WO2021085271A1 - 光学ガラス板 - Google Patents
光学ガラス板 Download PDFInfo
- Publication number
- WO2021085271A1 WO2021085271A1 PCT/JP2020/039589 JP2020039589W WO2021085271A1 WO 2021085271 A1 WO2021085271 A1 WO 2021085271A1 JP 2020039589 W JP2020039589 W JP 2020039589W WO 2021085271 A1 WO2021085271 A1 WO 2021085271A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- optical glass
- glass plate
- plate according
- less
- content
- Prior art date
Links
- 239000005304 optical glass Substances 0.000 title claims abstract description 68
- 239000011521 glass Substances 0.000 claims abstract description 66
- 239000000203 mixture Substances 0.000 claims abstract description 21
- 238000002834 transmittance Methods 0.000 claims description 48
- 238000004833 X-ray photoelectron spectroscopy Methods 0.000 claims description 15
- 229910021193 La 2 O 3 Inorganic materials 0.000 claims description 9
- 229910004298 SiO 2 Inorganic materials 0.000 claims description 8
- 229910010413 TiO 2 Inorganic materials 0.000 claims description 8
- 238000001228 spectrum Methods 0.000 claims description 8
- 230000003190 augmentative effect Effects 0.000 claims description 6
- YCKRFDGAMUMZLT-UHFFFAOYSA-N Fluorine atom Chemical compound [F] YCKRFDGAMUMZLT-UHFFFAOYSA-N 0.000 claims description 3
- 229910052785 arsenic Inorganic materials 0.000 claims description 3
- RQNWIZPPADIBDY-UHFFFAOYSA-N arsenic atom Chemical compound [As] RQNWIZPPADIBDY-UHFFFAOYSA-N 0.000 claims description 3
- 229910052731 fluorine Inorganic materials 0.000 claims description 3
- 239000011737 fluorine Substances 0.000 claims description 3
- 230000005540 biological transmission Effects 0.000 abstract 2
- ZKATWMILCYLAPD-UHFFFAOYSA-N niobium pentoxide Chemical compound O=[Nb](=O)O[Nb](=O)=O ZKATWMILCYLAPD-UHFFFAOYSA-N 0.000 abstract 2
- CMIHHWBVHJVIGI-UHFFFAOYSA-N gadolinium(III) oxide Inorganic materials [O-2].[O-2].[O-2].[Gd+3].[Gd+3] CMIHHWBVHJVIGI-UHFFFAOYSA-N 0.000 abstract 1
- MRELNEQAGSRDBK-UHFFFAOYSA-N lanthanum oxide Inorganic materials [O-2].[O-2].[O-2].[La+3].[La+3] MRELNEQAGSRDBK-UHFFFAOYSA-N 0.000 abstract 1
- KTUFCUMIWABKDW-UHFFFAOYSA-N oxo(oxolanthaniooxy)lanthanum Chemical compound O=[La]O[La]=O KTUFCUMIWABKDW-UHFFFAOYSA-N 0.000 abstract 1
- 230000007423 decrease Effects 0.000 description 23
- 238000004031 devitrification Methods 0.000 description 10
- 238000002844 melting Methods 0.000 description 10
- 230000008018 melting Effects 0.000 description 10
- 229910052758 niobium Inorganic materials 0.000 description 9
- BASFCYQUMIYNBI-UHFFFAOYSA-N platinum Substances [Pt] BASFCYQUMIYNBI-UHFFFAOYSA-N 0.000 description 9
- 238000004017 vitrification Methods 0.000 description 9
- DHEQXMRUPNDRPG-UHFFFAOYSA-N strontium nitrate Chemical compound [Sr+2].[O-][N+]([O-])=O.[O-][N+]([O-])=O DHEQXMRUPNDRPG-UHFFFAOYSA-N 0.000 description 8
- 239000007791 liquid phase Substances 0.000 description 7
- 239000007800 oxidant agent Substances 0.000 description 6
- 229910052697 platinum Inorganic materials 0.000 description 6
- 239000000126 substance Substances 0.000 description 5
- ZCCIPPOKBCJFDN-UHFFFAOYSA-N calcium nitrate Chemical compound [Ca+2].[O-][N+]([O-])=O.[O-][N+]([O-])=O ZCCIPPOKBCJFDN-UHFFFAOYSA-N 0.000 description 4
- 230000000694 effects Effects 0.000 description 4
- 239000006025 fining agent Substances 0.000 description 4
- 239000012535 impurity Substances 0.000 description 4
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 3
- 238000000026 X-ray photoelectron spectrum Methods 0.000 description 3
- 238000010521 absorption reaction Methods 0.000 description 3
- 229910052799 carbon Inorganic materials 0.000 description 3
- 239000013078 crystal Substances 0.000 description 3
- 230000007547 defect Effects 0.000 description 3
- 229910052737 gold Inorganic materials 0.000 description 3
- 229910052739 hydrogen Inorganic materials 0.000 description 3
- 230000003287 optical effect Effects 0.000 description 3
- 229910052760 oxygen Inorganic materials 0.000 description 3
- 229910052703 rhodium Inorganic materials 0.000 description 3
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 description 2
- 229910018068 Li 2 O Inorganic materials 0.000 description 2
- 238000000137 annealing Methods 0.000 description 2
- IWOUKMZUPDVPGQ-UHFFFAOYSA-N barium nitrate Chemical compound [Ba+2].[O-][N+]([O-])=O.[O-][N+]([O-])=O IWOUKMZUPDVPGQ-UHFFFAOYSA-N 0.000 description 2
- 210000000695 crystalline len Anatomy 0.000 description 2
- 238000005516 engineering process Methods 0.000 description 2
- 239000006066 glass batch Substances 0.000 description 2
- 229910052734 helium Inorganic materials 0.000 description 2
- 239000001257 hydrogen Substances 0.000 description 2
- 238000000034 method Methods 0.000 description 2
- 239000006060 molten glass Substances 0.000 description 2
- 238000000465 moulding Methods 0.000 description 2
- FGIUAXJPYTZDNR-UHFFFAOYSA-N potassium nitrate Chemical compound [K+].[O-][N+]([O-])=O FGIUAXJPYTZDNR-UHFFFAOYSA-N 0.000 description 2
- 238000001556 precipitation Methods 0.000 description 2
- 239000002994 raw material Substances 0.000 description 2
- 239000011734 sodium Substances 0.000 description 2
- VWDWKYIASSYTQR-UHFFFAOYSA-N sodium nitrate Chemical compound [Na+].[O-][N+]([O-])=O VWDWKYIASSYTQR-UHFFFAOYSA-N 0.000 description 2
- 238000007088 Archimedes method Methods 0.000 description 1
- UXVMQQNJUSDDNG-UHFFFAOYSA-L Calcium chloride Chemical compound [Cl-].[Cl-].[Ca+2] UXVMQQNJUSDDNG-UHFFFAOYSA-L 0.000 description 1
- 229910052783 alkali metal Inorganic materials 0.000 description 1
- 150000001340 alkali metals Chemical class 0.000 description 1
- PNEYBMLMFCGWSK-UHFFFAOYSA-N aluminium oxide Inorganic materials [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 description 1
- 238000004458 analytical method Methods 0.000 description 1
- 229910052787 antimony Inorganic materials 0.000 description 1
- 229910000410 antimony oxide Inorganic materials 0.000 description 1
- 229910052786 argon Inorganic materials 0.000 description 1
- 229910001628 calcium chloride Inorganic materials 0.000 description 1
- 239000001110 calcium chloride Substances 0.000 description 1
- 229910002091 carbon monoxide Inorganic materials 0.000 description 1
- 150000001768 cations Chemical class 0.000 description 1
- 239000003638 chemical reducing agent Substances 0.000 description 1
- 238000004040 coloring Methods 0.000 description 1
- 239000000470 constituent Substances 0.000 description 1
- 238000009826 distribution Methods 0.000 description 1
- 230000007613 environmental effect Effects 0.000 description 1
- 239000000156 glass melt Substances 0.000 description 1
- 238000010438 heat treatment Methods 0.000 description 1
- 239000001307 helium Substances 0.000 description 1
- SWQJXJOGLNCZEY-UHFFFAOYSA-N helium atom Chemical compound [He] SWQJXJOGLNCZEY-UHFFFAOYSA-N 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 238000005259 measurement Methods 0.000 description 1
- 229910052751 metal Inorganic materials 0.000 description 1
- 239000002184 metal Substances 0.000 description 1
- 229910052754 neon Inorganic materials 0.000 description 1
- 229910052757 nitrogen Inorganic materials 0.000 description 1
- 230000003647 oxidation Effects 0.000 description 1
- 238000007254 oxidation reaction Methods 0.000 description 1
- VTRUBDSFZJNXHI-UHFFFAOYSA-N oxoantimony Chemical compound [Sb]=O VTRUBDSFZJNXHI-UHFFFAOYSA-N 0.000 description 1
- 235000010333 potassium nitrate Nutrition 0.000 description 1
- 239000004323 potassium nitrate Substances 0.000 description 1
- 239000010970 precious metal Substances 0.000 description 1
- 210000001747 pupil Anatomy 0.000 description 1
- 230000001105 regulatory effect Effects 0.000 description 1
- 210000001525 retina Anatomy 0.000 description 1
- 230000035939 shock Effects 0.000 description 1
- 235000010344 sodium nitrate Nutrition 0.000 description 1
- 239000004317 sodium nitrate Substances 0.000 description 1
- 210000003462 vein Anatomy 0.000 description 1
- 238000005303 weighing Methods 0.000 description 1
Classifications
-
- C—CHEMISTRY; METALLURGY
- C03—GLASS; MINERAL OR SLAG WOOL
- C03C—CHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
- C03C3/00—Glass compositions
- C03C3/04—Glass compositions containing silica
- C03C3/062—Glass compositions containing silica with less than 40% silica by weight
- C03C3/064—Glass compositions containing silica with less than 40% silica by weight containing boron
-
- C—CHEMISTRY; METALLURGY
- C03—GLASS; MINERAL OR SLAG WOOL
- C03C—CHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
- C03C3/00—Glass compositions
- C03C3/04—Glass compositions containing silica
- C03C3/062—Glass compositions containing silica with less than 40% silica by weight
- C03C3/064—Glass compositions containing silica with less than 40% silica by weight containing boron
- C03C3/068—Glass compositions containing silica with less than 40% silica by weight containing boron containing rare earths
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B1/00—Optical elements characterised by the material of which they are made; Optical coatings for optical elements
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B1/00—Optical elements characterised by the material of which they are made; Optical coatings for optical elements
- G02B1/04—Optical elements characterised by the material of which they are made; Optical coatings for optical elements made of organic materials, e.g. plastics
- G02B1/045—Light guides
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B27/00—Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
- G02B27/02—Viewing or reading apparatus
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B27/00—Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
- G02B27/01—Head-up displays
Definitions
- the present invention relates to an optical glass plate used as a light guide plate or the like of a wearable image display device.
