lower holder 90 may be made of a metal such as aluminum or iron as long as it can secure insulation from the power storage device 20 and the current collector plate 70.
  • FIG. 2 is a side sectional view showing the power storage device 20.
  • a cylindrical lithium ion secondary battery is used as the power storage device 20.
  • the power storage device 20 may be a nickel-metal hydride battery or a capacitor in addition to the lithium ion secondary battery.
  • the power storage device 20 is configured by accommodating the electrode group 24 and the electrolytic solution inside the battery case 30.
  • the battery case 30 has a cylindrical outer can 31 and a sealing body 32 that insulates and seals the outer can 31.
  • the electrode group 24 is configured such that a positive electrode 21 as a band-shaped first electrode and a negative electrode 22 as a band-shaped second electrode are spirally wound with a band-shaped separator 23 interposed therebetween.
  • the positive electrode 21, the negative electrode 22, and the separator 23 are alternately laminated in the radial direction of the electrode group 24.
  • Insulating plates 28 and 29 are provided above and below the electrode group 24 (both ends of the electrode group 24 in the winding axis direction), respectively.
  • the positive electrode 21 is electrically connected to the sealing body 32 (positive electrode terminal) by the positive electrode lead 26.
  • the positive electrode lead 26 is connected to the positive electrode 21, extends from the upper end of the electrode group 24, passes through the through hole 28A of the insulating plate 28, and is welded to the lower surface of the filter 33 of the sealing body 32.
  • the negative electrode 22 is electrically connected to the outer can 31 (negative electrode terminal) by the negative electrode lead 27.
  • the negative electrode leads 27 are provided at, for example, the winding inner end portion and the winding outer end portion of the electrode group 24, respectively, extend from the lower end of the electrode group 24, and are welded to the bottom portion 31B of the outer can 31.
  • the electrolytic solution contains a non-aqueous solvent and an electrolyte salt dissolved in the non-aqueous solvent.
  • the non-aqueous electrolyte is not limited to the liquid electrolyte, and may be in the form of a gel or a solid.
  • the outer can 31 is a cylindrical metal container having an opening 31A on the upper end side.
  • the outer can 31 houses the electrode group 24 and the non-aqueous electrolyte.
  • the outer can 31 is electrically connected to the negative electrode 22 as described above.
  • the outer can 31 is formed by drawing a metal such as aluminum, iron, steel, copper, or nickel.
  • the sealing body 32 closes the opening 31A of the outer can 31 together with the gasket 39. Further, the sealing body 32 is electrically connected to the positive electrode 21 as described above.
  • the filter 33, the inner cap 34, the insulating member 35, the exhaust valve 36, and the cap 37 are laminated in this order from the electrode group 24 side.
  • Each member constituting the sealing body 32 has, for example, a disk shape or a ring shape, and each member except the insulating member 35 is electrically connected to each other.
  • the exhaust valve 36 bursts when the gas generated from the inside of the battery case 30 reaches a predetermined pressure or higher when the power storage device 20 has a thermal runaway as described above.
  • the exhaust valve 36 swells toward the cap 37, the inner cap 34 and the exhaust valve 36 are disconnected, and the inner cap is removed.
  • the current path between the 34 and the exhaust valve 36 is cut off.
  • the exhaust valve 36 breaks.
  • the gas generated inside the battery case 30 passes through the through hole 33A of the filter 33, the through hole of the inner cap 34, the crevice of the ruptured exhaust valve 36, and the open portion 37A of the cap 37. It is discharged to the outside of.
  • FIG. 3 is a schematic view showing the heater 50.
  • the heater 50 is formed in a sheet shape by providing base materials 52 above and below the metal foil heater 51 as a heating element.
  • the heating element is not limited to the metal leaf heater 51, and may be, for example, a heating wire heater.
  • the metal foil heater 51 is a thin sheet-shaped heating element that generates heat by passing electricity through the metal foil.
  • the metal leaf heater 51 is formed so as to pass through all the heat conductive materials 60 of the power storage module 10, and heats all the power storage devices 20 via the heat conductive materials 60.
  • As the metal foil heater 51 one that breaks when a pressure equal to or higher than a predetermined pressure is applied from the outside is used.
  • the metal foil heater 51 for example, aluminum, nickel-chromium alloy, iron, chromium, aluminum alloy or the like is used.
  • the base material 52 conducts the heat generated by the metal leaf heater 51 to the outside of the heater 50.
  • a material that bursts when a pressure equal to or higher than the above-mentioned predetermined pressure is applied from the outside is used.
  • the base material 52 is formed of an insulating material.
  • a silicon rubber, a PET film, a polyimide film or the like is used for the base material 52.
  • the heater 50 explodes when a pressure equal to or higher than a predetermined pressure is applied from the outside.
  • the predetermined pressure is set to be at least lower than the pressure at which the exhaust valve 36 operates.
  • the heater 50 bursts due to the pressure of the gas generated from the inside of the battery case 30. In this way, when the power storage device 20 is abnormal, the inside of the power storage device 20 and the exhaust duct 45 are communicated with each other to secure an exhaust path.
  • ejecta when the power storage device 20 exhausts, ejecta may be discharged together with the gas.
  • This ejecta is a conductive and high-heat object such as debris such as a positive electrode 21, a negative electrode 22, a lead, and an electrolytic solution housed in the battery case 30.
  • the ejected product when vibration is applied to the exhausted power storage device 20 after the exhaust from the power storage device 20 is completed, the ejected product may pop out through the ruptured portion of the exhaust valve 36.
  • the base material 52 is formed of an insulating material, when these ejecta are ejected into the exhaust duct 45, the ejected ejecta passing through and the current collector plate 70 of the other power storage device 20 are used.
  • the heater 50 Is easily electrically insulated by the heater 50. Further, since the base material 52 has heat resistance so as to withstand the temperature rise of the metal leaf heater 51, even if the base material 52 comes into contact with a high-temperature ejecta, holes are formed or torn in the base material 52. hard. As a result, the current collector plate 70 is unlikely to be short-circuited. This effect is particularly effective when the positive electrode current collecting member 71 and the negative electrode current collecting member 72 are integrated and arranged in one place by the power storage module 10 in the current collecting plate 70. In the current collector plate 70, the positive electrode current collector member 71 and the negative electrode current collector member 72 are arranged side by side with a gap.
  • the heater 50 is arranged so as to cover the gap, a short circuit suppression of the current collector plate 70 is suppressed. It is effective for. By suppressing the short circuit in this way, it is possible to prevent the normal power storage device 20 from falling into an abnormal state due to the influence of the abnormal power storage device 20.
  • FIG. 4 is a block diagram showing a control configuration of the heater 50.
  • the heater 50 is connected to a power source 55 that supplies electric power and a control device 56 that controls the supply of electric power and detects breakage of the heater 50.
  • the power supply 55 supplies electric power to the metal leaf heater 51 of the heater 50.
  • the power storage module 10 may be used. Further, an electric device on which the power storage module 10 is mounted or another power source of the electric device may be used.
