WO2021085035A1 - 太陽電池モジュール及びその製造方法 - Google Patents

太陽電池モジュール及びその製造方法 Download PDF

Info

Publication number
WO2021085035A1
WO2021085035A1 PCT/JP2020/037610 JP2020037610W WO2021085035A1 WO 2021085035 A1 WO2021085035 A1 WO 2021085035A1 JP 2020037610 W JP2020037610 W JP 2020037610W WO 2021085035 A1 WO2021085035 A1 WO 2021085035A1
Authority
WO
WIPO (PCT)
Prior art keywords
solar cell
cell module
pair
main body
translucent member
Prior art date
Application number
PCT/JP2020/037610
Other languages
English (en)
French (fr)
Inventor
悠紀 廣瀬
Original Assignee
日本ゼオン株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本ゼオン株式会社 filed Critical 日本ゼオン株式会社
Publication of WO2021085035A1 publication Critical patent/WO2021085035A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/042PV modules or arrays of single PV cells
    • H01L31/048Encapsulation of modules
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy

Definitions

  • the present invention relates to a solar cell module and a method for manufacturing the same.
  • a solar cell module main body having a pair of support sheets, a solar cell sealed by the pair of support sheets, and a terminal connected to the solar cell, and a solar cell module main body.
  • a solar cell module having a pair of exterior sheets for sandwiching a solar cell is known.
  • a solar cell module as described in Patent Document 1 is configured so that the main body of the solar cell module fits inside a pair of outer peripheral edges of an exterior sheet. Therefore, at the time of mass production of the solar cell module, it is necessary to manufacture the solar cell module main body individually and store them individually in a pair of exterior sheets, which complicates the manufacturing process.
  • the resin used for adhering the exterior sheet generally has high moisture permeability, the permeation of moisture from the outside may affect the internal solar cell and reduce the performance such as power generation efficiency. there were.
  • the solar cell module as the first aspect of the present invention includes a solar cell module main body having a pair of support sheets, a solar cell sealed by the pair of support sheets, and a terminal connected to the solar cell, and a solar cell.
  • a solar cell module including a translucent member arranged in a notch provided on the outer peripheral edge of the module main body and a pair of exterior sheets that sandwich the solar cell module main body, and the outer peripheral edge of the solar cell module is It has a first portion composed of a solar cell module main body and a second portion composed of a translucent member and having a higher total light transmission rate than the first portion.
  • the solar cell modules can be efficiently mass-produced by going through the cutting step of forming a plurality of solar cell modules.
  • by monitoring the second portion, which is composed of the translucent member and has a higher total light transmittance than the first portion the outer peripheral edge of the solar cell module is deteriorated. The presence or absence can be easily recognized.
  • the haze value of the translucent member may change due to the permeation of moisture.
  • the second portion composed of the translucent member by monitoring the second portion composed of the translucent member, it is possible to recognize the permeation state of water from the outside to the inside of the solar cell module.
  • By drying the solar cell module in a timely manner according to the permeated state of moisture permeated it is possible to maintain the performance of the solar cell module for a long period of time.
  • the terminals may be embedded in a translucent member. According to such a configuration, the terminals can be easily arranged by utilizing the notch provided for arranging the translucent member.
  • the translucent member may be composed of an exterior encapsulant that adheres a pair of exterior sheets and a pair of support sheets to each other. According to such a configuration, the translucent member can be easily and inexpensively formed.
  • the outer peripheral edge of the solar cell module has a square shape having one side on which terminals are arranged and three sides on which terminals are not arranged, and a part of one side and three sides are the first. It is one part, and the remaining part of one side may be the second part. According to such a configuration, it is easy to increase the reliability of the solar cell module, and it is possible to enable more efficient mass production of the solar cell module.
  • the solar cell module is a solar cell having a pair of support sheets and a solar cell sealed by a pair of support sheets and a terminal connected to the solar cell. It is provided with a module main body, a translucent member arranged in a notch provided on the outer peripheral edge of the solar cell module main body, and a pair of exterior sheets that sandwich the solar cell module main body, and the outer peripheral edge of the solar cell module is provided.
  • a first part composed of a solar cell module main body and a second part composed of a translucent member and having a higher total light transmission rate than the first part, and a plurality of module main bodies are connected in a row.
  • It has a structure in which a plurality of solar cell modules are connected by fixing a pair of exterior sheet panels having a structure in which a plurality of exterior sheets are connected to the panel body and a panel body forming step of forming the panel body having the above-mentioned structure. It has a panel forming step of forming a panel and a cutting step of forming a plurality of solar cell modules by cutting the panel. According to such a configuration, the solar cell module whose presence or absence of deterioration can be easily recognized on the outer peripheral edge of the solar cell module by monitoring the second part is subjected to a panel main body forming step, a panel forming step, and a cutting step. It can be mass-produced efficiently.
  • the present invention it is possible to provide a solar cell module that is suitable for mass production and that makes it easy to recognize the presence or absence of alteration at the outer peripheral edge. Further, according to the present invention, it is possible to provide a method for manufacturing a solar cell module capable of efficiently mass-producing the solar cell module.
  • FIG. 1 is a cross-sectional view taken along the line AA of FIG. It is a cross-sectional view of BB of FIG. It is a figure which shows the panel body forming process for manufacturing the solar cell module shown in FIG. It is a figure which shows the panel forming process following the panel body forming process shown in FIG. It is a figure which shows the cutting process following the panel forming process shown in FIG.
  • the solar cell module 1 As shown in FIGS. 1 to 3, the solar cell module 1 according to the present embodiment is connected to a pair of support sheets 2, a solar cell 3 sealed by a pair of support sheets 2, and a solar cell 3.
  • a solar cell module main body 5 having a terminal 4 (hereinafter, also referred to as a module main body 5) is provided.
  • the solar cell module 1 includes a plurality of solar cells 3 that are sealed by a pair of support sheets 2 and connected in series, but the present invention is not limited to this, and only one solar cell 3 may be provided. .. Further, the solar cell module 1 includes 12 solar cell cells 3, but the number of the solar cell 3 is not limited to this, and the number of the solar cell 3 can be increased or decreased as appropriate.
  • a plurality of solar cell 3s are arranged in two rows at intervals in the Y-axis direction.
  • Current collector electrodes 6 are arranged at intervals in the negative direction of the Y-axis in each row.
  • Current collecting electrodes 7 extending in the X-axis direction straddle the two rows of the solar cell 3 are arranged at the Y-axis positive end of each row at intervals.