- a glass plate is used as a component of wearable image display devices such as eyeglasses with a projector, eyeglass-type or goggle-type displays, virtual reality (VR) or augmented reality (AR) display devices, and virtual image display devices.
- the glass plate functions as, for example, a see-through light guide plate, and the image displayed on the glass plate can be seen while looking at the outside scenery through the glass plate.
- 3D display by using the technology of projecting different images on the left and right of the glasses, and to realize the virtual reality space by using the technology of connecting to the retina using the crystalline lens of the eye. is there.
- the glass plate is required to have a high refractive index from the viewpoints of wide-angle image, high brightness / high contrast, improved light guide characteristics, and the like.
- the glass plate used in the above-mentioned wearable image display device often uses an element having absorption in the visible region as a component for increasing the refractive index. Therefore, in general, high-refractive index glass has a problem that the light transmittance in the visible region is low. However, in a device for the above purpose, if the transmittance is low, the brightness of the image seen by the user is lowered. Therefore, the optical glass for the above-mentioned applications is required to have both a high refractive index and a high visible light transmittance.
- an object of the present invention is to provide an optical glass plate having a high refractive index and excellent visible light transmittance.
- the optical glass plate of the present invention contains at least one selected from Nb 2 O 5 , La 2 O 3 and Gd 2 O 3 as the glass composition, and has a refractive index (nd) of 1.90 to 2. It is characterized in that the internal transmittance ⁇ 450 at a wavelength of 450 nm at a thickness of 10 mm is 75% or more.
- the "internal transmittance” is the transmittance excluding the surface reflection loss on the incident side and the exit side of the glass plate, and is obtained from the measured value of the transmittance including the surface reflection loss of each of the thicknesses of 3 mm and 10 mm. Can be calculated.
- the internal transmittance tau 520 of wavelength 520nm in the thickness 10mm is preferably 85% or more.
- the optical glass plate of the present invention contains TiO 2 as a glass composition, and the ratio of the peak heights of Ti 2+ and Ti 4+ (Ti 2+ /) in the spectrum obtained by X-ray photoelectron spectroscopy (XPS) of the broken glass cross section.
- Ti 4+ is preferably 0.3 or less.
- Ti in the glass exists as Ti 2+ or Ti 4+.
- Ti 4+ does not cause a decrease in the visible light transmittance characteristic, but since Ti 2+ is a coloring center, the visible light transmittance characteristic is deteriorated. Therefore, by defining the ratio of the peak heights of Ti 2+ and Ti 4+ in the spectrum obtained by XPS as described above, it is possible to obtain a glass having excellent visible light transmittance.
- the optical glass plate of the present invention contains Nb 2 O 5 as a glass composition, and the ratio of the peak heights of Nb 2+ and Nb 5+ (Nb 2+ / Nb) in the spectrum obtained by X-ray photoelectron spectroscopy of the broken glass surface. 5+ ) is preferably 0.25 or less.
- Nb in glass exists as Nb 2+ or Nb 5+.
- Nb 5+ does not cause a decrease in the visible light transmittance characteristic, but Nb 2+ is a coloring center, so that the visible light transmittance characteristic is deteriorated. Therefore, by defining the ratio of the peak heights of Nb 2+ and Nb 5+ in the spectrum obtained by XPS as described above, it is possible to obtain a glass having excellent visible light transmittance.
- the optical glass plate of the present invention has a glass composition of SiO 2 1 to 20%, B 2 O 3 1 to 25%, TiO 2 1 to 30%, and Nb 2 O 5 1 in terms of oxide mass%. It preferably contains ⁇ 30%.
- Optical glass plate of the present invention in mass percent on the oxide basis, further La 2 O 3 10 ⁇ 60% , Gd 2 O 3 0 ⁇ 20%, ZrO 2 0 ⁇ 15%, and, Y 2 O 3 0 ⁇ It preferably contains 5%.
- the optical glass plate of the present invention preferably contains CaO 0 to 5% and SrO 0 to 5% in terms of oxide mass%.
- the optical glass plate of the present invention preferably has a content ratio of B 3+ and Si 4+ (B 3+ / Si 4+ ) in the glass composition of 0.5 to 5.
- the optical glass plate of the present invention substantially does not contain an arsenic component, a fluorine component and a lead component as a glass composition.
- substantially free means that the corresponding component is not intentionally contained in the glass, and does not completely eliminate unavoidable impurities. Objectively, it means that the content of each component including impurities is less than 0.1% in mass%.
- the optical glass plate of the present invention preferably has an Abbe number ( ⁇ d) of 20 to 35.
- the optical glass plate of the present invention preferably has a wall thickness of 1 mm or less.
- the optical glass plate of the present invention preferably has a major axis of 50 mm or more on the main surface.
- the optical glass plate of the present invention preferably has a liquidus viscosity of 10 0.5 dPa ⁇ s or more.
- the optical glass plate of the present invention preferably has a coefficient of thermal expansion at 30 to 300 ° C. of 95 ⁇ 10-7 / ° C. or less.
- the coefficient of thermal expansion refers to the average coefficient of linear thermal expansion measured by a dilatometer.
- the optical glass plate of the present invention preferably has a density of 5.5 g / cm 3 or less.
- the light guide plate of the present invention is characterized by being made of the above-mentioned optical glass plate.
- the light guide plate of the present invention is used in glasses with a projector, eyeglass-type or goggle-type displays, virtual reality (VR) or augmented reality (AR) display devices, and wearable image display devices selected from virtual image display devices. Is preferable.
- the wearable image display device of the present invention is characterized by including the above-mentioned light guide plate.
- an optical glass plate having a high refractive index and excellent visible light transmittance.
- the optical glass of the present invention has a minimum refractive index (nd) of 1.90, and is 1.91, 1.92, 1.93, 1.94, 1.95, 1.96, 1.97, 1. It is preferably .98, especially 1.99. Further, the maximum value of the refractive index (nd) is 2.30, which is 2.20, 2.10, 2.08, 2.06, 2.05, 2.04, 2.03, 2.02, especially. It is preferably 2.01. If the refractive index is too low, when used as a light guide plate for wearable image display devices such as eyeglasses with projectors, eyeglass-type or goggle-type displays, virtual reality (VR) or augmented reality (AR) display devices, and virtual image display devices, The viewing angle tends to be narrow. On the other hand, if the refractive index is too high, defects such as devitrification and veining tend to increase in the glass.
- nd minimum refractive index
- the optical glass of the present invention has an internal transmittance ⁇ 450 at a wavelength of 450 nm at a thickness of 10 mm of 75% or more, 80% or more, 82% or more, 83% or more, 84% or more, 85% or more, 86% or more, 87. % Or more, 88% or more, 89% or more, 90% or more, 91% or more, 92% or more, particularly 93% or more.
- the internal transmittance ⁇ 450 is increased, and the brightness of the image seen by the user in the above wearable image display device is likely to be increased.
- the internal transmittance ⁇ 520 is 85% or more, 87% or more, 89% or more, 90% or more, 91% or more, 92% or more, 93% or more, 94% or more, 95% or more, 96% or more. , 97% or more, especially 98% or more.
- the internal transmittance of the predetermined wavelength can be further increased by increasing the valences of Ti and Nb (that is, shifting Ti and Nb in the oxidation direction).
- the optical glass plate of the present invention contains at least one selected from Nb 2 O 5 , La 2 O 3 and Gd 2 O 3 as the glass composition. Since these components are components that increase the refractive index, it is possible to achieve a desired high refractive index characteristic by containing at least one of these components as an essential component.
- Nb 2 O 5 is a component that significantly increases the refractive index.
- the content is 1 to 30%, 1.7 to 25%, 2.5 to 22%, 3.3 to 18%, 4.4 to 14%, 5.3 to It is preferably 10%, particularly 6.1-9%. If the content of Nb 2 O 5 is too small, it becomes difficult to obtain the above effect. On the other hand, if the content of Nb 2 O 5 is too large, the liquidus temperature tends to rise sharply, the liquidus viscosity tends to decrease, and mass productivity tends to deteriorate. Further, since Nb serving as a coloring center increases, the internal transmittance tends to decrease.
- the optical glass of the present invention has a peak height ratio of Nb 2+ and Nb 5+ (Nb 2+ / Nb 5+ ) of 0.25 or less in a spectrum obtained by XPS (X-ray photoelectron spectroscopy) of a broken glass cross section. 0.2 or less, 0.15 or less, 0.12 or less, 0.1 or less, 0.09 or less, 0.08 or less, 0.07 or less, 0.06 or less, 0.05 or less, 0.04 or less, It is preferably 0.03 or less, particularly 0.02 or less. If Nb 2+ / Nb 5+ is too large, the absorption in the visible region tends to increase extremely and the internal transmittance tends to decrease. In the XPS spectrum, the peaks of Nb 2+ and Nb 5+ exist at energy positions of 202.1 eV and 207.5 eV, respectively.
- La 2 O 3 is a component that remarkably increases the refractive index.
