WO2020116452A1 - Optical semiconductor device - Google Patents

Optical semiconductor device Download PDF

Info

Publication number
WO2020116452A1
WO2020116452A1 PCT/JP2019/047243 JP2019047243W WO2020116452A1 WO 2020116452 A1 WO2020116452 A1 WO 2020116452A1 JP 2019047243 W JP2019047243 W JP 2019047243W WO 2020116452 A1 WO2020116452 A1 WO 2020116452A1
Authority
WO
WIPO (PCT)
Prior art keywords
opening
optical semiconductor
region
lead
semiconductor device
Prior art date
Application number
PCT/JP2019/047243
Other languages
French (fr)
Japanese (ja)
Inventor
山本康雄
平川裕之
Original Assignee
株式会社ダイセル
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社ダイセル filed Critical 株式会社ダイセル
Publication of WO2020116452A1 publication Critical patent/WO2020116452A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/48Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor body packages
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/48Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor body packages
    • H01L33/62Arrangements for conducting electric current to or from the semiconductor body, e.g. lead-frames, wire-bonds or solder balls

Definitions

  • the present invention relates to an optical semiconductor device including an optical semiconductor element such as a light emitting diode.
  • Opto-semiconductor devices equipped with photo-semiconductor elements have longer life, stable operation, and faster response speed than other light sources such as light bulbs, fluorescent lamps, neon tubes, and halogen lamps. It has features such as that.
  • Such optical semiconductor devices are being put to practical use in various applications. For example, in lighting applications (general indoor lighting in homes and offices, street lights, etc.), display applications (traffic lights, etc.), light source applications (backlights for liquid crystal televisions, etc.), and communication applications (infrared remote controllers, etc.).
  • lighting applications generally indoor lighting in homes and offices, street lights, etc.
  • display applications traffic lights, etc.
  • light source applications backlights for liquid crystal televisions, etc.
  • communication applications infrared remote controllers, etc.
  • the optical semiconductor device Y which is an example of a conventional optical semiconductor device.
  • the optical semiconductor device Y is formed in the form of a so-called mold array package (MAP), and includes a resin molding 110, a set of leads 120 and 130, an LED element 140 that is a light emitting diode, and a transparent resin. And a section 150.
  • MAP mold array package
  • the resin molded body 110 is a resin body molded in a shape that holds the leads 120 and 130 by so-called insert molding with the leads 120 and 130, and has an opening 112 whose opening shape is defined by the inclined surface 111. At least the inclined surface 111 of the resin molded body 110 is provided with light reflectivity in a predetermined manner.
  • the lead 120 has an exposed surface 121 that faces the opening 112, and has an exposed surface 122 that is exposed to the outside of the device on the side opposite to the opening 112.
  • the lead 130 has an exposed surface 131 that faces the opening 112, and also has an exposed surface 132 that is exposed to the outside of the device on the side opposite to the opening 112.
  • the exposed surfaces 121 and 131 of the leads 120 and 130 form a pair of terminals for external connection in the optical semiconductor device Y.
  • the LED element 140 has electrode portions (not shown) on the upper surface side and the lower surface side in FIG. 12, and is mounted on the exposed surface 121 in the opening 112 and electrically connected to the leads 120. And they are mechanically connected. At the same time, the LED element 140 is electrically connected to the exposed surface 131 of the lead 130 via the bonding wire W.
  • the transparent resin portion 150 is a transparent resin body filled in the opening 112 of the resin molded body 110 and cured, and seals the LED element 140 and the like in the opening 112.
  • the light passes through the transparent resin portion 150 with or without reflection inside the opening 112 and passes through the outside of the opening 112. Is emitted to.
  • an optical semiconductor device including a portion in which a resin molded body (resin molded body 110 in the optical semiconductor device Y) and a lead member (leads 120 and 130 in the optical semiconductor device Y) are integrally molded, the resin molded body and the lead member There is a significant difference in coefficient of thermal expansion between and. Therefore, conventionally, in the manufacturing process or mounting process of an optical semiconductor device, internal stress is generated at various places in the optical semiconductor device due to the difference in the coefficient of thermal expansion, which causes distortion such as warpage of the device. There is. The warp or other distortion in the optical semiconductor device may cause structural deterioration such as partial detachment of the lead member from the resin molded body, and eventually characteristic deterioration.
  • the present invention has been devised under the circumstances as described above, and an object thereof is to provide an optical semiconductor device suitable for realizing high light utilization efficiency while suppressing distortion such as warpage. Especially.
  • an optical semiconductor device includes a first optical semiconductor element, a second optical semiconductor element, a first lead and a second lead that are separated from each other, and a resin molded body that is integrated with these leads.
  • the resin molded body is a resin body molded by, for example, insert molding while partially incorporating the first and second leads therein.
  • the resin molded body has an opening that is a reflector opening having an inner wall surface for light reflection that defines the opening shape and a partial bottom surface for light reflection (the partial bottom surface is the bottom surface of the opening portion). Part, including the area located between the two leads that are spaced apart).
  • the opening or the shape of the opening has a first wide area defined by the inner wall surface, a second wide area, a narrow area between the first and second wide areas, the first wide area and the width.
  • a first width-graded region between the narrow regions and a second width-graded region between the second wide region and the narrow region are included and extend in the arrangement direction.
  • the inner wall surface of such a reflector opening is preferably inclined so that the opening shape spreads from the bottom surface of the opening to the opening end.
  • the first lead includes a region facing the opening in the first wide region and a region facing the opening in the second wide region, and extends in the extending direction of the opening of the resin molded body. Further, the first lead preferably has an electrode portion extending from the resin molded body to the outside. In this manner, the first lead is held while being partially covered with the resin molding.
  • the second lead includes a region facing the opening in the first wide region and a region facing the opening in the second wide region, and extends in the extending direction of the opening of the resin molded body. Separated from one lead. Further, the second lead preferably has an electrode portion extending from the resin molded body to the outside. In this manner, the second lead is held while being partially covered with the resin molding.
  • the first optical semiconductor element is mounted on the first lead and connected to the second lead via a bonding wire in the first wide region of the opening of the resin molded body.
  • the second optical semiconductor element is mounted on the first lead and connected to the second lead via a bonding wire in the second wide region of the opening of the resin molded body.
  • the opening (reflector opening) of the resin molding has an opening shape extending in the arrangement direction of each of the regions included therein, as described above.
  • the above-described configuration in which the first optical semiconductor element is arranged in the first wide area and the second optical semiconductor element is arranged in the second wide area of the reflector opening having the opening shape thus extended is the present optical semiconductor. This is suitable for making the brightness uniform in the extending direction of the reflector opening when the device is driven to emit light.
  • the above-described configuration in which the partial bottom surface (a part of the resin molded body) for light reflection is interposed between the leads on which both the optical semiconductor elements are mounted in the reflector opening portion ensures the reflection surface in the opening portion.
  • Such an optical semiconductor device equipped with a multi-optical semiconductor element suppresses the manufacturing cost by adopting an inexpensive optical semiconductor element whose price is less than half the price as a light emitting element instead of a high-priced high-luminance element. At the same time, it is suitable for ensuring a predetermined brightness during light emission driving.
  • the reflector opening of the resin molded body has the width between the first and second wide regions defined by the inner wall surface thereof, as described above.
  • the narrow region, the first wide region and the first gradually changing region between the narrow regions, and the second wide region and the second gradually changing region between the narrow regions extend in the arrangement direction. It has an opening shape.
  • the first optical semiconductor element is arranged in the first wide area of the opening and the second optical semiconductor element is arranged in the second wide area.
  • the resin molded body opening (reflector opening) having the narrow region between the first and second wide regions has the above-described configuration.
  • the resin molded body has a wall structure surrounding the opening.
  • the thick portion (the portion having the protrusion protruding into the opening in the wall structure of the resin molded body) in the resin molded body of the present optical semiconductor device is the center of the reflector-shaped opening having the opening shape extending as described above. In the vicinity, the function of suppressing the warp of the device can be mainly exerted.
  • the reflector opening of the resin molded body has a first width gradually changing region between the first wide region (where the first optical semiconductor element is arranged) and the narrow region.
  • the above configuration in which the second wide region (where the second optical semiconductor element is arranged) and the narrow region have the second width gradually changing region is suitable for realizing high light utilization efficiency.
  • a region (first boundary region) defining the first width gradually changing region on the inner wall surface of the opening may have an orientation/shape facing the first optical semiconductor element in the first wide region.
  • Such a first boundary region of the inner wall surface is likely to receive and reflect a part of the light emitted from the first optical semiconductor element during light emission driving of the present optical semiconductor device, and therefore, the amount of light reflected to the outside of the opening may be reduced. Can contribute to the increase.
  • a region (second boundary region) that defines the second gradually changing region on the inner wall surface of the opening has an orientation facing the second optical semiconductor element in the second wide region.
  • Such a second boundary region of the inner wall surface is likely to receive a part of the light emitted from the second optical semiconductor element during the light emission driving of the present optical semiconductor device and is easily reflected, so that the amount of the reflected light outside the opening is reduced. Can contribute to the increase.
  • Such an optical semiconductor device is suitable for realizing high light utilization efficiency.
  • the optical semiconductor device of the present invention is suitable for realizing high light utilization efficiency while suppressing distortion such as warpage.
  • suppressing distortion such as warpage contributes to ensuring high light emission reliability.
  • realization of high light utilization efficiency contributes to ensuring high energy efficiency. Therefore, the present optical semiconductor device is suitable for designing as a light emitting device having high emission reliability and high energy efficiency.
  • the inner wall surface has an inner curved surface in the first width change region of the opening of the resin molded body, and the inner wall surface in the second width change region of the opening of the resin molded body.
  • the first lead in the present optical semiconductor device preferably includes a first exposed surface including a region facing the first wide region and a region facing the second wide region in the opening of the resin molded body, and from the first exposed face.
  • the second lead preferably includes a third exposed surface including a region facing the first wide region in the opening of the resin molded body, and a region including a region facing the second wide region and separated from the third exposed face.
  • the exposed fourth surface is suitable for subdividing the expansion and contraction of the lead member due to temperature change to reduce the internal stress generated in the present optical semiconductor device, and is therefore suitable for suppressing distortion such as warpage of the device. Is.
  • the first and second leads each have a plurality of, for example, four or more electrode portions for external connection extending from the resin molded body to the outside.
  • Such a multi-terminal configuration is suitable for ensuring a high degree of freedom regarding the circuit design or the circuit configuration of the mounting substrate on which the optical semiconductor element can be mounted.
  • FIG. 1 is a plan view of an optical semiconductor device according to an embodiment of the present invention.
  • FIG. 2 is a sectional view taken along line II-II in the optical semiconductor device shown in FIG. 1.
  • FIG. 3 is a sectional view taken along line III-III in the optical semiconductor device shown in FIG. 1.
  • FIG. 4 is a sectional view taken along line IV-IV in the optical semiconductor device shown in FIG. 1.
  • FIG. 5 is a cross-sectional view taken along the line VV in the optical semiconductor device shown in FIG. 1.
  • FIG. 6 is a sectional view taken along the line VI-VI in the optical semiconductor device shown in FIG. 1.
  • FIG. 2 is a back view of the optical semiconductor device shown in FIG. 1. It is a top view of the modification of the optical semiconductor device shown in FIG. FIG.
  • FIG. 9 is a cross-sectional view of a modification of the optical semiconductor device shown in FIG. 1. It is a top view of the modification of the optical semiconductor device shown in FIG. It is a top view of one conventional optical semiconductor device.
  • FIG. 12 is a sectional view taken along the line XII-XII in the optical semiconductor device shown in FIG. 11.
  • FIG. 12 is a back view of the optical semiconductor device shown in FIG. 11.
  • FIG. 1 to 7 show an optical semiconductor device X according to an embodiment of the present invention.
  • FIG. 1 is a plan view of an optical semiconductor device X
  • FIGS. 2 to 6 show light along line II-II, line III-III, line IV-IV, line VV, and line VI-VI in FIG. 3 is a cross-sectional view of the semiconductor device X.
  • FIG. FIG. 7 is a rear view of the optical semiconductor device X.
  • the optical semiconductor device X includes optical semiconductor elements E1 and E2, a resin molded body 10, leads 20 and 30 separated from each other, and a transparent resin portion 40.
  • the optical semiconductor device X is formed in the form of a so-called mold array package (MAP).
  • the optical semiconductor elements E1 and E2 are elements each having a light emitting function, and in the present embodiment, specifically, light emitting diode (LED) elements.
  • LED light emitting diode
  • Examples of the semiconductor material for forming the LED element include GaAlAs, AlInGaP, InGaN, GaP, GaAs, and GaAsP.
  • the optical semiconductor elements E1 and E2 have electrode portions (not shown) on the upper surface side and the lower surface side in FIGS. 2, 4 and 5, respectively.
  • the resin molded body 10 is a resin body molded by, for example, insert molding while partially incorporating the leads 20 and 30 therein.
  • the resin molded body 10 has an opening 10A that is a reflector opening along with an inner wall surface 11 for light reflection and a partial bottom surface 12 for light reflection (the partial bottom surface 12 is one of the bottom surfaces of the opening 10A). Form a part).
  • the inner wall surface 11 of the opening 10A defines the opening shape of the opening 10A.
  • a notch (not shown) as a so-called cathode mark is provided in a predetermined portion (for example, a portion closer to the lead 30 than the lead 20 in the plan view shown in FIG. 1) on the opening 10A side of the resin molded body 10. May be formed.
  • Such a resin molded body 10 is made of, for example, a thermosetting resin composition containing a white pigment.
  • the thermosetting resin include epoxy resin.
  • the white pigment mixed with the thermosetting resin include titanium oxide, alumina, zinc oxide, magnesium oxide, antimony oxide, and zirconium oxide.
  • commercially available resin materials for forming the resin molded body 10 include "AEW-700" manufactured by Daicel Corporation.
  • the opening 10A of the resin molded body 10 or its opening shape has a wide region R1, a wide region R2 defined by the inner wall surface 11 of the opening 10A, a narrow region R3 between the regions, and gradually changing regions R4, R5. And extend in the array direction.
  • the gradually changing region R4 is located between the wide region R1 and the narrow region R3.
  • the width gradually changing region R5 is located between the wide region R2 and the narrow region R3.
  • the inner wall surface 11 of the opening 10A is inclined so that the opening shape spreads from the bottom surface of the opening 10A to the opening end.
  • the wall structure of the resin molded body 10 surrounding the opening 10A has a thin portion 10a at a position corresponding to the wide regions R1 and R2 of the opening 10A and at a position corresponding to the narrow region R3. It has a thick portion 10b.
  • the thickness T 1 shown in FIGS. 4 and 5 for the thin portion 10a is, for example, 0.1 to 0.4 mm.
  • the second thickness T 2 showing the thick portion 10b in FIG. 6, for example is, for example, 0.2 ⁇ 0.8 mm, preferably 1.1T 1 ⁇ 5T 1.