  • One current collecting electrode 6, one row of the solar cell 3, the current collecting electrode 7, the other row of the solar cell 3, and the other current collecting electrode 6 are connected in series in this order.
  • the pair of partial terminals 4a constituting the terminal 4 is connected to the pair of the current collecting electrodes 6 one by one.
  • the solar cell module 1 has a flat shape having a thickness in the Z-axis direction, but the present invention is not limited to this, and the solar cell module 1 may have a curved shape. Further, the solar cell module 1 has a rectangular shape having a width in the X direction perpendicular to the Z axis direction and a length in the Y direction perpendicular to both the Z axis direction and the X direction. The shape is not limited to the above, and the shape may be other than the square shape, for example.
  • the solar cell 3 has electrode pairs (not shown) facing each other, and functions as a photoelectric converter capable of generating a potential difference between the electrode pairs by receiving light.
  • a dye in which a light electrode in which a conductive film, a semiconductor fine particle layer, and a sensitizing dye layer are laminated in this order, an electrolyte layer, and a counter electrode in which a catalyst layer and a conductive film are laminated in this order are laminated in this order.
  • the sensitizing dye layer is formed, for example, by adsorbing a dye on the particle surface of the semiconductor fine particle layer.
  • the electrode pairs of each solar cell 3 are fixed to the adjacent support sheets 2.
  • the pair of the current collecting electrodes 6 and the current collecting electrodes 7 are respectively fixed to one of the support sheets 2. Between the pairs of the support sheets 2, a sealing material 8 that fills the gap between the plurality of solar cells 3, the pair of the current collecting electrodes 6, and the current collecting electrodes 7 is arranged.
  • the plurality of solar cells 3 are thus sealed by a pair of support sheets 2 and a sealing material 8, but the present invention is not limited to this.
  • the material constituting the support sheet 2 may have transparency, for example, resin, glass, or the like.
  • the support sheet 2 is preferably made of a resin film.
  • the resin film material include polyethylene terephthalate (PET), polyethylene naphthalate (PEN), syndiotactic polystyrene (SPS), polyphenylene sulfide (PPS), polycarbonate (PC), polyarylate (PAr), and polysulfone (PSF). ), Polyethersulfone (PES), polyetherimide (PEI), transparent polyimide (PI), cycloolefin polymer (COP) and the like.
  • the support sheet 2 may be composed of a single layer, or may be composed of a plurality of layers made of different materials.
  • the material constituting the sealing material 8 may be capable of adhering a pair of support sheets 2 to seal the gap between the pairs of support sheets 2 and having an insulating property, and is not particularly limited, but supports. It is preferable that the sheet 2 is excellent in adhesiveness to a pair, resistance to electrolytes (chemical resistance), and high temperature and high humidity durability (moisture heat resistance).
  • examples of such materials include non-conductive thermoplastic resins, thermosetting resins, and active radiation (light, electron beam) curable resins, and more specifically, acrylic resins, methacrylic resins, fluororesins, and the like. Examples thereof include silicone resin, olefin resin and polyamide resin. Of these, a photocurable acrylic resin is preferable from the viewpoint of handleability.
  • the sealing material 8 may be composed of a single-layer or a plurality of layers of resin film.
  • the sealing material 8 may include a conductive material (not shown) that functions as wiring for connecting the plurality of solar cells 3.
  • the material constituting such a conductive material include metal particles such as Ag, Au, Cu, Al, In, Sn, Bi and Pb, oxides thereof, conductive carbon particles, and organic substances such as resin particles. Examples thereof include particles in which the surface of compound particles or inorganic compound particles is coated with a metal such as Ag, Au, Cu or a conductive substance such as an oxide of these metals, for example, particles coated with an Au / Ni alloy.
  • the conductive material may be provided separately from the sealing material 8.
  • a notch 9 on which the terminal 4 is arranged is provided on the outer peripheral edge of the module main body 5.
  • the terminal 4 and the notch 9 are provided at the central portion in the X-axis direction at the end in the negative direction of the Y-axis of the module main body 5, but are not limited thereto.
  • the pair of partial terminals 4a is fixed on the terminal support sheet 10a.
  • the terminal board 10 is composed of a pair of partial terminals 4a and a terminal support sheet 10a.
  • One pair of the partial terminals 4a is fixed to each pair of the current collecting electrodes 6 via the conductive adhesive material 11, but the present invention is not limited to this.
  • the terminal 4 is not limited to a configuration in which the partial terminal 4a is fixed on the terminal support sheet 10a.
  • the solar cell module 1 includes a pair of exterior sheets 12 that sandwich the module body 5.
  • the exterior sheet 12 has a water vapor barrier property that suppresses the permeation of water vapor, but is not limited to this.
  • the exterior sheet 12 may have a desired function in place of or in addition to the water vapor barrier property.
  • Such functions include, for example, gas barrier property that suppresses gas transmission, cut property that cuts specific wavelengths such as ultraviolet rays, antifouling property that prevents surface stains, hard coat property that prevents surface scratches, and panels. Examples include color coating that changes the color of the main body.
  • the exterior sheet 12 can be made of, for example, a film having a functional layer on a resin support.
  • the exterior sheet 12 may be composed of a single layer, or may be composed of a plurality of layers made of different materials.
  • the pair of the exterior sheet 12 and the pair of the support sheet 2 are adhered to each other via the exterior sealing material 13, but the present invention is not limited to this.
  • the exterior encapsulant 13 is made of an ultraviolet curable resin, but the present invention is not limited to this.
  • the same material as the encapsulant 8 can be used, and the exterior encapsulant 13 and the encapsulant 8 may be made of the same material.
  • the solar cell module 1 includes a translucent member 14 arranged in a notch 9 provided on the outer peripheral edge of the module main body 5. Further, the outer peripheral edge 15 of the solar cell module 1 is composed of a first portion 15a composed of a module main body 5 and a translucent member 14, and has a second total light transmittance higher than that of the first portion 15a. It has a portion 15b and. Since the outer peripheral edge 15 of the solar cell module 1 has the first portion 15a formed by the module main body 5, the solar cell module 1 undergoes the panel main body forming step, the panel forming step, and the cutting step described later. Can be mass-produced efficiently.
  • the outer peripheral edge 15 of the solar cell module 1 has the second portion 15b having higher transparency than the first portion 15a, the outer peripheral edge of the solar cell module 1 can be monitored by monitoring the second portion 15b. At 15, the presence or absence of alteration can be easily recognized.
  • the total light transmittance is the transmittance in the Z-axis direction, that is, the thickness direction, and is measured by the method specified in ISO 13468-1, but if it is difficult to measure by the method, it is measured by another method. You may.
  • the translucent member 14 is made of a material having a higher total light transmittance than the constituent members of the module main body 5 located on the outer peripheral edge 15 of the solar cell module 1.