- its content is 10 to 60%, 20 to 55%, 35 to 55%, 35 to 53%, 38 to 53%, 40 to 52%, 42 to 52%, 42 to It is preferably 51%, particularly 45-50.5%. If the content of La 2 O 3 is too small, it becomes difficult to obtain the above effect. On the other hand, if the content of La 2 O 3 is too large, the liquidus temperature tends to rise sharply, the liquidus viscosity tends to decrease, and mass productivity tends to deteriorate.
- Gd 2 O 3 is a component that increases the refractive index and improves the stability of vitrification.
- the content is 0 to 20%, more than 0 to 18%, 1 to 17%, 2 to 16%, 3 to 15%, 4 to 13%, 4 to 12%, 5 It is preferably to 11%, 5 to 10%, and particularly preferably 6 to 9%. If the content of Gd 2 O 3 is too large, the melting temperature becomes extremely high, and Nb and Ti are easily reduced, so that the internal transmittance is likely to decrease.
- the optical glass of the present invention can contain the following components in addition to the above components.
- SiO 2 is a glass skeleton component, which is a component that improves the stability of vitrification and the chemical durability.
- the content of SiO 2 is 1 to 20%, 1.2 to 18%, 1.5 to 18%, 1.8 to 18%, 2 to 15%, 2.5 to 15%, 2.5 to 13%. It is preferably 2.8 to 13%, 3 to 12%, 3 to 11%, 3.5 to 10%, 3.5 to 9%, and particularly preferably 4 to 8%. If the content of SiO 2 is too small, the viscosity of the glass drops sharply, the liquidus viscosity drops, and devitrification tends to occur during molding, so that mass productivity tends to deteriorate. On the other hand, if the content of SiO 2 is too large, the melting temperature becomes extremely high. As a result, Nb and Ti are likely to be reduced, so that the internal transmittance is likely to decrease. In addition, the refractive index tends to decrease.
- B 2 O 3 is is a glass skeleton component as well as SiO 2, not possible to increase the melting temperature of the glass as SiO 2, there is work to rather lower the melting temperature. It is also a component that contributes to the stability of vitrification.
- the content of B 2 O 3 is 1 to 25%, 2 to 22%, 3 to 22%, 3 to 20%, 4 to 18%, 5 to 16%, 5 to 15%, 5 to 13%, 6 to It is preferably 13%, 7 to 13%, 7.5 to 12%, 8 to 11.5%, and particularly preferably 8.3 to 9.5%. If the content of B 2 O 3 is too small, the melting temperature becomes extremely high, and Nb and Ti are easily reduced, so that the internal transmittance tends to decrease. On the other hand, if the content of B 2 O 3 is too large, the refractive index tends to decrease and the chemical durability tends to decrease.
- B 3+ / Si 4+ is 0.5 to 5, 0.9 to 4.5, 1.2 to 4, 1.5 to 4, 1.5 to 3.7, 1.7 to 3. It is preferably 5.5, particularly 1.8 to 3.4. If B 3+ / Si 4+ is too small, the melting temperature becomes extremely high and Nb and Ti are easily reduced, so that the internal transmittance tends to decrease. On the other hand, if B 3+ / Si 4+ is too large, the chemical durability of the glass tends to decrease. In addition, the viscosity of the glass drops sharply, the liquidus viscosity drops, and mass productivity tends to deteriorate.
- Si 4+ + B 3+ (the total amount of Si 4+ and B 3+ ) is 20 to 50%, 30 to 50%, 31 to 45%, 32 to 45%, 33 to 45%, 34 to 45%, especially 35 to. It is preferably 42%. If the amount of Si 4+ + B 3+ is too small, it becomes difficult to vitrify. On the other hand, if the amount of Si 4+ + B 3+ is too large, the refractive index tends to decrease.
- TiO 2 is a component that increases the refractive index. It also has the effect of improving chemical durability.
- the TiO 2 content should be 1-30%, 1.7-25%, 2.5-23%, 3.3-21%, 8-20%, 10-18%, especially 12-16%. Is preferable. If the content of TiO 2 is too small, it becomes difficult to obtain the above effect. On the other hand, if the content of TiO 2 is too large, the liquidus temperature tends to rise sharply, the liquidus viscosity tends to decrease, and mass productivity tends to deteriorate. Further, since Ti, which is the center of coloring, increases, the internal transmittance tends to decrease.
- the ratio of the peak heights of Ti 2+ and Ti 4+ is 0.3 or less in the spectrum obtained by XPS (X-ray photoelectron spectroscopy) of the broken glass cross section. 0.25 or less, 0.21 or less, 0.15 or less, 0.12 or less, 0.1 or less, 0.09 or less, 0.08 or less, 0.07 or less, 0.06 or less, 0.05 or less, It is preferably 0.04 or less, 0.03 or less, and particularly preferably 0.02 or less. If Ti 2+ / Ti 4+ is too large, the absorption in the visible region tends to increase extremely and the internal transmittance tends to decrease. In the XPS spectrum, the peaks of Ti 2+ and Ti 4+ exist at energy positions of 455.1 eV and 459.0 eV, respectively.
- ZrO 2 is a component that enhances the refractive index and chemical durability. However, since it acts as a crystal nucleus, it promotes devitrification of glass when its content is high. Therefore, the content of ZrO 2 is preferably 0 to 15%, more than 0 to 10%, 1 to 9%, 3 to 8%, 4 to 7.5%, and particularly preferably 5 to 7%.
- Y 2 O 3 is a component that remarkably increases the refractive index. However, if the content is too large, devitrification and veining are likely to occur. Therefore, the content of Y 2 O 3 is 0 to 5%, more than 0 to 5%, 0.1 to 4%, 0.3 to 2%, 0.4 to 1%, especially 0.5 to 0.8. It is preferably%.
- Yb 2 O 3 is a component that remarkably increases the refractive index. However, if the content is too large, devitrification and veining are likely to occur. Therefore, the content of Yb 2 O 3 is 0 to 5%, more than 0 to 5%, 0.1 to 4%, 0.3 to 2%, 0.4 to 1%, especially 0.5 to 0.8. It is preferably%.
- the content of Y 2 O 3 + Yb 2 O 3 (the total amount of Y 2 O 3 and Yb 2 O 3 ) is preferably 0 to 5%. If the content of Y 2 O 3 + Yb 2 O 3 is too large, the liquidus temperature rises sharply, the liquidus viscosity decreases, and devitrification and veining are likely to occur.
- the upper limit of the content of Y 2 O 3 + Yb 2 O 3 may be 4%, 3.5%, 3%, 2.5%, 2%, 1.5%, 1%, especially 0.9%. preferable.
- the lower limit of the content of Y 2 O 3 + Yb 2 O 3 is 0.1%, 0.2%, 0.3%, 0.4%, 0.5%, particularly 0.6%. preferable. In this way, it becomes easy to obtain the desired high refractive index characteristic.
- the optical glass of the present invention it is preferable to add various oxidizing agents at the time of melting in order to suppress the reduction of Nb and Ti.
- an oxidizing agent include calcium nitrate, strontium nitrate, barium nitrate, sodium nitrate, potassium nitrate and the like. Of these, calcium nitrate and strontium nitrate are particularly preferable.
- the total amount of the oxidizing agent to be added is preferably 0 to 5%, 0 to 3%, particularly 0.01 to 1% in mass% in the glass batch.
- components such as CaO, SrO, BaO, Na 2 O, and K 2 O are included in the glass composition. The range of action and content of these components is described below.
- CaO is a component that contributes to the stability of vitrification. However, if the content is too large, the liquidus temperature tends to rise or the refractive index tends to decrease. Therefore, the CaO content is preferably 0 to 5%, 0 to 2%, and particularly preferably 0.01 to 0.5%.
- SrO is a component that contributes to the stability of vitrification. However, if the content is too large, the refractive index tends to decrease. Therefore, the content of SrO is preferably 0 to 5%, 0 to 2%, and particularly preferably 0.01 to 0.5%.
- BaO is a component that contributes to the stability of vitrification and enhances the refractive index.
- the content of BaO is preferably 1% or less, 0.5% or less, 0.2% or less, and particularly preferably not contained.
- the total amount of CaO, SrO and BaO is 0 to 5%, 0 to 2%, 0-1%. It is preferably 0 to 0.9%, 0 to 0.8%, 0 to 0.7%, 0 to 0.6%, 0 to 0.5%, and particularly preferably 0.01 to 0.5%.
- Na 2 O and K 2 O are components that lower the softening point, but if the content is too large, devitrification and veining are likely to occur. Therefore, the content of these components is preferably 0 to 3% and 0 to 1%, respectively, and it is particularly preferable that they are not contained.
- Li 2 O which is another alkali metal component, is also a component that lowers the softening point, but if the content is too large, devitrification and veining are likely to occur. Therefore, the content of Li 2 O is preferably 0 to 3%, 0-1%, and particularly preferably not contained.
- a reducing agent such as carbon or metal at the time of melting.
- ZnO is a component that promotes devitrification in the composition system of the present invention, and it is preferable that the content thereof is small. Specifically, the content of ZnO is preferably 1% or less, 0.5% or less, more preferably 0.1% or less, and particularly preferably not contained.
- WO 3 is a component that increases the refractive index, but tends to decrease the light transmittance in the visible region. Therefore, the content is preferably 1% or less, 0.6% or less, 0.5% or less, 0.3% or less, and particularly preferably not contained.
- the arsenic component (As 2 O 3, etc.), the fluorine component (F 2, etc.), and the lead component (PbO, etc.) are substantially not contained because they have a large environmental load.
- a fining agent such as CaCl 2 or Sb 2 O 3 may be used.
- the total amount of these fining agents is preferably 8% or less, 5% or less, 2% or less, and particularly preferably 1% or less in the glass batch.
- the content of the fining agent component contained in the glass component, specifically Cl and Sb 2 O 3 is preferably 5% or less, each 3% or less, and particularly preferably 0.5% or less, respectively. ..
- the optical glass of the present invention may contain, for example, H 2 , CO 2 , CO, H 2 O, He, Ne, Ar, and N 2 as impurities up to 0.1% each.