  • the control device 56 has a function of controlling the supply of electric power to the metal leaf heater 51 so that the power storage device 20 has an appropriate temperature, for example, by a temperature sensor provided in the vicinity of the power storage device 20. Further, the control device 56 can detect, for example, that the resistance value of the metal leaf heater 51 has become infinite, and can detect that the supply of electric power to the metal leaf heater 51 has been cut off. As a result, the control device 56 can detect that the heater 50 has exploded. That is, the control device 56 can detect that at least one power storage device 20 in the power storage module 10 is in an abnormal state.
  • FIG. 5 is a schematic view showing the arrangement of the heater 50 and the power storage device 20.
  • a part of the metal leaf heater 51 may face the opening 80B of the upper holder 80 in order to more reliably explode the metal leaf heater 51 when the power storage device 20 exhausts air. ..
  • the portion that does not overlap with the opening 80B may be fixed more firmly than the portion that overlaps with the opening 80B. Therefore, the heater 50 may be fixed to the case 40 or the upper holder 80 at the non-overlapping portion.
  • FIGS. 6 and 7 are schematic views showing the heater 50.
  • the mechanical strength is weaker in the portion overlapping the opening 80B of the metal foil heater 51 than in the portion of the other metal foil heater 51.
  • the fragile portion 51A composed of, for example, perforations may be formed.
  • the metal leaf heater 51 is partially weakened and easily bursts.
  • a fragile portion 52A such as a perforation is formed near the opening 80B of the base material 52 so that the mechanical strength is weaker than that of the other base material 52.
  • the base material 52 and the metal leaf heater 51, which overlap with the opening 80B, may be burst at the same time.
  • the fragile portion 51A and the fragile portion 52A may be formed outside the peripheral edge of the opening 80B.
  • the area surrounded by the fragile portions 51A and 52A in the heater 50 increases the area in contact with the gas ejected from the power storage device 20, and the stress applied to the fragile portions 51A and 52A when the gas collides with this region.
  • the fragile portions 51A and 52A are higher than the heater 50 in the opening 80B. Therefore, the heater 50 can be more reliably burst.
  • a mesh portion 52B composed of innumerable fine holes is formed in a portion overlapping the opening 80B of the metal leaf heater 51 or the base material 52. Then, only the gas discharged from the power storage device 20 may pass through the mesh portion 52B of the heater 50, and the ejected product may be blocked by the small holes of the mesh portion 52B. With this configuration, the gas discharged from the power storage device 20 can be guided to the exhaust duct 45 without bursting the heater 50.
  • FIG. 8 is a side sectional view showing the power storage module 10.
  • gas is generated when thermal runaway or a member in the power storage device 20 deteriorates.
  • the exhaust valve 36 bursts as described above, and the gas is discharged from the cap 37.
  • the heat conductive material 60 a material that breaks when a pressure higher than a predetermined pressure is applied from the outside is used.
  • the predetermined pressure is set to be at least lower than the pressure at which the exhaust valve 36 operates.
  • the heat conductive material 60 bursts due to the pressure that causes the exhaust valve 36 of the gas ejected from the power storage device 20 to burst. Then, the gas discharged from the power storage device 20 passes through the crevice of the ruptured heat conductive material 60 and reaches the heater 50.
  • the heater 50 bursts due to the pressure that causes the exhaust valve 36 of the gas ejected from the power storage device 20 to burst.
  • the gas discharged from the power storage device 20 passes through the crevice of the ruptured heater 50 and reaches the exhaust duct 45.
  • the control device 56 detects that the power storage device 20 is in an abnormal state by detecting the burst of the heater 50.
  • the exhaust duct 45 discharges the gas discharged from the power storage device 20 to the outside.
  • the heat conductive material 60 and the heater 50 burst, so that the inside of the power storage device 20 and the exhaust duct 45 are communicated with each other, and the exhaust path is exhausted. Is secured.
  • the gas or ejecta discharged from the power storage device 20 can be discharged to the outside.
  • the heating efficiency of the heater 50 that heats the power storage device 20 can be improved.
  • the heater 50 inside the exhaust duct 45, the upper portion 40A of the case 40 and the internal air of the exhaust duct 45 are provided with a function as a heat insulating material, and heat is dissipated to the outside of the power storage module 10 of the heater 50. Can be reduced. As a result, the heating efficiency of the heater 50 when heating the power storage device 20 can be improved.
  • the exhaust path of the gas generated from the power storage device 20 can be secured.
  • the heater 50 and the heat conductive material 60 are assumed to explode when a pressure equal to or higher than a predetermined pressure is applied from the outside, and the predetermined pressure is set to a pressure at least lower than the pressure at which the exhaust valve 36 operates.
  • the predetermined pressure is set to a pressure at least lower than the pressure at which the exhaust valve 36 operates.
  • the base material 52 constituting the heater 50 is formed of an insulating material, when the ejecta generated from the inside of the power storage device 20 passes through the inside of the exhaust duct 45, the passing ejecta and other current collectors are stored.
  • the current collector plate 70 of the device 20 is electrically insulated by the heater 50. As a result, the current collector plate 70 is prevented from being short-circuited. Further, it is not necessary to separately provide an insulating material inside the exhaust duct 45, and the number of parts can be reduced.
  • the base material 52 constituting the heater 50 is formed of an insulating material, when the ejecta generated from the inside of the power storage device 20 passes through the inside of the exhaust duct 45, the passing ejecta and other normal ones are used.
  • the electric power storage device 20 is easily electrically isolated from the electric power storage device 20 by the heater 50. Therefore, even if one power storage device 20 becomes abnormal, it is possible to prevent a short circuit with the other power storage device 20. As a result, it is possible to prevent a chain of abnormalities of the power storage device 20 in the power storage module 10. Further, it is not necessary to separately provide an insulating material inside the exhaust duct 45, and the number of parts can be reduced.
  • control device 56 can detect that the heater 50 has exploded. As a result, the control device 56 can detect that at least one power storage device 20 has become abnormal in the power storage module 10. As a result, it is possible to prevent a chain of abnormalities of the power storage device 20 in the power storage module 10.
  • 10 power storage module 15 housing, 15A upper part, 20 power storage device, 21 positive electrode, 22 negative electrode, 23 separator, 24 electrode group, 26 positive electrode lead, 27 negative electrode lead, 28 insulating plate, 28A through hole, 29 insulating plate, 30 Battery case, 31 exterior can, 31A opening, 31B bottom, 32 sealing body, 33 filter, 33A through hole, 34 inner cap, 35 insulating member, 36 exhaust valve, 37 cap, 37A opening, 39 gasket, 40 case ( Housing), 40A upper part, 45 exhaust duct, 50 heater, 51 metal foil heater, 52 base material, 55 power supply, 56 control device, 60 heat conductive material, 70 current collector plate, 71 positive electrode current collector, 72 negative electrode collection Electrical member, 75 insulating substrate, 80 upper holder, 80A accommodating part, 80B opening, 81 holding material, 90 lower holder, 90A accommodating part, 91 holding material.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Secondary Cells (AREA)
  • Electric Double-Layer Capacitors Or The Like (AREA)
  • Battery Mounting, Suspending (AREA)