  • Both the pair of exterior sheets 12 and the exterior encapsulant 13 have transparency that enables both light reception by the solar cell 3 and visual recognition of the second portion 15b, that is, total light transmittance. .. It is preferable that the pair of the exterior sheet 12 and the exterior encapsulant 13 are both as highly transparent as possible.
  • the translucent member 14 is configured so that the haze value changes depending on the permeation of moisture. Since the second portion 15b composed of the translucent member 14 is in contact with the outside air, the translucent member 14 determines the degree of permeation of moisture from the outside air toward the inside of the solar cell module 1 as the haze value increases. It can be indicated by the degree of white turbidity of the translucent member 14 that increases. Therefore, by monitoring the second portion 15b formed of the translucent member 14, it is possible to recognize the permeation state of water from the outside to the inside of the solar cell module 1. By drying the solar cell module 1 in a timely manner according to the permeation state of water recognized in this way, it is possible to maintain the performance such as the power generation efficiency of the solar cell module 1 for a long period of time.
  • the ratio of the cross-sectional area occupied by the sealing material 8 and the outer peripheral sealing material 13 in the cross section of the outer peripheral edge 15 Is smaller than that of the second portion 15b. Since the resin constituting the sealing material 8 and the exterior sealing material 13 generally has higher moisture permeability than the support sheet 2 and the exterior sheet 12, the solar cell module 1 in the second portion 15b is compared with the first portion 15a. Moisture easily enters inside. Therefore, from the viewpoint of suppressing the invasion of water, it is preferable that the ratio of the first portion 15a on the outer peripheral edge 15 is as large as possible.
  • the outer peripheral edge 15 of the solar cell module 1 has a square shape having one side on which the terminal 4 is arranged and three sides on which the terminal 4 is not arranged, and a part of one side and three sides are formed.
  • the first portion 15a, the remaining part of one side is the second portion 15b, and most of the outer peripheral edge 15 is composed of the first portion 15a having excellent moisture resistance, so that the sun The reliability of the battery module 1 can be improved. Further, since all four sides of the solar cell module 1 are composed of the module main body 5 in this way, the solar cell module 1 can be mass-produced more efficiently.
  • the shape of the outer peripheral edge 15 of the solar cell module 1 is not limited to this.
  • the haze value of the second portion 15b including the translucent member 14 is preferably 90% or less, more preferably 50% or less, still more preferably 10% or less in a low humidity environment of 25 ° C. and 50% Rh. is there.
  • the haze value is measured by the method specified in ISO14782, but if it is difficult to measure by the method, it may be measured by another method such as using a haze standard plate.
  • the translucent member 14 is composed of an exterior sealing material 13 that adheres a pair of exterior sheets 12 and a pair of support sheets 2 to each other. That is, the translucent member 14 is composed of the exterior sealing material 13 in the notch 9.
  • the translucent member 14 may be made of a material different from that of the exterior encapsulant 13, but is preferably made of the exterior encapsulant 13 from the viewpoint of simplification of the manufacturing process and cost saving.
  • the translucent member 14 is not limited to a member whose haze value changes as long as it constitutes the second portion 15b having a total light transmittance higher than that of the first portion 15a.
  • the translucent member 14 is arranged in the notch 9 in which the terminal 4 is arranged. That is, the terminal 4 is embedded in the translucent member 14. In this way, by using the notch 9 for arranging the terminal 4 for arranging the translucent member 14, it is possible to obtain effects such as simplification of the manufacturing process and cost saving.
  • a notch for arranging the translucent member 14 may be provided separately from the notch 9 in which the terminal 4 is arranged.
  • the translucent members 14 are provided on both sides of the terminal 4 in the X-axis direction, but the present invention is not limited to this. The shape and size of the notch 9 can be changed as appropriate.
  • each partial terminal 4a is provided with a hole 16 that penetrates the exterior sheet 12 and the exterior encapsulant 13 and reaches the surface of the partial terminal 4a, but is not limited to this.
  • a wiring member for extracting electric power from the terminal 4 is arranged in the pair of the holes 16.
  • the solar cell module 1 can be manufactured by the method for manufacturing a solar cell module according to the present embodiment having the steps shown in FIGS. 4 to 6.
  • the method for manufacturing the solar cell module according to the present embodiment is not limited to the solar cell module 1 shown in FIGS. 1 to 3, and can be applied to the case of manufacturing various modifications of the solar cell module 1 described above. Is.
  • the method for manufacturing the solar cell module according to the present embodiment includes a panel main body forming step shown in FIG. 4, a panel forming step shown in FIG. 5 following the panel main body forming step, and a cutting step shown in FIG. 6 following the panel forming step. have.
  • a panel main body forming step shown in FIG. 4 a panel forming step shown in FIG. 5 following the panel main body forming step
  • the case where four solar cell modules 1 are formed from one panel 17 will be described as an example, but the number of solar cell modules 1 formed from one panel 17 can be appropriately changed. is there.
  • the panel main body forming step is a step of forming a panel main body 18 having a structure in which a plurality of module main bodies 5 are connected.
  • the panel body 18 has a structure in which a plurality of module bodies 5 are arranged in a direction perpendicular to the thickness direction.
  • the plurality of module main bodies 5 are arranged in both the X direction and the Y direction in the same direction (the direction in which the terminal 4 is located), but the present invention is not limited to this.
  • the plurality of notches 9 are provided by, for example, punching to remove a part of the pair of the support sheet 2 and the sealing material 8 immediately before arranging the plurality of terminal boards 10.
  • the plurality of notches 9 may be formed by providing the notches in the support sheet 2 before assembly.
  • the panel forming step has a structure in which a plurality of solar cell modules 1 are connected by fixing a pair of exterior sheet panels 19 having a structure in which a plurality of exterior sheets 12 are connected to a panel main body 18.
  • This is a step of forming the panel 17 to have.
  • the pair of the exterior sheet panels 19 is fixed to the panel main body 18 via the exterior encapsulant 13, and the translucent member 14 is introduced by the exterior encapsulant 13 introduced into the plurality of notches 9. Is formed, but is not limited to this.
  • the cutting step is a step of forming a plurality of solar cell modules 1 by cutting the panel 17.
  • the panel 17 can be cut, for example, by a laser.
  • the present invention it is possible to provide a solar cell module that is suitable for mass production and that makes it easy to recognize the presence or absence of alteration at the outer peripheral edge. Further, according to the present invention, it is possible to provide a method for manufacturing a solar cell module capable of efficiently mass-producing the solar cell module.