- Pt, Rh, and Au may be contained as impurities.
- the contents of Pt, Rh, and Au are preferably 500 ppm or less, 300 ppm or less, and particularly preferably 100 ppm or less, respectively.
- the optical glass of the present invention has a liquid phase viscosity of 10 0.5 dPa ⁇ s or more, 10 0.6 dPa ⁇ s or more, 10 0.7 dPa ⁇ s or more, and particularly 10 0.8 dPa ⁇ s or more. Is preferable. If the liquidus viscosity is too low, it is necessary to mold with a low viscosity, so that defects such as veins are likely to occur in the glass, especially when the molding size is large.
- the upper limit of the liquidus viscosity is not particularly limited, but in reality, it is 10 1.5 dPa ⁇ s or less, and particularly 10 1.2 dPa ⁇ s or less.
- the optical glass of the present invention preferably has a liquid phase temperature of 1350 ° C. or lower, 1300 ° C. or lower, 1250 ° C. or lower, 1200 ° C. or lower, and further 1170 ° C. or lower. If the liquidus temperature is too high, the load on the precious metal pots and pipes will increase, and it will be necessary to replace them frequently, which tends to increase the manufacturing cost.
- the lower limit of the liquidus temperature is not particularly limited, but in reality, it is 1000 ° C. or higher, and further 1050 ° C. or higher.
- the liquidus viscosity and the liquidus temperature can be calculated by the method described in Examples described later.
- the Abbe number ( ⁇ d) of the optical glass of the present invention is not particularly limited, but is preferably 20 to 35, 22 to 32, and particularly 25 to 30 in consideration of the stability of vitrification.
- the optical glass of the present invention preferably has a density of 5.5 g / cm 3 or less, 5.3 g / cm 3 or less, and particularly preferably 5.1 g / cm 3 or less. If the density is too high, the weight of the wearable device using the optical glass of the present invention becomes heavy, and the discomfort when wearing the device increases.
- the lower limit of the density is not particularly limited, but if it is too low, other characteristics such as optical characteristics are deteriorated, so that it is preferably 4.0 g / cm 3 or more, particularly 4.5 g / cm 3 or more.
- the optical glass of the present invention preferably has a coefficient of thermal expansion at 30 to 300 ° C. of 95 ⁇ 10 -7 / ° C. or less, 91 ⁇ 10 -7 / ° C. or less, and particularly preferably 88 ⁇ 10 -7 / ° C. or less. If the coefficient of thermal expansion is too large, the glass is liable to break due to thermal shock.
- the lower limit of the coefficient of thermal expansion is not particularly limited, but if it is too low, other characteristics such as optical characteristics deteriorate. Therefore, it is preferably 75 ⁇ 10 -7 / ° C. or higher, particularly 80 ⁇ 10 -7 / ° C. or higher.
- the wall thickness of the optical glass plate of the present invention is preferably 1 mm or less, 0.8 mm or less, 0.7 mm or less, 0.6 mm or less, 0.5 mm or less, 0.4 mm or less, and particularly preferably 0.3 mm or less. If the wall thickness of the optical glass plate is too large, the weight of the wearable image display device using the optical glass plate becomes large, and the discomfort when the device is attached increases.
- the lower limit of the wall thickness is not particularly limited, but is 0.01 mm or more, 0.03 mm or more, and particularly 0.05 mm or more in consideration of mechanical strength.
- the shape of the optical glass plate of the present invention is, for example, a plate shape such as a polygon whose plane shape is circular, elliptical, or rectangular.
- the major axis (diameter in the case of a circle) of the optical glass plate may be 50 mm or more, 80 mm or more, 100 mm or more, 120 mm or more, 150 mm or more, 160 mm or more, 170 mm or more, 180 mm or more, 190 mm or more, particularly 200 mm or more. preferable. If the major axis of the optical glass plate is too small, it becomes difficult to use it for applications such as wearable image display devices. Moreover, it tends to be inferior in mass productivity.
- the upper limit of the major axis of the optical glass plate is not particularly limited, but is practically 1000 mm or less.
- the optical glass plate of the present invention is a component of a wearable image display device selected from glasses with a projector, a spectacle-type or goggle-type display, a virtual reality (VR) or augmented reality (AR) display device, and a virtual image display device. It is suitable as a light guide plate.
- the light guide plate is used for a so-called spectacle lens portion of a wearable image display device, and plays a role of guiding light emitted from an image display element included in the wearable image display device and emitting it toward the user's pupil. .. It is preferable that the surface of the light guide plate is provided with a diffraction grating for diffracting the light emitted from the image display element inside the light guide plate.
- Tables 1 to 4 show examples (No. 1 to 27) of the present invention.
- the glass raw materials were prepared so as to have the respective compositions shown in Tables 1 to 4.
- No. 8-10, 12, 26 used strontium nitrate as an oxidizing agent.
- No. In 9 and 23 antimony oxide was used, and No. In 13 and 27, calcium chloride was used as a fining agent.
- the glass was melted at 1200 to 1350 ° C. using a platinum crucible. The melting times were all 2 hours. Subsequently, the molten glass was poured onto a carbon plate, and after further annealing, a sample suitable for each measurement was prepared.
- the obtained sample was cut and the fractured surface was analyzed by XPS to obtain Ti 2+ / Ti 4+ and Nb 2+ / Nb 5+ .
- the results are shown in Tables 1 to 4. Specifically, the obtained XPS spectrum is smoothed at 9 points, the peak heights of Ti 2+ (455.1 eV) and Ti 4+ (459.0 eV) are read, and the ratio (Ti 2+ / Ti) is read. 4+ ) was calculated. Moreover, the peak heights of Nb 2+ (202.1 eV) and Nb 5+ (207.5 eV) were read, and the ratio (Nb 2+ / Nb 5+ ) was obtained.
- the XPS analysis was performed using a Quantera SXM manufactured by PHI under the conditions that the excited X-rays were Al K ⁇ 1 and 2 lines (1486.6 eV), the X-ray diameter was 200 ⁇ m, and the photoelectron escape angle was 45 °.
- the refractive index (nd), Abbe number ( ⁇ d), internal transmittance, liquidus temperature, liquidus viscosity, density, and coefficient of thermal expansion of the obtained sample were measured as follows. The results are shown in Tables 1 to 4.
- the refractive index is shown as a measured value for the d-line (587.6 nm) of the helium lamp.
- the internal transmittance was measured as follows. Prepare optically polished samples with a thickness of 10 mm ⁇ 0.1 mm and a thickness of 3 mm ⁇ 0.1 mm, and use a spectrophotometer (UV-3100 manufactured by Shimadzu Corporation) to obtain light transmittance including surface reflection loss (UV-3100). Linear transmittance) was measured at 1 nm intervals. The internal transmittance curve having a thickness of 10 mm was obtained from the linear transmittances having a thickness of 10 mm and 3 mm. The internal transmittances at wavelengths of 450 nm and 520 nm were read to obtain measured values.
- liquid phase temperature and liquid phase viscosity were determined as follows.
- the crushed glass sample was filled in a refractory container and melted in an electric furnace under the conditions of 1250 ° C.-0.5 hours.
- the refractory container was placed in an indirect heating type temperature gradient furnace and allowed to stand in an air atmosphere for 16 hours.
- the refractory vessel was taken out from the temperature gradient furnace and cooled to room temperature.
- the crystal precipitation location was determined by visually observing the cooled glass sample, and the liquidus temperature (crystal precipitation temperature) was specified from the temperature distribution information in the temperature gradient furnace.
- a lumpy glass sample was put into an alumina crucible and heated and melted.
- the viscosity of the glass at a plurality of temperatures was determined by the platinum ball pulling method.
- the constant of the Vogel-Fulcher equation was calculated using the measured value of the glass viscosity to create a viscosity curve.
- liquid phase viscosity Using the liquid phase temperature and viscosity curve obtained as described above, the viscosity corresponding to the liquid phase temperature (liquid phase viscosity) was obtained.
- the density was measured by the Archimedes method using a glass sample weighing about 10 g.
- the coefficient of thermal expansion was measured in the temperature range of 30 to 300 ° C. with a dilatometer using a glass sample formed to about 5 ⁇ ⁇ 20 mm.
- Samples 1 to 27 have a high refractive index characteristic of 1.95 to 2.00, and have an excellent internal transmittance ⁇ 450 of 77 to 98% and an internal transmittance ⁇ 520 of 86 to 99%.
- the liquidus temperature was as low as 1090 to 1225 ° C., and the liquidus viscosity was as high as 10 0.7 to 10 1.0 dPa ⁇ s, and the productivity was excellent.
- No. A large glass plate having a glass composition of 2, 5 and 10 was produced as follows.
- the glass raw materials were prepared so as to have the respective compositions of 2, 5 and 10.
- No. No. 10 used strontium nitrate as an oxidizing agent.
- melting was performed at 1300 ° C. using a large pot-type furnace, and molten glass was poured from a platinum nozzle into a 500 mm square carbon mold so as to have a thickness of 20 mm, and molded.
- the central part of the ingot was hollowed out in a circular shape, sliced thinly in the surface direction, both sides were lap-polished, and further polished to make a mirror surface.
- Table 5 shows the dimensions of the produced optical glass plate.
- the optical glass plates 1 to 3 shown in Table 5 had desired dimensions of 300 to 400 nm in diameter and 0.1 to 0.3 mm in wall thickness, and no defects such as devitrification and veining were confirmed. ..
- the optical glass plate of the present invention is used in glasses with a projector, eyeglass-type or goggle-type displays, virtual reality (VR) or augmented reality (AR) display devices, and wearable image display devices selected from virtual image display devices. It is suitable as a light guide plate.
