WO2021085303A1 - Resin molded body for optical semiconductor device and optical semiconductor device - Google Patents

Resin molded body for optical semiconductor device and optical semiconductor device Download PDF

Info

Publication number
WO2021085303A1
WO2021085303A1 PCT/JP2020/039748 JP2020039748W WO2021085303A1 WO 2021085303 A1 WO2021085303 A1 WO 2021085303A1 JP 2020039748 W JP2020039748 W JP 2020039748W WO 2021085303 A1 WO2021085303 A1 WO 2021085303A1
Authority
WO
WIPO (PCT)
Prior art keywords
optical semiconductor
semiconductor device
resin molded
recess
molded body
Prior art date
Application number
PCT/JP2020/039748
Other languages
French (fr)
Japanese (ja)
Inventor
裕之 平川
山本 康雄
Original Assignee
株式会社ダイセル
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社ダイセル filed Critical 株式会社ダイセル
Publication of WO2021085303A1 publication Critical patent/WO2021085303A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/28Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection
    • H01L23/29Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection characterised by the material, e.g. carbon
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/28Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection
    • H01L23/31Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection characterised by the arrangement or shape
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/48Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor body packages
    • H01L33/58Optical field-shaping elements
    • H01L33/60Reflective elements

Definitions

  • the present disclosure relates to a resin molded body used in an optical semiconductor device including an optical semiconductor element such as a light emitting diode, and an optical semiconductor device including the resin molded body.
  • the present application claims the priority of Japanese Patent Application No. 2019-195431 filed in Japan on October 28, 2019, the contents of which are incorporated herein by reference.
  • Optical semiconductor devices equipped with optical semiconductor elements have a longer life, stable operation, and faster response speed than other light sources such as light bulbs, fluorescent lamps, neon tubes, and halogen lamps. It has features such as that.
  • Such optical semiconductor devices are being put into practical use in various applications. For example, it is used for lighting (general indoor lighting in homes and offices, street lights, etc.), display applications (traffic lights, etc.), light source applications (backlights of LCD TVs, etc.), and communication applications (infrared remote controls, etc.).
  • Such an optical semiconductor device is described in, for example, Patent Document 1 below.
  • optical semiconductor devices There are various designs of optical semiconductor devices, and even optical semiconductor devices of the same external size are required to have a design that obtains brighter luminosity.
  • optical semiconductor device there is a large loss in extracting light, and the current situation is that the luminous intensity inherent in the optical semiconductor element cannot be fully utilized.
  • the conventional optical semiconductor device has a problem that a part of the light emitting surface becomes dark, that is, there is a so-called dead space, and the brightness is not uniform. This tendency becomes remarkable as the optical semiconductor device becomes larger. It's coming. In recent years, even on the surface of a larger optical semiconductor device, there is a demand for more uniform brightness by reducing dead space.
  • the present disclosure has been conceived under the above circumstances, and its purpose is to be used in an optical semiconductor device for reducing light loss to emit brighter and more uniform light. It is an object of the present invention to provide a resin molded body for an optical semiconductor device, and an optical semiconductor device including the resin molded body for the optical semiconductor device.
  • the inventors of the present disclosure have limited the path of reflected light in the optical semiconductor device as the main cause of light loss and dead space in the optical semiconductor device.
  • the collision between the reflected lights increased and the light was attenuated (disappeared).
  • the design of the resin molded body used in the optical semiconductor device the light is uniformly reflected throughout the optical semiconductor device, the collision between the reflected lights is reduced, the light is brighter, and the dead space is minimized. I found a design that can obtain more uniform light.
  • the invention of the present disclosure has been completed based on these findings.
  • one embodiment of the present disclosure is a resin molded body for an optical semiconductor device. It has front and back surfaces that face opposite to each other in the thickness direction.
  • the front surface has a recess recessed from the opening toward the back surface.
  • the recess has n reflective surfaces (n represents an integer of 5 or more) and a bottom surface on the inner wall.
  • the shape of the opening of the recess is a substantially n-sided polygon (n is the same integer as n) that satisfies the following conditions (1) and (2).
  • All internal angles of the substantially n-sided polygon are obtuse angles.
  • All sides of the substantially n-sided polygon are not parallel to each other.
  • a resin molded product for an optical semiconductor device wherein the shape formed by an arbitrary surface parallel to the opening and the inner wall of the recess is a substantially n-sided shape substantially similar to the opening of the recess.
  • the bottom surface of the recess may be a substantially n-sided polygon that is substantially similar to the opening of the recess.
  • the area of the opening of the recess is preferably larger than the area of the bottom surface of the recess.
  • the area of the shape formed by an arbitrary surface parallel to the opening and the side surface of the recess gradually decreases from the opening of the recess to the bottom surface.
  • the first lead has a first exposed surface that forms a part of the bottom surface of the recess, and is exposed on a side opposite to the first exposed surface.
  • the first lead and the second lead may each have an electrode portion extending to the outside from the resin molded body for the optical semiconductor device.
  • an optical semiconductor device and the like.
  • the resin molded body is the resin molded body for an optical semiconductor device.
  • the optical semiconductor device provides an optical semiconductor device mounted on the first exposed surface of the first lead and connected to the third exposed surface of the second lead via a bonding wire.
  • the optical semiconductor element may be connected to a substantially central portion of the bottom surface of the recess.
  • the optical semiconductor device including the resin molded body reflects light uniformly throughout the optical semiconductor device and collides with each other. Is less and brighter, and dead space is minimized to obtain more uniform light.
  • FIG. 1 It is a perspective view (schematic diagram) of the resin molded body for an optical semiconductor device which concerns on one Embodiment of this disclosure. It is a top view (schematic view) of the resin molded body for an optical semiconductor device shown in FIG. It is sectional drawing (schematic diagram) along the line XX'in the resin molded article for an optical semiconductor device shown in FIG. It is a top view (schematic view) of the resin molded article for an optical semiconductor device which concerns on other embodiments of this disclosure. It is sectional drawing (schematic diagram) along the line YY'in the resin molded body for an optical semiconductor device shown in FIG. It is a back view (schematic view) of the resin molded body for an optical semiconductor device shown in FIG.
  • FIG. 7 is a cross-sectional view (schematic diagram) along the line ZZ'in the optical semiconductor device shown in FIG. 7. It is a top view (schematic diagram) of one conventional optical semiconductor device. It is sectional drawing (schematic diagram) along the line VV'in the optical semiconductor device shown in FIG. It is explanatory drawing about the reflected light in the conventional optical semiconductor device.
  • 9 and 10 show a schematic view of an optical semiconductor device 100 which is an example of a conventional optical semiconductor device
  • FIG. 9 is a plan view from above
  • FIG. 10 is a line V in the optical semiconductor device shown in FIG. It is sectional drawing along-V'.
  • the optical semiconductor device 100 is formed in the form of a so-called mold array package (MAP), and includes a resin molded body 110, a set of leads 120 and 130, an LED element 140 which is a light emitting diode, and a transparent resin.
  • MAP mold array package
  • the resin molded body 110 is a resin body molded in a form of holding the leads 120 and 130 by so-called insert molding accompanied by the leads 120 and 130, and has a recess 112 whose concave shape is defined by an inclined surface 111. At least the inclined surface 111 of the resin molded body 110 is imparted with light reflectivity according to a predetermined embodiment.
  • the LED element 140 is electrically and mechanically connected to the reed 120 in the recess 112. At the same time, the LED element 140 is electrically connected to the lead 130 via the bonding wire 160.
  • the transparent resin portion 150 is a transparent resin body that is filled and cured in the recess 112 of the resin molded body 110, and seals the LED element 140 and the like in the recess 112. When the leads 120 and 130 are energized from the external electrodes 120a and 130a, the LED element 140 emits light. The light passes through the transparent resin portion 150 and is emitted to the outside from the recess 112 of the optical semiconductor device 100
  • the optical semiconductor device 100 having such a configuration, light is sterically emitted from the LED element 140 in all directions. Some light goes out of the recess 112 directly from the upper opening of the recess 112, but most of the light goes out of the recess 112 while repeating reflection on a reflecting surface such as an inclined surface 111 inside the recess 112. At that time, when the reflected light collides with each other inside the recess 112, the light is attenuated (disappeared), the amount of light emitted from the opening is reduced, and the illuminance is reduced.
  • FIG. 1 to 3 are schematic views showing a resin molded body 1 for an optical semiconductor device according to an embodiment of the present disclosure.
  • FIG. 1 is a perspective view of the resin molded body 1 for an optical semiconductor device according to the embodiment
  • FIG. 2 is a plan view of the resin molded body 1 for an optical semiconductor device.
  • FIG. 3 is a cross-sectional view of the resin molded body 1 for an optical semiconductor device along the dotted line XX'of FIG.
  • the resin molded body 1 for an optical semiconductor device is not particularly limited as long as it is used in the manufacture of an optical semiconductor device, but is preferably a resin molded body constituting a substrate of the optical semiconductor device, and faces opposite sides in the thickness direction. It has a front surface 10 and a back surface 11.
  • the substrate of an optical semiconductor device means a plate-like object for mounting a constituent member such as an optical semiconductor element described later.
  • the front surface 10 and the back surface 11 are, in principle, flat surfaces except for the case specified in the present disclosure (for example, the recess 13 described later), but other uneven shapes and the like can be provided as long as the effects of the present disclosure are not impaired. You may have.
  • the resin molded body 1 for an optical semiconductor device is molded by, for example, an insert molding method.
  • a resin molded product 1 for a semiconductor device is made of, for example, a thermosetting resin composition containing a white pigment.
  • the thermosetting resin include epoxy resins.
  • the white pigment blended in the thermosetting resin include titanium oxide, alumina, zinc oxide, magnesium oxide, antimony oxide, and zirconium oxide.
  • Examples of commercially available products of the resin material for forming the resin molded body 1 for semiconductor devices include "AEW-700" manufactured by Daicel Corporation.
  • the resin molded body 1 for an optical semiconductor device has a recess 13 recessed from an opening 12 toward a back surface 11 on the front surface 10.
  • the recess 13 constitutes a reflector opening of the optical semiconductor device, and has n reflective surfaces (n represents an integer of 5 or more) and a bottom surface 15 on the inner wall.
  • the reflective surface 14 and the bottom surface 15 of the recess 13 define the concave shape of the recess 13.
  • n reflective surfaces are formed so that the concave shape spreads from the bottom 15 to the opening 12 of the recess 13. 14 is tilted.
  • the reflective surface 14 is, for example, imparted with light reflectivity by the resin body containing the above-mentioned white pigment.
  • a flat surface is preferable, but it may have a fine uneven shape as long as the light reflectivity is not impaired.
  • the surface of the bottom surface 15 of the recess 13 where the resin body is exposed may also have light reflectivity.
  • the number of reflecting surfaces 14 existing on the inner wall of the recess 13 is not particularly limited as long as it is 5 or more, but it is preferable from the viewpoint of reducing collisions between reflected lights and improving brightness and light uniformity. 6 or more, more preferably 7 or more, more preferably 8 or more, more preferably 9 or more, more preferably 10 or more, more preferably 11 or more, more preferably 12 or more, still more preferable. Is 13 or more, and even more preferably 14 or more.
  • the number of reflecting surfaces 14 is not particularly limited, but is preferably 30 or less, more preferably 25 or less, and even more preferably 20 or less, from the viewpoint of design and ease of manufacture of the optical semiconductor device.
  • the n reflecting surfaces 14 may include the same (joint) shape, or may all have different shapes. From the viewpoint of reducing collisions between reflected lights and improving brightness and light uniformity, it is preferable that they all have different shapes.
  • the shape of the opening 12 of the recess 13 (that is, the shape of the opening end of the recess 13) is a substantially n-sided polygon that satisfies the following conditions (1) and (2).
  • All internal angles of the substantially n-sided polygon are obtuse angles (hereinafter referred to as condition (1)).
  • condition (2) All sides of the substantially n-sided polygon are not parallel to each other (hereinafter, referred to as condition (2)).
  • the shape 16 formed by an arbitrary surface parallel to the opening 12 and the inner wall of the recess 13 is a substantially n-sided shape substantially similar to the opening 12 of the recess 13.
  • the arbitrary surface parallel to the opening 12 is a virtual surface for cutting the resin molded body 1 for a semiconductor device in the horizontal direction with the opening 12, and the shape 16 is a line at which the surface and the inner wall of the recess 13 intersect. It is a configured shape.
  • the substantially n-sided polygon whose shape 16 is substantially similar to the opening 12 is intended to include the case where the shape 16 is similar to the opening 12 and the case where the shape 16 is close to the similar shape to the opening 12.
  • the shape 16 is similar to the opening 12, for example, the opening 12 is an n-sided polygon, the shape 16 is a similar figure to the n-sided polygon, and all or part of the corners are rounded.
  • the purpose includes the case where the shape 16 is an n-sided polygon and the opening 12 is a similar figure of the n-sided polygon, and refers to a shape in which all or a part of the corners are rounded.
  • the opening 12 and the shape 16 have a substantially n-sided relationship with each other, it is defined that the conditions (1) and (2) are satisfied on the entire surface of the n reflecting surfaces 14. It is a thing.
  • the internal angle is the angle formed by the extension lines of the adjacent sides of the substantially n-sided polygon.
  • All internal angles of the approximately n-sided polygon are not particularly limited as long as they exceed 90 ° and are less than 180 °, but are preferably 95 from the viewpoint of reducing collisions between reflected lights and improving brightness and light uniformity. ° or more, more preferably 100 ° or more, more preferably 110 ° or more, more preferably 120 ° or more, more preferably 130 ° or more, more preferably 140 ° or more, more preferably 150 ° or more, still more preferably 160 °. That is all.
  • the condition (2) defines that all the sides of the substantially n-sided polygon defining the opening 12 and the shape 16 are not parallel to each other. According to the condition (2), the collision of the light reflected by the two reflecting surfaces 14 facing each other in the recess 13 can be minimized. Therefore, as long as the condition (2) is satisfied, the collision between the reflected lights is reduced, and the brightness and the uniformity of the light can be improved.
  • the substantially n-sided shape defining the opening 12 and the shape 16 may have a symmetrical shape or an asymmetrical shape as long as the above conditions (1) and (2) are satisfied, but the reflected light may be of each other. Asymmetry is preferred from the standpoint of reducing collisions and improving brightness and light uniformity.
  • the bottom surface 15 of the recess 13 has a substantially n-sided shape that is substantially similar to the opening 12 of the recess 13.
  • the meaning of "a substantially n-sided polygon having a substantially similar figure" is the same as described above.
  • the area of the opening 12 of the recess 13 is preferably larger than the area of the bottom surface 15 of the recess 13.
  • the area of the shape 16 gradually decreases from the opening 12 of the recess 13 to the bottom surface 15.
  • the preferred embodiment defines an embodiment in which n reflecting surfaces 14 are inclined so that the concave shape spreads from the bottom surface 15 of the recess 13 to the opening 12. According to the preferred embodiment, the light is easily reflected upward, the collision between the reflected lights can be reduced, and the brightness and the uniformity of the light can be improved.
  • FIG. 4 to 6 are schematic views showing a resin molded body 2 for an optical semiconductor device according to another embodiment of the present disclosure.
  • FIG. 4 is a plan view of the resin molded body 2 for an optical semiconductor device according to the embodiment
  • FIG. 5 is a cross-sectional view of the resin molded body 2 for an optical semiconductor device along the dotted line YY'of FIG.
  • FIG. 6 is a back view of the resin molded body 2 for an optical semiconductor device.
  • the resin molded body 2 for an optical semiconductor device is integrated (integrally molded) with a first lead 21 and a second lead 22 which are separated from each other from the resin molded body 1 for a semiconductor device. That is, the resin molded body 2 for an optical semiconductor device is a resin body formed by, for example, insert molding while partially incorporating the first lead 21 and the second lead 22 inside. In the resin molded body 2 for an optical semiconductor device, the first lead 21 and the second lead 22 form a pair of terminals for external connection in the optical semiconductor device.
  • the lead 21 faces the recess 13 of the resin molded body 2 for an optical semiconductor device and forms a part of the bottom surface 15 of the recess 13 (the first exposed surface). ), And has an exposed surface 21b (second exposed surface) exposed on the side opposite to the recess 13. Further, the lead 21 has an electrode portion 21c extending to the outside from the resin molded body 2 for an optical semiconductor device.
  • the extending length of the electrode portion 21c from the resin molded body 2 for an optical semiconductor device is, for example, 0.1 to 2 mm. In such an embodiment, the lead 21 is partially covered and held by the resin molded body 2 for an optical semiconductor device.
  • the reed 22 (second reed) faces the exposed surface 22a (the exposed surface 22a) facing the recess 13 at a position separated from the exposed surface 21a on the bottom surface 15 of the recess 13 of the resin molded body 2 for an optical semiconductor device. It has an exposed surface 22b (fourth exposed surface) that has a third exposed surface) and is exposed on the side opposite to the recess 13. Further, the lead 22 has an electrode portion 22c extending to the outside from the resin molded body 2 for an optical semiconductor device. The extending length of the electrode portion 22c from the resin molded body 2 for an optical semiconductor device is, for example, 0.1 to 2 mm. In such an embodiment, the reed 22 is held while being partially covered by the resin molded body 2 for an optical semiconductor device.
  • the area of the electrodes (exposed surface 21a, exposed surface 21b, exposed surface 22a, exposed surface 22b, etc.) can be increased, so that heat can be easily released and thermal resistance can be increased. It is preferable because it can be made smaller.
  • the lead 21 and the lead 22 are each made of a conductive metal material.
  • the metal material for the reed include Cu, Cu alloy, and 42% Ni—Fe alloy.
  • the thickness of the lead 21 and the lead 22 is, for example, 0.1 to 0.3 mm, respectively.
  • Such leads 21 and 22 can be formed, for example, by etching or punching a metal plate.
  • the surfaces of the leads 21 and the leads 22 may be subjected to a predetermined plating treatment such as an Ag plating treatment.
  • the area of the exposed surface 21a and the exposed surface 22a in the recess 13 of the lead 21 and the lead 22 is preferably 50% or more, more preferably 50% or more of the area of the bottom surface 15 in the recess 13. Is 60% or more, more preferably 70% or more, still more preferably 80% or more, still more preferably 85% or more.
  • the area of the exposed surface 21a and the exposed surface 22a is preferably 95% or less, more preferably 90% or less of the area of the bottom surface 15 in the recess 13.
  • Such a configuration is suitable for sufficiently separating the exposed surface 21a and the exposed surface 22a and securing an area of a region having light reflectivity on a part of the bottom surface 15 of the recess 13, and by extension, an optical semiconductor. It is suitable for achieving high light utilization efficiency in the device.
  • Such a resin molded body 2 for an optical semiconductor device is manufactured by, for example, the following so-called line molding method.
  • a predetermined lead frame is prepared.
  • This lead frame has a rectangular frame in a plan view and a pattern portion having a predetermined pattern shape for each optical semiconductor device forming area arranged in a row in the frame.
  • the pattern portion includes a lead portion that forms the lead 21 and the lead 22 described above, a connecting portion that connects the lead portion and the frame body, and a connecting portion that connects the lead portions.
  • Such a lead frame can be manufactured, for example, by etching.
  • the above-mentioned resin molded body 2 for an optical semiconductor device is formed for each optical semiconductor device forming area of the lead frame.
  • the lead frame is interposed in a set of molds having a molding surface for collectively molding a plurality of resin molded bodies 2 for an optical semiconductor device over a plurality of optical semiconductor device forming areas in the lead frame.
  • the above-mentioned thermosetting resin composition containing a white pigment for forming a resin molded body 2 for an optical semiconductor device is supplied into a mold and molded under predetermined temperature and pressure conditions. (Insert molding).
  • the resin molded body 2 for an optical semiconductor device having the above-mentioned recess 13 is formed in each optical semiconductor device forming area.
  • the molding method for example, transfer molding or injection molding is adopted.
  • FIG. 7 and 8 are schematic views showing the optical semiconductor device 3 according to the embodiment of the present disclosure.
  • FIG. 7 is a plan view of the optical semiconductor device 3 according to the embodiment
  • FIG. 8 is a cross-sectional view of the optical semiconductor device 3 along the dotted line ZZ'of FIG.
  • the optical semiconductor device 3 includes an optical semiconductor element 31 and a resin molded body 2 for an optical semiconductor device, the optical semiconductor element 31 is mounted on the exposed surface 21a of the lead 21, and the exposed surface of the lead 22. It is connected to 22a via a bonding wire 32.
  • the recess 13 of the optical semiconductor element 31 may be sealed with the transparent resin portion 33.
  • the optical semiconductor device 3 is formed in the form of a so-called mold array package (MAP).
  • MAP mold array package
  • the optical semiconductor element 31 is an element having a light emitting function, and is specifically a light emitting diode (LED) element in the present embodiment.
  • Examples of the semiconductor material for forming the LED element include GaAlAs, AlInGaP, InGaN, GaP, GaAs, and GaAsP.
  • the optical semiconductor element 31 has electrode portions (not shown) on the upper surface side and the lower surface side in FIG. 8, respectively.
  • the transparent resin portion 33 is a transparent resin body that is filled and cured in the recess 13 of the optical semiconductor device 3, and is made of a transparent sealing material for semiconductors.
  • a sealing material include an epoxy-based sealing material and a silicone-based sealing material.
  • examples of commercially available epoxy-based encapsulants include “CELVENUS W0973” and “CELVENUS W0925” manufactured by Daicel Corporation.
  • examples of commercially available silicone-based encapsulants include "CELVENUS A2045" and "CELVENUS A0246" manufactured by Daicel Corporation.
  • Such an optical semiconductor device 3 is manufactured by the above-mentioned line mold method.
  • the resin molded body 2 for an optical semiconductor device is manufactured by the above method.
  • the optical semiconductor element 31 is mounted via the conductive bonding material on the above-mentioned exposed surface 21a of the lead 21, and the above-mentioned exposed surface of the optical semiconductor element 31 and the lead 22. It undergoes wire bonding with 22a and formation of the above-mentioned transparent resin portion 33 by, for example, potting.
  • the lead 21 and the lead 22 are separated by cutting the above-mentioned connecting portion of the pattern portion in the lead frame for each optical semiconductor device forming area, and the optical semiconductor device 3 is isolated.
  • the optical semiconductor device 3 can be manufactured as described above.
  • the optical semiconductor device 3 When the optical semiconductor device 3 is driven, a predetermined electric power is supplied to the optical semiconductor element 31 via the lead 21 and the lead 22, whereby the optical semiconductor element 31 emits light. A part of the light emitted from the optical semiconductor element 31 is reflected in the recess 13 of the resin molded body 2 for the optical semiconductor device, and the other part of the light emitted from the optical semiconductor element 31 is reflected in the recess 13. It passes through the transparent resin portion 33 and is emitted to the outside of the recess 13 without passing through.
  • the optical semiconductor device 3 of the present embodiment is suitable in that it can reduce collisions between reflected lights and improve brightness and light uniformity.
  • the optical semiconductor element 31 is preferably connected to a substantially central portion of the bottom surface 15 of the recess 13. This configuration is preferable from the viewpoint that the light emitted from the optical semiconductor element 31 is uniformly reflected by the n reflecting surfaces 14, the collision between the reflected lights is reduced, and the brightness and the uniformity of the light are improved.
  • optical semiconductor element 31 is connected to a substantially central portion of the bottom surface 15 is intended to be arranged so that the center (center of gravity) of the bottom surface 15 and at least a part of the entire surface of the optical semiconductor element 31 overlap. It is more preferable to arrange the optical semiconductor element 31 so that the center (center of gravity) and the center (center of gravity) of the bottom surface 15 coincide with each other.
  • the substantially n-sided shape defining the opening 12 and the shape 16 satisfies the above conditions (1) and (2), thereby satisfying the optical semiconductor.
  • the light emitted from the element 31 is repeatedly reflected very complicatedly by the n reflecting surfaces 14 and is emitted to the outside of the recess 13. Therefore, the attenuation (loss) due to the collision of the reflected light is minimized, and brighter light is emitted. Further, the reflected light spreads to every corner inside the recess 13 and is emitted as uniform light without dead space.
  • a resin molded product for an optical semiconductor device It has front and back surfaces that face opposite to each other in the thickness direction.
  • the front surface has a recess recessed from the opening toward the back surface.
  • the recess has n reflective surfaces (n represents an integer of 5 or more) and a bottom surface on the inner wall.
  • the shape of the opening of the recess is a substantially n-sided polygon (n is the same integer as n) that satisfies the following conditions (1) and (2).
  • All internal angles of the substantially n-sided polygon are obtuse angles.
  • All sides of the substantially n-sided polygon are not parallel to each other.
  • a resin molded product for an optical semiconductor device wherein the shape formed by an arbitrary surface parallel to the opening and the inner wall of the recess is a substantially n-sided shape substantially similar to the opening of the recess.
  • the thermosetting resin is an epoxy resin.
  • the white pigment is selected from the group consisting of titanium oxide, alumina, zinc oxide, magnesium oxide, antimony oxide, and zirconium oxide. ..
  • n is an integer of 6 or more (for example, 7 or more, 8 or more, 9 or more, 10 or more, 11 or more, 12 or more, 13 or more, or 14 or more).
  • [6] The resin molded product for an optical semiconductor device according to any one of [1] to [5] above, wherein n is an integer of 30 or less (for example, 25 or less or 20 or less).
  • n is an integer of 30 or less (for example, 25 or less or 20 or less).
  • All internal angles of the substantially n-sided polygon are 95 ° or more (for example, 100 ° or more, 110 ° or more, 120 ° or more, 130 ° or more, 140 ° or more, 150 ° or more, or 160 ° or more).
  • the resin molded product for an optical semiconductor device according to any one of the above [1] to [12], which is integrated with the first reed and the second reed that are separated from each other.
  • the first lead has a first exposed surface that forms a part of the bottom surface of the recess of the resin molded body for an optical semiconductor device, and is on a side opposite to the first exposed surface.
  • Has a second exposed surface that is exposed The second lead forms a part of the bottom surface of the recess of the resin molded body for an optical semiconductor device, has a third exposed surface separated from the first exposed surface, and has the third exposed surface.
  • the resin molded product for an optical semiconductor device according to the above [13] which has a fourth exposed surface exposed on the opposite side to the above.
  • the areas of the first exposed surface and the third exposed surface in the recesses of the first lead and the second lead are 95% or less (for example, 90% or less) of the area of the bottom surface in the recesses.
  • Optical semiconductor devices and With a resin molded body The resin molded product is the resin molded product for an optical semiconductor device according to any one of [14] to [20].
  • optical semiconductor device [23] The optical semiconductor device according to the above [22], wherein the transparent resin portion is formed of an epoxy-based encapsulant or a silicone-based encapsulant.
  • the optical semiconductor element is a light emitting diode (LED) element.
  • the semiconductor material for forming the light emitting diode (LED) element is at least one selected from the group consisting of GaAlAs, AlInGaP, InGaN, GaP, GaAs, and GaAsP. ].
  • the resin molded body for an optical semiconductor device according to any one of the above.
  • optical semiconductor device any one of [21] to [25], wherein the optical semiconductor element is connected to a substantially central portion of the bottom surface of the recess.
  • the resin molded body for an optical semiconductor device and the optical semiconductor device of the present disclosure are used for lighting (general indoor lighting in homes and offices, street lights, etc.), display applications (traffic signals, etc.), and light source applications (backlights of liquid crystal televisions, etc.). , And communication applications (infrared remote control, etc.).