Landscapes

  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Electromagnetism (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Photovoltaic Devices (AREA)

Abstract

太陽電池モジュール(1)は、支持シート(2)の対と、支持シート(2)の対によって密封される太陽電池セル(3)と、太陽電池セル(3)に接続する端子(4)とを有する太陽電池モジュール本体と、太陽電池モジュール本体の外周縁(15)に設けられた切欠き(9)内に配置される透光性部材(14)と、太陽電池モジュール本体を挟持する外装シート(12)の対とを備える太陽電池モジュール(1)であって、太陽電池モジュール(1)の外周縁(15)は、太陽電池モジュール本体によって構成される第1部分(15a)と、透光性部材(14)によって構成されるとともに第1部分(15a)よりも高い全光透過率を有する第2部分(15b)とを有する。

Description

太陽電池モジュール及びその製造方法
 本発明は、太陽電池モジュール及びその製造方法に関する。
 例えば特許文献1に記載されるように、支持シートの対と、支持シートの対によって密封される太陽電池セルと、太陽電池セルに接続する端子とを有する太陽電池モジュール本体と、太陽電池モジュール本体を挟持する外装シートの対とを備える太陽電池モジュールが知られている。
特開2008-186764号公報
 特許文献1に記載されるような太陽電池モジュールは、外装シートの対の外周縁の内側に太陽電池モジュール本体が収まるように構成されている。このため、太陽電池モジュールの量産時に、太陽電池モジュール本体を個別に製造し、個別に外装シートの対に収納する必要があり、製造工程が煩雑であった。また、外装シートの接着に使用される樹脂は一般的に水分透過性が高いため、外部からの水分等の透過によって内部の太陽電池セルに影響を及ぼし、発電効率などの性能が低下する虞があった。しかし、特許文献1に記載されるような太陽電池モジュールではそのような変質の有無を認知することが難しかった。
 そこで、本発明の目的は、量産に適するとともに、外周縁において、変質の有無を認知し易い太陽電池モジュールを提供することにある。また、本発明の目的は、前記太陽電池モジュールを効率的に量産可能な太陽電池モジュールの製造方法を提供することにある。
 本発明の第1態様としての太陽電池モジュールは、支持シートの対と、支持シートの対によって密封される太陽電池セルと、太陽電池セルに接続する端子とを有する太陽電池モジュール本体と、太陽電池モジュール本体の外周縁に設けられた切欠き内に配置される透光性部材と、太陽電池モジュール本体を挟持する外装シートの対とを備える太陽電池モジュールであって、太陽電池モジュールの外周縁は、太陽電池モジュール本体によって構成される第1部分と、透光性部材によって構成されるとともに第1部分よりも高い全光透過率を有する第2部分とを有する。このような構成によれば、太陽電池モジュールの外周縁が太陽電池モジュール本体によって構成される第1部分を有することにより、複数のモジュール本体が連なった構造を有するパネル本体を形成するパネル本体形成工程と、複数の外装シートが連なった構造を有する外装シートパネルの対をパネル本体に固着することにより、複数の太陽電池モジュールが連なった構造を有するパネルを形成するパネル形成工程と、パネルを切断することにより複数の太陽電池モジュールを形成する切断工程とを経ることによって、太陽電池モジュールを効率的に量産することができる。また、このような構成によれば、透光性部材によって構成されるとともに第1部分よりも高い全光透過率を有する第2部分を監視することにより、太陽電池モジュールの外周縁において、変質の有無を容易に認知することができる。
 本発明の一実施形態において、透光性部材は水分の浸透によってヘイズ値が変化してもよい。このような構成によれば、透光性部材によって構成される第2部分を監視することにより、太陽電池モジュールの外部から内部に向かう水分の浸透状況を認知することができる。認知した水分の浸透状況に応じて適時に太陽電池モジュールを乾燥することで、太陽電池モジュールの性能を長期に亘って維持することが可能となる。
 本発明の一実施形態において、端子は透光性部材内に埋設されてもよい。このような構成によれば、透光性部材を配置するために設けられる切欠きを利用して端子を容易に配置することができる。
 本発明の一実施形態において、透光性部材は、外装シートの対と支持シートの対とを互いに接着する外装封止材で構成されてもよい。このような構成によれば、透光性部材を容易且つ安価に形成することができる。
 本発明の一実施形態において、太陽電池モジュールの外周縁は、端子が配置される1辺と端子が配置されない3辺とを有する4角形状をなし、1辺の一部と3辺とが第1部分であり、1辺の残りの一部が第2部分であってもよい。このような構成によれば、太陽電池モジュールの信頼性を高め易く、また、太陽電池モジュールのより効率的な量産を可能にすることができる。