Landscapes
- Physics & Mathematics (AREA)
- Chemical & Material Sciences (AREA)
- General Physics & Mathematics (AREA)
- Optics & Photonics (AREA)
- Life Sciences & Earth Sciences (AREA)
- Engineering & Computer Science (AREA)
- Chemical Kinetics & Catalysis (AREA)
- General Chemical & Material Sciences (AREA)
- Geochemistry & Mineralogy (AREA)
- Materials Engineering (AREA)
- Organic Chemistry (AREA)
- Glass Compositions (AREA)
Abstract
本発明は、高屈折率であり、かつ可視光透過率に優れた光学ガラス板を提供する。 ガラス組成としてNb2O5、La2O3及びGd2O3から選択される少なくとも1種を含有し、屈折率(nd)が1.90~2.30、かつ、厚み10mmでの波長450nmの内部透過率τ450が75%以上であることを特徴とする光学ガラス板。
Description
本発明は、ウェアラブル画像表示機器の導光板等として使用される光学ガラス板に関する。
プロジェクター付きメガネ、眼鏡型やゴーグル型ディスプレイ、仮想現実(VR)または拡張現実(AR)表示装置、虚像表示装置等のウェアラブル画像表示機器の構成部材としてガラス板が使用される。当該ガラス板は例えばシースルー導光板として機能し、ガラス板を通して外部の景色を見ながら、ガラス板に表示される映像を見ることができる。また、更にメガネの左右に異なる映像を投影する技術を利用して3D表示を実現したり、眼の水晶体を利用して網膜に結合させる技術を利用して仮想現実空間を実現することも可能である。当該ガラス板には、画像の広角化、高輝度・高コントラスト化、導光特性向上性等の面から、高屈折率であることが求められる。
上記のウェアラブル画像表示機器に使用されるガラス板は、屈折率を高める成分として可視域に吸収を持つ元素が使用されることが多い。そのため、一般に、高屈折率ガラスは可視域の光透過率が低いという問題がある。しかし上記のような用途のデバイスにおいて、透過率が低いと使用者が見る像の明るさが低下してしまう。そのため、上記のような用途の光学ガラスには高屈折率と高い可視光透過率の両立が求められている。
このような状況を鑑み、本発明は、高屈折率であり、かつ可視光透過率に優れた光学ガラス板を提供することを目的とする。
本発明者等が鋭意検討した結果、所定の成分をガラス組成として有するとともに、特定波長の内部透過率を規制することにより、前記課題を解決することを見出した。
即ち、本発明の光学ガラス板は、ガラス組成としてNb2O5、La2O3及びGd2O3から選択される少なくとも1種を含有し、屈折率(nd)が1.90~2.30、かつ、厚み10mmでの波長450nmの内部透過率τ450が75%以上であることを特徴とする。なお「内部透過率」とは、ガラス板の入射側及び出射側における表面反射損失を除いた透過率のことであり、厚さ3mm及び10mmのそれぞれの表面反射損失を含む透過率の測定値から算出することができる。
本発明の光学ガラス板は、厚み10mmでの波長520nmの内部透過率τ520が、85%以上であることが好ましい。
本発明の光学ガラス板は、ガラス組成としてTiO2を含有し、ガラス割断面のX線光電子分光法(XPS)により得られるスペクトルにおいて、Ti2+とTi4+のピーク高さの比(Ti2+/Ti4+)が0.3以下であることが好ましい。一般に、ガラス中のTiはTi2+やTi4+として存在する。ここで、Ti4+は可視光透過率特性の低下の原因にはならないが、Ti2+は着色中心となるため可視光透過率特性が低下する。そこで、XPSにより得られるスペクトルにおいて、Ti2+とTi4+のピーク高さの比を上記の通り規定することにより、可視光透過率に優れたガラスとすることが可能となる。
本発明の光学ガラス板は、ガラス組成としてNb2O5を含有し、ガラス割断面のX線光電子分光法により得られるスペクトルにおいて、Nb2+とNb5+のピーク高さの比(Nb2+/Nb5+)が0.25以下であることが好ましい。一般に、ガラス中のNbはNb2+やNb5+として存在する。ここで、Nb5+は可視光透過率特性の低下の原因にはならないが、Nb2+は着色中心となるため可視光透過率特性が低下する。そこで、XPSにより得られるスペクトルにおいて、Nb2+とNb5+のピーク高さの比を上記の通り規定することにより、可視光透過率に優れたガラスとすることが可能となる。
本発明の光学ガラス板は、ガラス組成として、酸化物換算の質量%で、SiO2 1~20%、B2O3 1~25%、TiO2 1~30%、及び、Nb2O5 1~30%を含有することが好ましい。
本発明の光学ガラス板は、酸化物換算の質量%で、さらにLa2O3 10~60%、Gd2O3 0~20%、ZrO2 0~15%、及び、Y2O3 0~5%を含有することが好ましい。
本発明の光学ガラス板は、酸化物換算の質量%で、さらにCaO 0~5%、SrO 0~5%を含有することが好ましい。
本発明の光学ガラス板は、ガラス組成中のB3+とSi4+の含有量比(B3+/Si4+)が0.5~5であることが好ましい。
本発明の光学ガラス板は、ガラス組成として、ヒ素成分、フッ素成分及び鉛成分を実質的に含有しないことが好ましい。本発明において「実質的に含有しない」とは、該当する成分を意図的にガラス中に含有させないことを意味し、不可避的不純物まで完全に排除するものではない。客観的には、不純物を含めた各成分の含有量が、質量%で、0.1%未満であることを意味する。
本発明の光学ガラス板は、アッベ数(νd)が20~35であることが好ましい。
本発明の光学ガラス板は、肉厚が1mm以下であることが好ましい。
本発明の光学ガラス板は、主面の長径が50mm以上であることが好ましい。
本発明の光学ガラス板は、液相粘度が100.5dPa・s以上であることが好ましい。
本発明の光学ガラス板は、30~300℃における熱膨張係数が95×10-7/℃以下であることが好ましい。ここで、熱膨張係数はディラトメーターで測定した平均線熱膨張係数を指す。
本発明の光学ガラス板は、密度が5.5g/cm3以下であることが好ましい。
本発明の導光板は、上記の光学ガラス板からなることを特徴とする。
本発明の導光板は、プロジェクター付きメガネ、眼鏡型またはゴーグル型ディスプレイ、仮想現実(VR)または拡張現実(AR)表示装置、及び、虚像表示装置から選択されるウェアラブル画像表示機器に使用されることが好ましい。
本発明のウェアラブル画像表示機器は、上記の導光板を備えることを特徴とする。
本発明によれば、高屈折率であり、かつ可視光透過率に優れた光学ガラス板を提供することが可能となる。
本発明の光学ガラスは屈折率(nd)の最小値が1.90であり、1.91、1.92、1.93、1.94、1.95、1.96、1.97、1.98、特に1.99であることが好ましい。また、屈折率(nd)の最大値が2.30であり、2.20、2.10、2.08、2.06、2.05、2.04、2.03、2.02、特に2.01であることが好ましい。屈折率が低すぎると、プロジェクター付きメガネ、眼鏡型またはゴーグル型ディスプレイ、仮想現実(VR)または拡張現実(AR)表示装置、虚像表示装置等のウェアラブル画像表示機器の導光板として使用した場合に、視野角が狭くなる傾向がある。一方、屈折率が高すぎると、ガラスに失透や脈理等の欠陥が増加しやすくなる。
本発明の光学ガラスは、厚み10mmにおける波長450nmの内部透過率τ450が75%以上であり、80%以上、82%以上、83%以上、84%以上、85%以上、86%以上、87%以上、88%以上、89%以上、90%以上、91%以上、92%以上、特に93%以上であることが好ましい。波長450nmの内部透過率τ450を高くすることにより、可視域において優れた光透過率が得やすくなる。その結果、上記のウェアラブル画像表示機器において、使用者が見る像の明るさが高まりやすくなる。
例えば、内部透過率τ450を上記の通り高めることにより、厚み10mmにおける波長520nmの内部透過率τ520が高まり、上記のウェアラブル画像表示機器において、使用者が見る像の明るさが高まりやすくなる。具体的には、内部透過率τ520を85%以上、87%以上、89%以上、90%以上、91%以上、92%以上、93%以上、94%以上、95%以上、96%以上、97%以上、特に98%以上とすることが可能となる。
なお後述するように、例えば、ガラス中に含まれるTiとNbの価数を調整することにより、上記所定波長の内部透過率をさらに高めることが可能となる。具体的には、TiとNbの価数が大きくなるようにする(即ち、TiとNbを酸化方向にシフトさせる)ことにより内部透過率をさらに高めることが可能となる。
以下、本発明の光学ガラス板の構成成分を例示するとともに、その好ましい含有量範囲について理由を説明する。なお、各成分の含有量範囲の説明において、特に断りのない限り、%表示は質量%を指す。
本発明の光学ガラス板は、ガラス組成としてNb2O5、La2O3及びGd2O3から選択される少なくとも1種を含有する。これらの成分は屈折率を高める成分であるため、これらの成分の少なくとも1種を必須成分として含有することにより、所望の高屈折率特性を達成することが可能となる。
Nb2O5は屈折率を顕著に高める成分である。Nb2O5を含有する場合、その含有量は1~30%、1.7~25%、2.5~22%、3.3~18%、4.4~14%、5.3~10%、特に6.1~9%であることが好ましい。Nb2O5の含有量が少なすぎると、上記効果を得にくくなる。一方、Nb2O5の含有量が多すぎると、液相温度が急激に上昇し、液相粘度が低下して量産性が悪化する傾向がある。さらに、着色中心となるNbが増えるため内部透過率が低下しやすくなる。
なお、本発明の光学ガラスはガラス割断面のXPS(X線光電子分光法)により得られるスペクトルにおいて、Nb2+とNb5+のピーク高さの比(Nb2+/Nb5+)が0.25以下、0.2以下、0.15以下、0.12以下、0.1以下、0.09以下、0.08以下、0.07以下、0.06以下、0.05以下、0.04以下、0.03以下、特に0.02以下であることが好ましい。Nb2+/Nb5+が大きすぎると、可視域の吸収が極端に増加し、内部透過率が低下する傾向がある。なお、XPSスペクトルにおいてNb2+とNb5+のピークは、それぞれ202.1eV、207.5eVのエネルギー位置に存在する。
La2O3は屈折率を顕著に高める成分である。La2O3を含有する場合、その含有量は10~60%、20~55%、35~55%、35~53%、38~53%、40~52%、42~52%、42~51%、特に45~50.5%であることが好ましい。La2O3の含有量が少なすぎると、上記効果を得にくくなる。一方、La2O3の含有量が多すぎると、液相温度が急激に上昇し、液相粘度が低下して量産性が悪化する傾向がある。
Gd2O3は屈折率を高め、ガラス化の安定性を向上させる成分である。Gd2O3を含有する場合、その含有量は0~20%、0超~18%、1~17%、2~16%、3~15%、4~13%、4~12%、5~11%、5~10%、特に6~9%であることが好ましい。Gd2O3の含有量が多すぎると溶融温度が極端に高くなり、NbやTiが還元されやすくなるため、内部透過率が低下しやすくなる。
本発明の光学ガラスには、上記成分以外にも以下の成分を含有させることができる。
SiO2はガラス骨格成分であり、ガラス化の安定性及び化学耐久性を向上させる成分である。SiO2の含有量は1~20%、1.2~18%、1.5~18%、1.8~18%、2~15%、2.5~15%、2.5~13%、2.8~13%、3~12%、3~11%、3.5~10%、3.5~9%、特に4~8%であることが好ましい。SiO2の含有量が少なすぎると、ガラスの粘度が急激に低下し、液相粘度が低下して成形時に失透が生じやすくなるため量産性が悪化する傾向がある。一方、SiO2の含有量が多すぎると、溶融温度が極端に高くなる。その結果、NbやTiが還元されやすくなるため、内部透過率が低下しやすくなる。また、屈折率が低下する傾向にある。
B2O3はSiO2と同様にガラス骨格成分であるが、SiO2のようにガラスの溶融温度を高くすることはなく、むしろ溶融温度を低下させる働きがある。また、ガラス化の安定性に寄与する成分である。B2O3の含有量は1~25%、2~22%、3~22%、3~20%、4~18%、5~16%、5~15%、5~13%、6~13%、7~13%、7.5~12%、8~11.5%、特に8.3~9.5%であることが好ましい。B2O3の含有量が少なすぎると溶融温度が極端に高くなり、NbやTiが還元されやすくなるため、内部透過率が低下する傾向がある。一方、B2O3の含有量が多すぎると、屈折率が低下するとともに、化学的耐久性が低下する傾向がある。
なお、優れた光透過率特性を達成するとともに、ガラス化の安定性を高め量産性を向上させるためには、ガラス組成のB3+とSi4+の含有量比(カチオン比=B3+/Si4+)を適切に調節することが好ましい。具体的には、B3+/Si4+は0.5~5、0.9~4.5、1.2~4、1.5~4、1.5~3.7、1.7~3.5、特に1.8~3.4であることが好ましい。B3+/Si4+が小さすぎると、溶融温度が極端に高くなり、NbやTiが還元されやすくなるため、内部透過率が低下する傾向がある。一方、B3+/Si4+が大きすぎると、ガラスの化学的耐久性が低下しやすくなる。またガラスの粘度が急激に低下し、液相粘度が低下して量産性が悪化しやすくなる。
また、Si4++B3+(Si4+とB3+の合量)は20~50%、30~50%、31~45%、32~45%、33~45%、34~45%、特に35~42%であることが好ましい。Si4++B3+が少なすぎると、ガラス化しにくくなる。一方、Si4++B3+が多すぎると、屈折率が低下しやすくなる。
TiO2は屈折率を高める成分である。また化学耐久性も向上させる効果がある。TiO2の含有量は1~30%、1.7~25%、2.5~23%、3.3~21%、8~20%、10~18%、特に12~16%であることが好ましい。TiO2の含有量が少なすぎると、上記効果を得にくくなる。一方、TiO2の含有量が多すぎると、液相温度が急激に上昇し、液相粘度が低下して量産性が悪化する傾向がある。さらに、着色中心となるTiが増えるため内部透過率が低下しやすくなる。
なお本発明の光学ガラスは、ガラス割断面のXPS(X線光電子分光法)により得られるスペクトルにおいて、Ti2+とTi4+のピーク高さの比(Ti2+/Ti4+)が0.3以下、0.25以下、0.21以下、0.15以下、0.12以下、0.1以下、0.09以下、0.08以下、0.07以下、0.06以下、0.05以下、0.04以下、0.03以下、特に0.02以下であることが好ましい。Ti2+/Ti4+が大きすぎると、可視域の吸収が極端に増加し、内部透過率が低下する傾向がある。なお、XPSスペクトルにおいてTi2+とTi4+のピークは、それぞれ455.1eV、459.0eVのエネルギー位置に存在する。
ZrO2は屈折率や化学的耐久性を高める成分である。しかし、結晶核として働くため、その含有量が多くなるとガラスの失透を促進する。従って、ZrO2の含有量は0~15%、0超~10%、1~9%、3~8%、4~7.5%、特に5~7%であることが好ましい。
Y2O3は屈折率を顕著に高める成分である。ただし、その含有量が多すぎると、失透や脈理が発生しやすくなる。よって、Y2O3の含有量は0~5%、0超~5%、0.1~4%、0.3~2%、0.4~1%特に、0.5~0.8%であることが好ましい。
Yb2O3は屈折率を顕著に高める成分である。ただし、その含有量が多すぎると、失透や脈理が発生しやすくなる。よって、Yb2O3の含有量は0~5%、0超~5%、0.1~4%、0.3~2%、0.4~1%特に、0.5~0.8%であることが好ましい。
なお、Y2O3+Yb2O3の含有量(Y2O3とYb2O3の合量)は0~5%であることが好ましい。Y2O3+Yb2O3の含有量が多すぎると、液相温度が急激に上昇し、液相粘度が低下して、失透や脈理が発生しやすくなる。Y2O3+Yb2O3の含有量の上限は4%、3.5%、3%、2.5%、2%、1.5%、1%、特に0.9%であることが好ましい。一方、Y2O3+Yb2O3の含有量の下限は0.1%、0.2%、0.3%、0.4%、0.5%、特に0.6%であることが好ましい。このようにすれば、所望の高屈折率特性を得やすくなる。
本発明の光学ガラスは、NbやTiの還元を抑制するため、溶融時に種々の酸化剤を添加することが好ましい。このような酸化剤としては、硝酸カルシウム、硝酸ストロンチウム、硝酸バリウム、硝酸ナトリウム、硝酸カリウム等が挙げられる。なかでも、硝酸カルシウム、硝酸ストロンチウムが特に好ましい。また、添加する酸化剤の合量は、ガラスバッチ中に、質量%で0~5%、0~3%、特に0.01~1%であることが好ましい。
前述の酸化剤を使用すると、CaO、SrO、BaO、Na2O、K2O等の成分がガラス組成に含まれる。これらの成分の作用と含有量の範囲を下記に述べる。
CaOはガラス化の安定性に寄与する成分である。ただし、その含有量が多すぎると液相温度が上昇したり、屈折率が低下する傾向にある。従って、CaOの含有量は0~5%、0~2%、特に0.01~0.5%であることが好ましい。
SrOはガラス化の安定性に寄与する成分である。ただし、その含有量が多すぎると屈折率が低下する傾向にある。従って、SrOの含有量は0~5%、0~2%、特に0.01~0.5%であることが好ましい。
BaOはガラス化の安定性に寄与するとともに、屈折率を高める成分である。ただし、BaOを含有させるとガラスの密度が大きくなり、本発明の光学ガラスからなる光学素子の重量が大きくなる傾向がある。そのため、特にウェアラブル画像表示機器等の用途に好ましくない。従って、BaOの含有量は1%以下、0.5%以下、0.2%以下であることが好ましく、含有しないことが特に好ましい。
なお所望の屈折率及び内部透過率を達成し、かつ、ガラス化の安定性を高めるためには、CaO、SrO及びBaOの合量は0~5%、0~2%、0~1%、0~0.9%、0~0.8%、0~0.7%、0~0.6%、0~0.5%、特に0.01~0.5%であることが好ましい。
Na2O、K2Oは軟化点を低下させる成分であるが、その含有量が多すぎると失透や脈理が発生しやすくなる。よって、これらの成分の含有量は各々0~3%、各々0~1%が好ましく、含有しないことが特に好ましい。また他のアルカリ金属成分であるLi2Oも軟化点を低下させる成分であるが、その含有量が多すぎると失透や脈理が発生しやすくなる。よって、Li2Oの含有量は0~3%、0~1%が好ましく、含有しないことが特に好ましい。
なお、NbやTiの還元を抑制するため、溶融時にカーボンや金属等の還元剤を含有させないことが好ましい。
ZnOは本発明の組成系においては失透を促進する成分であり、その含有量は少ないほうが好ましい。具体的には、ZnOの含有量は1%以下、0.5%以下、さらには0.1%以下が好ましく、含有しないことが特に好ましい。
WO3は屈折率を高める成分であるが、可視領域の光透過率を低下させる傾向がある。従って、その含有量は1%以下、0.6%以下、0.5%以下、0.3%以下が好ましく、含有しないことが特に好ましい。
なお、ヒ素成分(As2O3等)やフッ素成分(F2等)、鉛成分(PbO等)は環境負荷が大きいため実質的に含有しないことが好ましい。
本発明の光学ガラスは清澄性を向上させるため、CaCl2、Sb2O3等の清澄剤を使用してもよい。これら清澄剤の合量は、ガラスバッチ中に、8%以下、5%以下、2%以下、特に1%以下であることが好ましい。また、この際にガラス成分に含まれる清澄剤成分、具体的にはCl、Sb2O3の含有量は各々5%以下、各々3%以下、特に各々0.5%以下であることが好ましい。
本発明の光学ガラスは、不純物として、例えば、H2、CO2、CO、H2O、He、Ne、Ar、N2を各々0.1%まで含有してもよい。さらに不純物として、Pt、Rh、Auを含有してもよい。ただし、Pt、Rh、Auの含有量が多すぎるとガラス中で着色中心として働き、内部透過率が低下しやすくなる。そのため、Pt、Rh、Auの含有量は各々500ppm以下、300ppm以下、特に100ppm以下が好ましい。
本発明の光学ガラスは、液相粘度が100.5dPa・s以上、100.6dPa・s以上、100.7dPa・s以上、特に100.8dPa・s以上であることが好ましい。液相粘度が低すぎると低粘度で成形する必要がある為、特に成形サイズが大きくなると脈理等の欠陥がガラス中に生じやすくなる。液相粘度の上限は特に限定されないが、現実的には101.5dPa・s以下、特に101.2dPa・s以下である。
本発明の光学ガラスは液相温度が1350℃以下、1300℃以下、1250℃以下、1200℃以下、さらに1170℃以下であることが好ましい。液相温度が高すぎると貴金属製のポットやパイプの負荷が高まり、これらを頻繁に交換する必要が出てくるため、製造コストが増大する傾向がある。液相温度の下限は特に限定されないが、現実的には1000℃以上、さらには1050℃以上である。
なお、液相粘度及び液相温度は、後述する実施例に記載の方法により算出することができる。
本発明の光学ガラスのアッベ数(νd)は特に限定されないが、ガラス化の安定性を考慮し、20~35、22~32、特に25~30であることが好ましい。
本発明の光学ガラスは、密度が5.5g/cm3以下、5.3g/cm3以下、特に5.1g/cm3以下であることが好ましい。密度が高すぎると、本発明の光学ガラスを使用したウェアラブルデバイスの重量が大きくなり、デバイス装着時の不快感が増す。密度の下限は特に限定されないが、低すぎると光学特性等の他の特性が低下するため、4.0g/cm3以上、特に4.5g/cm3以上であることが好ましい。
本発明の光学ガラスは、30~300℃における熱膨張係数が95×10-7/℃以下、91×10-7/℃以下、特に88×10-7/℃以下であることが好ましい。熱膨張係数が大きすぎると、サーマルショックによってガラスが割れやすくなる。熱膨張係数の下限は特に限定されないが、低すぎると光学特性等の他の特性が低下するため、75×10-7/℃以上、特に80×10-7/℃以上であることが好ましい。
本発明の光学ガラス板の肉厚は、1mm以下、0.8mm以下、0.7mm以下、0.6mm以下、0.5mm以下、0.4mm以下、特に0.3mm以下であることが好ましい。光学ガラス板の肉厚が大きすぎると、当該光学ガラス板を使用したウェアラブル画像表示機器の重量が大きくなり、デバイス装着時の不快感が増す。肉厚の下限は特に限定されないが、機械的強度を考慮し、0.01mm以上、0.03mm以上、特に0.05mm以上である。
本発明の光学ガラス板の形状は、例えば平面形状が円形、楕円形または矩形等の多角形等の板状である。この場合、光学ガラス板の長径(円形の場合は直径)は50mm以上、80mm以上、100mm以上、120mm以上、150mm以上、160mm以上、170mm以上、180mm以上、190mm以上、特に200mm以上であることが好ましい。光学ガラス板の長径が小さすぎると、ウェアラブル画像表示機器等の用途に使用することが困難になる。また量産性に劣る傾向がある。光学ガラス板の長径の上限は特に限定されないが、現実的には1000mm以下である。
本発明の光学ガラス板は、プロジェクター付きメガネ、眼鏡型またはゴーグル型ディスプレイ、仮想現実(VR)または拡張現実(AR)表示装置、及び、虚像表示装置から選択されるウェアラブル画像表示機器の構成部材である導光板として好適である。当該導光板は、ウェアラブル画像表示機器のいわゆるメガネレンズ部分に使用され、ウェアラブル画像表示機器が備える画像表示素子から発せられた光を導光して、使用者の瞳に向かって出射する役割を果たす。導光板の表面には、画像表示素子から発せられた光を導光板内部に回折させるための回折格子が設けられていることが好ましい。
以下に、実施例を用いて本発明を詳細に説明するが、本発明はこれらの実施例に限定されるものではない。
表1~4は本発明の実施例(No.1~27)を示す。
まず表1~4に示す各組成になるようにガラス原料を調合した。ここで、No.8~10、12、26は硝酸ストロンチウムを酸化剤として使用した。また、No.9、23は酸化アンチモンを、No.13、27は塩化カルシウムを清澄剤として使用した。
続いて、白金ルツボを用いて1200~1350℃でガラスを溶融した。溶融時間はすべて2時間であった。続いて溶融ガラスをカーボン板上に流し出し、さらにアニール後、各測定に適した試料を作製した。
得られた試料を割断し、割断面をXPS分析することにより、Ti2+/Ti4+及びNb2+/Nb5+を求めた。結果を表1~4に示す。具体的には、得られたXPSスペクトルに対して9ポイントのスムージング処理を行い、Ti2+(455.1eV)とTi4+(459.0eV)のピーク高さを読み取り、その比(Ti2+/Ti4+)を求めた。また、Nb2+(202.1eV)とNb5+(207.5eV)のピーク高さを読み取り、その比(Nb2+/Nb5+)を求めた。XPS分析は、PHI社製Quantera SXMを用いて、励起X線はAl Kα1,2線(1486.6 eV)、X線径は200μm、光電子脱出角度は45°の条件で実施した。
また得られた試料について、屈折率(nd)、アッベ数(νd)、内部透過率、液相温度、液相粘度、密度、熱膨張係数を以下のようにして測定した。結果を表1~4に示す。
屈折率はヘリウムランプのd線(587.6nm)に対する測定値で示した。
アッベ数は、上記d線の屈折率と、水素ランプのF線(486.1nm)、同じく水素ランプのC線(656.3nm)の屈折率の値を用い、アッベ数(νd)=[(nd-1)/(nF-nC)]の式から算出した。
内部透過率は以下のようにして測定した。光学研磨された厚さ10mm±0.1mmと厚さ3mm±0.1mmの試料を準備し、分光光度計(島津製作所社製UV-3100)を用いて、表面反射損失を含む光透過率(直線透過率)を1nm間隔で測定した。厚さ10mmと3mmの直線透過率から厚さ10mmの内部透過率曲線を求めた。波長450nmと520nmにおける内部透過率を読み取り、測定値を得た。
液相温度及び液相粘度は以下のようにして求めた。
粉砕したガラス試料を、耐火性容器に充填し、電気炉で1250℃-0.5時間の条件で融解した。次に、耐火性容器ごと間接加熱型の温度勾配炉内に入れ、大気雰囲気中で16時間静置した。その後、温度勾配炉から耐火性容器を取り出し、室温まで冷却した。冷却後のガラス試料を目視観察して結晶析出箇所を判定し、温度勾配炉内の温度分布情報から液相温度(結晶析出温度)を特定した。
別途、塊状のガラス試料をアルミナ製坩堝に投入し、加熱融解した。得られたガラス融液について、白金球引き上げ法によって複数の温度におけるガラスの粘度を求めた。続いて、ガラス粘度の計測値を用いて、Vogel-Fulcher式の定数を算出して粘度曲線を作成した。
以上のようにして求めた液相温度と粘度曲線を用いて、液相温度に相当する粘度(液相粘度)を求めた。
密度は、重さ約10gのガラスサンプルを用いて、アルキメデス法によって測定した。
熱膨張係数は、約5φ×20mmに成形したガラスサンプルを用いてディラトメーターにより、30~300℃の温度範囲で測定した。
表1~4に示す通り、実施例であるNo.1~27のサンプルは、屈折率が1.95~2.00と高屈折率特性を有し、内部透過率τ450が77~98%、内部透過率τ520が86~99%と優れているとともに、液相温度が1090~1225℃と低く、また液相粘度が100.7~101.0dPa・sと高く、生産性に優れていた。
続いて、No.2、5、10のガラス組成を有する大型のガラス板を以下のようにして作製した。
まず、No.2、5、10の各組成になるようにガラス原料を調合した。No.10は、硝酸ストロンチウムを酸化剤として使用した。続いてポット式の大型炉を用いて1300℃で溶融を行い、白金ノズルから500mm角のカーボン製鋳型に厚み20mmとなるように溶融ガラスを流し出し、成形した。
得られたインゴットに対してアニール処理を行った後、インゴットの中央部分を円形にくり抜き、面方向に薄くスライスした後、両面をラップ研磨し、さらにポリッシュ研磨を行うことにより鏡面に仕上げた。作製した光学ガラス板の寸法を表5に示す。
表5に示す光学ガラス板1~3は、直径が300~400nm、肉厚0.1~0.3mmと所望の寸法を有しており、失透や脈理等の不具合も確認されなかった。
本発明の光学ガラス板は、プロジェクター付きメガネ、眼鏡型またはゴーグル型ディスプレイ、仮想現実(VR)または拡張現実(AR)表示装置、及び、虚像表示装置から選択されるウェアラブル画像表示機器に使用される導光板として好適である。
Claims (18)
- ガラス組成としてNb2O5、La2O3及びGd2O3から選択される少なくとも1種を含有し、屈折率(nd)が1.90~2.30、かつ、厚み10mmでの波長450nmの内部透過率τ450が75%以上であることを特徴とする光学ガラス板。
- 厚み10mmでの波長520nmの内部透過率τ520が、85%以上であることを特徴とする請求項1に記載の光学ガラス板。
- ガラス組成としてTiO2を含有し、ガラス割断面のX線光電子分光法(XPS)により得られるスペクトルにおいて、Ti2+とTi4+のピーク高さの比(Ti2+/Ti4+)が0.3以下であることを特徴とする請求項1または2に記載の光学ガラス板。
- ガラス組成としてNb2O5を含有し、ガラス割断面のX線光電子分光法(XPS)により得られるスペクトルにおいて、Nb2+とNb5+のピーク高さの比(Nb2+/Nb5+)が0.25以下であることを特徴とする請求項1~3いずれか一項に記載の光学ガラス板。
- ガラス組成として、酸化物換算の質量%で、SiO2 1~20%、B2O3 1~25%、TiO2 1~30%、及び、Nb2O5 1~30%を含有することを特徴とする請求項1~4のいずれか一項に記載の光学ガラス板。
- 酸化物換算の質量%で、さらにLa2O3 10~60%、Gd2O3 0~20%、ZrO2 0~15%、及び、Y2O3 0~5%を含有することを特徴とする請求項5に記載の光学ガラス板。
- 酸化物換算の質量%で、さらにCaO 0~5%、SrO 0~5%を含有することを特徴とする請求項5または6に記載の光学ガラス板。
- ガラス組成中のB3+とSi4+の含有量比(B3+/Si4+)が0.5~5であることを特徴とする請求項1~7のいずれか一項に記載の光学ガラス板。
- ガラス組成として、ヒ素成分、フッ素成分及び鉛成分を実質的に含有しないことを特徴とする請求項1~8のいずれか一項に記載の光学ガラス板。
- アッベ数(νd)が20~35であることを特徴とする請求項1~9のいずれか一項に記載の光学ガラス板。
- 肉厚が1mm以下であることを特徴とする請求項1~10のいずれか一項に記載の光学ガラス板。
- 主面の長径が50mm以上であることを特徴とする請求項1~11のいずれか一項に記載の光学ガラス板。
- 液相粘度が100.5dPa・s以上であることを特徴とする請求項1~12のいずれか一項に記載の光学ガラス板。
- 30~300℃における熱膨張係数が95×10-7/℃以下であることを特徴とする請求項1~13のいずれか一項に記載の光学ガラス板。
- 密度が5.5g/cm3以下であることを特徴とする請求項1~14のいずれか一項に記載の光学ガラス板。
- 請求項1~15のいずれか一項に記載の光学ガラス板からなることを特徴とする導光板。
- プロジェクター付きメガネ、眼鏡型またはゴーグル型ディスプレイ、仮想現実(VR)または拡張現実(AR)表示装置、及び、虚像表示装置から選択されるウェアラブル画像表示機器に使用されることを特徴とする請求項16に記載の導光板。
- 請求項16または17に記載の導光板を備えることを特徴とするウェアラブル画像表示機器。
Priority Applications (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202080061539.1A CN114341069A (zh) | 2019-10-31 | 2020-10-21 | 光学玻璃板 |
EP20880548.1A EP4053087A4 (en) | 2019-10-31 | 2020-10-21 | OPTICAL GLASS PLATE |
US17/639,394 US20220315475A1 (en) | 2019-10-31 | 2020-10-21 | Optical glass plate |
Applications Claiming Priority (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2019-198495 | 2019-10-31 | ||
JP2019198495 | 2019-10-31 | ||
JP2019-224531 | 2019-12-12 | ||
JP2019224531A JP7545103B2 (ja) | 2019-10-31 | 2019-12-12 | 光学ガラス板 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2021085271A1 true WO2021085271A1 (ja) | 2021-05-06 |