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Computer Hardware Design (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Led Device Packages (AREA)
  • Structures Or Materials For Encapsulating Or Coating Semiconductor Devices Or Solid State Devices (AREA)

Abstract

The purpose of the present disclosure is to provide: a resin molded body for an optical semiconductor device which emits light that is more uniform and brighter due to a decrease in light loss; and an optical semiconductor device comprising said resin molded body for an optical semiconductor device. A resin molded body 1 for an optical semiconductor device according to the present disclosure has a front surface 10 and a rear surface 11 which face mutually opposite sides in the thickness direction thereof, and has, in the front surface 10, a recess section 13 recessed from an opening section12 toward the rear surface 11. The recess section 13 has: n (n is an integer no less than 5) reflective surfaces 14 and bottom surfaces 15 on the inner wall thereof. The shape of the opening section 12 of the recess section 13 is an approximate n--polygon that satisfies conditions (1) and (2) below where n is the same as n mentioned above. (1) All the internal angles of the approximate n-polygon are dull angles. (2) All the sides of the approximate n-polygon are not parallel to each other. A shape 16 formed by an arbitrary surface parallel to the opening section 12 and the inner wall of the recess section 13 is an approximate n-polygon that is approximately similar to the opening section 12 of the recess section 13.

Description

光半導体装置用樹脂成形体及び光半導体装置Resin molded bodies for optical semiconductor devices and optical semiconductor devices
 本開示は、発光ダイオードなど光半導体素子を備える光半導体装置に用いられる樹脂成形体、及び当該樹脂成形体を備える光半導体装置に関する。本願は、2019年10月28日に日本に出願した特願2019-195431の優先権を主張し、その内容をここに援用する。 The present disclosure relates to a resin molded body used in an optical semiconductor device including an optical semiconductor element such as a light emitting diode, and an optical semiconductor device including the resin molded body. The present application claims the priority of Japanese Patent Application No. 2019-195431 filed in Japan on October 28, 2019, the contents of which are incorporated herein by reference.
 発光ダイオードなど光半導体素子を備える光半導体装置は、電球や蛍光灯、ネオン管、ハロゲンランプなど他の光源と比較して、寿命が長いことや、動作が安定していること、応答速度が速いことなどの特長を有する。このような光半導体装置については、様々な用途において実用化が進んでいる。例えば、照明用途(家庭・オフィスの一般屋内照明や街路灯など)、表示用途(交通信号機など)、光源用途(液晶テレビのバックライトなど)、および通信用途(赤外線リモコンなど)においてである。このような光半導体装置については、例えば下記の特許文献1に記載されている。 Optical semiconductor devices equipped with optical semiconductor elements such as light emitting diodes have a longer life, stable operation, and faster response speed than other light sources such as light bulbs, fluorescent lamps, neon tubes, and halogen lamps. It has features such as that. Such optical semiconductor devices are being put into practical use in various applications. For example, it is used for lighting (general indoor lighting in homes and offices, street lights, etc.), display applications (traffic lights, etc.), light source applications (backlights of LCD TVs, etc.), and communication applications (infrared remote controls, etc.). Such an optical semiconductor device is described in, for example, Patent Document 1 below.
特開2019-012854号公報Japanese Unexamined Patent Publication No. 2019-012854
 光半導体装置は様々なデザインのものが存在し、同じ外形サイズの光半導体装置でもより明るい光度を得るデザインが求められる。しかしながら、従来の光半導体装置では光の取り出しにロスが多く、光半導体素子が本来有する光度を十分に活かしきれていないのが現状である。 There are various designs of optical semiconductor devices, and even optical semiconductor devices of the same external size are required to have a design that obtains brighter luminosity. However, in the conventional optical semiconductor device, there is a large loss in extracting light, and the current situation is that the luminous intensity inherent in the optical semiconductor element cannot be fully utilized.
 また、従来の光半導体装置では、発光表面の一部が暗くなる、いわゆるデッドスペースが存在し、明るさが均一にならない問題を抱えており、光半導体装置の大型化によりその傾向は顕著になってきている。近年、より大きい光半導体装置表面でもデッドスペースを少なくして、より均一な明るさが求められている。 Further, the conventional optical semiconductor device has a problem that a part of the light emitting surface becomes dark, that is, there is a so-called dead space, and the brightness is not uniform. This tendency becomes remarkable as the optical semiconductor device becomes larger. It's coming. In recent years, even on the surface of a larger optical semiconductor device, there is a demand for more uniform brightness by reducing dead space.
 本開示は、以上のような事情のもとで考え出されたものであって、その目的は、光のロスを減少してより明るく、より均一な光を出射するための光半導体装置に用いられる光半導体装置用樹脂成形体、及び当該光半導体装置用樹脂成形体を備える光半導体装置を提供することである。 The present disclosure has been conceived under the above circumstances, and its purpose is to be used in an optical semiconductor device for reducing light loss to emit brighter and more uniform light. It is an object of the present invention to provide a resin molded body for an optical semiconductor device, and an optical semiconductor device including the resin molded body for the optical semiconductor device.
 本開示の発明者らは、上記課題を解決するため鋭意検討した結果、光半導体装置における光のロス及びデッドスペースの主な原因が、光半導体装置内での反射光の進路が制限されている結果、反射光同士の衝突が多くなり、光が減衰(消滅)していることに起因していることを突き止めた。そして、光半導体装置に用いられる樹脂成形体のデザインを検討して、光半導体装置内の全体に光が均一に反射して、反射光同士の衝突が少なくなってより明るく、デッドスペースを最小化してより均一な光が得られるデザインを見出した。本開示の発明は、これらの知見により完成されたものである。 As a result of diligent studies to solve the above problems, the inventors of the present disclosure have limited the path of reflected light in the optical semiconductor device as the main cause of light loss and dead space in the optical semiconductor device. As a result, it was found that the collision between the reflected lights increased and the light was attenuated (disappeared). Then, by examining the design of the resin molded body used in the optical semiconductor device, the light is uniformly reflected throughout the optical semiconductor device, the collision between the reflected lights is reduced, the light is brighter, and the dead space is minimized. I found a design that can obtain more uniform light. The invention of the present disclosure has been completed based on these findings.
 すなわち、本開示の一の実施形態は、光半導体装置用樹脂成形体であって、
 厚さ方向において互いに反対側を向く表面および裏面を有し、
 前記表面に、開口部から裏面に向かって窪んだ凹部を有し、
 前記凹部は、内壁にn枚(nは5以上の整数を示す)の反射面と、底面を有し、
 前記凹部の開口部の形状は、以下の条件(1)及び(2)を満たす略n角形(nは前記nと同一の整数)であり、
  (1)前記略n角形の全ての内角は鈍角である。
  (2)前記略n角形の全ての辺は、互いに平行ではない。
  前記開口部と平行な任意な面と前記凹部の内壁とで形成される形状が、前記凹部の前記開口部と略相似形の略n角形である、光半導体装置用樹脂成形体を提供する。
That is, one embodiment of the present disclosure is a resin molded body for an optical semiconductor device.
It has front and back surfaces that face opposite to each other in the thickness direction.
The front surface has a recess recessed from the opening toward the back surface.
The recess has n reflective surfaces (n represents an integer of 5 or more) and a bottom surface on the inner wall.
The shape of the opening of the recess is a substantially n-sided polygon (n is the same integer as n) that satisfies the following conditions (1) and (2).
(1) All internal angles of the substantially n-sided polygon are obtuse angles.
(2) All sides of the substantially n-sided polygon are not parallel to each other.
Provided is a resin molded product for an optical semiconductor device, wherein the shape formed by an arbitrary surface parallel to the opening and the inner wall of the recess is a substantially n-sided shape substantially similar to the opening of the recess.
 前記光半導体装置用樹脂成形体において、前記凹部の底面は、前記凹部の前記開口部と略相似形の略n角形であってもよい。 In the resin molded product for an optical semiconductor device, the bottom surface of the recess may be a substantially n-sided polygon that is substantially similar to the opening of the recess.
 前記光半導体装置用樹脂成形体において、前記凹部の前記開口部の面積は、前記凹部の前記底面の面積より広いことが好ましい。 In the resin molded product for an optical semiconductor device, the area of the opening of the recess is preferably larger than the area of the bottom surface of the recess.
 前記光半導体装置用樹脂成形体において、前記開口部と平行な任意な面と前記凹部の側面とで形成される形状の面積は、前記凹部の開口部から底面にかけて漸減することが好ましい。 In the resin molded body for an optical semiconductor device, it is preferable that the area of the shape formed by an arbitrary surface parallel to the opening and the side surface of the recess gradually decreases from the opening of the recess to the bottom surface.
 前記光半導体装置用樹脂成形体は、互いに離隔している第1リードおよび第2リードと一体化されているものであってもよい。 The resin molded body for an optical semiconductor device may be integrated with a first lead and a second lead that are separated from each other.
 前記光半導体装置用樹脂成形体において、前記第1リードは、前記凹部の前記底面の一部をなす第1露出面を有し、且つ、前記第1の露出面とは反対の側にて露出している第2露出面を有し、
 前記第2リードは、前記凹部の前記底面の一部をなし、前記第1露出面と離隔する第3露出面を有し、且つ、前記第3の露出面とは反対の側にて露出している第4露出面を有していてもよい。
In the resin molded product for an optical semiconductor device, the first lead has a first exposed surface that forms a part of the bottom surface of the recess, and is exposed on a side opposite to the first exposed surface. Has a second exposed surface that is
The second lead forms a part of the bottom surface of the recess, has a third exposed surface separated from the first exposed surface, and is exposed on a side opposite to the third exposed surface. It may have a fourth exposed surface.
 前記光半導体装置用樹脂成形体において、前記第1リードおよび第2リードは、それぞれ、前記光半導体装置用樹脂成形体から外部に延出している電極部を有していてもよい。 In the resin molded body for an optical semiconductor device, the first lead and the second lead may each have an electrode portion extending to the outside from the resin molded body for the optical semiconductor device.
 また、本開示の他の実施形態は、光半導体素子と、
 樹脂成形体と、を備え、
 前記樹脂成形体が、前記の光半導体装置用樹脂成形体であり、
 前記光半導体素子は、前記第1リードの前記第1露出面に搭載され、且つ前記第2リードの前記第3露出面にボンディングワイヤを介して接続されている、光半導体装置を提供する。
In addition, other embodiments of the present disclosure include an optical semiconductor device and the like.
With a resin molded body,
The resin molded body is the resin molded body for an optical semiconductor device.
The optical semiconductor device provides an optical semiconductor device mounted on the first exposed surface of the first lead and connected to the third exposed surface of the second lead via a bonding wire.
 前記光半導体装置において、前記光半導体素子は、前記凹部の前記底面の略中央部に接続されていてもよい。 In the optical semiconductor device, the optical semiconductor element may be connected to a substantially central portion of the bottom surface of the recess.
 本開示の光半導体装置用樹脂成形体は、上記の構成を有するため、当該樹脂成形体を備える光半導体装置は、光半導体装置内の全体に光が均一に反射して、反射光同士の衝突が少なくなってより明るく、デッドスペースを最小化してより均一な光が得られる。 Since the resin molded body for an optical semiconductor device of the present disclosure has the above configuration, the optical semiconductor device including the resin molded body reflects light uniformly throughout the optical semiconductor device and collides with each other. Is less and brighter, and dead space is minimized to obtain more uniform light.
本開示の一の実施形態に係る光半導体装置用樹脂成形体の斜視図(模式図)である。It is a perspective view (schematic diagram) of the resin molded body for an optical semiconductor device which concerns on one Embodiment of this disclosure. 図1に示す光半導体装置用樹脂成形体の平面図(模式図)である。It is a top view (schematic view) of the resin molded body for an optical semiconductor device shown in FIG. 図2に示す光半導体装置用樹脂成形体における線X-X'に沿った断面図(模式図)である。It is sectional drawing (schematic diagram) along the line XX'in the resin molded article for an optical semiconductor device shown in FIG. 本開示の他の実施形態に係る光半導体装置用樹脂成形体の平面図(模式図)である。It is a top view (schematic view) of the resin molded article for an optical semiconductor device which concerns on other embodiments of this disclosure. 図4に示す光半導体装置用樹脂成形体における線Y-Y'に沿った断面図(模式図)である。It is sectional drawing (schematic diagram) along the line YY'in the resin molded body for an optical semiconductor device shown in FIG. 図4に示す光半導体装置用樹脂成形体の裏面図(模式図)である。It is a back view (schematic view) of the resin molded body for an optical semiconductor device shown in FIG. 本開示の一の実施形態に係る光半導体装置の平面図(模式図)である。It is a top view (schematic diagram) of the optical semiconductor device which concerns on one Embodiment of this disclosure. 図7に示す光半導体装置における線Z-Z'に沿った断面図(模式図)である。FIG. 7 is a cross-sectional view (schematic diagram) along the line ZZ'in the optical semiconductor device shown in FIG. 7. 従来型の一の光半導体装置の平面図(模式図)である。It is a top view (schematic diagram) of one conventional optical semiconductor device. 図9に示す光半導体装置における線V-V'に沿った断面図(模式図)である。It is sectional drawing (schematic diagram) along the line VV'in the optical semiconductor device shown in FIG. 従来型の光半導体装置における反射光についての説明図である。It is explanatory drawing about the reflected light in the conventional optical semiconductor device.
 まず、従来型の光半導体装置で、光のロスが多く、デッドペースが生じる原因について、図9~11を参照しながら説明する。
 図9及び図10は、従来型の光半導体装置の一例である光半導体装置100の模式図を示し、図9は上部からの平面図、図10は、図9に示す光半導体装置における線V-V'に沿った断面図である。光半導体装置100は、いわゆるモールドアレイパッケージ(MAP)の形態で形成されるものであって、樹脂成形体110と、一組のリード120、130と、発光ダイオードであるLED素子140と、透明樹脂部150とを備える。
First, the causes of a large amount of light loss and a dead pace in a conventional optical semiconductor device will be described with reference to FIGS. 9 to 11.
9 and 10 show a schematic view of an optical semiconductor device 100 which is an example of a conventional optical semiconductor device, FIG. 9 is a plan view from above, and FIG. 10 is a line V in the optical semiconductor device shown in FIG. It is sectional drawing along-V'. The optical semiconductor device 100 is formed in the form of a so-called mold array package (MAP), and includes a resin molded body 110, a set of leads 120 and 130, an LED element 140 which is a light emitting diode, and a transparent resin. A unit 150 is provided.
 樹脂成形体110は、リード120、130を伴ういわゆるインサート成形によってリード120、130を保持する形態に成形された樹脂体であり、傾斜面111によって凹形状が規定される凹部112を有する。樹脂成形体110における少なくとも傾斜面111には、所定の態様によって光反射性が付与されている。LED素子140は、凹部112内のリード120に対して電気的かつ機械的に接続されている。これとともに、LED素子140は、リード130に対してボンディングワイヤ160を介して電気的に接続されている。透明樹脂部150は、樹脂成形体110の凹部112に充填されて硬化された透明樹脂体であり、凹部112内のLED素子140等を封止している。リード120、130が外部電極120a、130aから通電されると、LED素子140が発光する。その光は透明樹脂部150を通過して、光半導体装置100の凹部112から外部に出射される。 The resin molded body 110 is a resin body molded in a form of holding the leads 120 and 130 by so-called insert molding accompanied by the leads 120 and 130, and has a recess 112 whose concave shape is defined by an inclined surface 111. At least the inclined surface 111 of the resin molded body 110 is imparted with light reflectivity according to a predetermined embodiment. The LED element 140 is electrically and mechanically connected to the reed 120 in the recess 112. At the same time, the LED element 140 is electrically connected to the lead 130 via the bonding wire 160. The transparent resin portion 150 is a transparent resin body that is filled and cured in the recess 112 of the resin molded body 110, and seals the LED element 140 and the like in the recess 112. When the leads 120 and 130 are energized from the external electrodes 120a and 130a, the LED element 140 emits light. The light passes through the transparent resin portion 150 and is emitted to the outside from the recess 112 of the optical semiconductor device 100.
 このような構成の光半導体装置100において、光はLED素子140から立体的にあらゆる方向に発せられる。凹部112の上部開口部から直接凹部112外に出る光もあるが、光の多くは凹部112内で傾斜面111等の反射面での反射を繰り返しながら凹部112外に出る。その際に、凹部112内部で、反射光同士がぶつかり合うと、光が減衰(消滅)し、開口部より出射する光が少なくなり、照度が低下する。 In the optical semiconductor device 100 having such a configuration, light is sterically emitted from the LED element 140 in all directions. Some light goes out of the recess 112 directly from the upper opening of the recess 112, but most of the light goes out of the recess 112 while repeating reflection on a reflecting surface such as an inclined surface 111 inside the recess 112. At that time, when the reflected light collides with each other inside the recess 112, the light is attenuated (disappeared), the amount of light emitted from the opening is reduced, and the illuminance is reduced.
 凹部112において、隣接する反射面(傾斜面111)がなす角度が直角(90°)であったり、対向する反射面が平行である場合は、反射光の進路が限定される結果、衝突する反射光が多くなる。図11を参照して説明する。隣接する反射面がなす角度が直角である1つの反射面に45°で入射した光は、当該隣接する2つの反射面で反射して、入射光と平行な反射光となり、入射光と衝突しやすい(図11のL1参照)。また、対向する平行な2つの反射面の場合は、垂直(90°)に入射した光同士が衝突して相殺され、照度が著しく減衰する(図11のL2、L3参照)。 In the recess 112, when the angle formed by the adjacent reflecting surfaces (inclined surfaces 111) is a right angle (90 °) or the opposing reflecting surfaces are parallel, the path of the reflected light is limited, and as a result, the reflected reflections collide. There will be more light. This will be described with reference to FIG. Light incident on one reflecting surface at an angle formed by adjacent reflecting surfaces at 45 ° is reflected by the two adjacent reflecting surfaces to become reflected light parallel to the incident light and collides with the incident light. Easy (see L1 in FIG. 11). Further, in the case of two parallel reflecting surfaces facing each other, the vertically (90 °) incident lights collide with each other and cancel each other out, and the illuminance is significantly attenuated (see L2 and L3 in FIG. 11).
 特に、光半導体装置100のように、凹部112の形状が方形(長方形及び正方形を含む)の場合は、反射光が最短距離で衝突し、すなわち光エネルギーが大きい反射光が衝突するために減衰(ロス)が大きくなる。また、四隅に光が届きにくく、暗いデッドスペースとなり、発光表面の明るさが不均一になりやすい。 In particular, when the shape of the recess 112 is square (including a rectangle and a square) as in the optical semiconductor device 100, the reflected light collides at the shortest distance, that is, the reflected light having a large light energy collides and is attenuated (including). Loss) becomes large. In addition, it is difficult for light to reach the four corners, resulting in a dark dead space, and the brightness of the light emitting surface tends to be uneven.
 次に、本開示の典型的な実施形態について図面を参照しつつ以下に説明するが、本開示はこれに限定されるものではなく、例示に過ぎない。
 図1~3は、本開示の一の実施形態に係る光半導体装置用樹脂成形体1を表す模式図である。図1は当該実施形態に係る光半導体装置用樹脂成形体1の斜視図であり、図2は光半導体装置用樹脂成形体1の平面図である。図3は、図2の線X-X'点線に沿った光半導体装置用樹脂成形体1の断面図である。
Next, a typical embodiment of the present disclosure will be described below with reference to the drawings, but the present disclosure is not limited to this, but is merely an example.
1 to 3 are schematic views showing a resin molded body 1 for an optical semiconductor device according to an embodiment of the present disclosure. FIG. 1 is a perspective view of the resin molded body 1 for an optical semiconductor device according to the embodiment, and FIG. 2 is a plan view of the resin molded body 1 for an optical semiconductor device. FIG. 3 is a cross-sectional view of the resin molded body 1 for an optical semiconductor device along the dotted line XX'of FIG.
 光半導体装置用樹脂成形体1は、光半導体装置の製造に用いられる限り特に限定されないが、光半導体装置の基板を構成する樹脂成形体であることが好ましく、厚さ方向において互いに反対側を向く表面10および裏面11を有するものである。光半導体装置の基板とは、後述の光半導体素子などの構成部材を実装するための板状物を言う。なお、表面10および裏面11は、本開示で規定する場合(例えば、後述の凹部13)を除き、原則として平坦な面であるが、本開示の効果を損なわない範囲で他の凹凸形状などを有していてもよい。 The resin molded body 1 for an optical semiconductor device is not particularly limited as long as it is used in the manufacture of an optical semiconductor device, but is preferably a resin molded body constituting a substrate of the optical semiconductor device, and faces opposite sides in the thickness direction. It has a front surface 10 and a back surface 11. The substrate of an optical semiconductor device means a plate-like object for mounting a constituent member such as an optical semiconductor element described later. The front surface 10 and the back surface 11 are, in principle, flat surfaces except for the case specified in the present disclosure (for example, the recess 13 described later), but other uneven shapes and the like can be provided as long as the effects of the present disclosure are not impaired. You may have.
 光半導体装置用樹脂成形体1は、例えばインサート成形法などにより成形されるものである。このような半導体装置用樹脂成形体1は、例えば、白色顔料を含有する熱硬化性樹脂組成物よりなる。その熱硬化性樹脂としては、例えばエポキシ樹脂が挙げられる。熱硬化性樹脂に配合される白色顔料としては、例えば、酸化チタン、アルミナ、酸化亜鉛、酸化マグネシウム、酸化アンチモン、および酸化ジルコニウムが挙げられる。半導体装置用樹脂成形体1形成用の樹脂材料の市販品としては、例えば、株式会社ダイセル製の「AEW-700」が挙げられる。 The resin molded body 1 for an optical semiconductor device is molded by, for example, an insert molding method. Such a resin molded product 1 for a semiconductor device is made of, for example, a thermosetting resin composition containing a white pigment. Examples of the thermosetting resin include epoxy resins. Examples of the white pigment blended in the thermosetting resin include titanium oxide, alumina, zinc oxide, magnesium oxide, antimony oxide, and zirconium oxide. Examples of commercially available products of the resin material for forming the resin molded body 1 for semiconductor devices include "AEW-700" manufactured by Daicel Corporation.
 光半導体装置用樹脂成形体1は、表面10に、開口部12から裏面11に向かって窪んだ凹部13を有する。凹部13は、光半導体装置のリフレクタ開口部を構成するものであり、内壁にn枚(nは5以上の整数を示す)の反射面14と、底面15を有する。凹部13の反射面14及び底面15は、凹部13の凹形状を規定するものであり、本実施形態では、凹部13における底面15から開口部12にかけて凹形状が広がるように、n枚の反射面14が傾斜している。 The resin molded body 1 for an optical semiconductor device has a recess 13 recessed from an opening 12 toward a back surface 11 on the front surface 10. The recess 13 constitutes a reflector opening of the optical semiconductor device, and has n reflective surfaces (n represents an integer of 5 or more) and a bottom surface 15 on the inner wall. The reflective surface 14 and the bottom surface 15 of the recess 13 define the concave shape of the recess 13. In the present embodiment, n reflective surfaces are formed so that the concave shape spreads from the bottom 15 to the opening 12 of the recess 13. 14 is tilted.
 反射面14は、例えば、上記の白色顔料を含む樹脂体により光反射性を付与されたものである。このような反射面としては、平坦な面が好ましいが、光反射性を損なわない範囲で微細な凹凸形状を有していてもよい。凹部13の底面15も前記樹脂体が露出している面は、同様に光反射性を有していてもよい。 The reflective surface 14 is, for example, imparted with light reflectivity by the resin body containing the above-mentioned white pigment. As such a reflecting surface, a flat surface is preferable, but it may have a fine uneven shape as long as the light reflectivity is not impaired. The surface of the bottom surface 15 of the recess 13 where the resin body is exposed may also have light reflectivity.
 凹部13の内壁に存在する反射面14の枚数は、5枚以上であれば、特に限定されないが、反射光同士の衝突を減少させ、明るさと光の均一性を向上させるという観点から、好ましくは6枚以上であり、より好ましくは7枚以上、より好ましくは8枚以上、より好ましくは9枚以上、より好ましくは10枚以上、より好ましくは11枚以上、より好ましくは12枚以上、さらに好ましくは13枚以上、さらにより好ましくは14枚以上である。反射面14の枚数は、特に限定されないが、光半導体装置のデザイン、製造の容易性などの観点から、30枚以下が好ましく、25枚以下がより好ましく、20枚以下がさらに好ましい。 The number of reflecting surfaces 14 existing on the inner wall of the recess 13 is not particularly limited as long as it is 5 or more, but it is preferable from the viewpoint of reducing collisions between reflected lights and improving brightness and light uniformity. 6 or more, more preferably 7 or more, more preferably 8 or more, more preferably 9 or more, more preferably 10 or more, more preferably 11 or more, more preferably 12 or more, still more preferable. Is 13 or more, and even more preferably 14 or more. The number of reflecting surfaces 14 is not particularly limited, but is preferably 30 or less, more preferably 25 or less, and even more preferably 20 or less, from the viewpoint of design and ease of manufacture of the optical semiconductor device.
 n枚の反射面14は、同一(合同)の形状を含んでいていてもよく、全て異なる形状であってもよい。反射光同士の衝突を減少させ、明るさと光の均一性を向上させるという観点から、全て異なる形状であることが好ましい。 The n reflecting surfaces 14 may include the same (joint) shape, or may all have different shapes. From the viewpoint of reducing collisions between reflected lights and improving brightness and light uniformity, it is preferable that they all have different shapes.
 凹部13の開口部12の形状(すなわち、凹部13の開口端部の形状)は、以下の条件(1)及び(2)を満たす略n角形である。
 (1)前記略n角形の全ての内角は鈍角である(以下、条件(1)という)。
 (2)前記略n角形の全ての辺は、互いに平行ではない(以下、条件(2)という)。
The shape of the opening 12 of the recess 13 (that is, the shape of the opening end of the recess 13) is a substantially n-sided polygon that satisfies the following conditions (1) and (2).
(1) All internal angles of the substantially n-sided polygon are obtuse angles (hereinafter referred to as condition (1)).
(2) All sides of the substantially n-sided polygon are not parallel to each other (hereinafter, referred to as condition (2)).
 ここで、当該略n角形の「n」は、上述の反射面14の枚数(n枚)と同一の整数である。例えば、凹部13の内壁が6枚の反射面14を有する場合、開口部12の形状は略6角形である。また、前記「略n角形」とは、n角形、又は該n角形に近い形、例えば、n角形の角の全て又は一部を丸めたような形などを指す。 Here, the substantially n-sided "n" is an integer that is the same as the number (n) of the above-mentioned reflecting surfaces 14. For example, when the inner wall of the recess 13 has six reflecting surfaces 14, the shape of the opening 12 is substantially hexagonal. Further, the "substantially n-sided polygon" refers to an n-sided polygon or a shape close to the n-sided polygon, for example, a shape in which all or part of the corners of the n-sided polygon is rounded.
 半導体装置用樹脂成形体1において、開口部12と平行な任意な面と凹部13の内壁とで形成される形状16は、凹部13の開口部12と略相似形の略n角形である。開口部12と平行な任意な面とは、半導体装置用樹脂成形体1を開口部12と水平方向に切断する仮想の面であり、形状16は、当該面と凹部13の内壁が交わる線で構成される形状である。形状16が開口部12と略相似形の略n角形とは、形状16が開口部12の相似形である場合、形状16が開口部12の相似形に近い場合を含む趣旨である。形状16が開口部12の相似形に近い場合とは、例えば、開口部12がn角形であり、形状16が当該n角形の相似形であって、角の全て又は一部を丸めたような形を指す場合、形状16がn角形であり、開口部12が当該n角形の相似形であって、角の全て又は一部を丸めたような形を指す場合を含む趣旨である。 In the resin molded body 1 for a semiconductor device, the shape 16 formed by an arbitrary surface parallel to the opening 12 and the inner wall of the recess 13 is a substantially n-sided shape substantially similar to the opening 12 of the recess 13. The arbitrary surface parallel to the opening 12 is a virtual surface for cutting the resin molded body 1 for a semiconductor device in the horizontal direction with the opening 12, and the shape 16 is a line at which the surface and the inner wall of the recess 13 intersect. It is a configured shape. The substantially n-sided polygon whose shape 16 is substantially similar to the opening 12 is intended to include the case where the shape 16 is similar to the opening 12 and the case where the shape 16 is close to the similar shape to the opening 12. When the shape 16 is similar to the opening 12, for example, the opening 12 is an n-sided polygon, the shape 16 is a similar figure to the n-sided polygon, and all or part of the corners are rounded. When referring to a shape, the purpose includes the case where the shape 16 is an n-sided polygon and the opening 12 is a similar figure of the n-sided polygon, and refers to a shape in which all or a part of the corners are rounded.
 開口部12と形状16とが、略相似形の略n角形の関係にあることにより、n枚の反射面14全面において、前記条件(1)及び(2)の条件を満たすことが規定されるものである。 Since the opening 12 and the shape 16 have a substantially n-sided relationship with each other, it is defined that the conditions (1) and (2) are satisfied on the entire surface of the n reflecting surfaces 14. It is a thing.
 前記条件(1)は、開口部12及び形状16を規定する前記略n角形の全ての内角が鈍角、すなわち90°を超え、180°未満である角度であることを規定する。条件(1)により、隣接する2つの反射面14うちの1つで反射した光が、さらに他方の反射面で反射したとしても、入射光と平行な反射光とはならない。従って、条件(1)を満たす限り、反射光同士の衝突が減少し、明るさと光の均一性を向上させることができる。
 略n角形がn角形に近い形(n角形の角の全て又は一部を丸めたような形)の場合の内角は、略n角形の隣接する辺の延長線同士がなす角度である。
The condition (1) defines that all the internal angles of the substantially n-sided polygon defining the opening 12 and the shape 16 are obtuse angles, that is, angles exceeding 90 ° and less than 180 °. According to the condition (1), even if the light reflected by one of the two adjacent reflecting surfaces 14 is reflected by the other reflecting surface, the reflected light is not parallel to the incident light. Therefore, as long as the condition (1) is satisfied, the collision between the reflected lights is reduced, and the brightness and the uniformity of the light can be improved.
When the substantially n-sided polygon is close to the n-sided polygon (a shape in which all or part of the corners of the n-sided polygon is rounded), the internal angle is the angle formed by the extension lines of the adjacent sides of the substantially n-sided polygon.
 略n角形の全ての内角は、90°を超え、180°未満であるかぎり特に限定されないが、反射光同士の衝突を減少させ、明るさと光の均一性を向上させるという観点から、好ましくは95°以上、より好ましくは100°以上、より好ましくは110°以上、より好ましくは120°以上、より好ましくは130°以上、より好ましくは140°以上、より好ましくは150°以上、さらに好ましくは160°以上である。 All internal angles of the approximately n-sided polygon are not particularly limited as long as they exceed 90 ° and are less than 180 °, but are preferably 95 from the viewpoint of reducing collisions between reflected lights and improving brightness and light uniformity. ° or more, more preferably 100 ° or more, more preferably 110 ° or more, more preferably 120 ° or more, more preferably 130 ° or more, more preferably 140 ° or more, more preferably 150 ° or more, still more preferably 160 °. That is all.
 前記条件(2)は、開口部12及び形状16を規定する前記略n角形の全ての辺は、互いに平行ではないことを規定する。条件(2)により、凹部13内で対向する位置関係にある2つの反射面14で反射する光同士の衝突を最小限とすることができる。従って、条件(2)を満たす限り、反射光同士の衝突が減少し、明るさと光の均一性を向上させることができる。 The condition (2) defines that all the sides of the substantially n-sided polygon defining the opening 12 and the shape 16 are not parallel to each other. According to the condition (2), the collision of the light reflected by the two reflecting surfaces 14 facing each other in the recess 13 can be minimized. Therefore, as long as the condition (2) is satisfied, the collision between the reflected lights is reduced, and the brightness and the uniformity of the light can be improved.
 開口部12及び形状16を規定する前記略n角形は、上記条件(1)、(2)を満たす限り、対称な形状であっても、非対称な形状であってもよいが、反射光同士の衝突が減少し、明るさと光の均一性を向上させるという観点からは、非対称であることが好ましい。 The substantially n-sided shape defining the opening 12 and the shape 16 may have a symmetrical shape or an asymmetrical shape as long as the above conditions (1) and (2) are satisfied, but the reflected light may be of each other. Asymmetry is preferred from the standpoint of reducing collisions and improving brightness and light uniformity.
 半導体装置用樹脂成形体1において、凹部13の底面15が、凹部13の開口部12と略相似形の略n角形であることが好ましい。「略相似形の略n角形」の意義は、上記と同様である。
 また、凹部13の開口部12の面積は、凹部13の底面15の面積より広いことが好ましい。さらに、形状16の面積が、凹部13の開口部12から底面15にかけて漸減することが好ましい。
 当該好ましい実施形態は、凹部13における底面15から開口部12にかけて凹形状が広がるように、n枚の反射面14が傾斜している態様を規定するものである。当該好ましい実施形態により、光は上方に反射しやすくなり、且つ反射光同士の衝突を減少させ、明るさと光の均一性を向上させることができる。
In the resin molded body 1 for a semiconductor device, it is preferable that the bottom surface 15 of the recess 13 has a substantially n-sided shape that is substantially similar to the opening 12 of the recess 13. The meaning of "a substantially n-sided polygon having a substantially similar figure" is the same as described above.
Further, the area of the opening 12 of the recess 13 is preferably larger than the area of the bottom surface 15 of the recess 13. Further, it is preferable that the area of the shape 16 gradually decreases from the opening 12 of the recess 13 to the bottom surface 15.
The preferred embodiment defines an embodiment in which n reflecting surfaces 14 are inclined so that the concave shape spreads from the bottom surface 15 of the recess 13 to the opening 12. According to the preferred embodiment, the light is easily reflected upward, the collision between the reflected lights can be reduced, and the brightness and the uniformity of the light can be improved.
 図4~6は、本開示の他の実施形態に係る光半導体装置用樹脂成形体2を表す模式図である。図4は当該実施形態に係る光半導体装置用樹脂成形体2の平面図であり、図5は図4の線Y-Y'点線に沿った光半導体装置用樹脂成形体2の断面図であり、図6は光半導体装置用樹脂成形体2の裏面図である。 4 to 6 are schematic views showing a resin molded body 2 for an optical semiconductor device according to another embodiment of the present disclosure. FIG. 4 is a plan view of the resin molded body 2 for an optical semiconductor device according to the embodiment, and FIG. 5 is a cross-sectional view of the resin molded body 2 for an optical semiconductor device along the dotted line YY'of FIG. FIG. 6 is a back view of the resin molded body 2 for an optical semiconductor device.
 本実施形態にかかる光半導体装置用樹脂成形体2は、半導体装置用樹脂成形体1と互いに離隔している第1リード21および第2リード22と一体化(一体成形)されたものである。すなわち、光半導体装置用樹脂成形体2は、例えばインサート成形により、第1リード21および第2リード22を部分的に内部に取り込みつつ成形された樹脂体である。
 光半導体装置用樹脂成形体2において、第1リード21及び第2リード22は、光半導体装置における外部接続用の一対の端子をなすものである。
The resin molded body 2 for an optical semiconductor device according to the present embodiment is integrated (integrally molded) with a first lead 21 and a second lead 22 which are separated from each other from the resin molded body 1 for a semiconductor device. That is, the resin molded body 2 for an optical semiconductor device is a resin body formed by, for example, insert molding while partially incorporating the first lead 21 and the second lead 22 inside.
In the resin molded body 2 for an optical semiconductor device, the first lead 21 and the second lead 22 form a pair of terminals for external connection in the optical semiconductor device.
 リード21(第1リード)は、図4~6に示すように、光半導体装置用樹脂成形体2の凹部13に臨んで凹部13の底面15の一部をなす露出面21a(第1露出面)を有し、且つ、凹部13とは反対の側にて露出している露出面21b(第2露出面)を有する。また、リード21は、光半導体装置用樹脂成形体2から外部に延出している電極部21cを有する。光半導体装置用樹脂成形体2からの電極部21cの延出長さは、例えば0.1~2mmである。このような態様で、リード21は光半導体装置用樹脂成形体2によって部分的に被覆されつつ保持されている。 As shown in FIGS. 4 to 6, the lead 21 (first lead) faces the recess 13 of the resin molded body 2 for an optical semiconductor device and forms a part of the bottom surface 15 of the recess 13 (the first exposed surface). ), And has an exposed surface 21b (second exposed surface) exposed on the side opposite to the recess 13. Further, the lead 21 has an electrode portion 21c extending to the outside from the resin molded body 2 for an optical semiconductor device. The extending length of the electrode portion 21c from the resin molded body 2 for an optical semiconductor device is, for example, 0.1 to 2 mm. In such an embodiment, the lead 21 is partially covered and held by the resin molded body 2 for an optical semiconductor device.
 リード22(第2リード)は、図4~6に示すように、光半導体装置用樹脂成形体2の凹部13の底面15上の露出面21aと離隔する位置に凹部13に臨む露出面22a(第3露出面)を有し、且つ、凹部13とは反対の側にて露出している露出面22b(第4露出面)を有する。また、リード22は、光半導体装置用樹脂成形体2から外部に延出している電極部22cを有する。光半導体装置用樹脂成形体2からの電極部22cの延出長さは、例えば0.1~2mmである。このような態様で、リード22は光半導体装置用樹脂成形体2によって部分的に被覆されつつ保持されている。 As shown in FIGS. 4 to 6, the reed 22 (second reed) faces the exposed surface 22a (the exposed surface 22a) facing the recess 13 at a position separated from the exposed surface 21a on the bottom surface 15 of the recess 13 of the resin molded body 2 for an optical semiconductor device. It has an exposed surface 22b (fourth exposed surface) that has a third exposed surface) and is exposed on the side opposite to the recess 13. Further, the lead 22 has an electrode portion 22c extending to the outside from the resin molded body 2 for an optical semiconductor device. The extending length of the electrode portion 22c from the resin molded body 2 for an optical semiconductor device is, for example, 0.1 to 2 mm. In such an embodiment, the reed 22 is held while being partially covered by the resin molded body 2 for an optical semiconductor device.
 本実施体態様のリード21及びリード22の上記構成は、電極(露出面21a、露出面21b、露出面22a、及び露出面22bなど)の面積を大きくできるので、熱を逃がしやすく、熱抵抗を小さくできる点で好ましい。 In the above configuration of the lead 21 and the lead 22 of the present embodiment, the area of the electrodes (exposed surface 21a, exposed surface 21b, exposed surface 22a, exposed surface 22b, etc.) can be increased, so that heat can be easily released and thermal resistance can be increased. It is preferable because it can be made smaller.
 リード21及びリード22は、それぞれ、導電性を有する金属材料よりなる。リード用の金属材料としては、例えば、Cu、Cu合金、および42%Ni-Fe合金が挙げられる。また、リード21及びリード22の厚さは、それぞれ、例えば0.1~0.3mmである。このようなリード21及びリード22は、例えば、金属プレートに対するエッチング加工や打ち抜き加工を経て形成することができる。リード21及びリード22の表面は、Agめっき処理など所定のめっき処理が施されていてもよい。 The lead 21 and the lead 22 are each made of a conductive metal material. Examples of the metal material for the reed include Cu, Cu alloy, and 42% Ni—Fe alloy. The thickness of the lead 21 and the lead 22 is, for example, 0.1 to 0.3 mm, respectively. Such leads 21 and 22 can be formed, for example, by etching or punching a metal plate. The surfaces of the leads 21 and the leads 22 may be subjected to a predetermined plating treatment such as an Ag plating treatment.
 光半導体装置用樹脂成形体2において、リード21およびリード22における凹部13内での露出面21a及び露出面22aの面積は、凹部13内での底面15の面積の好ましくは50%以上、より好ましくは60%以上、より好ましくは70%以上、さらに好ましくは80%以上、さらにより好ましくは85%以上である。このような構成は、電極の面積を大きくなり、熱を逃がしやすく、熱抵抗を小さくできる点で好ましい。露出面21a及び露出面22aの面積は、凹部13内での底面15の面積の好ましくは95%以下、より好ましくは90%以下である。このような構成は、露出面21a及び露出面22aを十分に離隔すると共に、凹部13の底面15の一部に光反射性を有する領域の面積を確保するうえで好適であり、ひいては、光半導体装置において高い光利用効率を実現するうえで好適である。 In the resin molded body 2 for an optical semiconductor device, the area of the exposed surface 21a and the exposed surface 22a in the recess 13 of the lead 21 and the lead 22 is preferably 50% or more, more preferably 50% or more of the area of the bottom surface 15 in the recess 13. Is 60% or more, more preferably 70% or more, still more preferably 80% or more, still more preferably 85% or more. Such a configuration is preferable in that the area of the electrode is large, heat can be easily dissipated, and the thermal resistance can be reduced. The area of the exposed surface 21a and the exposed surface 22a is preferably 95% or less, more preferably 90% or less of the area of the bottom surface 15 in the recess 13. Such a configuration is suitable for sufficiently separating the exposed surface 21a and the exposed surface 22a and securing an area of a region having light reflectivity on a part of the bottom surface 15 of the recess 13, and by extension, an optical semiconductor. It is suitable for achieving high light utilization efficiency in the device.
 このような光半導体装置用樹脂成形体2は、例えば次のようないわゆるラインモールド方式で製造される。まず、所定のリードフレームを用意する。このリードフレームは、平面視矩形の枠体と、その枠体内に一列に並ぶ光半導体装置形成区域ごとの、所定のパターン形状を有するパターン部とを有する。パターン部は、上述のリード21及びリード22をなすこととなるリード部、リード部と枠体とを連結する連結部、および、リード部間を連結する連結部を含む。このようなリードフレームは、例えばエッチング加工によって作製することが可能である。次に、リードフレームの光半導体装置形成区域ごとに上述の光半導体装置用樹脂成形体2を形成する。具体的には、リードフレームにおける複数の光半導体装置形成区域にわたって複数の光半導体装置用樹脂成形体2を一括的に成形するための成形面を有する一組の金型について前記リードフレームを介在させつつ型締めした後、所定の温度条件および圧力条件の下、光半導体装置用樹脂成形体2形成用の上述の白色顔料含有の熱硬化性樹脂組成物を、金型内に供給して成形する(インサート成形)。これにより、各光半導体装置形成区域に、上述の凹部13を伴う光半導体装置用樹脂成形体2が形成される。成形法としては、例えばトランスファ成形やインジェクション成形が採用される。 Such a resin molded body 2 for an optical semiconductor device is manufactured by, for example, the following so-called line molding method. First, a predetermined lead frame is prepared. This lead frame has a rectangular frame in a plan view and a pattern portion having a predetermined pattern shape for each optical semiconductor device forming area arranged in a row in the frame. The pattern portion includes a lead portion that forms the lead 21 and the lead 22 described above, a connecting portion that connects the lead portion and the frame body, and a connecting portion that connects the lead portions. Such a lead frame can be manufactured, for example, by etching. Next, the above-mentioned resin molded body 2 for an optical semiconductor device is formed for each optical semiconductor device forming area of the lead frame. Specifically, the lead frame is interposed in a set of molds having a molding surface for collectively molding a plurality of resin molded bodies 2 for an optical semiconductor device over a plurality of optical semiconductor device forming areas in the lead frame. After molding, the above-mentioned thermosetting resin composition containing a white pigment for forming a resin molded body 2 for an optical semiconductor device is supplied into a mold and molded under predetermined temperature and pressure conditions. (Insert molding). As a result, the resin molded body 2 for an optical semiconductor device having the above-mentioned recess 13 is formed in each optical semiconductor device forming area. As the molding method, for example, transfer molding or injection molding is adopted.
 図7及び8は、本開示の一の実施形態に係る光半導体装置3を表す模式図である。図7は当該実施形態に係る光半導体装置3の平面図であり、図8は図7の線Z-Z'点線に沿った光半導体装置3の断面図である。 7 and 8 are schematic views showing the optical semiconductor device 3 according to the embodiment of the present disclosure. FIG. 7 is a plan view of the optical semiconductor device 3 according to the embodiment, and FIG. 8 is a cross-sectional view of the optical semiconductor device 3 along the dotted line ZZ'of FIG.
 本実施形態に係る光半導体装置3は、光半導体素子31と、光半導体装置用樹脂成形体2を備え、光半導体素子31が、リード21の露出面21aに搭載され、且つリード22の露出面22aにボンディングワイヤ32を介して接続されているものである。光半導体素子31の凹部13は、透明樹脂部33で封止されていてもよい。光半導体装置3は、本実施形態では、いわゆるモールドアレイパッケージ(MAP)の形態で形成されるものである。 The optical semiconductor device 3 according to the present embodiment includes an optical semiconductor element 31 and a resin molded body 2 for an optical semiconductor device, the optical semiconductor element 31 is mounted on the exposed surface 21a of the lead 21, and the exposed surface of the lead 22. It is connected to 22a via a bonding wire 32. The recess 13 of the optical semiconductor element 31 may be sealed with the transparent resin portion 33. In the present embodiment, the optical semiconductor device 3 is formed in the form of a so-called mold array package (MAP).
 光半導体素子31は、発光機能を有する素子であって、本実施形態では具体的には発光ダイオード(LED)素子である。LED素子を構成するための半導体材料としては、例えば、GaAlAs、AlInGaP、InGaN、GaP、GaAs、およびGaAsPが挙げられる。また、本実施形態では、光半導体素子31は、その図8中の上面側と下面側にそれぞれ電極部(図示せず)を有する。 The optical semiconductor element 31 is an element having a light emitting function, and is specifically a light emitting diode (LED) element in the present embodiment. Examples of the semiconductor material for forming the LED element include GaAlAs, AlInGaP, InGaN, GaP, GaAs, and GaAsP. Further, in the present embodiment, the optical semiconductor element 31 has electrode portions (not shown) on the upper surface side and the lower surface side in FIG. 8, respectively.
 透明樹脂部33は、光半導体装置3の凹部13に充填されて硬化された透明樹脂体であり、透明性を有する半導体用封止材料よりなる。そのような封止材料としては、例えば、エポキシ系封止材およびシリコーン系封止材が挙げられる。エポキシ系封止材の市販品としては、例えば、株式会社ダイセル製の「CELVENUS W0973」および「CELVENUS W0925」が挙げられる。シリコーン系封止材の市販品としては、例えば、株式会社ダイセル製の「CELVENUS A2045」および「CELVENUS A0246」が挙げられる。 The transparent resin portion 33 is a transparent resin body that is filled and cured in the recess 13 of the optical semiconductor device 3, and is made of a transparent sealing material for semiconductors. Examples of such a sealing material include an epoxy-based sealing material and a silicone-based sealing material. Examples of commercially available epoxy-based encapsulants include "CELVENUS W0973" and "CELVENUS W0925" manufactured by Daicel Corporation. Examples of commercially available silicone-based encapsulants include "CELVENUS A2045" and "CELVENUS A0246" manufactured by Daicel Corporation.
 このような光半導体装置3は、上述のラインモールド方式で製造される。まず、上述の方法により光半導体装置用樹脂成形体2を製造する。その後、各光半導体装置形成区域の凹部13において、リード21の上述の露出面21aに対する導電性接合材料を介しての光半導体素子31のマウント、当該光半導体素子31とリード22の上述の露出面22aとのワイヤボンディング、および、上述の透明樹脂部33の例えばポッティングによる形成を経る。次に、光半導体装置形成区域ごとに、リードフレームにおけるパターン部の上述の連結部を切断してリード21及びリード22の分離を行い、光半導体装置3を単離する。例えば以上のようにして、光半導体装置3を製造することができる。 Such an optical semiconductor device 3 is manufactured by the above-mentioned line mold method. First, the resin molded body 2 for an optical semiconductor device is manufactured by the above method. After that, in the recess 13 of each optical semiconductor device forming area, the optical semiconductor element 31 is mounted via the conductive bonding material on the above-mentioned exposed surface 21a of the lead 21, and the above-mentioned exposed surface of the optical semiconductor element 31 and the lead 22. It undergoes wire bonding with 22a and formation of the above-mentioned transparent resin portion 33 by, for example, potting. Next, the lead 21 and the lead 22 are separated by cutting the above-mentioned connecting portion of the pattern portion in the lead frame for each optical semiconductor device forming area, and the optical semiconductor device 3 is isolated. For example, the optical semiconductor device 3 can be manufactured as described above.
 光半導体装置3の駆動時には、リード21及びリード22を介して光半導体素子31に所定の電力が供給され、これによって当該光半導体素子31が発光する。光半導体素子31からの出射光の一部は光半導体装置用樹脂成形体2の凹部13内での反射を経て、光半導体素子31からの出射光の他の一部は凹部13内での反射を経ずに、透明樹脂部33を通過して凹部13外に出射される。 When the optical semiconductor device 3 is driven, a predetermined electric power is supplied to the optical semiconductor element 31 via the lead 21 and the lead 22, whereby the optical semiconductor element 31 emits light. A part of the light emitted from the optical semiconductor element 31 is reflected in the recess 13 of the resin molded body 2 for the optical semiconductor device, and the other part of the light emitted from the optical semiconductor element 31 is reflected in the recess 13. It passes through the transparent resin portion 33 and is emitted to the outside of the recess 13 without passing through.
 上述の通り、光半導体素子31からの出射光の多くは、凹部13の反射面14での反射を繰り返して、凹部13外に出射される。本実施形態の光半導体装置3は、反射光同士の衝突を減少させ、明るさと光の均一性を向上させることができる点で好適である。 As described above, most of the light emitted from the optical semiconductor element 31 is repeatedly reflected by the reflecting surface 14 of the recess 13 and is emitted to the outside of the recess 13. The optical semiconductor device 3 of the present embodiment is suitable in that it can reduce collisions between reflected lights and improve brightness and light uniformity.
 光半導体装置3において、光半導体素子31は、凹部13の底面15の略中央部に接続されていることが好ましい。この構成は、光半導体素子31からの出射光が、均一にn枚の反射面14で反射され、反射光同士の衝突を減少させ、明るさと光の均一性を向上させるという観点から好ましい。 In the optical semiconductor device 3, the optical semiconductor element 31 is preferably connected to a substantially central portion of the bottom surface 15 of the recess 13. This configuration is preferable from the viewpoint that the light emitted from the optical semiconductor element 31 is uniformly reflected by the n reflecting surfaces 14, the collision between the reflected lights is reduced, and the brightness and the uniformity of the light are improved.
 光半導体素子31が底面15の略中央部に接続されているとは、底面15の中心(重心)と光半導体素子31の全面の少なくとも一部が重なるように配置することを意図するものであり、光半導体素子31の中心(重心)と底面15の中心(重心)とが一致するように配置することがより好ましい。 The fact that the optical semiconductor element 31 is connected to a substantially central portion of the bottom surface 15 is intended to be arranged so that the center (center of gravity) of the bottom surface 15 and at least a part of the entire surface of the optical semiconductor element 31 overlap. It is more preferable to arrange the optical semiconductor element 31 so that the center (center of gravity) and the center (center of gravity) of the bottom surface 15 coincide with each other.
 光半導体素子31の凹部13の内壁を構成するn枚の反射面14において、開口部12及び形状16を規定する前記略n角形が前記条件(1)及び(2)を満たすことにより、光半導体素子31から発せられた光はn枚の反射面14により非常に複雑な反射を繰り返して、凹部13の外部に出射される。従って、反射光同士の衝突による減衰(ロス)は最小限に抑えられ、より明るい光が出射される。また、反射光は凹部13内部の隅々まで行き渡り、デッドスペースのない均一な光として出射される。 In the n reflective surfaces 14 forming the inner wall of the recess 13 of the optical semiconductor element 31, the substantially n-sided shape defining the opening 12 and the shape 16 satisfies the above conditions (1) and (2), thereby satisfying the optical semiconductor. The light emitted from the element 31 is repeatedly reflected very complicatedly by the n reflecting surfaces 14 and is emitted to the outside of the recess 13. Therefore, the attenuation (loss) due to the collision of the reflected light is minimized, and brighter light is emitted. Further, the reflected light spreads to every corner inside the recess 13 and is emitted as uniform light without dead space.
 本明細書に開示された各々の態様は、本明細書に開示された他のいかなる特徴とも組み合わせることができる。
 各実施形態における各構成及びそれらの組み合わせ等は、一例であって、本開示の主旨から逸脱しない範囲内で、適宜、構成の付加、省略、置換、及びその他の変更が可能である。本開示は、実施形態によって限定されることはなく、クレームの範囲によってのみ限定される。
Each aspect disclosed herein can be combined with any other feature disclosed herein.
Each configuration and a combination thereof in each embodiment are examples, and the configurations can be added, omitted, replaced, and other changes as appropriate without departing from the gist of the present disclosure. The present disclosure is not limited by embodiments, but only by the scope of the claims.
 上記で説明した本開示のバリエーションを以下に付記する。
[1]光半導体装置用樹脂成形体であって、
 厚さ方向において互いに反対側を向く表面および裏面を有し、
 前記表面に、開口部から裏面に向かって窪んだ凹部を有し、
 前記凹部は、内壁にn枚(nは5以上の整数を示す)の反射面と、底面を有し、
 前記凹部の開口部の形状は、以下の条件(1)及び(2)を満たす略n角形(nは前記nと同一の整数)であり、
  (1)前記略n角形の全ての内角は鈍角である。
  (2)前記略n角形の全ての辺は、互いに平行ではない。
  前記開口部と平行な任意な面と前記凹部の内壁とで形成される形状が、前記凹部の前記開口部と略相似形の略n角形である、光半導体装置用樹脂成形体。
[2]白色顔料を含有する熱硬化性樹脂組成物より形成される、前記[1]記載の光半導体装置用樹脂成形体。
[3]前記熱硬化性樹脂は、エポキシ樹脂である、前記[2]に記載の光半導体装置用樹脂成形体。
[4]前記白色顔料は、酸化チタン、アルミナ、酸化亜鉛、酸化マグネシウム、酸化アンチモン、および酸化ジルコニウムからなる群から選ばれる、前記[2]又は[3]に記載の光半導体装置用樹脂成形体。
[5]nが、6以上(例えば、7以上、8以上、9以上、10以上、11以上、12以上、13以上、または14以上)の整数である、前記[1]~[4]のいずれか1つに記載の光半導体装置用樹脂成形体。
[6]nが、30以下(例えば、25以下、又は20以下)の整数である、前記[1]~[5]のいずれか1つに記載の光半導体装置用樹脂成形体。
[7]前記n枚の反射面が、全て異なる形状である、、前記[1]~[6]のいずれか1つに記載の光半導体装置用樹脂成形体。
[8]前記略n角形の全ての内角が、95°以上(例えば、100°以上、110°以上、120°以上、130°以上、140°以上、150°以上、又は160°以上)である、前記[1]~[7]のいずれか1つに記載の光半導体装置用樹脂成形体。
[9]前記略n角形は、非対称である、前記[1]~[8]のいずれか1つに記載の光半導体装置用樹脂成形体。
[10]前記凹部の底面が、前記凹部の前記開口部と略相似形の略n角形である、前記[1]~[9]のいずれか1つに記載の光半導体装置用樹脂成形体。
[11]前記凹部の前記開口部の面積が、前記凹部の前記底面の面積より広い、前記[1]~[10]のいずれか1つに記載の光半導体装置用樹脂成形体。
[12]前記開口部と平行な任意な面と前記凹部の側面とで形成される形状の面積が、前記凹部の開口部から底面にかけて漸減する、前記[1]~[11]のいずれか1つに記載の光半導体装置用樹脂成形体。
[13]互いに離隔している第1リードおよび第2リードと一体化されている、前記[1]~[12]のいずれか1つに記載の光半導体装置用樹脂成形体。
[14]前記第1リードは、前記光半導体装置用樹脂成形体の前記凹部の前記底面の一部をなす第1露出面を有し、且つ、前記第1の露出面とは反対の側にて露出している第2露出面を有し、
 前記第2リードは、前記光半導体装置用樹脂成形体の前記凹部の前記底面の一部をなし、前記第1露出面と離隔する第3露出面を有し、且つ、前記第3の露出面とは反対の側にて露出している第4露出面を有する、前記[13]記載の光半導体装置用樹脂成形体。
[15]前記第1リードおよび第2リードは、それぞれ、前記光半導体装置用樹脂成形体から外部に延出している電極部を有する、前記[13]又は[14]に記載の光半導体装置用樹脂成形体。
[16]前記第1リードおよび第2リードは、それぞれ、導電性を有する金属材料よりなる、前記[13]~[15]のいずれか1つに記載の光半導体装置用樹脂成形体。
[17]前記金属材料が、Cu、Cu合金、および42%Ni-Fe合金からなる群から選ばれる少なくとも1種である、前記[16]記載の光半導体装置用樹脂成形体。
[18]前記第1リードおよび第2リードの厚さは、それぞれ、0.1~0.3mmである、前記[13]~[17]のいずれか1つに記載の光半導体装置用樹脂成形体。
[19]前記第1リードおよび第2リードにおける前記凹部内での前記第1露出面及び第3露出面の面積は、前記凹部内での底面の面積の50%以上(例えば、60%以上、70%以上、80%以上、又は85%以上)である、前記[14]~[18]のいずれか1つに記載の光半導体装置用樹脂成形体。
[20]前記第1リードおよび第2リードにおける前記凹部内での前記第1露出面及び第3露出面の面積は、前記凹部内での底面の面積の95%以下(例えば、90%以下)である、前記[14]~[19]のいずれか1つに記載の光半導体装置用樹脂成形体。
[21]光半導体素子と、
 樹脂成形体と、を備え、
 前記樹脂成形体が、前記[14]~[20]のいずれか1つに記載の光半導体装置用樹脂成形体であり、
 前記光半導体素子は、前記第1リードの前記第1露出面に搭載され、且つ前記第2リードの前記第3露出面にボンディングワイヤを介して接続されている、光半導体装置。
[22]前記凹部は、透明樹脂部で封止されている、前記[21]記載の光半導体装置。
[23]前記透明樹脂部は、エポキシ系封止材又はシリコーン系封止材から形成される、前記[22]記載の光半導体装置。
[24]前記光半導体素子は、発光ダイオード(LED)素子である、前記[21]~[23]のいずれか1つに記載の光半導体装置。
[25]前記発光ダイオード(LED)素子を構成するための半導体材料は、GaAlAs、AlInGaP、InGaN、GaP、GaAs、およびGaAsPからなる群から選ばれる少なくとも1種である、前記[21]~[24]のいずれか1つに記載の光半導体装置用樹脂成形体。
[26]前記光半導体素子は、前記凹部の前記底面の略中央部に接続されている、前記[21]~[25]のいずれか1つに記載の光半導体装置。
The variations of the present disclosure described above are added below.
[1] A resin molded product for an optical semiconductor device.
It has front and back surfaces that face opposite to each other in the thickness direction.
The front surface has a recess recessed from the opening toward the back surface.
The recess has n reflective surfaces (n represents an integer of 5 or more) and a bottom surface on the inner wall.
The shape of the opening of the recess is a substantially n-sided polygon (n is the same integer as n) that satisfies the following conditions (1) and (2).
(1) All internal angles of the substantially n-sided polygon are obtuse angles.
(2) All sides of the substantially n-sided polygon are not parallel to each other.
A resin molded product for an optical semiconductor device, wherein the shape formed by an arbitrary surface parallel to the opening and the inner wall of the recess is a substantially n-sided shape substantially similar to the opening of the recess.
[2] The resin molded product for an optical semiconductor device according to the above [1], which is formed from a thermosetting resin composition containing a white pigment.
[3] The resin molded product for an optical semiconductor device according to the above [2], wherein the thermosetting resin is an epoxy resin.
[4] The resin molded product for an optical semiconductor device according to the above [2] or [3], wherein the white pigment is selected from the group consisting of titanium oxide, alumina, zinc oxide, magnesium oxide, antimony oxide, and zirconium oxide. ..
[5] n is an integer of 6 or more (for example, 7 or more, 8 or more, 9 or more, 10 or more, 11 or more, 12 or more, 13 or more, or 14 or more). The resin molded product for an optical semiconductor device according to any one of them.
[6] The resin molded product for an optical semiconductor device according to any one of [1] to [5] above, wherein n is an integer of 30 or less (for example, 25 or less or 20 or less).
[7] The resin molded product for an optical semiconductor device according to any one of [1] to [6], wherein the n reflective surfaces all have different shapes.
[8] All internal angles of the substantially n-sided polygon are 95 ° or more (for example, 100 ° or more, 110 ° or more, 120 ° or more, 130 ° or more, 140 ° or more, 150 ° or more, or 160 ° or more). , The resin molded product for an optical semiconductor device according to any one of the above [1] to [7].
[9] The resin molded product for an optical semiconductor device according to any one of the above [1] to [8], wherein the substantially n-sided polygon is asymmetric.
[10] The resin molded product for an optical semiconductor device according to any one of the above [1] to [9], wherein the bottom surface of the recess is a substantially n-sided polygon having a shape substantially similar to the opening of the recess.
[11] The resin molded product for an optical semiconductor device according to any one of [1] to [10], wherein the area of the opening of the recess is larger than the area of the bottom surface of the recess.
[12] Any one of the above [1] to [11], wherein the area of the shape formed by the arbitrary surface parallel to the opening and the side surface of the recess gradually decreases from the opening of the recess to the bottom surface. The resin molded body for an optical semiconductor device according to the above.
[13] The resin molded product for an optical semiconductor device according to any one of the above [1] to [12], which is integrated with the first reed and the second reed that are separated from each other.
[14] The first lead has a first exposed surface that forms a part of the bottom surface of the recess of the resin molded body for an optical semiconductor device, and is on a side opposite to the first exposed surface. Has a second exposed surface that is exposed
The second lead forms a part of the bottom surface of the recess of the resin molded body for an optical semiconductor device, has a third exposed surface separated from the first exposed surface, and has the third exposed surface. The resin molded product for an optical semiconductor device according to the above [13], which has a fourth exposed surface exposed on the opposite side to the above.
[15] The optical semiconductor device according to the above [13] or [14], wherein the first lead and the second lead each have an electrode portion extending to the outside from the resin molded body for the optical semiconductor device. Resin molded body.
[16] The resin molded product for an optical semiconductor device according to any one of [13] to [15], wherein the first reed and the second reed are each made of a conductive metal material.
[17] The resin molded body for an optical semiconductor device according to the above [16], wherein the metal material is at least one selected from the group consisting of Cu, Cu alloys, and 42% Ni—Fe alloys.
[18] The resin molding for an optical semiconductor device according to any one of the above [13] to [17], wherein the thickness of the first lead and the second lead is 0.1 to 0.3 mm, respectively. body.
[19] The areas of the first exposed surface and the third exposed surface in the recesses of the first lead and the second lead are 50% or more (for example, 60% or more) of the area of the bottom surface in the recesses. The resin molded product for an optical semiconductor device according to any one of the above [14] to [18], which is 70% or more, 80% or more, or 85% or more).
[20] The areas of the first exposed surface and the third exposed surface in the recesses of the first lead and the second lead are 95% or less (for example, 90% or less) of the area of the bottom surface in the recesses. The resin molded product for an optical semiconductor device according to any one of the above [14] to [19].
[21] Optical semiconductor devices and
With a resin molded body,
The resin molded product is the resin molded product for an optical semiconductor device according to any one of [14] to [20].
An optical semiconductor device in which the optical semiconductor element is mounted on the first exposed surface of the first lead and is connected to the third exposed surface of the second lead via a bonding wire.
[22] The optical semiconductor device according to the above [21], wherein the recess is sealed with a transparent resin portion.
[23] The optical semiconductor device according to the above [22], wherein the transparent resin portion is formed of an epoxy-based encapsulant or a silicone-based encapsulant.
[24] The optical semiconductor device according to any one of [21] to [23], wherein the optical semiconductor element is a light emitting diode (LED) element.
[25] The semiconductor material for forming the light emitting diode (LED) element is at least one selected from the group consisting of GaAlAs, AlInGaP, InGaN, GaP, GaAs, and GaAsP. ]. The resin molded body for an optical semiconductor device according to any one of the above.
[26] The optical semiconductor device according to any one of [21] to [25], wherein the optical semiconductor element is connected to a substantially central portion of the bottom surface of the recess.
 本開示の光半導体装置用樹脂成形体及び光半導体装置は、照明用途(家庭・オフィスの一般屋内照明や街路灯など)、表示用途(交通信号機など)、光源用途(液晶テレビのバックライトなど)、および通信用途(赤外線リモコンなど)に好適に使用される。 The resin molded body for an optical semiconductor device and the optical semiconductor device of the present disclosure are used for lighting (general indoor lighting in homes and offices, street lights, etc.), display applications (traffic signals, etc.), and light source applications (backlights of liquid crystal televisions, etc.). , And communication applications (infrared remote control, etc.).
1、2     光半導体装置用樹脂成形体
10      表面
11      裏面
12      凹部の開口部
13      凹部
14      凹部内壁の反射面
15      凹部の底面
16      開口部に平行な面と凹部の内壁で形成される形状
21      リード(第1リード)
22      リード(第2リード)
21a     露出面(第1露出面)
21b     露出面(第2露出面)
22a     露出面(第3露出面)
22b     露出面(第4露出面)
21c,22c 電極部
3       光半導体装置
31      光半導体素子
32      ボンディングワイヤ
33      透明樹脂部
1, 2 Resin molded body for optical semiconductor device 10 Front surface 11 Back surface 12 Recessed opening 13 Recessed 14 Recessed surface of concave inner wall 15 Bottom surface of recess 16 Shape 21 Lead formed by a surface parallel to the opening and an inner wall of the recess 1st lead)
22 leads (second lead)
21a Exposed surface (first exposed surface)
21b Exposed surface (second exposed surface)
22a Exposed surface (third exposed surface)
22b Exposed surface (4th exposed surface)
21c, 22c Electrode part 3 Optical semiconductor device 31 Optical semiconductor element 32 Bonding wire 33 Transparent resin part

Claims (9)

  1.  光半導体装置用樹脂成形体であって、
     厚さ方向において互いに反対側を向く表面および裏面を有し、
     前記表面に、開口部から裏面に向かって窪んだ凹部を有し、
     前記凹部は、内壁にn枚(nは5以上の整数を示す)の反射面と、底面を有し、
     前記凹部の開口部の形状は、以下の条件(1)及び(2)を満たす略n角形(nは前記nと同一の整数)であり、
      (1)前記略n角形の全ての内角は鈍角である。
      (2)前記略n角形の全ての辺は、互いに平行ではない。
      前記開口部と平行な任意な面と前記凹部の内壁とで形成される形状が、前記凹部の前記開口部と略相似形の略n角形である、光半導体装置用樹脂成形体。
    A resin molded product for optical semiconductor devices
    It has front and back surfaces that face opposite to each other in the thickness direction.
    The front surface has a recess recessed from the opening toward the back surface.
    The recess has n reflective surfaces (n represents an integer of 5 or more) and a bottom surface on the inner wall.
    The shape of the opening of the recess is a substantially n-sided polygon (n is the same integer as n) that satisfies the following conditions (1) and (2).
    (1) All internal angles of the substantially n-sided polygon are obtuse angles.
    (2) All sides of the substantially n-sided polygon are not parallel to each other.
    A resin molded product for an optical semiconductor device, wherein the shape formed by an arbitrary surface parallel to the opening and the inner wall of the recess is a substantially n-sided shape substantially similar to the opening of the recess.
  2.  前記凹部の底面が、前記凹部の前記開口部と略相似形の略n角形である、請求項1に記載の光半導体装置用樹脂成形体。 The resin molded product for an optical semiconductor device according to claim 1, wherein the bottom surface of the recess is a substantially n-sided polygon that is substantially similar to the opening of the recess.
  3.  前記凹部の前記開口部の面積が、前記凹部の前記底面の面積より広い、請求項1又は2に記載の光半導体装置用樹脂成形体。 The resin molded product for an optical semiconductor device according to claim 1 or 2, wherein the area of the opening of the recess is larger than the area of the bottom surface of the recess.
  4.  前記開口部と平行な任意な面と前記凹部の側面とで形成される形状の面積が、前記凹部の開口部から底面にかけて漸減する、請求項1~3の何れか1項に記載の光半導体装置用樹脂成形体。 The optical semiconductor according to any one of claims 1 to 3, wherein the area of the shape formed by the arbitrary surface parallel to the opening and the side surface of the recess gradually decreases from the opening of the recess to the bottom surface. Resin molded body for equipment.
  5.  互いに離隔している第1リードおよび第2リードと一体化されている、請求項1~4の何れか1項に記載の光半導体装置用樹脂成形体。 The resin molded body for an optical semiconductor device according to any one of claims 1 to 4, which is integrated with a first lead and a second lead that are separated from each other.
  6.  前記第1リードは、前記光半導体装置用樹脂成形体の前記凹部の前記底面の一部をなす第1露出面を有し、且つ、前記第1の露出面とは反対の側にて露出している第2露出面を有し、
     前記第2リードは、前記光半導体装置用樹脂成形体の前記凹部の前記底面の一部をなし、前記第1露出面と離隔する第3露出面を有し、且つ、前記第3の露出面とは反対の側にて露出している第4露出面を有する、請求項5記載の光半導体装置用樹脂成形体。
    The first lead has a first exposed surface that forms a part of the bottom surface of the recess of the resin molded body for an optical semiconductor device, and is exposed on a side opposite to the first exposed surface. Has a second exposed surface
    The second lead forms a part of the bottom surface of the recess of the resin molded body for an optical semiconductor device, has a third exposed surface separated from the first exposed surface, and has the third exposed surface. The resin molded product for an optical semiconductor device according to claim 5, which has a fourth exposed surface exposed on the opposite side to the above.
  7.  前記第1リードおよび第2リードは、それぞれ、前記光半導体装置用樹脂成形体から外部に延出している電極部を有する、請求項5又は6に記載の光半導体装置用樹脂成形体。 The resin molded body for an optical semiconductor device according to claim 5 or 6, wherein each of the first lead and the second lead has an electrode portion extending outward from the resin molded body for the optical semiconductor device.
  8.  光半導体素子と、
     樹脂成形体と、を備え、
     前記樹脂成形体が、請求項6又は7に記載の光半導体装置用樹脂成形体であり、
     前記光半導体素子は、前記第1リードの前記第1露出面に搭載され、且つ前記第2リードの前記第3露出面にボンディングワイヤを介して接続されている、光半導体装置。
    Optical semiconductor devices and
    With a resin molded body,
    The resin molded product is the resin molded product for an optical semiconductor device according to claim 6 or 7.
    An optical semiconductor device in which the optical semiconductor element is mounted on the first exposed surface of the first lead and is connected to the third exposed surface of the second lead via a bonding wire.
  9.  前記光半導体素子は、前記凹部の前記底面の略中央部に接続されている、請求項8記載の光半導体装置。 The optical semiconductor device according to claim 8, wherein the optical semiconductor element is connected to a substantially central portion of the bottom surface of the recess.
PCT/JP2020/039748 2019-10-28 2020-10-22 Resin molded body for optical semiconductor device and optical semiconductor device WO2021085303A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019-195431 2019-10-28
JP2019195431A JP7399678B2 (en) 2019-10-28 2019-10-28 Resin molding for optical semiconductor devices and optical semiconductor devices

Publications (1)

Publication Number Publication Date
WO2021085303A1 true WO2021085303A1 (en) 2021-05-06

Family

ID=75637563

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/039748 WO2021085303A1 (en) 2019-10-28 2020-10-22 Resin molded body for optical semiconductor device and optical semiconductor device

Country Status (3)

Country Link
JP (1) JP7399678B2 (en)
TW (1) TW202135346A (en)
WO (1) WO2021085303A1 (en)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009054593A (en) * 2002-03-20 2009-03-12 Toyoda Gosei Co Ltd Lamp fitting
JP2012044206A (en) * 2006-04-24 2012-03-01 Cree Inc White led for lateral and planar mounting
JP2012530342A (en) * 2009-06-16 2012-11-29 コーニンクレッカ フィリップス エレクトロニクス エヌ ヴィ Lighting system for spot lighting
JP2016106431A (en) * 2011-11-17 2016-06-16 ルーメンス カンパニー リミテッド Light-emitting element package
JP2016201408A (en) * 2015-04-08 2016-12-01 日亜化学工業株式会社 Light emitting device and light source device
JP2019530970A (en) * 2016-09-23 2019-10-24 深▲せん▼市客為天生態照明有限公司 Solar-like spectrum LED lamp bead structure

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20140055943A (en) 2012-10-30 2014-05-09 주식회사 케이엠더블유 Led lighting device
US10290783B2 (en) 2016-09-21 2019-05-14 Foshan Nationstar Optoelectronics Co., Ltd. LED bracket, LED device and LED display screen

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009054593A (en) * 2002-03-20 2009-03-12 Toyoda Gosei Co Ltd Lamp fitting
JP2012044206A (en) * 2006-04-24 2012-03-01 Cree Inc White led for lateral and planar mounting
JP2012530342A (en) * 2009-06-16 2012-11-29 コーニンクレッカ フィリップス エレクトロニクス エヌ ヴィ Lighting system for spot lighting
JP2016106431A (en) * 2011-11-17 2016-06-16 ルーメンス カンパニー リミテッド Light-emitting element package
JP2016201408A (en) * 2015-04-08 2016-12-01 日亜化学工業株式会社 Light emitting device and light source device
JP2019530970A (en) * 2016-09-23 2019-10-24 深▲せん▼市客為天生態照明有限公司 Solar-like spectrum LED lamp bead structure

Also Published As

Publication number Publication date
JP7399678B2 (en) 2023-12-18
TW202135346A (en) 2021-09-16
JP2021068874A (en) 2021-04-30

Similar Documents

Publication Publication Date Title
EP3496165B1 (en) Light emitting device
JP5788539B2 (en) Light emitting element
KR102024291B1 (en) Lamp unit and vehicle lamp apparatus for using the same
JP2008041699A (en) Led package
KR101641860B1 (en) Light-emitting element array, Backlight apparatus, and Illumination apparatus
US9997681B2 (en) Lens and light emitting diode package including same
KR20110125070A (en) Light-emitting element package
WO2021085303A1 (en) Resin molded body for optical semiconductor device and optical semiconductor device
JP5119705B2 (en) Light emitting device and planar light emitting device using the same
WO2020116452A1 (en) Optical semiconductor device
KR20110125067A (en) Light-emitting element package
KR101976547B1 (en) Light emitting device and lighting system
KR20120111757A (en) Light emitting device package
KR102354819B1 (en) Light source module and head lamp having thereof
KR101655464B1 (en) Light emitting device package, method for fabricating the same and lighting system including the same
WO2020116454A1 (en) Optical semiconductor device
KR101883342B1 (en) Light emitting device package
KR102304452B1 (en) Light source module and head lamp having thereof
KR101628541B1 (en) Light-emitting element package
KR102432215B1 (en) Light unit and lighting apparatus having the same
KR102170218B1 (en) Light emitting devicee package
KR101807111B1 (en) Light emitting device and fabrication method thereof
KR101778151B1 (en) Light emitting device package
KR101831276B1 (en) Light Emitting Diode Package
KR101946268B1 (en) Light emitting device package

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20880452

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20880452

Country of ref document: EP

Kind code of ref document: A1