 本発明の第2態様としての太陽電池モジュールの製造方法は、太陽電池モジュールは、支持シートの対と支持シートの対によって密封される太陽電池セルと太陽電池セルに接続する端子とを有する太陽電池モジュール本体と、太陽電池モジュール本体の外周縁に設けられた切欠き内に配置される透光性部材と、太陽電池モジュール本体を挟持する外装シートの対とを備え、太陽電池モジュールの外周縁は、太陽電池モジュール本体によって構成される第1部分と、透光性部材によって構成されるとともに前記第1部分よりも高い全光透過率を有する第2部分とを有し、複数のモジュール本体が連なった構造を有するパネル本体を形成するパネル本体形成工程と、複数の外装シートが連なった構造を有する外装シートパネルの対をパネル本体に固着することにより、複数の太陽電池モジュールが連なった構造を有するパネルを形成するパネル形成工程と、パネルを切断することにより、複数の太陽電池モジュールを形成する切断工程とを有する。このような構成によれば、第2部分の監視により太陽電池モジュールの外周縁において、変質の有無を容易に認知できる太陽電池モジュールを、パネル本体形成工程、パネル形成工程及び切断工程を経ることによって効率的に量産することができる。
 本発明によれば、量産に適するとともに、外周縁において、変質の有無を認知し易い太陽電池モジュールを提供することができる。また、本発明によれば、前記太陽電池モジュールを効率的に量産可能な太陽電池モジュールの製造方法を提供することができる。
本発明の一実施形態に係る太陽電池モジュールの平面図である。 図1のA-A断面図である。 図1のB-B断面図である。 図1に示す太陽電池モジュールを製造するためのパネル本体形成工程を示す図である。 図4に示すパネル本体形成工程に次ぐパネル形成工程を示す図である。 図5に示すパネル形成工程に次ぐ切断工程を示す図である。
 以下、図面を参照して、本発明の一実施形態に係る太陽電池モジュール及びその製造方法について詳細に例示説明する。
 図1~図3に示すように、本実施形態に係る太陽電池モジュール1は、支持シート2の対と、支持シート2の対によって密封される太陽電池セル3と、太陽電池セル3に接続する端子4とを有する太陽電池モジュール本体5(以下、モジュール本体5ともいう)を備えている。太陽電池モジュール1は支持シート2の対によって密封されるとともに直列に接続する複数の太陽電池セル3を備えているが、これに限らず、1個のみの太陽電池セル3を備えていてもよい。また、太陽電池モジュール1は12個の太陽電池セル3を備えているが、これに限らず、太陽電池セル3の数は適宜増減可能である。
 複数の太陽電池セル3は2列でY軸方向に間隔を空けて並んでいる。各々の列のY軸負方向端部には間隔を空けてそれぞれ集電電極6が配置されている。各々の列のY軸正方向端部には間隔を空けて、太陽電池セル3の2列に跨ってX軸方向に延びる集電電極7が配置されている。一方の集電電極6、太陽電池セル3の一方の列、集電電極7、太陽電池セル3の他方の列、他方の集電電極6はこの順に直列に接続している。端子4を構成する部分端子4aの対は集電電極6の対に1つずつ接続している。
 太陽電池モジュール1はZ軸方向に厚みを有する平面状をなしているが、これに限らず、曲面状をなしていてもよい。また、太陽電池モジュール1はZ軸方向に垂直なX方向に幅を有し、Z軸方向とX方向との両方に垂直なY方向に長さを有する長方形状をなしているが、これに限らず、例えば4角形状以外の形状をなしていてもよい。
 太陽電池セル3は互いに対向する電極対(図示省略)を有し、光を受けることにより電極対間に電位差を生じることができる光電変換器として機能する。例えば太陽電池セル3は、導電膜、半導体微粒子層、増感色素層がこの順に積層した光電極と、電解質層と、触媒層、導電膜がこの順に積層した対向電極とがこの順に積層した色素増感型の太陽電池セルである。増感色素層は例えば、半導体微粒子層の粒子表面に色素を吸着することで形成される。各々の太陽電池セル3の電極対はそれぞれ、隣接する支持シート2に固着している。集電電極6の対と集電電極7とはそれぞれ、一方の支持シート2に固着している。支持シート2の対の間には、複数の太陽電池セル3、集電電極6の対及び集電電極7の間の隙間を埋める封止材8が配置されている。複数の太陽電池セル3はこのように、支持シート2の対と封止材8とによって密封されているが、これに限らない。
 なお、支持シート2を構成する材料は透明性を有していればよく、例えば、樹脂、ガラス等である。特に、支持シート2は樹脂フィルムで構成することが好ましい。樹脂フィルムの材料としては、例えば、ポリエチレンテレフタレート(PET)、ポリエチレンナフタレート(PEN)、シンジオタクチックポリスチレン(SPS)、ポリフェニレンスルフィド(PPS)、ポリカーボネート(PC)、ポリアリレート(PAr)、ポリスルホン(PSF)、ポリエーテルスルホン(PES)、ポリエーテルイミド(PEI)、透明ポリイミド(PI)、シクロオレフィンポリマー(COP)等が挙げられる。また、支持シート2は単層で構成されてもよいし、材料が異なる複数層で構成されてもよい。