Abstract

蓄電モジュールは、複数の蓄電装置と、複数の蓄電装置を加熱するヒータと、を備え、複数の蓄電装置のうちのそれぞれの蓄電装置は、蓄電装置内のガスを蓄電装置の外へ排出する排気弁を有し、ヒータは、排気弁と対向している。また、蓄電モジュールは、複数の蓄電装置とヒータとを収容するケースと、ケースの内部の上側に形成され、ケースの外部と連通する排気ダクトをさらに備える。

Description

蓄電モジュール
 本開示は、複数の蓄電装置を備える蓄電モジュールに関する。
 従来、複数の蓄電装置を備える蓄電モジュールが知られている。例えば、特許文献1には、複数の蓄電装置と、蓄電装置の側面を構成する保持ブロックと、対向する保持ブロックうちの一つに貼り付けられたヒータと、を備える蓄電モジュールが開示されている。ヒータは、例えば低温下で蓄電装置を起動させる際に、蓄電装置を適正温度まで加熱するものである。
特開2013-254637号公報
 しかし、特許文献1に開示された蓄電モジュールでは、蓄電モジュールの側面にヒータが貼り付けられるため、蓄電モジュール外部への放熱が大きい。そのため、蓄電装置を加熱する際のヒータの加熱効率が低下する。
 本開示の目的は、蓄電装置を加熱するヒータの加熱効率を向上することができる蓄電モジュールを提供することである。
 本開示の一態様である蓄電モジュールは、複数の蓄電装置と、複数の蓄電装置を加熱するヒータと、を備え、複数の蓄電装置のそれぞれの蓄電装置は、蓄電装置内のガスを蓄電装置の外へ排出する排気部を有し、ヒータは、排気部と対向している。
 本開示の一態様によれば、蓄電装置を加熱するヒータの加熱効率を向上することができる。
実施形態の一例である蓄電モジュールを示す側断面図である。 実施形態の一例である蓄電装置を示す側断面図である。 実施形態の一例であるヒータを示す模式図である。 実施形態の一例であるヒータの制御構成を示すブロック図である。 ヒータと蓄電装置との配置を示す模式図である。 実施形態の他の例であるヒータを示す模式図である。 実施形態の他の例であるヒータを示す模式図である。 蓄電装置からガスが発生した状態を示す蓄電モジュールの側断面図である。
 以下、図面を用いて本開示の実施形態を説明する。以下で説明する形状、材料および個数は、説明のための例示であって、蓄電モジュールの仕様に応じて適宜変更することができる。以下ではすべての図面において同等の要素には同一の符号を付して説明する。
 図1を用いて、実施形態の一例である蓄電モジュール10について説明する。図1は、蓄電モジュール10を示す側断面図である。
 蓄電モジュール10は、主として動力用の電源として使用される。蓄電モジュール10は、例えば、電動工具、電動アシスト自転車、電動バイク、電動車椅子、電動三輪車、または電動カート等のモータで駆動される電動機器の電源として使用される。ただし、蓄電モジュール10の用途は特定されるものではなく、電動機器以外の電気機器、例えば、クリーナーや無線機、照明装置、デジタルカメラ、またはビデオカメラ等の屋内外で使用される種々の電気機器用の電源として使用されてもよい。
 蓄電モジュール10は、複数の円筒型の蓄電装置20と、複数の蓄電装置20を加熱するヒータ50と、複数の蓄電装置20およびヒータ50を収納する筐体としてのケース40と、ケース40の内部の上側に形成され、ケース40の外部と連通する排気ダクト45と、ヒータ50の熱を蓄電装置20に伝導する熱伝導材60と、複数の蓄電装置20をそれぞれ電気的に接続する集電板70と、複数の蓄電装置20の上端部をそれぞれ保持する上ホルダ80と、複数の蓄電装置20の下端部をそれぞれ保持する下ホルダ90と、を備える。
 複数の蓄電装置20は、蓄電モジュール10内で最密に充填され、隣り合う蓄電装置20同士が配列されている。例えば、複数の蓄電装置20が千鳥状となるように複数の列を形成してもよい。蓄電装置20は、蓄電装置20内のガスが増えて蓄電装置20内の圧力が上昇した場合(以下、この状態を蓄電装置20の異常時とも記す)に、蓄電装置20の内部から発生するガスまたは噴出物(例えば、蓄電装置20内の電解液や固形物等の収容物)を蓄電装置20の外部(例えば図1の蓄電装置20の上側に向けて)に排出する。蓄電装置20の詳細については後述する。以下、異常状態にある蓄電装置20が、内部に溜まったガスを排出することを排気とも記す。
 排気ダクト45は、蓄電装置20が異常時に、蓄電装置20内のガスをケース40の外部に排出する。排気ダクト45は、ヒータ50よりも上方に位置するケース40の上側部40Aと、上ホルダ80とから形成されるダクトである。排気ダクト45は、ケース40の外部と連通する排気口(図示なし)を有する。本実施形態の排気ダクト45は、上側部40Aと上ホルダ80とから形成されるダクトとしたが、これに限定されない。排気ダクトとしては、蓄電装置20が排気される側にケース40の外部と連通する空間が設けられていればよい。
 排気ダクト45は、蓄電装置20が排気した場合に、ヒータ50および熱伝導材60が破裂するため、蓄電装置20の内部と連通する。これにより、排気ダクト45は、蓄電装置20の内部にあったガスを外部に排気することができる。
 ヒータ50は、例えば低温下で蓄電装置20を起動させる際に、蓄電装置20を適正温度まで加熱するものである。ヒータ50は、排気ダクト45の内部において排気ダクト45の底面に配置される。ヒータ50は、上ホルダ80の上側に集電板70を介して配置される。また、ヒータ50は、蓄電装置20の上側に熱伝導材60を介して配置される。ヒータ50は、蓄電装置20が排気する場合に、排気されるガスの圧力によって破裂する。ヒータ50の詳細については後述する。