Family
ID=75714510
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2020/039589 WO2021085271A1 (ja) | 2019-10-31 | 2020-10-21 | 光学ガラス板 |
Country Status (4)
Country | Link |
---|---|
US (1) | US20220315475A1 (ja) |
EP (1) | EP4053087A4 (ja) |
CN (1) | CN114341069A (ja) |
WO (1) | WO2021085271A1 (ja) |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20220033297A1 (en) * | 2020-07-30 | 2022-02-03 | Schott Ag | Highly refractive glass |
RU2781350C1 (ru) * | 2021-12-09 | 2022-10-11 | Федеральное государственное бюджетное образовательное учреждение высшего образования "Российский химико-технологический университет имени Д.И. Менделеева" (РХТУ им. Д.И. Менделеева) | Оптическое стекло |
WO2022234782A1 (ja) * | 2021-05-07 | 2022-11-10 | Agc株式会社 | 導光素子、及びこれを用いた表示装置 |
DE102022133474A1 (de) | 2021-12-21 | 2023-06-22 | Schott Ag | Optisches Glas mit hohem Brechungsindex |
Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2010030879A (ja) * | 2008-06-27 | 2010-02-12 | Hoya Corp | 光学ガラス |
JP2015020913A (ja) * | 2013-07-16 | 2015-02-02 | 日本電気硝子株式会社 | 光学ガラス |
JP2015040171A (ja) * | 2013-08-23 | 2015-03-02 | Hoya株式会社 | 光学ガラスおよびその利用 |
JP2015074572A (ja) * | 2013-10-08 | 2015-04-20 | 日本電気硝子株式会社 | 光学ガラス |
US20150203395A1 (en) * | 2014-01-22 | 2015-07-23 | Cdgm Glass Co., Ltd. | High refractivity and high dispersion optical glass, element and instrument |
JP2016121035A (ja) * | 2014-12-24 | 2016-07-07 | 株式会社オハラ | 光学ガラス、プリフォーム及び光学素子 |
JP2017032673A (ja) | 2015-07-30 | 2017-02-09 | 日本電気硝子株式会社 | 導光板及びこれを用いた積層導光板 |
WO2018235725A1 (ja) * | 2017-06-23 | 2018-12-27 | Agc株式会社 | 光学ガラスおよび光学部品 |
-
2020
- 2020-10-21 US US17/639,394 patent/US20220315475A1/en active Pending
- 2020-10-21 WO PCT/JP2020/039589 patent/WO2021085271A1/ja unknown
- 2020-10-21 CN CN202080061539.1A patent/CN114341069A/zh active Pending
- 2020-10-21 EP EP20880548.1A patent/EP4053087A4/en active Pending
Patent Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2010030879A (ja) * | 2008-06-27 | 2010-02-12 | Hoya Corp | 光学ガラス |
JP2015020913A (ja) * | 2013-07-16 | 2015-02-02 | 日本電気硝子株式会社 | 光学ガラス |
JP2015040171A (ja) * | 2013-08-23 | 2015-03-02 | Hoya株式会社 | 光学ガラスおよびその利用 |
JP2015074572A (ja) * | 2013-10-08 | 2015-04-20 | 日本電気硝子株式会社 | 光学ガラス |
US20150203395A1 (en) * | 2014-01-22 | 2015-07-23 | Cdgm Glass Co., Ltd. | High refractivity and high dispersion optical glass, element and instrument |
JP2016121035A (ja) * | 2014-12-24 | 2016-07-07 | 株式会社オハラ | 光学ガラス、プリフォーム及び光学素子 |
JP2017032673A (ja) | 2015-07-30 | 2017-02-09 | 日本電気硝子株式会社 | 導光板及びこれを用いた積層導光板 |
WO2018235725A1 (ja) * | 2017-06-23 | 2018-12-27 | Agc株式会社 | 光学ガラスおよび光学部品 |
Non-Patent Citations (1)
Title |
---|
See also references of EP4053087A4 |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20220033297A1 (en) * | 2020-07-30 | 2022-02-03 | Schott Ag | Highly refractive glass |
US11958770B2 (en) * | 2020-07-30 | 2024-04-16 | Schott Ag | Highly refractive glass |
WO2022234782A1 (ja) * | 2021-05-07 | 2022-11-10 | Agc株式会社 | 導光素子、及びこれを用いた表示装置 |
RU2781350C1 (ru) * | 2021-12-09 | 2022-10-11 | Федеральное государственное бюджетное образовательное учреждение высшего образования "Российский химико-технологический университет имени Д.И. Менделеева" (РХТУ им. Д.И. Менделеева) | Оптическое стекло |
DE102022133474A1 (de) | 2021-12-21 | 2023-06-22 | Schott Ag | Optisches Glas mit hohem Brechungsindex |
Also Published As
Publication number | Publication date |
---|---|
US20220315475A1 (en) | 2022-10-06 |
CN114341069A (zh) | 2022-04-12 |
EP4053087A4 (en) | 2023-12-06 |
EP4053087A1 (en) | 2022-09-07 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP7528313B2 (ja) | 光学ガラス、プリフォーム及び光学素子 | |
WO2021085271A1 (ja) | 光学ガラス板 | |
JP6603449B2 (ja) | ガラス、プレス成形用ガラス素材、光学素子ブランク、および光学素子 | |
JP6201605B2 (ja) | 光学ガラス | |
JP2021102549A (ja) | 光学ガラス | |
JP7371722B2 (ja) | 光学ガラスおよび光学部品 | |
JP7112856B2 (ja) | 光学ガラス、プリフォーム及び光学素子 | |
WO2018043475A1 (ja) | ガラス、プレス成形用ガラス素材、光学素子ブランクおよび光学素子 | |
JP2020019711A (ja) | 光学ガラス、プリフォーム及び光学素子 | |
JP7514351B2 (ja) | ガラス、プレス成形用ガラス素材、光学素子ブランク、および光学素子 | |
JP2023017903A (ja) | 光学ガラスおよび光学素子 | |
JP6639074B2 (ja) | 光学ガラス、レンズプリフォーム及び光学素子 | |
JP6075714B2 (ja) | 光学ガラス | |
JP6280284B1 (ja) | ガラス、プレス成形用ガラス素材、光学素子ブランク、および光学素子 | |
JP6840660B2 (ja) | 光学ガラスおよび光学素子 | |
JP6804264B2 (ja) | 光学ガラス、プリフォーム及び光学素子 | |
WO2021205927A1 (ja) | 光学ガラス | |
EP3995461B1 (en) | Optical glass | |
JP7545103B2 (ja) | 光学ガラス板 | |
JP6635667B2 (ja) | 光学ガラス、レンズプリフォーム及び光学素子 | |
JP6163620B1 (ja) | 光学ガラス及び光学素子 | |
JP2024152867A (ja) | 光学ガラス板 | |
JP2020189780A (ja) | 光学ガラス、プリフォーム及び光学素子 | |
JP6626298B2 (ja) | 光学ガラス、プリフォーム及び光学素子 | |
WO2023017759A1 (ja) | 光学ガラス板 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 20880548 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
ENP | Entry into the national phase |
Ref document number: 2020880548 Country of ref document: EP Effective date: 20220531 |