 封止材8を構成する材料は、支持シート2の対を接着し、支持シート2の対の隙間を封止することができ、絶縁性を有していればよく、特に限定されないが、支持シート2の対の接着性、電解質に対する耐性(耐薬品性)、高温高湿耐久性(耐湿熱性)に優れていることが好ましい。そのような材料としては、非導電性の熱可塑性樹脂、熱硬化性樹脂、活性放射線(光、電子線)硬化性樹脂が挙げられ、より具体的には、アクリル樹脂、メタクリル樹脂、フッ素樹脂、シリコーン樹脂、オレフィン樹脂及びポリアミド樹脂などが挙げられる。中でも、取扱い性の観点から、光硬化性アクリル樹脂が好ましい。製造容易性の観点から、単層又は複数層の樹脂フィルムで封止材8を構成してもよい。封止材8は、複数の太陽電池セル3を接続する配線として機能する導電材(図示省略)を含んでもよい。このような導電材を構成する材料としては例えば、Ag、Au、Cu、Al、In、Sn、Bi、Pb等の金属粒子及びこれらの酸化物、導電性炭素粒子、並びに、樹脂粒子等の有機化合物粒子や無機化合物粒子の表面を、Ag、Au、Cu等の金属やこれらの金属の酸化物等の導電性物質で被覆した粒子、例えばAu/Ni合金で被覆した粒子などが挙げられる。なお、導電材を封止材8とは別に設けてもよい。
 モジュール本体5の外周縁には、端子4が配置される切欠き9が設けられている。端子4及び切欠き9は、モジュール本体5のY軸負方向端部におけるX軸方向中央部に設けられているが、これに限らない。
 部分端子4aの対は端子支持シート10a上に固着している。部分端子4aの対と端子支持シート10aとで端子基板10が構成されている。部分端子4aの対は集電電極6の対に1つずつ、導電性接着材11を介して固着しているが、これに限らない。なお、端子4は、部分端子4aが端子支持シート10a上に固着した構成のものに限らない。
 太陽電池モジュール1は、モジュール本体5を挟持する外装シート12の対を備えている。外装シート12は水蒸気の透過を抑制する水蒸気バリア性を有しているが、これに限らない。外装シート12は水蒸気バリア性に代えて、又は加えて所望の機能を有していてよい。そのような機能としては、例えば、ガスの透過を抑制するガスバリア性、紫外線等の特定波長をカットするカット性、表面の汚れを防止する防汚性、表面の傷つきを防止するハードコート性、パネル本体の色彩を変化させるカラーコート性等が挙げられる。外装シート12は、例えば、樹脂支持体上に機能層を設けたフィルムで構成することができる。このようなフィルムの例としては、酸化ケイ素や酸化アルミニウムを蒸着したもの、有機無機ハイブリッドコーティング層を有するもの、無機層状化合物を有するもの、無機材料を積層したもの、有機層と無機層を積層したものなどが挙げられる。外装シート12は単層で構成されてもよいし、材料が異なる複数層で構成されてもよい。
 外装シート12の対と支持シート2の対とは互いに外装封止材13を介して接着されているが、これに限らない。外装封止材13は紫外線硬化樹脂によって構成されているが、これに限らない。外装封止材13は、封止材8と同様の材料を用いることができ、外装封止材13と封止材8が同一の材料で構成されていてもよい。
 太陽電池モジュール1は、モジュール本体5の外周縁に設けられた切欠き9内に配置される透光性部材14を備えている。また、太陽電池モジュール1の外周縁15は、モジュール本体5によって構成される第1部分15aと、透光性部材14によって構成されるとともに第1部分15aよりも高い全光透過率を有する第2部分15bとを有している。太陽電池モジュール1の外周縁15が、モジュール本体5によって構成される第1部分15aを有していることにより、後述するパネル本体形成工程、パネル形成工程及び切断工程を経ることで太陽電池モジュール1を効率的に量産することができる。また、太陽電池モジュール1の外周縁15が第1部分15aよりも高い透明性を有する第2部分15bを有していることにより、第2部分15bを監視することで太陽電池モジュール1の外周縁15において、変質の有無を容易に認知することができる。なお、全光透過率は、Z軸方向、つまり厚み方向における透過率であり、ISO13468-1に規定された方法で測定するが、当該方法での測定が困難な場合には他の方法で測定してもよい。
 透光性部材14は、太陽電池モジュール1の外周縁15に位置するモジュール本体5の構成部材よりも全光透過率が高い材料で構成されている。外装シート12の対と外装封止材13とはいずれも、太陽電池セル3での受光と第2部分15bの視認との両方を可能にする透明性、つまり全光線透過率を有している。なお、外装シート12の対と外装封止材13とはいずれも透明性ができるだけ高いことが好ましい。
 透光性部材14は水分の浸透によってヘイズ値が変化するように構成されている。透光性部材14によって構成される第2部分15bが外気に接しているため、透光性部材14は外気から太陽電池モジュール1内に向かう水分の浸透の程度を、ヘイズ値の上昇に伴って高まる透光性部材14の白濁の程度によって示すことができる。したがって、透光性部材14によって構成される第2部分15bを監視することにより、太陽電池モジュール1の外部から内部に向かう水分の浸透状況を認知することができる。このように認知した水分の浸透状況に応じて適時に太陽電池モジュール1を乾燥することで、太陽電池モジュール1の発電効率などの性能を長期に亘って維持することが可能となる。