 ヒータ50の構成によれば、ヒータ50の上側では、ケース40の上側部40Aおよび排気ダクト45内の空気が、ヒータ50で発生した熱が蓄電装置20への伝熱経路以外の方向へ逃げることを抑制する。つまり、ヒータ50の上側において、ケース40の上側部40Aおよび排気ダクト45の内部空気が断熱材として機能する。これにより、ヒータ50が蓄電装置20を加熱する際に、ヒータ50が開放された空間にある空気と接する構成に比べてケース40の外部への放熱が少なくなる。一方、ヒータ50の下側では、熱伝導材60がヒータ50の熱伝導を促進する。そのため、ヒータ50が蓄電装置20を加熱する際に、短時間で蓄電装置20を適正温度に加熱することができる。また、蓄電装置20を所定の温度に加熱するのに要するエネルギーのロスを減らすこともできる。上記のことから、ケース40において、排気ダクト45の出口部分は、蓄電装置20が通常状態にある場合、封止されていてもよい。この構成により、排気ダクト45内の空気とケース40外の空気との断熱効果が高まるため、さらにヒータ50の加熱効率が高まる。なお、蓄電装置20の排気部が外装缶の底部側に設けられている場合は、ヒータ50を蓄電モジュール10の下側に配置して、底部側の排気部とヒータ50とを対向させてもよい。また、ヒータ50は蓄電装置20を挟んで配置される一対のヒータ50から構成されていてもよい。
 熱伝導材60は、蓄電装置20を適正温度までヒータ50によって加熱する際に、ヒータ50による熱を蓄電装置20に伝導するものである。つまり、ヒータ50と蓄電装置20は、熱伝導材60を介して熱的に接続している。熱伝導材60は、絶縁性を有するものである。熱伝導材60は、上ホルダ80の開口部80Bにおいて、ヒータ50と蓄電装置20との間に収容される。熱伝導材60は、蓄電装置20がガスを噴出した場合には、このガスの圧力によって破裂する。熱伝導材60は、例えば2液硬化材であるシリコーン、ペースト状のシリコーン、2液硬化材のウレタンに酸化金属(例えば、酸化アルミニウム、酸化亜鉛)、窒化金属(例えば、窒化アルミニウム、窒化ホウ素)、酸窒化金属(例えば、酸窒化アルミニウム)等を含んだものが用いられる。
 集電板70は、例えば、絶縁基板75と、この絶縁基板75上に配置されて正極端子と接続される正極集電部材71(第1集電部材)と、負極端子と接続される負極集電部材72(第2集電部材)と、を有する板状のものである。集電板70は、絶縁基板75が上ホルダ80と向かい合うように配置されていてもよい。正極集電部材71と負極集電部材72はそれぞれ、金属シートであり、金属シートの縁から各端子へ電気的接続するための集電リードを有する。この集電リードはそれぞれ、上ホルダ80の開口部80Bを通って各蓄電装置20へ延びる。正極集電部材71と負極集電部材72は、絶縁基板75の主面方向において並んで配置されていてもよい。また、正極集電部材71と負極集電部材72との間に間隙を有していてもよい。集電板70は、ヒータ50と上ホルダ80との間に設けられる。集電板70は、電気導電および熱伝導の良い材質が使用され、表面をニッケル等のメッキをした鉄板、ニッケル板、銅板、またはアルミニウム板等の金属板が用いられる。なお、蓄電モジュール10では、正極集電部材71の機能を果たす集電板と負極集電部材72の機能を果たす集電板が分離しており、一方の集電板が、蓄電装置20の封口体側に配置されるとともに封口体32と電気的に接続し、他方の集電板が蓄電装置20の外装缶31(図2参照)の底部側に配置されるとともに、外装缶31と電気的に接続してもよい。この場合、下ホルダ90の開口部90Bに熱伝導材60が充填されていてもよい。
 上ホルダ80は、配列された複数の蓄電装置20の上端部をそれぞれ保持するものである。上ホルダ80の下面部には、蓄電装置20の上端部が収容される収容部80Aが形成される。上ホルダ80の収容部80Aには、上ホルダ80の外面(上面)と収容部80Aとを連通する開口部80Bが形成され、熱伝導材60が収容される。上ホルダ80は、絶縁材料である熱可塑性樹脂または熱硬化性樹脂等で形成される。上ホルダ80の収容部80Aと蓄電装置20の下端部との間には、保持材81が設けられている。保持材81は、エポキシ系接着剤またはシリコーン系の弾性接着剤等が用いられる。上ホルダ80は、蓄電装置20や集電板70との絶縁が確保できるのであれば、アルミニウムまたは鉄等の金属で構成されていてもよい。
 下ホルダ90は、配列された複数の蓄電装置20の下端部をそれぞれ保持するものである。下ホルダ90の上面部には、蓄電装置20の下端部が収容される収容部90Aが形成される。下ホルダ90は、絶縁材料である熱可塑性樹脂または熱硬化性樹脂等で形成される。下ホルダ90の収容部90Aと蓄電装置20の下端部との間には、保持材91が設けられている。保持材91は、エポキシ系接着剤またはシリコーン系の弾性接着剤等が用いられる。下ホルダ90は、蓄電装置20や集電板70との絶縁が確保できるのであれば、アルミニウムまたは鉄等の金属で構成されていてもよい。
 図2を用いて、蓄電装置20について説明する。図2は、蓄電装置20を示す側断面図である。
 蓄電装置20は、円筒形のリチウムイオン二次電池が用いられる。なお、蓄電装置20は、リチウムイオン二次電池の他に、ニッケル水素電池や、キャパシタであってもよい。蓄電装置20は、電池ケース30の内部に電極群24および電解液を収容して構成される。電池ケース30は、円筒状の外装缶31と、外装缶31を絶縁して封止する封口体32と、を有する。
 電極群24は、帯状の第1電極としての正極21と帯状の第2電極としての負極22とが帯状のセパレータ23を介した状態で渦巻状に巻回されて構成される。電極群24では、正極21、負極22およびセパレータ23が電極群24の径方向において交互に積層される。電極群24の上下(電極群24の巻回軸方向の両端)には、絶縁板28、29がそれぞれ設けられる。
 正極21は、正極リード26によって封口体32(正極端子)と電気的に接続される。正極リード26は、正極21に接続されて、電極群24の上端から延出して、絶縁板28の貫通孔28Aを通って、封口体32のフィルタ33の下面に溶接される。
 負極22は、負極リード27によって外装缶31(負極端子)と電気的に接続される。負極リード27は、例えば電極群24の巻き内側端部と巻き外側端部とにそれぞれ設けられ、電極群24の下端から延出して外装缶31の底部31Bに溶接される。
 電解液は、非水溶媒と、非水溶媒に溶解した電解質塩とを含む。非水電解質は、液体電解質に限定されず、ゲル状や固体状であってもよい。
 外装缶31は、上端側が開口部31Aを有する円筒状に形成される金属製容器である。外装缶31は、電極群24および非水電解質を収容する。外装缶31は、上述したように負極22と電気的に接続される。外装缶31は、アルミニウム、鉄、鋼、銅、ニッケル等の金属を絞り加工する等により形成される。
 封口体32は、外装缶31の開口部31Aをガスケット39と共に塞ぐものである。また、封口体32は、上述したように正極21と電気的に接続される。封口体32は、電極群24側から順に、フィルタ33、インナーキャップ34、絶縁部材35、排気弁36、およびキャップ37が積層される。封口体32を構成する各部材は、例えば円板形状又はリング形状を有し、絶縁部材35を除く各部材は互いに電気的に接続されている。排気弁36は、上述したように蓄電装置20が熱暴走した場合に、電池ケース30の内部から発生するガスが所定の圧力以上に達した場合に破裂するものである。
 例えば、電極群24に内部短絡等が発生して、電池ケース30の内部圧力が上昇すると、排気弁36がキャップ37に向かって膨れ、インナーキャップ34と排気弁36との接合が外れ、インナーキャップ34と排気弁36との電流経路が遮断される。さらに電池ケース30の内部圧力が上昇すると、排気弁36が破断する。これによって、電池ケース30の内部に発生したガスは、フィルタ33の貫通孔33A、インナーキャップ34の貫通孔、破裂した排気弁36の裂け目、およびキャップ37の開放部37Aを介して、電池ケース30の外部へ排出される。
 図3を用いて、ヒータ50の構成について説明する。図3は、ヒータ50を示す模式図である。
 ヒータ50は、発熱体としての金属箔ヒータ51の上下に基材52をそれぞれ設けてシート状に構成される。発熱体としては、金属箔ヒータ51に限定されず、例えば電熱線ヒータであってもよい。
 金属箔ヒータ51は、金属箔に電気を流して発熱させる薄いシート状の発熱体である。金属箔ヒータ51は、蓄電モジュール10の全ての熱伝導材60を通過するように形成され、熱伝導材60を介して全ての蓄電装置20を加熱する。金属箔ヒータ51は、外部から所定圧力以上の圧力が加わると破断するものが使用される。金属箔ヒータ51は、例えば、アルミニウム、ニッケルクロム合金、鉄、クロム、アルミニウム合金等が使用される。
 基材52は、金属箔ヒータ51の発熱をヒータ50の外部に伝導するものである。基材52は、外部から上述した所定圧力以上の圧力が加わると破裂するものが使用される。また、基材52は、絶縁材料で形成される。基材52は、例えば、シリコンラバー、PETフィルム、ポリイミドフィルム等が使用される。
 ヒータ50の構成によれば、ヒータ50は、外部から所定圧力以上の圧力が加わると破裂する。所定圧力とは、排気弁36が作動する圧力よりも少なくとも低い圧力が設定される。これにより、ヒータ50は、蓄電装置20の排気弁36が破裂した場合には、電池ケース30の内部から発生するガスの圧力によって破裂する。このようにして、蓄電装置20の異常時には、蓄電装置20の内部と排気ダクト45とが連通され、排気経路が確保される。
 また、蓄電装置20が排気する際、ガスとともに噴出物が排出される場合がある。この噴出物は電池ケース30内に収容される正極21、負極22、リードなどの破片や電解液など、導電性であり、高熱の物体であることが多い。また、蓄電装置20からの排気が終わった後に、排気した蓄電装置20に振動が加わった場合、排気弁36の破裂した部分を通って上記噴出物が飛び出ることがある。ヒータ50の構成によれば、基材52が絶縁材料で形成されるため、これら噴出物が排気ダクト45へ噴出した際には、通過する噴出物と他の蓄電装置20の集電板70とがヒータ50によって電気的に絶縁され易い。また、基材52は金属箔ヒータ51の昇温に耐えられるように耐熱性をもっているため、高温の噴出物に基材52が触れても、基材52に孔が形成されたり、裂けたりし難い。これにより、集電板70が短絡し難い。この効果は、集電板70において正極集電部材71と負極集電部材72とが蓄電モジュール10にて1箇所に集約されて配置されている場合に特に有効である。集電板70では正極集電部材71と負極集電部材72とが間隙を有して並んでいるため、ヒータ50がこの間隙を覆うように配置されていると、集電板70の短絡抑制に有効である。このように短絡が抑制されることにより、正常な蓄電装置20が異常な蓄電装置20の影響を受けて異常状態に陥ることを抑制することができる。
 図4を用いて、ヒータ50の制御構成について説明する。図4は、ヒータ50の制御構成を示すブロック図である。
 ヒータ50は、電力を供給する電源55と、電力の供給を制御すると共にヒータ50の破断を検知する制御装置56と、に接続される。
 電源55は、ヒータ50の金属箔ヒータ51に電力を供給するものである。電源55は、蓄電モジュール10が用いられてもよい。また、蓄電モジュール10が搭載されている電動機器または当該電気機器の別の電源が用いられてもよい。
 制御装置56は、例えば蓄電装置20の近傍に設けられた温度センサーによって蓄電装置20が適正温度になるように、金属箔ヒータ51への電力の供給を制御する機能を有する。また、制御装置56は、例えば金属箔ヒータ51の抵抗値が無限大となったことを検知して、金属箔ヒータ51への電力の供給が遮断されたことを検知することができる。これにより、制御装置56は、ヒータ50が破裂したことを検知することができる。つまり、制御装置56は、蓄電モジュール10において少なくとも1つの蓄電装置20が異常状態にあることを検知することができる。
 図5を用いて、ヒータ50と蓄電装置20の配置について説明する。図5は、ヒータ50と蓄電装置20の配置を示す模式図である。
 図5に例示するように、蓄電装置20が排気した際に金属箔ヒータ51をより確実に破裂させるために、金属箔ヒータ51の一部を上ホルダ80の開口部80Bと対向させてもよい。
 また、金属箔ヒータ51において、開口部80Bと重なっていない部分を開口部80Bと重なった部分より強固に固定してもよい。そのため、この重なっていない部分でヒータ50をケース40や上ホルダ80へ固定してもよい。
 図6および図7を用いて、実施形態の他の例であるヒータ50の構成について説明する。図6および図7は、ヒータ50を示す模式図である。
 図6に例示するように、実施形態の他の例であるヒータ50では、金属箔ヒータ51の開口部80Bと重なった部分に、他の金属箔ヒータ51の部分よりも機械的強度が弱くなるように、例えばミシン目などにより構成された脆弱部51Aが形成されていてもよい。これらの構成により、金属箔ヒータ51が部分的に弱くなり、破裂し易くなる。また同様に、金属箔ヒータ51ではなく、基材52の開口部80B付近に、他の基材52の部分よりも機械的強度が弱くなるように、ミシン目などの脆弱部52Aを形成し、開口部80Bと重なる、基材52と金属箔ヒータ51とを同時に破裂させてもよい。このとき、脆弱部51Aや脆弱部52Aは、開口部80Bの周縁より外側に形成されていてもよい。この構成によりヒータ50における脆弱部51A、52Aにより囲われた領域が、蓄電装置20から噴出したガスと接触する面積が増えるとともに、この領域にガスが衝突したときに脆弱部51A、52Aへ加わるストレスが、脆弱部51A、52Aが開口部80B内にあるヒータ50よりも高まる。そのため、より確実にヒータ50を破裂させることができる。
 図7に例示するように、実施形態の他の例であるヒータ50では、金属箔ヒータ51または基材52の開口部80Bと重なる部分に微細な無数の孔から構成されたメッシュ部52Bを形成し、蓄電装置20から放出されるガスのみがヒータ50のメッシュ部52Bを透過し、噴出物をメッシュ部52Bの孔の小ささで遮る構成にしてもよい。この構成により、ヒータ50を破裂させずに蓄電装置20から排出されたガスを排気ダクト45へ誘導することができる。
 図8を用いて、蓄電装置20からガスが発生した状態について説明する。図8は、蓄電モジュール10を示す側断面図である。
 蓄電装置20では、熱暴走や蓄電装置20内の部材が劣化した場合にガスが発生する。蓄電装置20でガスが発生した場合には、上述したように排気弁36が破裂し、キャップ37からガスが排出される。
 熱伝導材60は、外部から所定圧力以上の圧力が加わると破断するものが使用される。所定圧力とは、排気弁36が作動する圧力よりも少なくとも低い圧力が設定されるものとする。これにより、熱伝導材60は、蓄電装置20から噴出するガスが持つ排気弁36を破裂させる圧力によって破裂する。そして、蓄電装置20から排出されたガスは、破裂した熱伝導材60の裂け目を通過してヒータ50に至る。
 ヒータ50は、上述したように、蓄電装置20から噴出するガスの排気弁36を破裂させる圧力によって破裂する。これにより、蓄電装置20から排出されたガスは、破裂したヒータ50の裂け目を通過して排気ダクト45に至る。このとき、制御装置56は、ヒータ50の破裂を検知することによって、蓄電装置20が異常状態にあることを検知する。
 排気ダクト45は、蓄電装置20から排出されたガスを外部に排出する。このようにして、蓄電モジュール10では、蓄電装置20が異常状態になった場合に、熱伝導材60およびヒータ50が破裂するため、蓄電装置20の内部と排気ダクト45とが連通され、排気経路が確保される。これにより、蓄電装置20と排気ダクト45との間に熱伝導材60およびヒータ50が配置されていても、蓄電装置20から排出されたガスまたは噴出物を外部に排出することができる。
 蓄電モジュール10の効果について説明する。蓄電モジュール10によれば、蓄電装置20を加熱するヒータ50の加熱効率を向上することができる。
 すなわち、ヒータ50を排気ダクト45の内部に設ける構成によって、ケース40の上側部40Aおよび排気ダクト45の内部空気に断熱材としての機能を持たせ、ヒータ50の蓄電モジュール10の外部への放熱を少なくすることができる。これにより、蓄電装置20を加熱する際のヒータ50の加熱効率を向上することができる。
 また、ヒータ50を排気ダクト45の内部に設ける構成であっても、蓄電装置20から発生するガスの排気経路を確保することができる。
 すなわち、ヒータ50および熱伝導材60を外部から所定圧力以上の圧力が加わると破裂するものとし、所定圧力を排気弁36が作動する圧力よりも少なくとも低い圧力に設定している。これにより、蓄電装置20の排気弁36が作動して蓄電装置20からガスが噴出した場合でも、このガスの圧力によってヒータ50および熱伝導材60が破裂し、蓄電装置20と排気ダクト45が連通して、蓄電装置20から発生したガスが排気ダクト45から外部へ排気される。
 さらに、ヒータ50を構成する基材52が絶縁材料で形成されるため、蓄電装置20の内部から発生した噴出物が排気ダクト45の内部を通過する際には、通過する噴出物と他の蓄電装置20の集電板70とがヒータ50によって電気的に絶縁される。これにより、集電板70が短絡することが抑制される。また、排気ダクト45の内部に別途絶縁材料を設ける必要がなく、部品点数を削減することができる。
 さらに、ヒータ50を構成する基材52が絶縁材料で形成されるため、蓄電装置20の内部から発生した噴出物が排気ダクト45の内部を通過する場合には、通過する噴出物と他の正常な蓄電装置20とがヒータ50によって電気的に絶縁され易い。そのため、1つの蓄電装置20が異常となった場合であっても、他の蓄電装置20との短絡を防止することができる。これにより、蓄電モジュール10において蓄電装置20の異常化の連鎖を防止することができる。また、排気ダクト45の内部に別途絶縁材料を設ける必要がなく、部品点数を削減することができる。
 さらに、制御装置56は、ヒータ50が破裂したことを検知することができる。これにより、制御装置56は、蓄電モジュール10において少なくとも1つの蓄電装置20が異常状態となったことを検知することができる。これにより、蓄電モジュール10において蓄電装置20の異常化の連鎖を防止することができる。
 なお、本発明は上述した実施形態およびその変形例に限定されるものではなく、本願の特許請求の範囲に記載された事項の範囲内において種々の変更や改良が可能であることは勿論である。
 10 蓄電モジュール、15 筐体、15A 上側部、20 蓄電装置、21 正極、22 負極、23 セパレータ、24 電極群、26 正極リード、27 負極リード、28 絶縁板、28A 貫通孔、29 絶縁板、30 電池ケース、31 外装缶、31A 開口部、31B 底部、32 封口体、33 フィルタ、33A 貫通孔、34 インナーキャップ、35 絶縁部材、36 排気弁、37 キャップ、37A 開放部、39 ガスケット、40 ケース(筐体)、40A 上側部、45 排気ダクト、50 ヒータ、51 金属箔ヒータ、52 基材、55 電源、56 制御装置、60 熱伝導材、70 集電板、71 正極集電部材、72 負極集電部材、75 絶縁基板、80 上ホルダ、80A 収容部、80B 開口部、81 保持材、90 下ホルダ、90A 収容部、91 保持材。

Claims (11)

  1.  複数の蓄電装置と、
     前記複数の蓄電装置を加熱するヒータと、
     を備え、
     前記複数の蓄電装置のそれぞれの蓄電装置は、前記蓄電装置内のガスを該蓄電装置の外へ排出する排気部を有し、
     前記ヒータは、前記排気部と対向している、
     蓄電モジュール。
  2.  請求項1記載の蓄電モジュールであって、
     前記複数の蓄電装置と前記ヒータとを収容する筐体と、
     前記筐体の内部の一側に形成され、前記筐体の外部と連通する排気ダクトをさらに備える、
     蓄電モジュール。
  3.  請求項1に記載の蓄電モジュールであって、
     前記蓄電装置が排気したときに、前記ヒータが破裂する、
     蓄電モジュール。
  4.  請求項3に記載の蓄電モジュールであって、
     前記ヒータには、該ヒータの他の部分より機械的強度が弱い脆弱部が形成されている、
     蓄電モジュール。
  5.  請求項3または4に記載の蓄電モジュールであって、
     前記ヒータが破裂したときに、前記ヒータの破裂を検知する制御装置をさらに備える、
     蓄電モジュール。
  6.  請求項1から5のいずれか一項に記載の蓄電モジュールであって、
     前記ヒータは、発熱体と、前記発熱体を覆う基材と、を含み、
     前記基材は、絶縁材料で形成される、
     蓄電モジュール。
  7.  請求項1に記載の蓄電モジュールであって、
     前記複数の蓄電装置をそれぞれ収容する複数の収容部と、前記複数の収容部と外面とをそれぞれ連通させる複数の開口部とが形成されたホルダをさらに備え、
     前記蓄電装置の前記排気部は、前記複数の開口部のそれぞれの開口部と重なる、
     蓄電モジュール。
  8.  請求項7に記載の蓄電モジュールであって、
     前記開口部は、前記ヒータと前記蓄電装置の間に設けられ、
     前記開口部の内部には、電気的に絶縁性をもった熱伝導材が配置される、
     蓄電モジュール。
  9.  請求項8に記載の蓄電モジュールであって、
     前記蓄電装置がガスを排出したときに、前記ガスが前記熱伝導材を破裂させながら、前記開口部を通過する、
     蓄電モジュール。
  10.  請求項7に記載の蓄電モジュールであって、
     前記ヒータと前記ホルダの間には、前記複数の蓄電装置を電気的に接続する集電板をさらに有し、
     前記蓄電装置は、第1電極と第2電極とを有し、
     前記集電板は、前記第1電極と電気的に接続する第1集電部材と、前記第1集電部材と並んで配置されるともに前記第2電極を電気的に接続する第2集電部材と、前記第1集電部材と前記第2集電部材の間に形成される間隙とを有し、
     前記ヒータは前記間隙と対向する、
     蓄電モジュール。
  11.  複数の蓄電装置と、
     前記複数の蓄電装置を加熱するヒータと、を備え、
     前記複数の蓄電装置のうちのそれぞれの蓄電装置は、前記蓄電装置の内の収容物を該蓄電装置の外へ排出する排気部を有し、
     前記ヒータは、前記排気部から排出されるガスを遮るように配置される、
     蓄電モジュール。
PCT/JP2020/040010 2019-10-31 2020-10-23 蓄電モジュール WO2021085351A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
EP20883540.5A EP4053972A4 (en) 2019-10-31 2020-10-23 POWER STORAGE MODULE
US17/755,314 US20220367967A1 (en) 2019-10-31 2020-10-23 Power storage module
CN202080072008.2A CN114556673A (zh) 2019-10-31 2020-10-23 蓄电模块
JP2021553587A JPWO2021085351A1 (ja) 2019-10-31 2020-10-23

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019199219 2019-10-31
JP2019-199219 2019-10-31

Publications (1)

Publication Number Publication Date
WO2021085351A1 true WO2021085351A1 (ja) 2021-05-06

Family

ID=75715140

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/040010 WO2021085351A1 (ja) 2019-10-31 2020-10-23 蓄電モジュール

Country Status (5)

Country Link
US (1) US20220367967A1 (ja)
EP (1) EP4053972A4 (ja)
JP (1) JPWO2021085351A1 (ja)
CN (1) CN114556673A (ja)
WO (1) WO2021085351A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20230198088A1 (en) * 2021-12-17 2023-06-22 GM Global Technology Operations LLC Battery module cover with thermal runaway mitigation

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011092773A1 (ja) * 2010-01-29 2011-08-04 パナソニック株式会社 電池モジュール
JP2013254637A (ja) 2012-06-07 2013-12-19 Panasonic Corp 組電池
JP2018129251A (ja) * 2017-02-10 2018-08-16 トヨタ自動車株式会社 電池パック

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN209071461U (zh) * 2018-12-28 2019-07-05 宁德时代新能源科技股份有限公司 热管理装置及电池包
CN111384324B (zh) * 2018-12-28 2021-08-06 宁德时代新能源科技股份有限公司 电池模组

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011092773A1 (ja) * 2010-01-29 2011-08-04 パナソニック株式会社 電池モジュール
JP2013254637A (ja) 2012-06-07 2013-12-19 Panasonic Corp 組電池
JP2018129251A (ja) * 2017-02-10 2018-08-16 トヨタ自動車株式会社 電池パック

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP4053972A4

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20230198088A1 (en) * 2021-12-17 2023-06-22 GM Global Technology Operations LLC Battery module cover with thermal runaway mitigation
US12046773B2 (en) * 2021-12-17 2024-07-23 GM Global Technology Operations LLC Battery module cover with thermal runaway mitigation

Also Published As

Publication number Publication date
CN114556673A (zh) 2022-05-27
JPWO2021085351A1 (ja) 2021-05-06
EP4053972A1 (en) 2022-09-07
US20220367967A1 (en) 2022-11-17
EP4053972A4 (en) 2023-06-21

Similar Documents

Publication Publication Date Title
JP6376273B2 (ja) 電源装置
JP4187685B2 (ja) 二次電池
JP6427941B2 (ja) 蓄電装置
EP2744015A1 (en) Battery block and battery module comprising same
EP2579384B1 (en) Rechargeable battery
KR102085343B1 (ko) 원통형 이차전지 모듈
JP5837271B2 (ja) 電池モジュール
JP2010062149A (ja) 保護回路組立体、電池組立体及び保護回路組立体と電池組立体との結合方法
TWI482332B (zh) 二次電池組及其製造方法
KR20190042215A (ko) 가스 배출구를 포함하는 이차전지용 파우치형 케이스
JP2011014525A (ja) 保護回路基板、二次電池及び電池パック
KR20120039469A (ko) 실링부의 절연성이 향상된 이차전지
CN101887989A (zh) 二次电池
JP6287637B2 (ja) 電池モジュール
WO2006059455A1 (ja) フィルム外装電気デバイス用ケースおよび該フィルム外装電気デバイス用ケースの製造方法
JP2013537694A (ja) 少なくとも1つの圧力軽減装置を有する電気化学的セル
JP2007066612A (ja) 電池構造および電池モジュール
CN103594674A (zh) 可再充电电池和电池模块
JP4692030B2 (ja) 電池用温度検出装置
WO2021085351A1 (ja) 蓄電モジュール
JP2019537830A (ja) バッテリーパック及びこの製造方法
KR101292284B1 (ko) 신규한 실링부 구조를 포함하는 이차전지
JP2003331803A (ja) 電池パック
JP2009231243A (ja) 電池
KR101655275B1 (ko) Ptc 특성을 갖는 용접부가 구비된 이차 전지 및 그 제조방법

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20883540

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2021553587

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2020883540

Country of ref document: EP

Effective date: 20220531