  • the length L 1 of the resin molded body 10 in the extending direction D 1 of the resin molded body 10 or the opening 10A thereof is, for example, 2.5 to 3.5 mm.
  • the length (width) of the resin molded body 10 in the direction D 2 (width direction) orthogonal to the length L 1 is, for example, 1.2 to 2 mm.
  • the length L 2 shown in FIG. 1, for example of the aforementioned thick portion 10b of the resin mold body 10 is, for example, 0.5 ⁇ 1 mm, preferably 0.1 L 1 ⁇ 0.3 L 1.
  • the lead 20 has an overall shape extending in the extending direction D 1 of the resin molded body 10 or the opening 10A thereof, and is an exposed surface that faces the opening 10A of the resin molded body 10 and forms a part of the bottom surface of the opening 10A. 21 and 22, and also has exposed surfaces 23 and 24 exposed on the side opposite to the opening 10A.
  • the exposed surface 21 includes a region facing the opening 10A in the wide region R1.
  • the above-described optical semiconductor element E1 is mounted on the exposed surface 21 of the lead 20 via a conductive bonding material such as a solder material or a conductive adhesive, and is electrically and mechanically connected to the lead 20.
  • the exposed surface 22 of the lead 20 includes a region facing the opening 10A in the wide region R2.
  • the above-described optical semiconductor element E2 is mounted on the exposed surface 22 of the lead 20 via a conductive bonding material such as a solder material or a conductive adhesive, and is electrically and mechanically connected to the lead 20. These exposed surfaces 21 and 22 are separated from each other within the opening 10A. Part of the heat generated from the optical semiconductor elements E1 and E2 when the optical semiconductor device X is driven to emit light can be radiated to the outside of the device via the exposed surfaces 21, 22, 23 and 24 of the leads 20.
  • the lead 20 also has such a heat dissipation function.
  • the lead 20 has an electrode portion 20 a extending from the resin molded body 10 to the outside. The extension length of the electrode portion 20a from the resin molded body 10 is, for example, 0.1 to 2 mm. In this manner, the lead 20 is held while being partially covered by the resin molding 10.
  • the lead 30 has an overall shape extending in the extending direction D 1 of the resin molded body 10 or the opening 10A thereof, and is an exposed surface that faces the opening 10A of the resin molded body 10 and forms a part of the bottom surface of the opening 10A. 31 and 32, and also has exposed surfaces 33 and 34 that are exposed on the side opposite to the opening 10A.
  • the exposed surface 31 includes a region facing the opening 10A in the wide region R1.
  • the optical semiconductor element E1 on the exposed surface 21 of the lead 20 is electrically connected to the exposed surface 31 via a bonding wire W.
  • the exposed surface 32 of the lead 30 includes a region facing the opening 10A in the wide region R2.
  • the optical semiconductor element E2 on the exposed surface 22 of the lead 20 is electrically connected to the exposed surface 32 via a bonding wire W. These exposed surfaces 31 and 32 are separated from each other in the opening 10A.
  • the lead 30 has an electrode portion 30 a extending from the resin molded body 10 to the outside. The extension length of the electrode portion 30a from the resin molded body 10 is, for example, 0.1 to 2 mm. In this manner, the lead 30 is held while being partially covered by the resin molding 10.
  • the leads 20 and 30 are each made of a conductive metal material.
  • the metal material for the lead include Cu, Cu alloy, and 42% Ni—Fe alloy.
  • the thickness of each of the leads 20 and 30 is, for example, 0.1 to 0.3 mm.
  • Such leads 20 and 30 can be formed, for example, by etching or punching a metal plate.
  • the surfaces of the leads 20 and 30 may be subjected to a predetermined plating treatment such as Ag plating treatment.
  • the transparent resin portion 40 is a transparent resin body filled in the opening 10A of the resin molded body 10 and cured, and is made of a semiconductor sealing material having transparency.
  • a sealing material include an epoxy-based sealing material and a silicone-based sealing material.
  • examples of commercially available epoxy-based encapsulants include “CELVENUS W0973” and “CELVENUS W0925” manufactured by Daicel Corporation.
  • Examples of commercially available silicone-based encapsulants include “CELVENUS A2045” and “CELVENUS A0246” manufactured by Daicel Corporation.
  • Such an optical semiconductor element X is manufactured by, for example, a so-called line mold method as described below.
  • a predetermined lead frame is prepared.
  • This lead frame has a frame body having a rectangular shape in plan view and a pattern portion having a predetermined pattern shape for each optical semiconductor device forming area arranged in a line in the frame body.
  • the pattern portion includes a lead portion that will form the leads 20 and 30 described above, a connecting portion that connects the lead portion and the frame body, and a connecting portion that connects the lead portions.
  • Such a lead frame can be manufactured by etching, for example.
  • the above-mentioned resin molded body 10 is formed for each optical semiconductor device formation area of the lead frame.
  • a set of dies having a molding surface for collectively molding a plurality of resin moldings 10 over a plurality of optical semiconductor device forming areas in a lead frame is clamped while interposing the lead frame.
  • the thermosetting resin composition containing the above-mentioned white pigment for forming the resin molded body 10 is supplied into a mold and molded (insert molding).
  • the resin molded body 10 having the above-described opening 10A is formed in each optical semiconductor device formation area.
  • the molding method for example, transfer molding or injection molding is adopted.
  • the optical semiconductor device X is isolated by cutting the above-described connecting portion of the pattern portion in the lead frame to separate the leads 20 and 30 for each optical semiconductor device formation area.
  • the optical semiconductor device X can be manufactured as described above.
  • the optical semiconductor device X When the optical semiconductor device X is driven, predetermined power is supplied to the optical semiconductor elements E1 and E2 via the leads 20 and 30, whereby the optical semiconductor elements E1 and E2 emit light. A part of the emitted light from the optical semiconductor elements E1 and E2 is reflected in the opening 10A of the resin molded body 10, and the other part of the emitted light from the optical semiconductor elements E1 and E2 is inside the opening 10A. The light passes through the transparent resin portion 40 and is emitted to the outside of the opening 10A without being reflected.
  • the opening 10A (reflector opening) of the resin molded body 10 has an opening shape extending in the arrangement direction of the respective regions included therein, as described above.
  • the above-described configuration in which the optical semiconductor element E1 is arranged in the wide area R1 and the optical semiconductor element E2 is arranged in the wide area R2 of the opening 10A having the opening shape thus extended is the light emission of the optical semiconductor device X. This is suitable for making the brightness uniform in the extending direction of the opening 10A (reflector opening) during driving.
  • the above-described configuration in which the partial bottom surface 12 (a part of the resin molded body 10) for light reflection is interposed between the leads 20 and 30 on which the optical semiconductor elements E1 and E2 are mounted in the reflector opening is This is suitable for securing a reflection surface in the portion 10A and increasing the amount of light reflected to the outside of the opening 10A.
  • a multi-semiconductor optical device-equipped optical semiconductor device X is a low-priced optical semiconductor device (optical semiconductor devices E1 and E2) whose price is less than half price instead of a high-priced high-luminance device as a light-emitting device. Is suitable for securing a predetermined brightness at the time of driving the light emission while suppressing the manufacturing cost.
  • the opening 10A which is the reflector opening of the resin molded body 10
  • the opening 10A has the wide regions R1 and R2, the narrow region R3, and the gradually changing width defined by the inner wall surface 11 thereof as described above. It has an opening shape including the regions R4 and R5 and extending in the arrangement direction thereof.
  • the optical semiconductor element E1 is arranged in the wide region R1 in such an opening 10A, and the optical semiconductor element E2 is arranged in the wide region R2.
  • Such a configuration is suitable for realizing high light utilization efficiency while suppressing distortion such as warpage in the optical semiconductor device X in which multiple optical semiconductor elements are mounted. The reason is as follows.
  • an optical semiconductor device that includes a portion where a resin molded body and a lead member are integrally molded, there is a significant difference in coefficient of thermal expansion between the resin molded body and the lead member. Therefore, in practice, as the proportion of the lead member in the integrated body of the resin molding and the lead member is larger within a predetermined range, the internal stress generated in the optical semiconductor device through the manufacturing process and the mounting process of the optical semiconductor device. Tends to be large. This internal stress can cause distortion such as warpage in the manufactured optical semiconductor device.
  • the above-described configuration in which the opening 10A (reflector opening) of the resin molded body 10 has the narrow region R3 between the wide regions R1 and R2 has the above-described configuration of the resin molded body 10 surrounding the opening 10A. It is suitable for providing the thick portion 10b at a location corresponding to the narrow region R3 of the opening 10A in the wall structure.
  • the configuration suitable for providing such a thick wall portion 10b in the wall structure of the resin molded body 10 is suitable for ensuring the contact area between the resin molded body 10 and the leads 20, 30, and therefore, the optical semiconductor device. It is suitable for suppressing distortion such as warpage of X.
  • such a thick portion 10b in the resin molded body 10 of the optical semiconductor device X (a portion having a protrusion protruding into the opening 10A in the wall structure of the resin molded body 10) is an opening extending as described above.
  • the function of suppressing the warp of the present device can be exhibited mainly near the center of the shaped opening 10A (reflector opening).
  • the opening 10A (reflector opening) of the resin molded body 10 has a width between the wide region R1 (where the optical semiconductor element E1 is arranged) and the narrow region R3.
  • it has the gradually changing region R5 between the wide region R2 (where the optical semiconductor element E2 is arranged) and the narrow region R3.
  • a region (first boundary region) defining the gradually changing width region R4 on the inner wall surface 11 of the opening 10A has an orientation/shape facing the optical semiconductor element E1 in the wide region R1.
  • Such a first boundary region is likely to receive a part of the light emitted from the optical semiconductor element E1 when the optical semiconductor device X is driven to emit light, and is likely to be reflected, thus contributing to an increase in the amount of reflected light outside the opening 10A.
  • a region (second boundary region) defining the gradually changing width region R5 on the inner wall surface 11 of the opening 10A has an orientation/shape facing the optical semiconductor element E2 in the wide region R2.
  • Such a second boundary region of the inner wall surface 11 easily receives and reflects a part of the light emitted from the optical semiconductor element E2 when the optical semiconductor device X is driven to emit light, and thus the amount of light reflected outside the opening 10A. Can contribute to the increase of Such an optical semiconductor device X is suitable for realizing high light utilization efficiency.
  • the optical semiconductor device X of this embodiment is suitable for realizing high light utilization efficiency while suppressing distortion such as warpage.
  • suppression of distortion such as warpage contributes to ensuring high light emission reliability.
  • realization of high light utilization efficiency contributes to ensuring high energy efficiency. Therefore, the optical semiconductor device X is suitable for designing as a light emitting device having high emission reliability and high energy efficiency.
  • the inner wall surface 11 may have an inner curved surface 11a in the width-graded regions R4 and R5 of the opening 10A of the resin molded body 10.
  • Such a configuration is suitable for realizing high light utilization efficiency. A part of the light emitted from the optical semiconductor elements E1 and E2 when the optical semiconductor device X is driven to emit light is effectively reflected to the outside of the opening 10A by each inner curved surface 11a, and each inner curved surface 11a is outside the opening 10A. This is because it contributes to an increase in the amount of reflected light.
  • the lead 20 in the optical semiconductor device X includes the exposed surface 21 including the region facing the wide region R1 and the region facing the wide region R2 in the opening 10A of the resin molded body 10 and separated from the exposed face 21.
  • the lead 30 includes the exposed surface 31 including the region facing the wide region R1 and the region facing the wide region R2 in the opening 10A of the resin molded body 10 and separated from the exposed surface 31 as described above.
  • an exposed surface 32 is suitable for subdividing the expansion and contraction of the leads 20, 30 due to the temperature change to reduce the internal stress generated in the optical semiconductor device X, and thus for suppressing the warpage or other distortion of the device. Is preferred.
  • the electrode portions 20a and 30a of the leads 20 and 30 have a bent shape in which a part thereof is bent to the side opposite to the opening 10A of the resin molded body 10, as shown in FIG. You may have.
  • the optical semiconductor device X and the electrode pad portion may be, for example, depending on the configuration of the wiring pattern (including the electrode pad portion) of the mounting substrate. It may be easy to connect electrically by soldering.
  • an LED element having two electrode portions on one surface may be adopted as the optical semiconductor element E1 and/or the optical semiconductor element E2.
  • a semiconductor material for forming such an LED element for example, InGaN can be cited.
  • the optical semiconductor element E1 is electrically connected to the exposed surface 21 of the lead 20 via the bonding wire W. At the same time, it is electrically connected to the exposed surface 31 of the lead 30 via another bonding wire W.
  • the optical semiconductor element E2 is electrically connected to the exposed surface 22 of the lead 20 via the bonding wire W and electrically connected to the exposed surface 32 of the lead 30 via another bonding wire W. Connected to each other.
  • the lead 20 has the electrode portions 20a at four locations, and the lead 30 has the electrode portions 30a at four locations. That is, the optical semiconductor device X has a configuration having eight terminals for external connection. Such a configuration is preferable because it can ensure a high degree of freedom in the circuit design or the circuit configuration of the mounting substrate on which the optical semiconductor element can be mounted.
  • a first optical semiconductor element and a second optical semiconductor element A first lead and a second lead, A resin molded body integrated with the first and second leads, The resin molding is an opening having an inner wall surface for light reflection that defines an opening shape and a partial bottom surface for light reflection, and a first wide area and a second wide area defined by the inner wall surface, Between the narrow region between the first and second wide regions, the first wide region between the first wide region and the narrow region, and between the second wide region and the narrow region An opening extending in the array direction including the second width gradually changing region, The first lead includes a region facing the opening in the first wide region and a region facing the opening in the second wide region, and extends in the extension direction of the opening.
  • the second lead includes a region facing the opening in the first wide region and a region facing the opening in the second wide region, and extends in the extension direction of the opening. Away from the leads, The first optical semiconductor element is mounted on the first lead and connected to the second lead via a bonding wire in the first wide region of the opening of the resin molded body, The second optical semiconductor element is mounted on the first lead and connected to the second lead via a bonding wire in the second wide region of the opening of the resin molding.
  • Semiconductor device [2] The optical semiconductor device according to [1], wherein the resin molded body is a resin body molded by insert molding while partially incorporating the first and second leads therein.
  • the first lead includes a first exposed surface including a region facing the first wide region in the opening of the resin molded body, and a region including a region facing the second wide region and being separated from the first exposed face.
  • a second exposed surface The second lead includes a third exposed surface including a region facing the first wide region in the opening of the resin molded body, and a region including a region facing the second wide region and being separated from the third exposed face.
  • the optical semiconductor device according to any one of [1] to [6], which has a fourth exposed surface.
  • Each of the first and second leads has four or more electrode portions for external connection, which extend from the resin molded body to the outside.
  • any one of [1] to [7] The optical semiconductor device described.
  • the white pigment is at least one selected from the group consisting of titanium oxide, alumina, zinc oxide, magnesium oxide, antimony oxide, and zirconium oxide.
  • the optical semiconductor device of the present invention has the above configuration, it is suitable for realizing high light utilization efficiency while suppressing distortion such as warpage.

Abstract

Provided is an optical semiconductor device suitable for achieving high light use efficiency while still suppressing strain such as warp. An optical semiconductor device X according to the present invention is provided with: optical semiconductor elements E1, E2; a resin molded body 10 having an opening 10A; and leads 20, 30. The opening 10A of the resin molded body 10: includes large-width regions R1, R2, a small-width region R3, and width-tapered regions R4, R5 that are defined by an inner wall surface 11 thereof; and has an opening shape extending in a direction in which the aforementioned regions are arranged. Each of the leads 20, 30 includes a region facing the opening 10A in the large-width region R1 and a region facing the opening 10A in the large-width region R2 and extends in a direction in which the opening 10A extends. The optical semiconductor element E1 is mounted on the lead 20 in the large-width region R1 of the opening 10A and is connected to the lead 30 via a bonding wire W. The optical semiconductor element E2 is mounted on the lead 20 in the large-width region R2 of the opening 10A and is connected to the lead 30 via a bonding wire W.

Description

光半導体装置Optical semiconductor device
 本発明は、発光ダイオードなど光半導体素子を備える光半導体装置に関する。本願は、2018年12月5日に日本に出願した特願2018-227880号の優先権を主張し、その内容をここに援用する。 The present invention relates to an optical semiconductor device including an optical semiconductor element such as a light emitting diode. This application claims the priority of Japanese Patent Application No. 2018-227880 filed in Japan on December 5, 2018, and the contents thereof are incorporated herein.
 発光ダイオードなど光半導体素子を備える光半導体装置は、電球や蛍光灯、ネオン管、ハロゲンランプなど他の光源と比較して、寿命が長いことや、動作が安定していること、応答速度が速いことなどの特長を有する。このような光半導体装置については、様々な用途において実用化が進んでいる。例えば、照明用途(家庭・オフィスの一般屋内照明や街路灯など)、表示用途(交通信号機など)、光源用途(液晶テレビのバックライトなど)、および通信用途(赤外線リモコンなど)においてである。このような光半導体装置については、例えば下記の特許文献1~3に記載されている。 Opto-semiconductor devices equipped with photo-semiconductor elements such as light-emitting diodes have longer life, stable operation, and faster response speed than other light sources such as light bulbs, fluorescent lamps, neon tubes, and halogen lamps. It has features such as that. Such optical semiconductor devices are being put to practical use in various applications. For example, in lighting applications (general indoor lighting in homes and offices, street lights, etc.), display applications (traffic lights, etc.), light source applications (backlights for liquid crystal televisions, etc.), and communication applications (infrared remote controllers, etc.). Such optical semiconductor devices are described in Patent Documents 1 to 3 below, for example.
特開2006-140207号公報JP, 2006-140207, A 特開2008-252135号公報JP, 2008-252135, A 特開2017-76701号公報JP, 2017-76701, A
 図11から図13は、従来型の光半導体装置の一例である光半導体装置Yを表す。光半導体装置Yは、いわゆるモールドアレイパッケージ(MAP)の形態で形成されるものであって、樹脂成形体110と、一組のリード120,130と、発光ダイオードであるLED素子140と、透明樹脂部150とを備える。 11 to 13 show an optical semiconductor device Y which is an example of a conventional optical semiconductor device. The optical semiconductor device Y is formed in the form of a so-called mold array package (MAP), and includes a resin molding 110, a set of leads 120 and 130, an LED element 140 that is a light emitting diode, and a transparent resin. And a section 150.
 樹脂成形体110は、リード120,130を伴ういわゆるインサート成形によってリード120,130を保持する形態に成形された樹脂体であり、傾斜面111によって開口形状が規定される開口部112を有する。樹脂成形体110における少なくとも傾斜面111には、所定の態様によって光反射性が付与されている。リード120は、開口部112に臨む露出面121を有し、且つ、開口部112とは反対側で装置外に露出する露出面122を有する。リード130は、開口部112に臨む露出面131を有し、且つ、開口部112とは反対側で装置外に露出する露出面132を有する。リード120,130の露出面121,131は、光半導体装置Yにおける外部接続用の一対の端子をなす。LED素子140は、その図12中の上面側と下面側にそれぞれ電極部(図示せず)を有し、且つ、開口部112内の露出面121上に搭載されてリード120に対して電気的かつ機械的に接続されている。これとともに、LED素子140は、リード130の露出面131に対してボンディングワイヤWを介して電気的に接続されている。透明樹脂部150は、樹脂成形体110の開口部112に充填されて硬化された透明樹脂体であり、開口部112内のLED素子140等を封止している。 The resin molded body 110 is a resin body molded in a shape that holds the leads 120 and 130 by so-called insert molding with the leads 120 and 130, and has an opening 112 whose opening shape is defined by the inclined surface 111. At least the inclined surface 111 of the resin molded body 110 is provided with light reflectivity in a predetermined manner. The lead 120 has an exposed surface 121 that faces the opening 112, and has an exposed surface 122 that is exposed to the outside of the device on the side opposite to the opening 112. The lead 130 has an exposed surface 131 that faces the opening 112, and also has an exposed surface 132 that is exposed to the outside of the device on the side opposite to the opening 112. The exposed surfaces 121 and 131 of the leads 120 and 130 form a pair of terminals for external connection in the optical semiconductor device Y. The LED element 140 has electrode portions (not shown) on the upper surface side and the lower surface side in FIG. 12, and is mounted on the exposed surface 121 in the opening 112 and electrically connected to the leads 120. And they are mechanically connected. At the same time, the LED element 140 is electrically connected to the exposed surface 131 of the lead 130 via the bonding wire W. The transparent resin portion 150 is a transparent resin body filled in the opening 112 of the resin molded body 110 and cured, and seals the LED element 140 and the like in the opening 112.
 このような構成の光半導体装置YにおいてLED素子140から光が発せられる場合、その光は開口部112内での反射を経て又は反射を経ずに透明樹脂部150を通過して開口部112外に出射される。 When light is emitted from the LED element 140 in the optical semiconductor device Y having such a configuration, the light passes through the transparent resin portion 150 with or without reflection inside the opening 112 and passes through the outside of the opening 112. Is emitted to.
 樹脂成形体(光半導体装置Yでは樹脂成形体110)とリード部材(光半導体装置Yではリード120,130)とが一体成形されてなる部位を備える光半導体装置においては、樹脂成形体とリード部材との間に有意な熱膨張率差がある。そのため、従来、光半導体装置の製造過程や実装過程では、前記の熱膨張率差に起因して光半導体装置内の各所に内部応力が発生し、それが当該装置の反りなど歪みを生じさせることがある。光半導体装置における反りなど歪みは、樹脂成形体からのリード部材の部分的離脱などの構造的劣化、ひいては特性的劣化の原因となりうる。 In an optical semiconductor device including a portion in which a resin molded body (resin molded body 110 in the optical semiconductor device Y) and a lead member (leads 120 and 130 in the optical semiconductor device Y) are integrally molded, the resin molded body and the lead member There is a significant difference in coefficient of thermal expansion between and. Therefore, conventionally, in the manufacturing process or mounting process of an optical semiconductor device, internal stress is generated at various places in the optical semiconductor device due to the difference in the coefficient of thermal expansion, which causes distortion such as warpage of the device. There is. The warp or other distortion in the optical semiconductor device may cause structural deterioration such as partial detachment of the lead member from the resin molded body, and eventually characteristic deterioration.
 一方、光半導体装置においては、従来、用途に応じた充分な明るさを得られない場合がある。 On the other hand, in the case of optical semiconductor devices, it may not be possible to obtain sufficient brightness according to the application.
 本発明は、以上のような事情のもとで考え出されたものであって、その目的は、反りなど歪みを抑制しつつ高い光利用効率を実現するのに適した光半導体装置を提供することにある。 The present invention has been devised under the circumstances as described above, and an object thereof is to provide an optical semiconductor device suitable for realizing high light utilization efficiency while suppressing distortion such as warpage. Especially.
 本発明によると、光半導体装置が提供される。この光半導体装置は、第1光半導体素子と、第2光半導体素子と、互いに離隔している第1リードおよび第2リードと、これらリードと一体化されている樹脂成形体とを備える。 According to the present invention, an optical semiconductor device is provided. This optical semiconductor device includes a first optical semiconductor element, a second optical semiconductor element, a first lead and a second lead that are separated from each other, and a resin molded body that is integrated with these leads.
 樹脂成形体は、例えばインサート成形により、第1および第2リードを部分的に内部に取り込みつつ成形された樹脂体である。これとともに、樹脂成形体は、開口形状を規定する光反射用の内壁面と、光反射用の部分底面とを有する、リフレクタ開口部である開口部を有する(部分底面は、開口部の底面の一部をなし、離隔している両リード間に位置する領域を含む)。この開口部ないしその開口形状は、その内壁面によって規定される第1幅広領域と、第2幅広領域と、当該第1および第2幅広領域の間の幅狭領域と、第1幅広領域および幅狭領域の間の第1幅漸変領域と、第2幅広領域および幅狭領域の間の第2幅漸変領域とを含み、且つこれらの配列方向に延びる。このようなリフレクタ開口部の内壁面は、好ましくは、開口部における底面から開口端にかけて開口形状が広がるように、傾斜している。 The resin molded body is a resin body molded by, for example, insert molding while partially incorporating the first and second leads therein. Along with this, the resin molded body has an opening that is a reflector opening having an inner wall surface for light reflection that defines the opening shape and a partial bottom surface for light reflection (the partial bottom surface is the bottom surface of the opening portion). Part, including the area located between the two leads that are spaced apart). The opening or the shape of the opening has a first wide area defined by the inner wall surface, a second wide area, a narrow area between the first and second wide areas, the first wide area and the width. A first width-graded region between the narrow regions and a second width-graded region between the second wide region and the narrow region are included and extend in the arrangement direction. The inner wall surface of such a reflector opening is preferably inclined so that the opening shape spreads from the bottom surface of the opening to the opening end.
 第1リードは、上記の第1幅広領域内で開口部に臨む領域と上記の第2幅広領域内で開口部に臨む領域とを含んで樹脂成形体の開口部の延び方向に延びる。また、第1リードは、好ましくは、樹脂成形体から外部に延出している電極部を有する。このような態様で、第1リードは樹脂成形体によって部分的に被覆されつつ保持されている。 The first lead includes a region facing the opening in the first wide region and a region facing the opening in the second wide region, and extends in the extending direction of the opening of the resin molded body. Further, the first lead preferably has an electrode portion extending from the resin molded body to the outside. In this manner, the first lead is held while being partially covered with the resin molding.
 第2リードは、上記の第1幅広領域内で開口部に臨む領域と上記の第2幅広領域内で開口部に臨む領域とを含んで樹脂成形体の開口部の延び方向に延び、且つ第1リードから離隔している。また、第2リードは、好ましくは、樹脂成形体から外部に延出している電極部を有する。このような態様で、第2リードは樹脂成形体によって部分的に被覆されつつ保持されている。 The second lead includes a region facing the opening in the first wide region and a region facing the opening in the second wide region, and extends in the extending direction of the opening of the resin molded body. Separated from one lead. Further, the second lead preferably has an electrode portion extending from the resin molded body to the outside. In this manner, the second lead is held while being partially covered with the resin molding.
 第1光半導体素子は、樹脂成形体の開口部の第1幅広領域内において、第1リード上に搭載され且つ第2リードにボンディングワイヤを介して接続されている。 The first optical semiconductor element is mounted on the first lead and connected to the second lead via a bonding wire in the first wide region of the opening of the resin molded body.
 第2光半導体素子は、樹脂成形体の開口部の第2幅広領域内において、第1リード上に搭載され且つ第2リードにボンディングワイヤを介して接続されている。 The second optical semiconductor element is mounted on the first lead and connected to the second lead via a bonding wire in the second wide region of the opening of the resin molded body.
 本発明の光半導体装置において、樹脂成形体の有する開口部(リフレクタ開口部)は、上述のように、それに含まれる上記各領域の配列方向に延びた開口形状を有する。そのように延びた開口形状のリフレクタ開口部の第1幅広領域内に第1光半導体素子が配置され且つ第2幅広領域内に第2光半導体素子が配置されるという上記構成は、本光半導体装置の発光駆動時にリフレクタ開口部の延び方向において明るさを均一化するうえで好適である。加えて、当該リフレクタ開口部において両光半導体素子が搭載される両リード間に光反射用の部分底面(樹脂成形体の一部)が介在するという上記構成は、開口部内の反射面を確保してリフレクタ開口部外への反射光量の増大を図るうえで好適である。更に加えて、このようなマルチ光半導体素子搭載型の本光半導体装置は、発光素子として高価格の高輝度素子の代わりに価格が半値未満の廉価な光半導体素子を採用して製造コストを抑制しつつ、発光駆動時の所定の明るさを確保するうえで好適である。 In the optical semiconductor device of the present invention, the opening (reflector opening) of the resin molding has an opening shape extending in the arrangement direction of each of the regions included therein, as described above. The above-described configuration in which the first optical semiconductor element is arranged in the first wide area and the second optical semiconductor element is arranged in the second wide area of the reflector opening having the opening shape thus extended is the present optical semiconductor. This is suitable for making the brightness uniform in the extending direction of the reflector opening when the device is driven to emit light. In addition, the above-described configuration in which the partial bottom surface (a part of the resin molded body) for light reflection is interposed between the leads on which both the optical semiconductor elements are mounted in the reflector opening portion ensures the reflection surface in the opening portion. It is suitable for increasing the amount of light reflected to the outside of the reflector opening. In addition, such an optical semiconductor device equipped with a multi-optical semiconductor element suppresses the manufacturing cost by adopting an inexpensive optical semiconductor element whose price is less than half the price as a light emitting element instead of a high-priced high-luminance element. At the same time, it is suitable for ensuring a predetermined brightness during light emission driving.
 本発明の光半導体装置において、樹脂成形体の有するリフレクタ開口部は、上述のように、その内壁面によって規定される第1および第2幅広領域と、第1および第2幅広領域の間の幅狭領域と、第1幅広領域および幅狭領域の間の第1幅漸変領域と、第2幅広領域および幅狭領域の間の第2幅漸変領域とを含んでこれらの配列方向に延びる開口形状を有する。そして、当該開口部における第1幅広領域内に第1光半導体素子は配され、且つ第2幅広領域内に第2光半導体素子は配されている。このような構成は、マルチ光半導体素子搭載型の本光半導体装置において、反りなど歪みを抑制しつつ高い光利用効率を実現するのに適する。その理由は次のとおりである。 In the optical semiconductor device of the present invention, the reflector opening of the resin molded body has the width between the first and second wide regions defined by the inner wall surface thereof, as described above. The narrow region, the first wide region and the first gradually changing region between the narrow regions, and the second wide region and the second gradually changing region between the narrow regions extend in the arrangement direction. It has an opening shape. The first optical semiconductor element is arranged in the first wide area of the opening and the second optical semiconductor element is arranged in the second wide area. Such a configuration is suitable for realizing high light utilization efficiency while suppressing distortion such as warpage in the present optical semiconductor device in which multiple optical semiconductor elements are mounted. The reason is as follows.
 樹脂成形体とリード部材とが一体成形されてなる部位を備える光半導体装置においては、樹脂成形体とリード部材との間に有意な熱膨張率差がある。そのため、実際上は、樹脂成形体とリード部材との一体物に占めるリード部材の割合が所定範囲内にて大きいほど、光半導体装置の製造過程や実装過程を経て当該光半導体装置に生ずる内部応力が大きい傾向にある。この内部応力は、製造される光半導体装置において、反りなど歪みの原因となりうる。本発明の光半導体装置における、樹脂成形体開口部(リフレクタ開口部)が第1および第2幅広領域の間の幅狭領域を有するという上記構成は、当該開口部を取り囲む樹脂成形体の壁構造体において開口部の幅狭領域に対応する箇所に厚肉部を設けるのに適する。樹脂成形体の壁構造体にこのような厚肉部を設けるのに適した構成は、樹脂成形体と第1および第2リードとの密着面積を確保するのに適し、従って、当該装置の反りなど歪みを抑制するのに適するのである。すなわち、本光半導体装置の樹脂成形体における当該厚肉部(樹脂成形体の壁構造体においては開口部内に突き出る凸部を有する部分)は、上述のように延びる開口形状のリフレクタ開口部の中央付近にて主に、本装置の反りを抑制する機能を発揮することが可能なのである。 In an optical semiconductor device that includes a portion where a resin molded body and a lead member are integrally molded, there is a significant difference in coefficient of thermal expansion between the resin molded body and the lead member. Therefore, in practice, as the proportion of the lead member in the integrated body of the resin molded body and the lead member is larger within a predetermined range, the internal stress generated in the optical semiconductor device through the manufacturing process and the mounting process of the optical semiconductor device is increased. Tends to be large. This internal stress can cause distortion such as warpage in the manufactured optical semiconductor device. In the optical semiconductor device of the present invention, the resin molded body opening (reflector opening) having the narrow region between the first and second wide regions has the above-described configuration. The resin molded body has a wall structure surrounding the opening. It is suitable for providing a thick portion at a location corresponding to the narrow region of the opening in the body. The configuration suitable for providing such a thick wall portion in the wall structure of the resin molded body is suitable for ensuring the contact area between the resin molded body and the first and second leads, and therefore, the warp of the device. It is suitable for suppressing distortion. That is, the thick portion (the portion having the protrusion protruding into the opening in the wall structure of the resin molded body) in the resin molded body of the present optical semiconductor device is the center of the reflector-shaped opening having the opening shape extending as described above. In the vicinity, the function of suppressing the warp of the device can be mainly exerted.
 また、本発明の光半導体装置において、樹脂成形体のリフレクタ開口部が第1幅広領域(第1光半導体素子が配される)と幅狭領域との間に第1幅漸変領域を有するとともに、第2幅広領域(第2光半導体素子が配される)と幅狭領域との間に第2幅漸変領域を有するという上記構成は、高い光利用効率を実現するうえで好適である。開口部内壁面において第1幅漸変領域を規定する領域(第1境界領域)は、第1幅広領域内の第1光半導体素子に対向する配向・形状を有しうる。内壁面のこのような第1境界領域は、本光半導体装置の発光駆動時に第1光半導体素子から発せられる光の一部を受けやすくて反射しやすく、従って、開口部外への反射光量の増大に寄与しうる。また、開口部内壁面において第2幅漸変領域を規定する領域(第2境界領域)は、第2幅広領域内の第2光半導体素子に対向する配向を有する。内壁面のこのような第2境界領域は、本光半導体装置の発光駆動時に第2光半導体素子から発せられる光の一部を受けやすくて反射しやすく、従って、開口部外への反射光量の増大に寄与しうる。このような光半導体装置は、高い光利用効率を実現するのに適するのである。 Further, in the optical semiconductor device of the present invention, the reflector opening of the resin molded body has a first width gradually changing region between the first wide region (where the first optical semiconductor element is arranged) and the narrow region. The above configuration in which the second wide region (where the second optical semiconductor element is arranged) and the narrow region have the second width gradually changing region is suitable for realizing high light utilization efficiency. A region (first boundary region) defining the first width gradually changing region on the inner wall surface of the opening may have an orientation/shape facing the first optical semiconductor element in the first wide region. Such a first boundary region of the inner wall surface is likely to receive and reflect a part of the light emitted from the first optical semiconductor element during light emission driving of the present optical semiconductor device, and therefore, the amount of light reflected to the outside of the opening may be reduced. Can contribute to the increase. Further, a region (second boundary region) that defines the second gradually changing region on the inner wall surface of the opening has an orientation facing the second optical semiconductor element in the second wide region. Such a second boundary region of the inner wall surface is likely to receive a part of the light emitted from the second optical semiconductor element during the light emission driving of the present optical semiconductor device and is easily reflected, so that the amount of the reflected light outside the opening is reduced. Can contribute to the increase. Such an optical semiconductor device is suitable for realizing high light utilization efficiency.
 以上のように、本発明の光半導体装置は、反りなど歪みを抑制しつつ、高い光利用効率を実現するのに適する。光半導体装置において、その反りなど歪みの抑制は、高い発光信頼性の確保に資する。光半導体装置において、高い光利用効率の実現は、高いエネルギー効率の確保に資する。したがって、本光半導体装置は、発光信頼性が高く且つエネルギー効率の良い発光デバイスとして設計するのに適する。 As described above, the optical semiconductor device of the present invention is suitable for realizing high light utilization efficiency while suppressing distortion such as warpage. In an optical semiconductor device, suppressing distortion such as warpage contributes to ensuring high light emission reliability. In an optical semiconductor device, realization of high light utilization efficiency contributes to ensuring high energy efficiency. Therefore, the present optical semiconductor device is suitable for designing as a light emitting device having high emission reliability and high energy efficiency.
 本光半導体装置において、好ましくは、樹脂成形体の開口部の第1幅漸変領域において内壁面は内側湾曲面を有し、且つ樹脂成形体の開口部の第2幅漸変領域において内壁面は内側湾曲面を有する。すなわち、本光半導体素子において、好ましくは、開口部内壁面の上記第1境界領域は内側湾曲面を有し、且つ開口部内壁面の上記第2境界領域は内側湾曲面を有する。このような構成は、高い光利用効率の実現に資する。 In the present optical semiconductor device, preferably, the inner wall surface has an inner curved surface in the first width change region of the opening of the resin molded body, and the inner wall surface in the second width change region of the opening of the resin molded body. Has an inner curved surface. That is, in the present optical semiconductor element, preferably, the first boundary region of the inner wall surface of the opening has an inner curved surface, and the second boundary region of the inner wall surface of the opening has an inner curved surface. Such a configuration contributes to the realization of high light utilization efficiency.
 本光半導体装置における第1リードは、好ましくは、樹脂成形体の開口部における第1幅広領域に臨む領域を含む第1露出面と、第2幅広領域に臨む領域を含み且つ第1露出面から離隔している第2露出面とを有する。これとともに、第2リードは、好ましくは、樹脂成形体の開口部における第1幅広領域に臨む領域を含む第3露出面と、第2幅広領域に臨む領域を含み且つ第3露出面から離隔している第4露出面とを有する。このような構成は、温度変化によるリード部材の膨張収縮を細分化して、本光半導体装置に生ずる内部応力を低減するうえで好適であり、従って、当該装置の反りなど歪みを抑制するうえで好適である。 The first lead in the present optical semiconductor device preferably includes a first exposed surface including a region facing the first wide region and a region facing the second wide region in the opening of the resin molded body, and from the first exposed face. A second exposed surface that is spaced apart. At the same time, the second lead preferably includes a third exposed surface including a region facing the first wide region in the opening of the resin molded body, and a region including a region facing the second wide region and separated from the third exposed face. The exposed fourth surface. Such a configuration is suitable for subdividing the expansion and contraction of the lead member due to temperature change to reduce the internal stress generated in the present optical semiconductor device, and is therefore suitable for suppressing distortion such as warpage of the device. Is.
 本光半導体装置において、第1および第2リードは、それぞれ、樹脂成形体から外部に延出している例えば四つ以上の複数の外部接続用の電極部を有する。このような多端子構成は、光半導体素子が搭載されうる実装基板の回路設計ないし回路構成について高い自由度を確保するうえで好適である。 In the present optical semiconductor device, the first and second leads each have a plurality of, for example, four or more electrode portions for external connection extending from the resin molded body to the outside. Such a multi-terminal configuration is suitable for ensuring a high degree of freedom regarding the circuit design or the circuit configuration of the mounting substrate on which the optical semiconductor element can be mounted.
本発明の一の実施形態に係る光半導体装置の平面図である。1 is a plan view of an optical semiconductor device according to an embodiment of the present invention. 図1に示す光半導体装置における線II-IIに沿った断面図である。FIG. 2 is a sectional view taken along line II-II in the optical semiconductor device shown in FIG. 1. 図1に示す光半導体装置における線III-IIIに沿った断面図である。FIG. 3 is a sectional view taken along line III-III in the optical semiconductor device shown in FIG. 1. 図1に示す光半導体装置における線IV-IVに沿った断面図である。FIG. 4 is a sectional view taken along line IV-IV in the optical semiconductor device shown in FIG. 1. 図1に示す光半導体装置における線V-Vに沿った断面図である。FIG. 5 is a cross-sectional view taken along the line VV in the optical semiconductor device shown in FIG. 1. 図1に示す光半導体装置における線VI-VIに沿った断面図である。FIG. 6 is a sectional view taken along the line VI-VI in the optical semiconductor device shown in FIG. 1. 図1に示す光半導体装置の裏面図である。FIG. 2 is a back view of the optical semiconductor device shown in FIG. 1. 図1に示す光半導体装置の変形例の平面図である。It is a top view of the modification of the optical semiconductor device shown in FIG. 図1に示す光半導体装置の変形例の一断面図である。FIG. 9 is a cross-sectional view of a modification of the optical semiconductor device shown in FIG. 1. 図1に示す光半導体装置の変形例の平面図である。It is a top view of the modification of the optical semiconductor device shown in FIG. 従来型の一の光半導体装置の平面図である。It is a top view of one conventional optical semiconductor device. 図11に示す光半導体装置における線XII-XIIに沿った断面図である。FIG. 12 is a sectional view taken along the line XII-XII in the optical semiconductor device shown in FIG. 11. 図11に示す光半導体装置の裏面図である。FIG. 12 is a back view of the optical semiconductor device shown in FIG. 11.
 図1から図7は、本発明の一の実施形態に係る光半導体装置Xを表す。図1は光半導体装置Xの平面図であり、図2から図6は、図1の線II-II、線III-III、線IV-IV、線V-V、および線VI-VIに沿った光半導体装置Xの断面図である。また、図7は光半導体装置Xの裏面図である。 1 to 7 show an optical semiconductor device X according to an embodiment of the present invention. FIG. 1 is a plan view of an optical semiconductor device X, and FIGS. 2 to 6 show light along line II-II, line III-III, line IV-IV, line VV, and line VI-VI in FIG. 3 is a cross-sectional view of the semiconductor device X. FIG. FIG. 7 is a rear view of the optical semiconductor device X.
 光半導体装置Xは、光半導体素子E1,E2と、樹脂成形体10と、互いに離隔しているリード20,30と、透明樹脂部40とを備える。光半導体装置Xは、本実施形態では、いわゆるモールドアレイパッケージ(MAP)の形態で形成されるものである。 The optical semiconductor device X includes optical semiconductor elements E1 and E2, a resin molded body 10, leads 20 and 30 separated from each other, and a transparent resin portion 40. In the present embodiment, the optical semiconductor device X is formed in the form of a so-called mold array package (MAP).
 光半導体素子E1,E2は、それぞれ、発光機能を有する素子であって、本実施形態では具体的には発光ダイオード(LED)素子である。LED素子を構成するための半導体材料としては、例えば、GaAlAs、AlInGaP、InGaN、GaP、GaAs、およびGaAsPが挙げられる。また、本実施形態では、光半導体素子E1,E2は、図2、図4および図5中の上面側と下面側にそれぞれ電極部(図示せず)を有する。 The optical semiconductor elements E1 and E2 are elements each having a light emitting function, and in the present embodiment, specifically, light emitting diode (LED) elements. Examples of the semiconductor material for forming the LED element include GaAlAs, AlInGaP, InGaN, GaP, GaAs, and GaAsP. Further, in the present embodiment, the optical semiconductor elements E1 and E2 have electrode portions (not shown) on the upper surface side and the lower surface side in FIGS. 2, 4 and 5, respectively.
 樹脂成形体10は、例えばインサート成形により、リード20,30を部分的に内部に取り込みつつ成形された樹脂体である。これとともに、樹脂成形体10は、光反射用の内壁面11と光反射用の部分底面12とを伴うリフレクタ開口部である開口部10Aを有する(部分底面12は、開口部10Aの底面の一部をなす)。開口部10Aの内壁面11は、開口部10Aの開口形状を規定する。また、樹脂成形体10における開口部10A側の所定の箇所(例えば図1に示す平面視において、リード20よりもリード30に近い箇所)には、いわゆるカソードマークとしての切り欠き(図示せず)が形成されていてもよい。このような樹脂成形体10は、例えば、白色顔料を含有する熱硬化性樹脂組成物よりなる。その熱硬化性樹脂としては、例えばエポキシ樹脂が挙げられる。熱硬化性樹脂に配合される白色顔料としては、例えば、酸化チタン、アルミナ、酸化亜鉛、酸化マグネシウム、酸化アンチモン、および酸化ジルコニウムが挙げられる。樹脂成形体10形成用の樹脂材料の市販品としては、例えば、株式会社ダイセル製の「AEW-700」が挙げられる。 The resin molded body 10 is a resin body molded by, for example, insert molding while partially incorporating the leads 20 and 30 therein. Along with this, the resin molded body 10 has an opening 10A that is a reflector opening along with an inner wall surface 11 for light reflection and a partial bottom surface 12 for light reflection (the partial bottom surface 12 is one of the bottom surfaces of the opening 10A). Form a part). The inner wall surface 11 of the opening 10A defines the opening shape of the opening 10A. In addition, a notch (not shown) as a so-called cathode mark is provided in a predetermined portion (for example, a portion closer to the lead 30 than the lead 20 in the plan view shown in FIG. 1) on the opening 10A side of the resin molded body 10. May be formed. Such a resin molded body 10 is made of, for example, a thermosetting resin composition containing a white pigment. Examples of the thermosetting resin include epoxy resin. Examples of the white pigment mixed with the thermosetting resin include titanium oxide, alumina, zinc oxide, magnesium oxide, antimony oxide, and zirconium oxide. Examples of commercially available resin materials for forming the resin molded body 10 include "AEW-700" manufactured by Daicel Corporation.
 樹脂成形体10の開口部10Aないしその開口形状は、開口部10Aの内壁面11によって規定される幅広領域R1、幅広領域R2、当該領域間の幅狭領域R3、および幅漸変領域R4,R5を含んでこれらの配列方向に延びる。幅漸変領域R4は、幅広領域R1と幅狭領域R3の間に位置する。幅漸変領域R5は、幅広領域R2と幅狭領域R3の間に位置する。このような開口部10Aの内壁面11は、本実施形態では、開口部10Aにおける底面から開口端にかけて開口形状が広がるように、傾斜している。 The opening 10A of the resin molded body 10 or its opening shape has a wide region R1, a wide region R2 defined by the inner wall surface 11 of the opening 10A, a narrow region R3 between the regions, and gradually changing regions R4, R5. And extend in the array direction. The gradually changing region R4 is located between the wide region R1 and the narrow region R3. The width gradually changing region R5 is located between the wide region R2 and the narrow region R3. In the present embodiment, the inner wall surface 11 of the opening 10A is inclined so that the opening shape spreads from the bottom surface of the opening 10A to the opening end.
 このような開口部10Aを取り囲む樹脂成形体10の壁構造体は、開口部10Aの幅広領域R1,R2に対応する箇所に薄肉部10aを有し、且つ、幅狭領域R3に対応する箇所に厚肉部10bを有する。薄肉部10aについて例えば図4および図5に示す厚さT1は、例えば0.1~0.4mmである。厚肉部10bについて例えば図6に示す厚さT2は、例えば0.2~0.8mmであり、好ましくは1.1T1~5T1である。 The wall structure of the resin molded body 10 surrounding the opening 10A has a thin portion 10a at a position corresponding to the wide regions R1 and R2 of the opening 10A and at a position corresponding to the narrow region R3. It has a thick portion 10b. The thickness T 1 shown in FIGS. 4 and 5 for the thin portion 10a is, for example, 0.1 to 0.4 mm. The second thickness T 2 showing the thick portion 10b in FIG. 6, for example is, for example, 0.2 ~ 0.8 mm, preferably 1.1T 1 ~ 5T 1.
 樹脂成形体10ないしその開口部10Aの延び方向D1における樹脂成形体10の長さL1は、例えば2.5~3.5mmである。長さL1に直交する方向D2(幅方向)における樹脂成形体10の長さ(幅)は、例えば1.2~2mmである。また、樹脂成形体10における上述の厚肉部10bの例えば図1に示す長さL2は、例えば0.5~1mmであり、好ましくは0.1L1~0.3L1である。 The length L 1 of the resin molded body 10 in the extending direction D 1 of the resin molded body 10 or the opening 10A thereof is, for example, 2.5 to 3.5 mm. The length (width) of the resin molded body 10 in the direction D 2 (width direction) orthogonal to the length L 1 is, for example, 1.2 to 2 mm. The length L 2 shown in FIG. 1, for example of the aforementioned thick portion 10b of the resin mold body 10 is, for example, 0.5 ~ 1 mm, preferably 0.1 L 1 ~ 0.3 L 1.
 リード20は、樹脂成形体10ないしその開口部10Aの延び方向D1に延びた全体形状を有するとともに、樹脂成形体10の開口部10Aに臨んで開口部10Aの底面の一部をなす露出面21,22を有し、且つ、開口部10Aとは反対の側にて露出している露出面23,24を有する。露出面21は、幅広領域R1内で開口部10Aに臨む領域を含む。上述の光半導体素子E1は、ハンダ材料や導電性接着剤など導電性接合材料を介してリード20の露出面21に搭載されて、リード20に対して電気的かつ機械的に接続されている。リード20の露出面22は、幅広領域R2内で開口部10Aに臨む領域を含む。上述の光半導体素子E2は、ハンダ材料や導電性接着剤など導電性接合材料を介してリード20の露出面22に搭載されて、リード20に対して電気的かつ機械的に接続されている。これら露出面21,22は開口部10A内で互いに離隔している。光半導体装置Xの発光駆動時に光半導体素子E1,E2から発せられる熱の一部は、リード20の露出面21,22,23,24を介して装置外に放出されうる。リード20はこのような放熱機能をも担う。また、リード20は、樹脂成形体10から外部に延出している電極部20aを有する。樹脂成形体10からの電極部20aの延出長さは、例えば0.1~2mmである。このような態様で、リード20は樹脂成形体10によって部分的に被覆されつつ保持されている。 The lead 20 has an overall shape extending in the extending direction D 1 of the resin molded body 10 or the opening 10A thereof, and is an exposed surface that faces the opening 10A of the resin molded body 10 and forms a part of the bottom surface of the opening 10A. 21 and 22, and also has exposed surfaces 23 and 24 exposed on the side opposite to the opening 10A. The exposed surface 21 includes a region facing the opening 10A in the wide region R1. The above-described optical semiconductor element E1 is mounted on the exposed surface 21 of the lead 20 via a conductive bonding material such as a solder material or a conductive adhesive, and is electrically and mechanically connected to the lead 20. The exposed surface 22 of the lead 20 includes a region facing the opening 10A in the wide region R2. The above-described optical semiconductor element E2 is mounted on the exposed surface 22 of the lead 20 via a conductive bonding material such as a solder material or a conductive adhesive, and is electrically and mechanically connected to the lead 20. These exposed surfaces 21 and 22 are separated from each other within the opening 10A. Part of the heat generated from the optical semiconductor elements E1 and E2 when the optical semiconductor device X is driven to emit light can be radiated to the outside of the device via the exposed surfaces 21, 22, 23 and 24 of the leads 20. The lead 20 also has such a heat dissipation function. Further, the lead 20 has an electrode portion 20 a extending from the resin molded body 10 to the outside. The extension length of the electrode portion 20a from the resin molded body 10 is, for example, 0.1 to 2 mm. In this manner, the lead 20 is held while being partially covered by the resin molding 10.
 リード30は、樹脂成形体10ないしその開口部10Aの延び方向D1に延びた全体形状を有するとともに、樹脂成形体10の開口部10Aに臨んで開口部10Aの底面の一部をなす露出面31,32を有し、且つ、開口部10Aとは反対の側にて露出している露出面33,34を有する。露出面31は、幅広領域R1内で開口部10Aに臨む領域を含む。この露出面31に対し、リード20の露出面21上の光半導体素子E1はボンディングワイヤWを介して電気的に接続されている。リード30の露出面32は、幅広領域R2内で開口部10Aに臨む領域を含む。この露出面32に対し、リード20の露出面22上の光半導体素子E2はボンディングワイヤWを介して電気的に接続されている。これら露出面31,32は開口部10A内で互いに離隔している。また、リード30は、樹脂成形体10から外部に延出している電極部30aを有する。樹脂成形体10からの電極部30aの延出長さは、例えば0.1~2mmである。このような態様で、リード30は樹脂成形体10によって部分的に被覆されつつ保持されている。 The lead 30 has an overall shape extending in the extending direction D 1 of the resin molded body 10 or the opening 10A thereof, and is an exposed surface that faces the opening 10A of the resin molded body 10 and forms a part of the bottom surface of the opening 10A. 31 and 32, and also has exposed surfaces 33 and 34 that are exposed on the side opposite to the opening 10A. The exposed surface 31 includes a region facing the opening 10A in the wide region R1. The optical semiconductor element E1 on the exposed surface 21 of the lead 20 is electrically connected to the exposed surface 31 via a bonding wire W. The exposed surface 32 of the lead 30 includes a region facing the opening 10A in the wide region R2. The optical semiconductor element E2 on the exposed surface 22 of the lead 20 is electrically connected to the exposed surface 32 via a bonding wire W. These exposed surfaces 31 and 32 are separated from each other in the opening 10A. Moreover, the lead 30 has an electrode portion 30 a extending from the resin molded body 10 to the outside. The extension length of the electrode portion 30a from the resin molded body 10 is, for example, 0.1 to 2 mm. In this manner, the lead 30 is held while being partially covered by the resin molding 10.
 リード20,30は、それぞれ、導電性を有する金属材料よりなる。リード用の金属材料としては、例えば、Cu、Cu合金、および42%Ni-Fe合金が挙げられる。また、リード20,30の厚さは、それぞれ、例えば0.1~0.3mmである。このようなリード20,30は、例えば、金属プレートに対するエッチング加工や打ち抜き加工を経て形成することができる。リード20,30の表面は、Agめっき処理など所定のめっき処理が施されていてもよい。 The leads 20 and 30 are each made of a conductive metal material. Examples of the metal material for the lead include Cu, Cu alloy, and 42% Ni—Fe alloy. The thickness of each of the leads 20 and 30 is, for example, 0.1 to 0.3 mm. Such leads 20 and 30 can be formed, for example, by etching or punching a metal plate. The surfaces of the leads 20 and 30 may be subjected to a predetermined plating treatment such as Ag plating treatment.
 透明樹脂部40は、樹脂成形体10の開口部10Aに充填されて硬化された透明樹脂体であり、透明性を有する半導体用封止材料よりなる。そのような封止材料としては、例えば、エポキシ系封止材およびシリコーン系封止材が挙げられる。エポキシ系封止材の市販品としては、例えば、株式会社ダイセル製の「CELVENUS W0973」および「CELVENUS W0925」が挙げられる。シリコーン系封止材の市販品としては、例えば、株式会社ダイセル製の「CELVENUS A2045」および「CELVENUS A0246」が挙げられる。 The transparent resin portion 40 is a transparent resin body filled in the opening 10A of the resin molded body 10 and cured, and is made of a semiconductor sealing material having transparency. Examples of such a sealing material include an epoxy-based sealing material and a silicone-based sealing material. Examples of commercially available epoxy-based encapsulants include “CELVENUS W0973” and “CELVENUS W0925” manufactured by Daicel Corporation. Examples of commercially available silicone-based encapsulants include “CELVENUS A2045” and “CELVENUS A0246” manufactured by Daicel Corporation.
 このような光半導体素子Xは、例えば次のようないわゆるラインモールド方式で製造される。まず、所定のリードフレームを用意する。このリードフレームは、平面視矩形の枠体と、その枠体内に一列に並ぶ光半導体装置形成区域ごとの、所定のパターン形状を有するパターン部とを有する。パターン部は、上述のリード20,30をなすこととなるリード部、リード部と枠体とを連結する連結部、および、リード部間を連結する連結部を含む。このようなリードフレームは、例えばエッチング加工によって作製することが可能である。次に、リードフレームの光半導体装置形成区域ごとに上述の樹脂成形体10を形成する。具体的には、リードフレームにおける複数の光半導体装置形成区域にわたって複数の樹脂成形体10を一括的に成形するための成形面を有する一組の金型について前記リードフレームを介在させつつ型締めした後、所定の温度条件および圧力条件の下、樹脂成形体10形成用の上述の白色顔料含有の熱硬化性樹脂組成物を、金型内に供給して成形する(インサート成形)。これにより、各光半導体装置形成区域に、上述の開口部10Aを伴う樹脂成形体10が形成される。成形法としては、例えばトランスファ成形やインジェクション成形が採用される。この成形工程の後、各光半導体装置形成区域の開口部10Aにおいて、リード20の上述の露出面21,22に対する導電性接合材料を介しての光半導体素子E1,E2のマウント、当該光半導体素子E1,E2と上述のリード30の対応する露出面31,32とのワイヤボンディング、および、上述の透明樹脂部40の例えばポッティングによる形成を経る。次に、光半導体装置形成区域ごとに、リードフレームにおけるパターン部の上述の連結部を切断してリード20,30の分離を行い、光半導体装置Xを単離する。例えば以上のようにして、光半導体装置Xを製造することができる。 Such an optical semiconductor element X is manufactured by, for example, a so-called line mold method as described below. First, a predetermined lead frame is prepared. This lead frame has a frame body having a rectangular shape in plan view and a pattern portion having a predetermined pattern shape for each optical semiconductor device forming area arranged in a line in the frame body. The pattern portion includes a lead portion that will form the leads 20 and 30 described above, a connecting portion that connects the lead portion and the frame body, and a connecting portion that connects the lead portions. Such a lead frame can be manufactured by etching, for example. Next, the above-mentioned resin molded body 10 is formed for each optical semiconductor device formation area of the lead frame. Specifically, a set of dies having a molding surface for collectively molding a plurality of resin moldings 10 over a plurality of optical semiconductor device forming areas in a lead frame is clamped while interposing the lead frame. After that, under the predetermined temperature condition and pressure condition, the thermosetting resin composition containing the above-mentioned white pigment for forming the resin molded body 10 is supplied into a mold and molded (insert molding). As a result, the resin molded body 10 having the above-described opening 10A is formed in each optical semiconductor device formation area. As the molding method, for example, transfer molding or injection molding is adopted. After this molding step, in the opening 10A of each optical semiconductor device formation area, the mount of the optical semiconductor elements E1 and E2 via the conductive bonding material to the above-mentioned exposed surfaces 21 and 22 of the lead 20, the optical semiconductor element concerned. Wire bonding between E1 and E2 and the corresponding exposed surfaces 31 and 32 of the lead 30 and formation of the transparent resin portion 40 by, for example, potting are performed. Next, the optical semiconductor device X is isolated by cutting the above-described connecting portion of the pattern portion in the lead frame to separate the leads 20 and 30 for each optical semiconductor device formation area. For example, the optical semiconductor device X can be manufactured as described above.
 光半導体装置Xの駆動時には、リード20,30を介して光半導体素子E1,E2に所定の電力が供給され、これによって光半導体素子E1,E2が発光する。光半導体素子E1,E2からの出射光の一部は樹脂成形体10の開口部10A内での反射を経て、光半導体素子E1,E2からの出射光の他の一部は開口部10A内での反射を経ずに、透明樹脂部40を通過して開口部10A外に出射される。 When the optical semiconductor device X is driven, predetermined power is supplied to the optical semiconductor elements E1 and E2 via the leads 20 and 30, whereby the optical semiconductor elements E1 and E2 emit light. A part of the emitted light from the optical semiconductor elements E1 and E2 is reflected in the opening 10A of the resin molded body 10, and the other part of the emitted light from the optical semiconductor elements E1 and E2 is inside the opening 10A. The light passes through the transparent resin portion 40 and is emitted to the outside of the opening 10A without being reflected.
 以上のような光半導体装置Xにおいて、樹脂成形体10の有する開口部10A(リフレクタ開口部)は、上述のように、それに含まれる上記各領域の配列方向に延びた開口形状を有する。そのように延びた開口形状の開口部10Aの幅広領域R1内に光半導体素子E1が配置され且つ幅広領域R2内に光半導体素子E2が配置されるという上述の構成は、光半導体装置Xの発光駆動時に開口部10A(リフレクタ開口部)の延び方向において明るさを均一化するうえで好適である。加えて、当該リフレクタ開口部において光半導体素子E1,E2が搭載されるリード20,30間に光反射用の部分底面12(樹脂成形体10の一部)が介在するという上述の構成は、開口部10A内の反射面を確保して開口部10A外への反射光量の増大を図るうえで好適である。更に加えて、このようなマルチ光半導体素子搭載型の光半導体装置Xは、発光素子として高価格の高輝度素子の代わりに価格が半値未満の廉価な光半導体素子(光半導体素子E1,E2)を採用して製造コストを抑制しつつ、発光駆動時の所定の明るさを確保するうえで好適である。 In the optical semiconductor device X as described above, the opening 10A (reflector opening) of the resin molded body 10 has an opening shape extending in the arrangement direction of the respective regions included therein, as described above. The above-described configuration in which the optical semiconductor element E1 is arranged in the wide area R1 and the optical semiconductor element E2 is arranged in the wide area R2 of the opening 10A having the opening shape thus extended is the light emission of the optical semiconductor device X. This is suitable for making the brightness uniform in the extending direction of the opening 10A (reflector opening) during driving. In addition, the above-described configuration in which the partial bottom surface 12 (a part of the resin molded body 10) for light reflection is interposed between the leads 20 and 30 on which the optical semiconductor elements E1 and E2 are mounted in the reflector opening is This is suitable for securing a reflection surface in the portion 10A and increasing the amount of light reflected to the outside of the opening 10A. In addition, such a multi-semiconductor optical device-equipped optical semiconductor device X is a low-priced optical semiconductor device (optical semiconductor devices E1 and E2) whose price is less than half price instead of a high-priced high-luminance device as a light-emitting device. Is suitable for securing a predetermined brightness at the time of driving the light emission while suppressing the manufacturing cost.
 光半導体装置Xにおいて、樹脂成形体10の有するリフレクタ開口部である開口部10Aは、上述のように、その内壁面11によって規定される幅広領域R1,R2、幅狭領域R3、および幅漸変領域R4,R5を含んでこれらの配列方向に延びる開口形状を有する。そのような開口部10Aにおける幅広領域R1内に光半導体素子E1は配され、且つ幅広領域R2内に光半導体素子E2は配されている。このような構成は、マルチ光半導体素子搭載型の光半導体装置Xにおいて、反りなど歪みを抑制しつつ高い光利用効率を実現するのに適する。その理由は次のとおりである。 In the optical semiconductor device X, the opening 10A, which is the reflector opening of the resin molded body 10, has the wide regions R1 and R2, the narrow region R3, and the gradually changing width defined by the inner wall surface 11 thereof as described above. It has an opening shape including the regions R4 and R5 and extending in the arrangement direction thereof. The optical semiconductor element E1 is arranged in the wide region R1 in such an opening 10A, and the optical semiconductor element E2 is arranged in the wide region R2. Such a configuration is suitable for realizing high light utilization efficiency while suppressing distortion such as warpage in the optical semiconductor device X in which multiple optical semiconductor elements are mounted. The reason is as follows.
 樹脂成形体とリード部材とが一体成形されてなる部位を備える光半導体装置においては、樹脂成形体とリード部材との間に有意な熱膨張率差がある。そのため、実際上は、樹脂成形体とリード部材との一体物に占めるリード部材の割合が所定範囲内にて大きいほど、光半導体装置の製造過程や実装過程を経て当該光半導体装置に生ずる内部応力が大きい傾向にある。この内部応力は、製造される光半導体装置において、反りなど歪みの原因となりうる。上述の光半導体装置Xにおける、樹脂成形体10の開口部10A(リフレクタ開口部)が幅広領域R1,R2間に幅狭領域R3を有するという上記構成は、開口部10Aを取り囲む樹脂成形体10の壁構造体において開口部10Aの幅狭領域R3に対応する箇所に厚肉部10bを設けるのに適する。樹脂成形体10の壁構造体にこのような厚肉部10bを設けるのに適した構成は、樹脂成形体10とリード20,30との密着面積を確保するのに適し、従って、光半導体装置Xの反りなど歪みを抑制するのに適するのである。すなわち、光半導体装置Xの樹脂成形体10におけるそのような厚肉部10b(樹脂成形体10の壁構造体においては開口部10A内に突き出る凸部を有する部分)は、上述のように延びる開口形状の開口部10A(リフレクタ開口部)の中央付近にて主に、本装置の反りを抑制する機能を発揮することが可能なのである。 In an optical semiconductor device that includes a portion where a resin molded body and a lead member are integrally molded, there is a significant difference in coefficient of thermal expansion between the resin molded body and the lead member. Therefore, in practice, as the proportion of the lead member in the integrated body of the resin molding and the lead member is larger within a predetermined range, the internal stress generated in the optical semiconductor device through the manufacturing process and the mounting process of the optical semiconductor device. Tends to be large. This internal stress can cause distortion such as warpage in the manufactured optical semiconductor device. In the above-described optical semiconductor device X, the above-described configuration in which the opening 10A (reflector opening) of the resin molded body 10 has the narrow region R3 between the wide regions R1 and R2 has the above-described configuration of the resin molded body 10 surrounding the opening 10A. It is suitable for providing the thick portion 10b at a location corresponding to the narrow region R3 of the opening 10A in the wall structure. The configuration suitable for providing such a thick wall portion 10b in the wall structure of the resin molded body 10 is suitable for ensuring the contact area between the resin molded body 10 and the leads 20, 30, and therefore, the optical semiconductor device. It is suitable for suppressing distortion such as warpage of X. That is, such a thick portion 10b in the resin molded body 10 of the optical semiconductor device X (a portion having a protrusion protruding into the opening 10A in the wall structure of the resin molded body 10) is an opening extending as described above. The function of suppressing the warp of the present device can be exhibited mainly near the center of the shaped opening 10A (reflector opening).
 また、光半導体装置Xでは、上述のように、樹脂成形体10の開口部10A(リフレクタ開口部)が幅広領域R1(光半導体素子E1が配される)と幅狭領域R3との間に幅漸変領域R4を有するとともに、幅広領域R2(光半導体素子E2が配される)と幅狭領域R3との間に幅漸変領域R5を有する。開口部10Aの内壁面11において幅漸変領域R4を規定する領域(第1境界領域)は、幅広領域R1内の光半導体素子E1に対向する配向・形状を有する。このような第1境界領域は、光半導体装置Xの発光駆動時に光半導体素子E1から発せられる光の一部を受けやすくて反射しやすく、従って、開口部10A外への反射光量の増大に寄与しうる。これとともに、開口部10A内壁面11において幅漸変領域R5を規定する領域(第2境界領域)は、幅広領域R2内の光半導体素子E2に対向する配向・形状を有する。内壁面11のこのような第2境界領域は、光半導体装置Xの発光駆動時に光半導体素子E2から発せられる光の一部を受けやすくて反射しやすく、従って、開口部10A外への反射光量の増大に寄与しうる。このような光半導体装置Xは、高い光利用効率を実現するのに適するのである。 Further, in the optical semiconductor device X, as described above, the opening 10A (reflector opening) of the resin molded body 10 has a width between the wide region R1 (where the optical semiconductor element E1 is arranged) and the narrow region R3. In addition to having the gradually changing region R4, it has the gradually changing region R5 between the wide region R2 (where the optical semiconductor element E2 is arranged) and the narrow region R3. A region (first boundary region) defining the gradually changing width region R4 on the inner wall surface 11 of the opening 10A has an orientation/shape facing the optical semiconductor element E1 in the wide region R1. Such a first boundary region is likely to receive a part of the light emitted from the optical semiconductor element E1 when the optical semiconductor device X is driven to emit light, and is likely to be reflected, thus contributing to an increase in the amount of reflected light outside the opening 10A. You can. Along with this, a region (second boundary region) defining the gradually changing width region R5 on the inner wall surface 11 of the opening 10A has an orientation/shape facing the optical semiconductor element E2 in the wide region R2. Such a second boundary region of the inner wall surface 11 easily receives and reflects a part of the light emitted from the optical semiconductor element E2 when the optical semiconductor device X is driven to emit light, and thus the amount of light reflected outside the opening 10A. Can contribute to the increase of Such an optical semiconductor device X is suitable for realizing high light utilization efficiency.
 以上のように、本実施形態の光半導体装置Xは、反りなど歪みを抑制しつつ、高い光利用効率を実現するのに適する。光半導体装置Xにおいて、その反りなど歪みの抑制は、高い発光信頼性の確保に資する。光半導体装置Xにおいて、高い光利用効率の実現は、高いエネルギー効率の確保に資する。したがって、光半導体装置Xは、発光信頼性が高く且つエネルギー効率の良い発光デバイスとして設計するのに適する。 As described above, the optical semiconductor device X of this embodiment is suitable for realizing high light utilization efficiency while suppressing distortion such as warpage. In the optical semiconductor device X, suppression of distortion such as warpage contributes to ensuring high light emission reliability. In the optical semiconductor device X, realization of high light utilization efficiency contributes to ensuring high energy efficiency. Therefore, the optical semiconductor device X is suitable for designing as a light emitting device having high emission reliability and high energy efficiency.
 上述の光半導体装置Xでは、例えば図8に示すように、樹脂成形体10の開口部10Aの幅漸変領域R4,R5において内壁面11は内側湾曲面11aを有していてもよい。このような構成は、高い光利用効率を実現するうえで好適である。光半導体装置Xの発光駆動時に光半導体素子E1,E2から発せられた光の一部が各内側湾曲面11aによって開口部10A外へ効果的に反射され、各内側湾曲面11aが開口部10A外への反射光量の増大に寄与するからである。 In the above optical semiconductor device X, for example, as shown in FIG. 8, the inner wall surface 11 may have an inner curved surface 11a in the width-graded regions R4 and R5 of the opening 10A of the resin molded body 10. Such a configuration is suitable for realizing high light utilization efficiency. A part of the light emitted from the optical semiconductor elements E1 and E2 when the optical semiconductor device X is driven to emit light is effectively reflected to the outside of the opening 10A by each inner curved surface 11a, and each inner curved surface 11a is outside the opening 10A. This is because it contributes to an increase in the amount of reflected light.
 光半導体装置Xにおけるリード20は、上述のように、樹脂成形体10の開口部10Aにおける幅広領域R1に臨む領域を含む露出面21と、幅広領域R2に臨む領域を含み且つ露出面21から離隔している露出面22とを有する。これとともに、リード30は、上述のように、樹脂成形体10の開口部10Aにおける幅広領域R1に臨む領域を含む露出面31と、幅広領域R2に臨む領域を含み且つ露出面31から離隔している露出面32とを有する。このような構成は、温度変化によるリード20,30の膨張収縮を細分化して、光半導体装置Xに生ずる内部応力を低減するうえで好適であり、従って、本装置の反りなど歪みを抑制するうえで好適である。 As described above, the lead 20 in the optical semiconductor device X includes the exposed surface 21 including the region facing the wide region R1 and the region facing the wide region R2 in the opening 10A of the resin molded body 10 and separated from the exposed face 21. The exposed surface 22. At the same time, the lead 30 includes the exposed surface 31 including the region facing the wide region R1 and the region facing the wide region R2 in the opening 10A of the resin molded body 10 and separated from the exposed surface 31 as described above. And an exposed surface 32. Such a configuration is suitable for subdividing the expansion and contraction of the leads 20, 30 due to the temperature change to reduce the internal stress generated in the optical semiconductor device X, and thus for suppressing the warpage or other distortion of the device. Is preferred.
 光半導体装置Xにおいて、リード20,30の電極部20a,30aは、その一部について例えば図9に示すように、樹脂成形体10の開口部10Aとは反対の側に折り曲げられた屈曲形状を有していてもよい。このような構成によると、光半導体装置Xが搭載される実装基板上において、当該実装基板の有する配線パターン(電極パッド部を含む)の構成によっては、光半導体装置Xと電極パッド部とを例えばハンダ付けによって電気的に接続しやすい場合がある。 In the optical semiconductor device X, the electrode portions 20a and 30a of the leads 20 and 30 have a bent shape in which a part thereof is bent to the side opposite to the opening 10A of the resin molded body 10, as shown in FIG. You may have. According to such a configuration, on the mounting substrate on which the optical semiconductor device X is mounted, the optical semiconductor device X and the electrode pad portion may be, for example, depending on the configuration of the wiring pattern (including the electrode pad portion) of the mounting substrate. It may be easy to connect electrically by soldering.
 光半導体装置Xにおいては、光半導体素子E1および/または光半導体素子E2として、一面上に二つの電極部を有するLED素子が採用されてもよい。そのようなLED素子を構成するための半導体材料としては、例えばInGaNが挙げられる。そのような光半導体素子E1,E2を備える光半導体装置Xでは、例えば図10に示すように、光半導体素子E1は、リード20の露出面21に対してボンディングワイヤWを介して電気的に接続されるとともに、リード30の露出面31に対して別のボンディングワイヤWを介して電気的に接続される。これとともに、光半導体素子E2は、リード20の露出面22に対してボンディングワイヤWを介して電気的に接続されるとともに、リード30の露出面32に対して別のボンディングワイヤWを介して電気的に接続される。 In the optical semiconductor device X, an LED element having two electrode portions on one surface may be adopted as the optical semiconductor element E1 and/or the optical semiconductor element E2. As a semiconductor material for forming such an LED element, for example, InGaN can be cited. In the optical semiconductor device X including such optical semiconductor elements E1 and E2, for example, as shown in FIG. 10, the optical semiconductor element E1 is electrically connected to the exposed surface 21 of the lead 20 via the bonding wire W. At the same time, it is electrically connected to the exposed surface 31 of the lead 30 via another bonding wire W. At the same time, the optical semiconductor element E2 is electrically connected to the exposed surface 22 of the lead 20 via the bonding wire W and electrically connected to the exposed surface 32 of the lead 30 via another bonding wire W. Connected to each other.
 光半導体装置Xにおいて、リード20は4箇所に電極部20aを有し、且つリード30は4箇所に電極部30aを有する。すなわち、光半導体装置Xは、外部接続用の8端子を有する構成を備える。このような構成は、光半導体素子が搭載されうる実装基板の回路設計ないし回路構成について高い自由度を確保することができ、好ましい。 In the optical semiconductor device X, the lead 20 has the electrode portions 20a at four locations, and the lead 30 has the electrode portions 30a at four locations. That is, the optical semiconductor device X has a configuration having eight terminals for external connection. Such a configuration is preferable because it can ensure a high degree of freedom in the circuit design or the circuit configuration of the mounting substrate on which the optical semiconductor element can be mounted.
X       光半導体装置
E1,E2   光半導体素子
10      樹脂成形体
10A     開口部
10a     薄肉部
10b     厚肉部
11      内壁面
11a     内側湾曲面
12      部分底面
R1      幅広領域(第1幅広領域)
R2      幅広領域(第2幅広領域)
R3      幅狭領域
R4      幅漸変領域(第1幅漸変領域)
R5      幅漸変領域(第2幅漸変領域)
20      リード(第1リード)
30      リード(第2リード)
21      露出面(第1露出面)
22      露出面(第2露出面)
31      露出面(第3露出面)
32      露出面(第4露出面)
20a,30a 電極部
40      透明樹脂部
W       ボンディングワイヤ
X optical semiconductor device E1, E2 optical semiconductor element 10 resin molded body 10A opening 10a thin portion 10b thick portion 11 inner wall surface 11a inner curved surface 12 partial bottom surface R1 wide area (first wide area)
R2 wide area (second wide area)
R3 narrow region R4 width gradually changing region (first width gradually changing region)
R5 width variation area (second width variation area)
20 leads (1st lead)
30th lead (second lead)
21 exposed surface (first exposed surface)
22 exposed surface (second exposed surface)
31 exposed surface (third exposed surface)
32 exposed surface (4th exposed surface)
20a, 30a electrode part 40 transparent resin part W bonding wire
 以上のまとめとして、本発明の構成及びそのバリエーションを以下に付記しておく。
[1]
 第1光半導体素子および第2光半導体素子と、
 第1リードおよび第2リードと、
 前記第1および第2リードと一体化されている樹脂成形体と、を備え、
 前記樹脂成形体は、開口形状を規定する光反射用の内壁面と光反射用の部分底面とを有する開口部であって、前記内壁面によって規定される第1幅広領域、第2幅広領域、当該第1および第2幅広領域の間の幅狭領域、前記第1幅広領域および前記幅狭領域の間の第1幅漸変領域、並びに、前記第2幅広領域および前記幅狭領域の間の第2幅漸変領域を含んでこれらの配列方向に延びる、開口部を有し、
 前記第1リードは、前記第1幅広領域内で前記開口部に臨む領域と前記第2幅広領域内で前記開口部に臨む領域とを含んで前記開口部の延び方向に延び、
 前記第2リードは、前記第1幅広領域内で前記開口部に臨む領域と前記第2幅広領域内で前記開口部に臨む領域とを含んで前記開口部の延び方向に延び、且つ前記第1リードから離隔し、
 前記第1光半導体素子は、前記樹脂成形体の前記開口部の前記第1幅広領域内において、前記第1リード上に搭載され且つ前記第2リードにボンディングワイヤを介して接続され、
 前記第2光半導体素子は、前記樹脂成形体の前記開口部の前記第2幅広領域内において、前記第1リード上に搭載され且つ前記第2リードにボンディングワイヤを介して接続されている、光半導体装置。
[2]
 前記樹脂成形体は、インサート成形により、第1および第2リードを部分的に内部に取り込みつつ成形された樹脂体である、[1]に記載の光半導体装置。
[3]
 前記開口部の前記内壁面は、開口部における底面から開口端にかけて開口形状が広がるように、傾斜している、[1]又は[2]に記載の光半導体装置。
[4]
 前記第1リードは、樹脂成形体から外部に延出している電極部を有する、[1]~[3]の何れか1つに記載の光半導体装置。
[5]
 前記第2リードは、樹脂成形体から外部に延出している電極部を有する、[1]~[4]の何れか1つに記載の光半導体装置。
[6]
 前記樹脂成形体の前記開口部の前記第1幅漸変領域において前記内壁面は内側湾曲面を有し、且つ、前記樹脂成形体の前記開口部の前記第2幅漸変領域において前記内壁面は内側湾曲面を有する、[1]~[5]の何れか1つに記載の光半導体装置。
[7]
 前記第1リードは、前記樹脂成形体の前記開口部における前記第1幅広領域に臨む領域を含む第1露出面と、前記第2幅広領域に臨む領域を含み且つ前記第1露出面から離隔している第2露出面とを有し、
 前記第2リードは、前記樹脂成形体の前記開口部における前記第1幅広領域に臨む領域を含む第3露出面と、前記第2幅広領域に臨む領域を含み且つ前記第3露出面から離隔している第4露出面とを有する、[1]~[6]の何れか1つに記載の光半導体装置。
[8]
 前記第1および第2リードは、それぞれ、前記樹脂成形体から外部に延出している四つ以上の複数の外部接続用の電極部を有する、[1]~[7]の何れか1つに記載の光半導体装置。
[9]
 前記樹脂成形体は、白色顔料を含有する、[1]~[8]の何れか1つに記載の光半導体装置。
[10]
 前記白色顔料が、酸化チタン、アルミナ、酸化亜鉛、酸化マグネシウム、酸化アンチモン、および酸化ジルコニウムからなる群より選択された少なくとも1つである、[9]に記載の光半導体装置。
[11]
 前記熱硬化性樹脂として、エポキシ樹脂を含む、[1]~[10]の何れか1つに記載の光半導体装置。
As a summary of the above, the configuration of the present invention and variations thereof will be additionally described below.
[1]
A first optical semiconductor element and a second optical semiconductor element;
A first lead and a second lead,
A resin molded body integrated with the first and second leads,
The resin molding is an opening having an inner wall surface for light reflection that defines an opening shape and a partial bottom surface for light reflection, and a first wide area and a second wide area defined by the inner wall surface, Between the narrow region between the first and second wide regions, the first wide region between the first wide region and the narrow region, and between the second wide region and the narrow region An opening extending in the array direction including the second width gradually changing region,
The first lead includes a region facing the opening in the first wide region and a region facing the opening in the second wide region, and extends in the extension direction of the opening.
The second lead includes a region facing the opening in the first wide region and a region facing the opening in the second wide region, and extends in the extension direction of the opening. Away from the leads,
The first optical semiconductor element is mounted on the first lead and connected to the second lead via a bonding wire in the first wide region of the opening of the resin molded body,
The second optical semiconductor element is mounted on the first lead and connected to the second lead via a bonding wire in the second wide region of the opening of the resin molding. Semiconductor device.
[2]
The optical semiconductor device according to [1], wherein the resin molded body is a resin body molded by insert molding while partially incorporating the first and second leads therein.
[3]
The optical semiconductor device according to [1] or [2], wherein the inner wall surface of the opening is inclined so that the opening shape spreads from the bottom surface of the opening to the opening end.
[4]
The optical semiconductor device according to any one of [1] to [3], wherein the first lead has an electrode portion extending from a resin molded body to the outside.
[5]
The optical semiconductor device according to any one of [1] to [4], wherein the second lead has an electrode portion extending from a resin molded body to the outside.
[6]
The inner wall surface has an inner curved surface in the first width gradually changing region of the opening of the resin molded body, and the inner wall surface in the second width gradually changing region of the opening of the resin molded body. Is an optical semiconductor device according to any one of [1] to [5], which has an inner curved surface.
[7]
The first lead includes a first exposed surface including a region facing the first wide region in the opening of the resin molded body, and a region including a region facing the second wide region and being separated from the first exposed face. A second exposed surface,
The second lead includes a third exposed surface including a region facing the first wide region in the opening of the resin molded body, and a region including a region facing the second wide region and being separated from the third exposed face. The optical semiconductor device according to any one of [1] to [6], which has a fourth exposed surface.
[8]
Each of the first and second leads has four or more electrode portions for external connection, which extend from the resin molded body to the outside. Any one of [1] to [7] The optical semiconductor device described.
[9]
The optical semiconductor device according to any one of [1] to [8], wherein the resin molded body contains a white pigment.
[10]
The optical semiconductor device according to [9], wherein the white pigment is at least one selected from the group consisting of titanium oxide, alumina, zinc oxide, magnesium oxide, antimony oxide, and zirconium oxide.
[11]
The optical semiconductor device according to any one of [1] to [10], which contains an epoxy resin as the thermosetting resin.
 本発明の光半導体装置は上記構成を有するため、反りなど歪みを抑制しつつ高い光利用効率を実現するのに適する。 Since the optical semiconductor device of the present invention has the above configuration, it is suitable for realizing high light utilization efficiency while suppressing distortion such as warpage.

Claims (3)

  1.  第1光半導体素子および第2光半導体素子と、
     第1リードおよび第2リードと、
     前記第1および第2リードと一体化されている樹脂成形体と、を備え、
     前記樹脂成形体は、開口形状を規定する光反射用の内壁面と光反射用の部分底面とを有する開口部であって、前記内壁面によって規定される第1幅広領域、第2幅広領域、当該第1および第2幅広領域の間の幅狭領域、前記第1幅広領域および前記幅狭領域の間の第1幅漸変領域、並びに、前記第2幅広領域および前記幅狭領域の間の第2幅漸変領域を含んでこれらの配列方向に延びる、開口部を有し、
     前記第1リードは、前記第1幅広領域内で前記開口部に臨む領域と前記第2幅広領域内で前記開口部に臨む領域とを含んで前記開口部の延び方向に延び、
     前記第2リードは、前記第1幅広領域内で前記開口部に臨む領域と前記第2幅広領域内で前記開口部に臨む領域とを含んで前記開口部の延び方向に延び、且つ前記第1リードから離隔し、
     前記第1光半導体素子は、前記樹脂成形体の前記開口部の前記第1幅広領域内において、前記第1リード上に搭載され且つ前記第2リードにボンディングワイヤを介して接続され、
     前記第2光半導体素子は、前記樹脂成形体の前記開口部の前記第2幅広領域内において、前記第1リード上に搭載され且つ前記第2リードにボンディングワイヤを介して接続されている、光半導体装置。
    A first optical semiconductor element and a second optical semiconductor element;
    A first lead and a second lead,
    A resin molded body integrated with the first and second leads,
    The resin molded body is an opening having an inner wall surface for light reflection that defines an opening shape and a partial bottom surface for light reflection, and includes a first wide area and a second wide area defined by the inner wall surface. Between the narrow region between the first and second wide regions, the first wide region between the first wide region and the narrow region, and between the second wide region and the narrow region An opening extending in the array direction including the second width gradually changing region,
    The first lead includes a region facing the opening in the first wide region and a region facing the opening in the second wide region, and extends in the extension direction of the opening.
    The second lead includes a region facing the opening in the first wide region and a region facing the opening in the second wide region, and extends in the extension direction of the opening. Away from the leads,
    The first optical semiconductor element is mounted on the first lead and connected to the second lead via a bonding wire in the first wide region of the opening of the resin molded body,
    The second optical semiconductor element is mounted on the first lead and connected to the second lead via a bonding wire in the second wide region of the opening of the resin molding. Semiconductor device.
  2.  前記樹脂成形体の前記開口部の前記第1幅漸変領域において前記内壁面は内側湾曲面を有し、且つ、前記樹脂成形体の前記開口部の前記第2幅漸変領域において前記内壁面は内側湾曲面を有する、請求項1に記載の光半導体装置。 The inner wall surface has an inner curved surface in the first width gradually changing region of the opening of the resin molded body, and the inner wall surface in the second width gradually changing region of the opening of the resin molded body. The optical semiconductor device according to claim 1, wherein has an inner curved surface.
  3.  前記第1リードは、前記樹脂成形体の前記開口部における前記第1幅広領域に臨む領域を含む第1露出面と、前記第2幅広領域に臨む領域を含み且つ前記第1露出面から離隔している第2露出面とを有し、
     前記第2リードは、前記樹脂成形体の前記開口部における前記第1幅広領域に臨む領域を含む第3露出面と、前記第2幅広領域に臨む領域を含み且つ前記第3露出面から離隔している第4露出面とを有する、請求項1または2に記載の光半導体装置。
    The first lead includes a first exposed surface including a region facing the first wide region and a region facing the second wide region in the opening of the resin molded body, and is separated from the first exposed face. A second exposed surface,
    The second lead includes a third exposed surface including a region facing the first wide region in the opening of the resin molded body, and a region including a region facing the second wide region and being separated from the third exposed face. The optical semiconductor device according to claim 1 or 2, further comprising a fourth exposed surface.
PCT/JP2019/047243 2018-12-05 2019-12-03 Optical semiconductor device WO2020116452A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018-227880 2018-12-05
JP2018227880A JP2020092155A (en) 2018-12-05 2018-12-05 Optical semiconductor device

Publications (1)

Publication Number Publication Date
WO2020116452A1 true WO2020116452A1 (en) 2020-06-11

Family

ID=70974652

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/047243 WO2020116452A1 (en) 2018-12-05 2019-12-03 Optical semiconductor device

Country Status (3)

Country Link
JP (1) JP2020092155A (en)
TW (1) TW202101789A (en)
WO (1) WO2020116452A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2024040624A (en) * 2022-09-13 2024-03-26 Nissha株式会社 Method for manufacturing resin molded products and resin molded products

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3130684U (en) * 2006-12-22 2007-04-05 凱鼎科技股▲ふん▼有限公司 Light emitting diode
JP2013012613A (en) * 2011-06-29 2013-01-17 Toyoda Gosei Co Ltd Light-emitting device
JP2015041685A (en) * 2013-08-21 2015-03-02 豊田合成株式会社 Light emitting device
JP2016154255A (en) * 2011-02-28 2016-08-25 日亜化学工業株式会社 Light-emitting device
US20180019386A1 (en) * 2015-01-19 2018-01-18 Lg Innotek Co., Ltd. Light emitting device

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101705700B1 (en) * 2010-07-01 2017-02-10 엘지이노텍 주식회사 Light Emitting Diode

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3130684U (en) * 2006-12-22 2007-04-05 凱鼎科技股▲ふん▼有限公司 Light emitting diode
JP2016154255A (en) * 2011-02-28 2016-08-25 日亜化学工業株式会社 Light-emitting device
JP2013012613A (en) * 2011-06-29 2013-01-17 Toyoda Gosei Co Ltd Light-emitting device
JP2015041685A (en) * 2013-08-21 2015-03-02 豊田合成株式会社 Light emitting device
US20180019386A1 (en) * 2015-01-19 2018-01-18 Lg Innotek Co., Ltd. Light emitting device

Also Published As

Publication number Publication date
TW202101789A (en) 2021-01-01
JP2020092155A (en) 2020-06-11

Similar Documents

Publication Publication Date Title
US7833811B2 (en) Side-emitting LED package and method of manufacturing the same
KR101360732B1 (en) Led package
KR200373718Y1 (en) High Brightness LED With Protective Function of Electrostatic Damage
JP2007287713A (en) Light-emitting device, and manufacturing method thereof
JP4961978B2 (en) Light emitting device and manufacturing method thereof
JP2005294736A (en) Manufacturing method for semiconductor light emitting device
JP2008244165A (en) Lighting system
JP2009290180A (en) Led package, and method of manufacturing the same
JP4976168B2 (en) Light emitting device
JP4242194B2 (en) Semiconductor light emitting device and manufacturing method thereof
JP2016092419A (en) Light-emitting device
WO2020116452A1 (en) Optical semiconductor device
JP6447580B2 (en) Light emitting device
JP2007335734A (en) Semiconductor device
US10186649B2 (en) Light emitting device
US9978920B2 (en) Package, light-emitting device, and method for manufacturing the same
KR100839122B1 (en) Side view type led lamp and its fabricating method and light emittid apparatus comprising the same
US8587016B2 (en) Light emitting device package having light emitting device on inclined side surface and lighting system including the same
JP6551210B2 (en) Light emitting device
JP2007208292A (en) Light-emitting device
WO2020116454A1 (en) Optical semiconductor device
JP6064415B2 (en) Light emitting device
KR100878398B1 (en) High power led package and fabrication method thereof
JP2005039193A (en) Package for housing light emitting element, light emitting device, and luminair
KR100803161B1 (en) Light emitting diode package using single crystal and light emitting device thereof

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19892091

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19892091

Country of ref document: EP

Kind code of ref document: A1