 また、太陽電池モジュール1の外周縁15における第1部分15aは支持シート2を含んで構成されているため、外周縁15の断面における封止材8及び外装封止材13の占める断面積の割合が第2部分15bと比較し小さくなる。封止材8や外装封止材13を構成する樹脂は一般的に支持シート2や外装シート12よりも水分透過性が高いため、第2部分15bでは第1部分15aと比較し太陽電池モジュール1内に水分が侵入し易くなる。したがって、水分の侵入を抑制する観点からは、外周縁15における第1部分15aが占める割合はできるだけ大きいことが好ましい。本実施形態では、太陽電池モジュール1の外周縁15は、端子4が配置される1辺と端子4が配置されない3辺とを有する4角形状をなし、1辺の一部と3辺とが第1部分15aであり、1辺の残りの一部が第2部分15bである構成となっており、外周縁15の大部分が防湿性に優れる第1部分15aで構成されているので、太陽電池モジュール1の信頼性を高めることができる。また、このように太陽電池モジュール1の4辺の全てがモジュール本体5で構成されていることにより、太陽電池モジュール1をより効率的に量産することができる。なお、太陽電池モジュール1の外周縁15の形状はこれに限らない。
 透光性部材14を含む第2部分15bのヘイズ値は、25℃、50%Rhの低湿度環境で90%以下であることが好ましく、より好ましくは50%以下、さらに好ましくは10%以下である。なお、ヘイズ値はISO14782に規定された方法で測定するが、当該方法での測定が困難な場合には例えばヘイズ標準板を用いるなど他の方法で測定してもよい。透光性部材14は、外装シート12の対と支持シート2の対とを互いに接着する外装封止材13によって構成されている。つまり、透光性部材14は切欠き9内の外装封止材13によって構成されている。透光性部材14は外装封止材13とは別の材料によって構成してもよいが、製造工程の簡略化と省コスト等の観点から、外装封止材13によって構成することが好ましい。なお、透光性部材14は、第1部分15aよりも高い全光透過率を有する第2部分15bを構成するものであれば、ヘイズ値が変化するものに限らない。
 透光性部材14は端子4が配置される切欠き9内に配置されている。つまり、端子4は透光性部材14内に埋設されている。このように、端子4を配置するための切欠き9を透光性部材14の配置のために兼用することにより、製造工程の簡略化と省コスト等の効果を得ることができる。しかし、端子4が配置される切欠き9とは別に、透光性部材14を配置するための切欠きを設けてもよい。なお、透光性部材14は、X軸方向における端子4の両側に設けられているが、これに限らない。切欠き9の形状及び大きさは適宜変更が可能である。なお、各々の部分端子4aのZ軸負方向側部分には外装シート12と外装封止材13を貫いて部分端子4aの表面に至る穴16が設けられているが、これに限らない。なお、穴16の対には端子4から電力を取出すための配線部材が配置される。
 太陽電池モジュール1は、図4~図6に示す工程を有する本実施形態に係る太陽電池モジュールの製造方法によって製造することができる。なお、本実施形態に係る太陽電池モジュールの製造方法は、図1~図3に示した太陽電池モジュール1に限らず、太陽電池モジュール1の上述した種々の変形例を製造する場合にも適用可能である。
 本実施形態に係る太陽電池モジュールの製造方法は、図4に示すパネル本体形成工程と、パネル本体形成工程に次ぐ図5に示すパネル形成工程と、パネル形成工程に次ぐ図6に示す切断工程とを有している。なお、本実施形態では1個のパネル17から4個の太陽電池モジュール1を形成する場合を例にして説明するが、1個のパネル17から形成する太陽電池モジュール1の個数は適宜変更可能である。
 図4に示すように、パネル本体形成工程は、複数のモジュール本体5が連なった構造を有するパネル本体18を形成する工程である。パネル本体18は、複数のモジュール本体5が厚み方向に垂直な方向に並んだ構造を有している。複数のモジュール本体5は向き(端子4が位置する方向)を揃えてX方向とY方向の両方に並んでいるが、これに限らない。複数の切欠き9は、複数の端子基板10を配置する直前に、支持シート2の対と封止材8との一部を除去する例えば打抜き加工によって設けられている。なお、複数の切欠き9は、組立前の支持シート2に切欠きを設けることによって形成してもよい。
 図5に示すように、パネル形成工程は、複数の外装シート12が連なった構造を有する外装シートパネル19の対をパネル本体18に固着することにより、複数の太陽電池モジュール1が連なった構造を有するパネル17を形成する工程である。パネル形成工程では、外装シートパネル19の対を外装封止材13を介してパネル本体18に固着することにより、複数の切欠き9内に導入される外装封止材13によって透光性部材14を形成するが、これに限らない。
 図6に示すように、切断工程は、パネル17を切断することにより、複数の太陽電池モジュール1を形成する工程である。パネル17の切断は、例えばレーザによって行うことができる。
 前述した実施形態は本発明の実施形態の一例にすぎず、発明の要旨を逸脱しない範囲で種々変更可能であることはいうまでもない。
 本発明によれば、量産に適するとともに、外周縁において、変質の有無を認知し易い太陽電池モジュールを提供することができる。また、本発明によれば、前記太陽電池モジュールを効率的に量産可能な太陽電池モジュールの製造方法を提供することができる。
 1  太陽電池モジュール
 2  支持シート
 3  太陽電池セル
 4  端子
 4a 部分端子
 5  太陽電池モジュール本体
 6、7 集電電極
 8  封止材
 9  切欠き
10  端子基板
10a 端子支持シート
11  導電性接着材
12  外装シート
13  外装封止材
14  透光性部材
15  太陽電池モジュールの外周縁
15a 第1部分
15b 第2部分
16  穴
17  パネル
18  パネル本体
19  外装シートパネル

Claims (6)

  1.  支持シートの対と、前記支持シートの対によって密封される太陽電池セルと、前記太陽電池セルに接続する端子とを有する太陽電池モジュール本体と、
     前記太陽電池モジュール本体の外周縁に設けられた切欠き内に配置される透光性部材と、
     前記太陽電池モジュール本体を挟持する外装シートの対とを備える太陽電池モジュールであって、
     前記太陽電池モジュールの外周縁は、前記太陽電池モジュール本体によって構成される第1部分と、前記透光性部材によって構成されるとともに前記第1部分よりも高い全光透過率を有する第2部分とを有する太陽電池モジュール。
  2.  前記透光性部材は水分の浸透によってヘイズ値が変化する、請求項1に記載の太陽電池モジュール。
  3.  前記端子は前記透光性部材内に埋設される、請求項1又は2に記載の太陽電池モジュール。
  4.  前記透光性部材は、前記外装シートの対と前記支持シートの対とを互いに接着する外装封止材で構成される、請求項1~3の何れか1項に記載の太陽電池モジュール。
  5.  前記太陽電池モジュールの外周縁は、前記端子が配置される1辺と前記端子が配置されない3辺とを有する4角形状をなし、前記1辺の一部と前記3辺とが前記第1部分であり、前記1辺の残りの一部が前記第2部分である、請求項3に記載の太陽電池モジュール。
  6.  太陽電池モジュールの製造方法であって、
     前記太陽電池モジュールは、支持シートの対と前記支持シートの対によって密封される太陽電池セルと前記太陽電池セルに接続する端子とを有する太陽電池モジュール本体と、前記太陽電池モジュール本体の外周縁に設けられた切欠き内に配置される透光性部材と、前記太陽電池モジュール本体を挟持する外装シートの対とを備え、前記太陽電池モジュールの外周縁は、前記太陽電池モジュール本体によって構成される第1部分と、前記透光性部材によって構成されるとともに前記第1部分よりも高い全光透過率を有する第2部分とを有し、
     複数の前記モジュール本体が連なった構造を有するパネル本体を形成するパネル本体形成工程と、
     複数の前記外装シートが連なった構造を有する外装シートパネルの対を前記パネル本体に固着することにより、複数の前記太陽電池モジュールが連なった構造を有するパネルを形成するパネル形成工程と、
     前記パネルを切断することにより、前記複数の太陽電池モジュールを形成する切断工程とを有する、太陽電池モジュールの製造方法。
PCT/JP2020/037610 2019-10-31 2020-10-02 太陽電池モジュール及びその製造方法 WO2021085035A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019199202 2019-10-31
JP2019-199202 2019-10-31

Publications (1)

Publication Number Publication Date
WO2021085035A1 true WO2021085035A1 (ja) 2021-05-06

Family

ID=75716178

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/037610 WO2021085035A1 (ja) 2019-10-31 2020-10-02 太陽電池モジュール及びその製造方法

Country Status (1)

Country Link
WO (1) WO2021085035A1 (ja)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006173298A (ja) * 2004-12-15 2006-06-29 Fuji Electric Holdings Co Ltd 太陽電池モジュール
JP2011077301A (ja) * 2009-09-30 2011-04-14 Fujifilm Corp 太陽電池モジュール
US20120152349A1 (en) * 2010-12-17 2012-06-21 Solopower, Inc. Junction box attachment for photovoltaic thin film devices
JP2015119008A (ja) * 2013-12-17 2015-06-25 株式会社カネカ 太陽電池モジュールおよびその製造方法
WO2016157796A1 (ja) * 2015-03-31 2016-10-06 日本ゼオン株式会社 光電変換モジュール群
WO2019065265A1 (ja) * 2017-09-29 2019-04-04 日本ゼオン株式会社 環境発電体

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006173298A (ja) * 2004-12-15 2006-06-29 Fuji Electric Holdings Co Ltd 太陽電池モジュール
JP2011077301A (ja) * 2009-09-30 2011-04-14 Fujifilm Corp 太陽電池モジュール
US20120152349A1 (en) * 2010-12-17 2012-06-21 Solopower, Inc. Junction box attachment for photovoltaic thin film devices
JP2015119008A (ja) * 2013-12-17 2015-06-25 株式会社カネカ 太陽電池モジュールおよびその製造方法
WO2016157796A1 (ja) * 2015-03-31 2016-10-06 日本ゼオン株式会社 光電変換モジュール群
WO2019065265A1 (ja) * 2017-09-29 2019-04-04 日本ゼオン株式会社 環境発電体

Similar Documents

Publication Publication Date Title
EP2264783A2 (en) Encapsulation assembly for a composite solar collection module
KR101898744B1 (ko) 다공성 전극 시트, 그 제조 방법 및 표시 장치
US8461450B2 (en) Solar cell module and manufacturing method of solar cell module
CN110970522B (zh) 太阳能电池模块及太阳能电池模块的制造方法
US9484478B2 (en) Solar cell module
CN109564823B (zh) 太阳能电池模块
US9947483B2 (en) Dye-sensitized solar cell element
WO2021085035A1 (ja) 太陽電池モジュール及びその製造方法
US20220285641A1 (en) Method for electrically conductively contacting an optoelectronic component having at least one protective layer and optoelectronic component having a contacting of this type
WO2014030225A1 (ja) 太陽電池モジュール及びその製造方法
CN217468456U (zh) 光伏组件及光伏电站
JP2007173045A (ja) 色素増感型太陽電池モジュールおよびその製造方法
WO2008032676A1 (fr) module électroluminescent
US20100236623A1 (en) Solar cell module
US10008336B2 (en) Dye-sensitized solar cell element
JP2023509492A (ja) 少なくとも第1のカプセル及び第2のカプセルを含む、オプトエレクトロニックコンポーネントのためのカプセル系及びこの種のカプセル系を含むオプトエレクトロニックコンポーネント
US9190220B2 (en) Dye-sensitized solar cell
US20150372248A1 (en) Dye-sensitized solar cell element
KR101021174B1 (ko) 염료감응 태양전지
WO2024181516A1 (ja) 環境発電体及びその製造方法
WO2019065430A1 (ja) 太陽電池モジュール、および太陽電池モジュールの製造方法
US20130146140A1 (en) Dye-sensitized solar cell
CN109545879B (zh) 光反射结构层及具有其的光伏组件
JP2018125369A (ja) 太陽電池モジュール及びその製造方法
CN108231421B (zh) 染料敏化光伏型电池、模块及其制造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20883335

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20883335

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP