WO2021084964A1 - Switching control circuit and switching power supply apparatus - Google Patents
Switching control circuit and switching power supply apparatus Download PDFInfo
- Publication number
- WO2021084964A1 WO2021084964A1 PCT/JP2020/035433 JP2020035433W WO2021084964A1 WO 2021084964 A1 WO2021084964 A1 WO 2021084964A1 JP 2020035433 W JP2020035433 W JP 2020035433W WO 2021084964 A1 WO2021084964 A1 WO 2021084964A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- signal
- voltage
- switching
- burst
- turn
- Prior art date
Links
Images
Classifications
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02M—APPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
- H02M1/00—Details of apparatus for conversion
- H02M1/08—Circuits specially adapted for the generation of control voltages for semiconductor devices incorporated in static converters
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02M—APPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
- H02M3/00—Conversion of dc power input into dc power output
- H02M3/22—Conversion of dc power input into dc power output with intermediate conversion into ac
- H02M3/24—Conversion of dc power input into dc power output with intermediate conversion into ac by static converters
- H02M3/28—Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02M—APPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
- H02M3/00—Conversion of dc power input into dc power output
- H02M3/22—Conversion of dc power input into dc power output with intermediate conversion into ac
- H02M3/24—Conversion of dc power input into dc power output with intermediate conversion into ac by static converters
- H02M3/28—Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac
- H02M3/325—Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal
- H02M3/335—Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only
- H02M3/33507—Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only with automatic control of the output voltage or current, e.g. flyback converters
- H02M3/33523—Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only with automatic control of the output voltage or current, e.g. flyback converters with galvanic isolation between input and output of both the power stage and the feedback loop
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02M—APPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
- H02M7/00—Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
- H02M7/02—Conversion of ac power input into dc power output without possibility of reversal
- H02M7/04—Conversion of ac power input into dc power output without possibility of reversal by static converters
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02M—APPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
- H02M7/00—Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
- H02M7/02—Conversion of ac power input into dc power output without possibility of reversal
- H02M7/04—Conversion of ac power input into dc power output without possibility of reversal by static converters
- H02M7/12—Conversion of ac power input into dc power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
- H02M7/21—Conversion of ac power input into dc power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal
- H02M7/217—Conversion of ac power input into dc power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only
- H02M7/2176—Conversion of ac power input into dc power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only comprising a passive stage to generate a rectified sinusoidal voltage and a controlled switching element in series between such stage and the output
Definitions
- the present invention relates to a switching control circuit and a switching power supply device.
- a switching power supply device that generates an output voltage by switching a switching element from an input voltage applied to a series circuit of an inductor and a switching element is known.
- a switching element is connected in series to the primary winding as an inductor, and an AC voltage is full-wave rectified to those series circuits to obtain a direct current.
- the output voltage is obtained on the secondary side by applying the input voltage of the above and switching driving the switching element.
- a PWM operation is usually performed in which a switching element is switched at a switching frequency by using pulse width modulation.
- a switching power supply device capable of switching and executing PWM operation and burst operation
- the magnitude of the load is monitored, and the PWM operation and burst operation are switched and executed based on the feedback voltage according to the magnitude of the load.
- there is a boundary power (burst boundary power) for switching between PWM operation and burst operation but in the conventional switching power supply device, this boundary power changes depending on the magnitude of the input voltage. was there.
- the effective value of the input AC voltage to the AC / DC converter may be 100V or 240V, and in conjunction with this, the primary winding of the transformer
- the DC input voltage applied to the circuit in series with the switching element also changes in various ways.
- the boundary power changes depending on the magnitude of the input voltage (for example, depending on whether the effective value of the input AC voltage to the AC / DC converter is 100V or 240V). was there. This means that the load power consumption is the same, but the burst operation is performed or not performed depending on the input voltage (the reason for this phenomenon will be explained in detail later).
- the burst operation is performed or not performed depending on the input voltage (in other words, the execution condition of the burst operation depends on the input voltage), which hinders the optimization of the power design related to the burst operation.
- An object of the present invention is to provide a switching control circuit and a switching power supply device that suppress the execution conditions of burst operation from changing according to an input voltage.
- the switching control circuit transfers a current flowing through the switching element in a switching control circuit for generating an output voltage by switching the switching element from an input voltage applied to a series circuit of the inductor and the switching element.
- a PWM operation or burst operation for switching the switching element at a set switching frequency is executed based on the current detection unit that detects the target current and the feedback voltage according to the magnitude of the load to which the output voltage is supplied.
- the control unit includes a set signal generation unit that generates a set signal instructing the turn-on of the switching element, and a reset signal generation unit that generates a reset signal instructing the turn-off of the switching element.
- the signal for turning on the switching element when receiving the set signal is supplied to the switching element, and the signal for turning off the switching element when receiving the reset signal is switched. It has a drive unit that supplies the element, and in the burst operation, the switching of the switching element at the switching frequency is stopped, and in the burst operation, the set signal generating unit generates the set signal based on the feedback voltage. After that, the reset signal generation unit generates the reset signal when the value of the target current exceeds the turn-off threshold, and the reset signal generation unit is set in a predetermined section after the generation of the set signal. Therefore, the turn-off threshold is increased with the passage of time (first configuration).
- the turn-off threshold value may have a value corresponding to the feedback voltage (second configuration).
- the reset signal generator adds a slope compensation signal whose signal value increases with the passage of time in the predetermined section to a signal proportional to the feedback voltage.
- the set signal generator has an oscillator that generates a signal of the switching frequency, and in the PWM operation, the set signal is used at the switching frequency by using the oscillator.
- the reset signal generating unit In the PWM operation, the reset signal generating unit generates the reset signal based on the current detection signal, the turn-off threshold signal, and the overcurrent threshold signal indicating a predetermined overcurrent threshold. (Fourth configuration) may be used.
- the reset signal generating unit is a first comparator that compares the current detection signal with the turn-off threshold signal, and the current detection signal and the overcurrent threshold. It has a second comparator that compares with a signal, and in the PWM operation, the value of the target current is higher than the turn-off threshold or the overcurrent threshold based on the comparison results of the first comparator and the second comparator.
- the configuration may be such that the reset signal is generated when the value becomes large (fifth configuration).
- the reset signal generation unit adds a first slope compensation signal whose signal value increases with the passage of time in the predetermined section to a signal proportional to the feedback voltage.
- the turn-off threshold signal is generated
- the overcurrent threshold signal is generated by adding the second slope compensation signal whose signal value increases with the passage of time in the predetermined section to the signal having the predetermined value. It may be the configuration (sixth configuration).
- the feedback voltage decreases as the magnitude of the load decreases, and the control unit has the feedback voltage higher than the predetermined burst determination voltage.
- the PWM operation may be continuously executed, and the burst operation may be started when the feedback voltage falls below the burst determination voltage (seventh configuration).
- the control unit starts the burst operation in response to the transition from a state in which the feedback voltage is higher than the burst determination voltage to a state in which the feedback voltage is lower than the burst determination voltage.
- the switching element is kept in the off state until the feedback voltage exceeds a predetermined burst release voltage higher than the burst determination voltage, and when the feedback voltage exceeds the burst release voltage, the set signal
- the set signal Even in the configuration (eighth configuration), the set signal is generated by the generating unit, and then the reset signal is generated by the reset signal generating unit in response to the value of the target current exceeding the turn-off threshold. good.
- the feedback voltage increases as the magnitude of the load decreases, and the control unit has the feedback voltage lower than a predetermined burst determination voltage.
- the PWM operation may be continuously executed, and the burst operation may be started when the feedback voltage exceeds the burst determination voltage (9th configuration).
- the control unit starts the burst operation in response to the transition from the state where the feedback voltage is lower than the burst determination voltage to the state where the feedback voltage is higher than the burst determination voltage.
- the switching element is kept in the off state until the feedback voltage falls below a predetermined burst release voltage lower than the burst determination voltage, and when the feedback voltage falls below the burst release voltage, the set signal
- the set signal is generated by the generating unit, and then the reset signal is generated by the reset signal generating unit in response to the value of the target current exceeding the turn-off threshold. good.
- a transformer having the inductor and the secondary winding is used as the primary winding, and the input voltage applied to the primary side is two.
- the configuration may be such that the output voltage is generated on the next side (11th configuration).
- the switching power supply device is a switching power supply device that uses a transformer having a primary side winding and a secondary side winding to generate an output voltage on the secondary side from an input voltage applied to the primary side by a switching method.
- a switching element connected in series to the primary winding as an inductor, a switching control circuit according to any one of the first to eleventh configurations, and a feedback voltage generation that generates the feedback voltage based on the output voltage. It is a configuration (12th configuration) including a circuit.
- the input voltage may be a configuration (13th configuration) generated by rectifying and smoothing an AC voltage.
- the present invention it is possible to provide a switching control circuit and a switching power supply device that suppress the execution conditions of burst operation from changing according to the input voltage.
- (A) to (c) are diagrams showing the waveform of the primary side current in a virtual situation according to the first embodiment of the present invention.
- Is a relationship diagram of an input voltage and a burst boundary voltage in a virtual situation according to the first embodiment of the present invention Is a diagram showing a waveform of a primary side current in an actual situation according to the first embodiment of the present invention. Is a relationship diagram of an input voltage and a burst boundary voltage in an actual situation according to the first embodiment of the present invention. Is a schematic internal block diagram of a primary side control circuit according to the first embodiment of the present invention. Is a configuration diagram of a main control unit according to the first embodiment of the present invention. Is a waveform diagram of various voltages and signals related to burst operation according to the first embodiment of the present invention.
- IC is an abbreviation for Integrated Circuit.
- PWM is an abbreviation for Pulse Width Modulation.
- Level refers to the level of potential, where a high level has a higher potential than a low level for any signal or voltage. For any signal or voltage, switching from low level to high level is called the up edge, and switching from high level to low level is called the down edge.
- the on state means that the drain and source of the transistor are in a conductive state
- the off state means the drain of the transistor. And it means that there is a non-conduction state (interruption state) between the sources.
- MOSFET is an abbreviation for "metal-oxide-semiconductor field-effect transistor". For any transistor, switching from the off state to the on state is expressed as turn-on, and switching from the on state to the off state is expressed as turn-off.
- FIG. 1 is an overall configuration diagram of an AC / DC converter 1 according to the first embodiment of the present invention.
- FIG. 1 also shows a load LD connected to the AC / DC converter 1.
- the AC / DC converter 1 includes a primary side circuit 10 which is a circuit provided on the primary side and a secondary side circuit 20 which is a circuit provided on the secondary side.
- the primary side and the secondary side are insulated from each other, in other words, the primary side circuit 10 and the secondary side circuit 20 are insulated from each other.
- the AC / DC converter 1 includes a transformer TR and a photocoupler PC provided over the primary side circuit 10 and the secondary side circuit 20.
- the transformer TR includes a primary winding W1 arranged in the primary circuit 10 and a secondary winding W2 arranged in the secondary circuit 20.
- the primary winding W1 and the secondary winding W2 are electrically insulated and magnetically coupled to each other with opposite polarities.
- the photocoupler PC includes a light emitting element PCe arranged in the secondary side circuit 20 and a light receiving element PCr arranged in the primary side circuit 10.
- an output voltage V OUT is generated in an isolated form from the input voltage V IN by using a transformer TR.
- the ground in the primary side circuit 10 is referred to by "GND1”
- the ground in the secondary side circuit 20 is referred to by "GND2”.
- the input voltage V IN is the primary side voltage with reference to the ground GND 1
- the output voltage V OUT is the secondary side voltage with reference to the ground GND 2.
- ground refers to a conductive portion (predetermined potential point) having a reference potential of 0 V (zero volt) or refers to the reference potential itself.
- the ground GND1 and the ground GND2 are insulated from each other, they may have different potentials from each other.
- the primary side circuit 10 will be described.
- the primary side circuit 10 includes a filter 11, a rectifier circuit 12, a smoothing capacitor 13, a switching transistor 14, a current sense resistor 15, a primary side control circuit 16 which is an example of a switching control circuit, a power supply generation circuit 17, and a feedback capacitor 18. It is provided.
- the switching transistor 14 is configured as an N-channel MOSFET (metal-oxide-semiconductor field-effect transistor).
- the filter 11 removes noise of the AC voltage VAC input to the AC / DC converter 1.
- AC voltage V AC may be a commercial AC voltage.
- the rectifier circuit 12 is a diode bridge circuit that full-wave rectifies the AC voltage DAC supplied through the filter 11.
- Smoothing capacitor 13 produces an input voltage V IN by smoothing the voltage full-wave rectified by the rectifier circuit 12.
- An input voltage V IN is applied between both ends of the smoothing capacitor 13 with reference to the ground GND1. Across the smoothing capacitor 13 is understood when connected corresponding to input terminals TM IN input voltage V IN is applied or to the input terminal TM IN.
- the input voltage V IN is a positive DC voltage having a voltage value corresponding to the effective value of the AC voltage VAC.
- the input voltage V IN may pulsate slightly in the cycle of the AC voltage VAC, but the pulsation is ignored here.
- An input voltage V IN is applied to one end of the primary winding W1, and the other end of the primary winding W1 is connected to the drain of the switching transistor 14.
- the source of the switching transistor 14 is connected to the ground GND1 via the current sense resistor 15.
- Voltage drop caused by the current sensing resistor 15, i.e. the voltage between the two terminals of the current sensing resistor 15 is input to the primary side control circuit 16 as a current sense voltage V CS.
- the current sense voltage VCS has a voltage value proportional to the value of the current flowing through the switching transistor 14.
- the current flowing through the switching transistor 14, that is, the current flowing through the primary winding W1 is referred to as a primary side current and is represented by the reference numeral "IP".
- the primary side control circuit 16 is provided with an output terminal TM1, a current sense terminal TM2, a feedback terminal TM3, a power supply terminal TM4, and a ground terminal TM5.
- the output terminal TM1 is connected to the gate of the switching transistor 14.
- the feedback terminal TM3 receives the feedback voltage VFB described later.
- the feedback voltage V FB corresponds to the voltage between both terminals of the feedback capacitor 18, one end of the capacitor 18 is connected to the feedback terminal TM3, and the other end of the capacitor 18 is connected to the ground GND1.
- Power terminal TM4 receives power supply voltage V CC of the direct current supplied from the power generating circuit 17.
- the ground terminal TM5 is connected to the ground GND1 on the primary side.
- the primary side control circuit 16 is driven based on the power supply voltage VCC.
- the power supply generation circuit 17 generates a power supply voltage V CC based on the input voltage V IN , and supplies the power supply voltage V CC to the primary side control circuit 16.
- An auxiliary winding (not shown) may be provided on the primary side of the transformer TR.
- the power supply generation circuit 17 can be a circuit switching transistor 14 generates a power supply voltage V CC by rectifying the induced voltage generated in the auxiliary winding when the driven switching.
- the power supply generation circuit 17, the input voltage V IN may be a DC / DC converter for generating a supply voltage V CC by converting DC / DC.
- the primary side control circuit 16 switches and drives the transistor 14 by supplying a switching signal to the gate of the transistor 14 and controlling the gate voltage of the transistor 14.
- the switching signal is a rectangular wavy signal whose signal level switches between low level and high level. When a low level signal and a high level signal are supplied to the gate of the transistor 14, the transistor 14 is turned off and turned on, respectively.
- the primary side control circuit 16 may be formed in the form of a power supply IC.
- Figure 2 shows a perspective view of an electronic component 1 IC as a power supply IC.
- the electronic component 1 IC includes a semiconductor chip in which a semiconductor integrated circuit constituting the primary side control circuit 16 is formed, a housing (package) for accommodating the semiconductor chip, and a plurality of ICs attached to the housing and exposed from the housing. It is an electronic component (semiconductor device) provided with an external terminal, and is formed by enclosing a semiconductor chip in a housing made of resin.
- the terminals TM1 to TM5 of FIG. 1 are included in the plurality of external terminals.
- the secondary side circuit 20 will be described.
- the secondary side circuit 20 is provided with a rectifier diode 21, a smoothing capacitor 22, and a feedback circuit 23.
- the circuit arranged on the secondary side is referred to as the secondary side circuit 20. Therefore, although the load LD not included in the components of the AC / DC converter 1 is arranged on the secondary side, it does not belong to the secondary side circuit 20.
- one end of the secondary winding W2 is connected to the anode of the rectifier diode 21, and the other end of the secondary winding W2 is connected to the ground GND2.
- the cathode of the rectifying diode 21 is connected to one end of the smoothing capacitor 22, and the other end of the smoothing capacitor 22 is connected to the ground GND2. Therefore, when the switching transistor 14 is on, a current based on the input voltage VIN flows to the primary winding W1 to accumulate energy in the primary winding W1, and then the switching transistor 14 is turned off. The stored energy is output from the secondary winding W2 to the smoothing capacitor 22 through the rectifying diode 21. As a result, an output voltage V OUT is generated between both ends of the smoothing capacitor 22.
- the output voltage V OUT is a positive DC voltage having a voltage value corresponding to the ratio of the input voltage V IN to the number of turns of the primary winding W1 and the number of turns of the secondary winding W2.
- the output voltage V OUT may pulsate slightly, but the pulsation is ignored here.
- the number of turns of the secondary winding W2 is smaller than the number of turns of the primary winding W1, so that the output voltage V OUT is smaller than the input voltage V IN (that is, the output voltage V OUT is smaller than the input voltage V IN) . Also has a low voltage value).
- the load LD is an arbitrary load connected to the output terminal TM OUT and driven based on the output voltage V OUT , and is, for example, a microcomputer computer, a DSP (Digital Signal Processor), or a DC / DC converter.
- the current consumed by the load LD that is, the current flowing between the smoothing capacitor 22 and the load LD in the direction of discharging the smoothing capacitor 22, is referred to as a load current or an output current, and is represented by the symbol "ILD".
- the feedback circuit 23 drives the light emitting element PCe of the photocoupler PC so that the output voltage V OUT matches the predetermined target voltage V TG.
- the feedback circuit 23 supplies the light emitting element PCe with a current corresponding to an error between the output voltage V OUT and the predetermined target voltage V TG.
- the feedback circuit 23 is composed of a shunt regulator, an error amplifier, and the like.
- the target voltage V TG is the target voltage of the output voltage V OUT that the output voltage V OUT should match.
- a feedback current I FB flows through the light receiving element PCr of the photocoupler PC.
- the magnitude of the feedback current I FB increases as the magnitude of the current flowing through the light emitting element PCe increases, decreases by decreasing to.
- Receiving element PCr is provided between the feedback terminal TM3 and ground GND1, the feedback current I FB flows toward the feedback terminal TM3 to ground GND1.
- the AC / DC converter 1 the output voltage V OUT at synchronous rectification It may be generated, or the output voltage V OUT may be generated by a forward method.
- a predetermined internal power supply voltage Vreg based is generating the power supply voltage V CC.
- the internal power supply voltage Vreg is a positive DC voltage with reference to the ground GND1, and is, for example, 4V.
- the primary side control circuit 16 is provided with a feedback resistor R FB.
- the internal power supply voltage Vreg is applied to one end of the feedback resistor R FB, feedback terminal TM3 is connected to the other end of the feedback resistor R FB.
- Load current I LD represents the magnitude of the load LD for the AC / DC converter 1, the magnitude of the load current I LD larger the load LD is large, the magnitude of the load current I LD smaller the load LD small.
- a large load LD is also expressed as a heavy load LD, and a small load LD is also expressed as a light load LD.
- the large / small of the load current I LD is not a large / small of the instantaneous value of the load current I LD, may be construed to refer to large / small of the mean value of the load current I LD.
- a series of operations in which the switching transistor 14 is turned on and then turned off is referred to as a unit switching operation.
- the output voltage V OUT becomes the target voltage V. It goes down from TG.
- the feedback circuit 23 reduces (can be zero) the amount of current supplied to the light emitting element PCe.
- the feedback current I FB decreases and the feedback voltage V FB rises.
- the increase in the feedback voltage VFB is limited to the internal power supply voltage Vreg.
- the primary side control circuit 16 executes switching control of the switching transistor 14 so that the average number of switching operations per unit time or the peak current value I PEAK in each unit switching operation increases. To do. Thus, to stabilize the output voltage V OUT against the increase in the load current I LD with the target voltage V TG.
- the output voltage V OUT becomes higher. It goes in the direction of rising from the target voltage VTG.
- the feedback circuit 23 increases the amount of current supplied to the light emitting element PCe.
- the feedback current I FB increases and the feedback voltage V FB decreases.
- the load current I LD becomes smaller, the amount of increase in the feedback current I FB and the amount of decrease in the feedback voltage V FB become larger.
- the decrease in the feedback voltage VFB is limited to the potential of the ground GND1.
- the primary side control circuit 16 executes switching control of the switching transistor 14 so that the average number of switching operations per unit time or the peak current value I PEAK in each unit switching operation decreases. To do. Thus, to stabilize the output voltage V OUT against the decrease of the load current I LD with the target voltage V TG.
- the feedback voltage V FB becomes a voltage corresponding to the magnitude of the load LD.
- the load current I LD is higher (the larger the average value of the load current I LD) large feedback voltage V FB is high, the load current as I LD is small (average value of the load current I LD (The smaller), the lower the feedback voltage VFB.
- the primary side control circuit 16 sets any of a plurality of modes to its own operation mode, and operates in the set operation mode.
- the first to fifth modes are included in the plurality of modes.
- the primary side control circuit 16 sets any of the first to fifth modes as the operation mode based on the feedback voltage V FB.
- FIG. 4 shows the relationship between the feedback voltage VFB and the operation mode.
- the PWM operation is executed by the primary side control circuit 16.
- the switching transistor 14 is periodically switched at the set switching frequency fSW. That is, the switching frequency fSW is the switching frequency of the switching transistor 14 at the time of executing the PWM operation (that is, the number of times the unit switching operation is repeatedly executed per second). Details will become apparent from the following description, in each unit switching operation in the PWM operation, after the switching transistor 14 is turned on, based on the primary-side current I value certain current value of P (e.g., foot-back voltage V FB When the current value or the current value based on the overcurrent detection voltage is reached, the switching transistor 14 is turned off. That is, the primary side control circuit 16 can perform switching control of the transistor 14 in the so-called PWM current mode.
- the primary side control circuit 16 can perform switching control of the transistor 14 in the so-called PWM current mode.
- a predetermined voltage V A, V B, V C based on the relationship between V D and V E and the feedback voltage V FB, "V FB ⁇ V A” first upon establishment of is set in the mode, "V a ⁇ V FB ⁇ V B” is set to the second mode when the establishment of, is set to the third mode when the establishment of "V B ⁇ V FB ⁇ V C", "V C ⁇ V When FB ⁇ VE "is established, the fourth mode is set, and when" VE ⁇ V FB "is established, the fifth mode is set.
- the PWM operation is executed in the second to fourth modes.
- the second mode is f fixed mode the switching frequency f SW is fixed at a predetermined frequency f L
- the switching frequency f SW predetermined frequency f is higher than L predetermined frequency f H It is a fixed f fixed mode.
- the frequencies f L and f H are assumed to be 25 kHz and 100 kHz (kilohertz), respectively.
- the third mode is an f reduction mode in which the switching frequency f SW is lowered as the feedback voltage V FB is lowered.
- the switching frequency f SW is linear manner is caused to drop to a frequency f L from the frequency f H as the feedback voltage V FB falls from the voltage V C to the voltage V B, conversely, the switching frequency f SW is brought into linearly increased to a frequency f H from the frequency f L as the feedback voltage V FB rises from the voltage V B to the voltage V C.
- the switching frequency fSW is reduced when the load LD is relatively light, so that the power conversion efficiency can be improved.
- the fifth mode is an overload mode.
- a primary side control circuit 16 determines that the AC / DC converter 1 is overloaded And perform overload protection operation.
- the overload protection operation the switching of the switching transistor 14 is stopped and the transistor 14 is maintained in the off state without performing the PWM operation or the burst operation described later.
- the first mode is a burst mode.
- the feedback voltage V FB drops from the state in which the PWM operation is performed and “V FB ⁇ VA ” is established, the transition to the burst mode occurs, and the burst operation is executed by the primary side control circuit 16.
- the switching of the switching transistor 14 at the switching frequency fSW is stopped, and the switching transistor 14 is switched in a non-periodic manner.
- the switching of the switching transistor 14 in the burst operation may have periodicity by chance, but the switching frequency of the switching transistor 14 at this time is lower than the frequency f L.
- V FB ⁇ VA the switching transistor 14 is kept in the off state, and the feedback voltage V FB fluctuates in the vicinity of the voltage VA. Burst operation will be realized with.
- FIG. 5 shows the waveform of the feedback voltage VFB and the state change of the switching transistor 14 when the burst operation is executed.
- the voltage V BST1 is a predetermined burst determination voltage
- the voltage V BST2 is a predetermined burst release voltage.
- the burst determination voltage V BST1 corresponds to the voltage V A in FIG. 4, which is 0.40 V here.
- the burst release voltage V BST2 is higher than the burst determination voltage V BST1 , and here, it is assumed to be 0.45V.
- the feedback voltage V FB at a dose of switching transistor 14 is below the burst determination voltage V BST1 again, thereafter, the same operation as the operation between the timings t 1 ⁇ t 3 is repeated in the burst operation Is done.
- the feedback voltage V FB at a timing t 2 exceeds the burst release voltage V BST2
- the feedback voltage V FB at a dose of switching transistor 14 does not fall below a burst determination voltage V BST1
- the turn-on of the transistor 14 is repeated at the frequency f L until the feedback voltage V FB falls below the burst determination voltage V BST1. If the feedback voltage V FB stably exceeds the burst determination voltage V BST1 due to the heavy load LD, the operation executed by the primary side control circuit 16 shifts from the burst operation to the PWM operation.
- V INL is the first example of the input voltage V IN is lower than the voltage V INH is a second example of the input voltage V IN.
- V INL, V INH respectively, the effective value of the AC voltage V AC in FIG. 1 corresponds to the input voltage V IN when 100 V, is 240V.
- the primary-side current I P in the second virtual status, respectively, the code "I P [V INL]” are referred to by "I P [V INH]” .
- I P [V INH] are referred to by "I P [V INH]”.
- the switching transistor 14 is turned on in a burst operation, the value of the primary-side current I P (here the I OFF [const]) off threshold I OFF reached The switching transistor 14 is turned off as an opportunity. However, the timing has been reached (I OFF [const] in this case) the value of the primary current I P is turned off threshold I OFF, after the t DLY has predetermined delay time has elapsed, the switching transistor 14 is actually turned off.
- the delay time t DLY is based on the signal delay in the primary side control circuit 16 and the charge / discharge time of the gate capacitance of the switching transistor 14.
- the delay time t DLY is constant regardless of the magnitude of the input voltage VIN. However, the variation of the primary current I P with respect to the delay time t DLY is dependent on the magnitude of the input voltage V IN.
- the amount of change per unit time of the primary-side current I P when switching transistor 14 is on, is proportional to the inverse proportion and the input voltage V IN to the inductance value of the primary winding W1.
- the peak current value I P1 is the peak current value I PEAK of the primary-side current I P in the first virtual situation
- the peak current value is the peak current value I PEAK of the primary-side current I P in the second virtual situation I P2 When compared with, it becomes " IP1 ⁇ IP2".
- burst boundary power BPST depends on the magnitude of the input voltage V IN (in other words, the magnitude of the AC voltage V AC). Will change (according to).
- Burst boundary power PBST refers to the power that is the boundary between the burst operation and the PWM operation. That is, the electric power supplied from the AC / DC converter 1 to the load LD (i.e. the product of the output voltage V OUT and load current I LD) is, PWM operation is executed is larger than the burst boundary power P BST, a burst boundary power P If it is smaller than BST, burst operation is executed.
- the burst operation reduces the power consumption of the AC / DC converter 1 at the time of a light load, but it is not desirable that the burst operation is performed or not performed depending on the input voltage VIN, which is related to the burst operation. It hinders power design optimization.
- upslope compensation compensation for gradually increasing the turn-off threshold value I OFF (hereinafter referred to as upslope compensation) is performed.
- the second actual situation is an up slope to the turn-off threshold value I OFF.
- the waveforms 630 and 640 are slightly shifted vertically from each other.
- the switching transistor 14 is turned off in response to the value of the primary-side current I P reaches the turn-off threshold value I OFF .
- the turn-off threshold value I OFF gradually increases after the switching transistor 14 is turned on. Therefore, the peak current value I P1 'is the peak current value I PEAK of the primary-side current I P in the first real situation, the peak current value is the peak current value I PEAK of the primary-side current I P in the second real situation 'when compared with the magnitude of their difference
- is to be zero (the up-slope compensation make it so designed). In all circumstances,
- FIG. 9 shows the relationship between the input voltage VIN and the burst boundary power PBS T when the upslope compensation is applied to the turn-off threshold value I OFF.
- the use of up-slope compensation decrease dependency on the input voltage V IN at the burst boundary power P BST, it is possible to substantially constant independently of the burst boundary power P BST to the input voltage V IN .. As a result, it becomes easy to optimize the power design related to the burst operation of the device including the AC / DC converter 1.
- FIG. 10 shows a schematic internal block diagram of the primary side control circuit 16.
- the primary side control circuit 16 includes a main control unit 100 having a set signal generation unit 110, a reset signal generation unit 120, and a drive unit 130, and a current detection unit 140.
- Current detecting unit 140 detects the primary-side current I P (target current) flowing through the switching transistor 14 with a current sensing resistor 15, and generates and outputs a current detection signal S CS indicating the detection result.
- the current detection unit 140 is given a voltage drop (that is, a current sense voltage VCS ) that occurs in the current sense resistor 15 with reference to the ground GND1.
- Current detecting section 140 is configured to include amplifiers and filters, etc., to generate and output a voltage signal having a voltage value k times the current sense voltage V CS as a current detection signal S CS.
- k is any positive real number.
- the current detection signal SCS is given to the main control unit 100. Further, the feedback voltage VFB is also given to the main control unit 100.
- the main control unit 100 supplies a switching signal to the gate of the switching transistor 14 based on the feedback voltage V FB and the current detection signal S CS (thus, based on the feedback voltage V FB and the current sense voltage V CS), and the transistor 14 The gate voltage is controlled, thereby switching and driving the transistor 14.
- the signal supplied to the gate of the transistor 14 may be referred to as a gate signal.
- the set signal generation unit 110 generates a signal SET.
- the reset signal generation unit 120 generates the signal RST.
- the signals SET and RST are supplied to the drive unit 130.
- Each of the signal SET and RST is a binarized signal that takes either a low level or a high level signal level.
- the high-level signal SET functions as a set signal instructing the turn-on of the switching transistor 14, and the low-level signal SET does not function as a set signal (invalid).
- the high-level signal RST functions as a reset signal instructing the turn-off of the switching transistor 14, and the low-level signal RST does not function as a reset signal (invalid).
- the drive unit 130 When the drive unit 130 receives the set signal (that is, when it receives the high-level signal SET), the drive unit 130 sends a signal for turning on the switching transistor 14 (that is, a high-level gate signal) to the gate of the switching transistor 14. Supply.
- the drive unit 130 receives the reset signal (that is, when it receives the high-level signal RST), the drive unit 130 sends a signal for turning off the switching transistor 14 (that is, a low-level gate signal) to the gate of the switching transistor 14. Supply.
- the main control unit 100 based on the feedback voltage V FB, PWM operation for switching at a switching frequency f SW that is set to the switching transistor 14, or to perform a burst operation. In the burst operation, as described above, the switching of the transistor 14 at the switching frequency fSW is stopped.
- the set signal generator 110 In the burst operation, the set signal generator 110 generates a set signal based on the feedback voltage V FB (see FIG. 5; generates a set signal in response to "V FB > V BST2"), and then resets.
- signal generating unit 120 generates a reset signal in response to the value of the current detection signal S reference to CS and the primary-side current I P exceeds the turn-off threshold I OFF.
- the above-mentioned upslope compensation is applied to the turn-off threshold value I OFF.
- FIG. 11 shows a detailed configuration example of the main control unit 100.
- the set signal generation unit 110 will be described.
- the set signal generation unit 110 includes a comparator 111 and an oscillator 112.
- the comparator 111 is a comparator with hysteresis, and generates an enable signal EN OSC for the oscillator 112 based on the feedback signal S FB2 corresponding to the feedback voltage V FB.
- the feedback signal S FB2 is a voltage signal having a voltage value that is 1/2 times the feedback voltage V FB.
- the comparator 111, a feedback signal S FB2 compared voltage (V FB / 2) and a voltage (V BST1 / 2) or voltage (V BST2 / 2) by the signal enable signal EN indicating their magnitude relationship Output as OSC.
- the enable signal EN OSC is a binarized signal that takes either a low level or a high level signal level.
- the comparison between the voltage (V FB / 2) and the voltage (V BST1 / 2) or the voltage (V BST2 / 2) is made with the feedback voltage V FB and the burst determination voltage V BST1 or the burst release voltage V BST2 . Is equivalent to the comparison of. Therefore, the operation of the comparator 111 will be described by paying attention to the magnitude relationship between the voltage V FB and the voltage V BST1 or V BST2. 12, the voltage V FB, and V BST1 and V BST2, (described later signal OUT VCO shown in FIG. 12) showing the relationship between the various signals, including an enable signal EN OSC.
- the feedback voltage V FB is sufficiently higher than the burst determination voltage V BST1 and the burst release voltage V BST2 according to a predetermined start sequence, and at this time, the enable which is the output signal of the comparator 111.
- the signal EN OSC is at a high level.
- the enable signal EN OSC is maintained at a high level when is established, while the enable signal EN OSC is switched from a high level to a low level when "V FB ⁇ V BEST1" is established.
- the enable signal EN OSC is either high level or low level.
- the comparator 111 compares the feedback voltage V FB and the burst release voltage V BST2, and “V FB ⁇ V BST2 ”.
- the enable signal EN OSC is maintained at the low level when is established, while the enable signal EN OSC is switched from the low level to the high level when “V FB > V BEST2” is established.
- the enable signal EN OSC is either high level or low level.
- the oscillator 112 generates a square wave signal having a frequency corresponding to the feedback voltage VFB, and outputs the generated square wave signal as a signal SET only when the enable signal EN OSC is at a high level. If the enable signal EN OSC is low level, the signal SET is maintained at low level.
- FIG. 13 shows a functional block diagram of the oscillator 112.
- the oscillator 112 has a voltage controlled oscillator 112a that continuously generates and outputs a square wave signal OUT VCO having a frequency f VCO corresponding to the feedback voltage V FB , and an enable signal EN OSC at a high level. Only when this is the case, it can be considered that the switch unit 112b outputs the rectangular wave signal OUT VCO output from the voltage controlled oscillator 112a to the outside of the oscillator 112 as a signal SET. When the enable signal EN OSC is low level, the signal SET shall be fixed at low level.
- FIG. 14 shows the relationship between the feedback voltage V FB and the frequency f VCO.
- the frequency f VCO has an upper limit and a lower limit.
- the upper limit of the frequency f VCO is the above-mentioned frequency f H
- the lower limit of the frequency f VCO is the above-mentioned frequency f L (see FIG. 4).
- the frequency f VCO becomes the above-mentioned switching frequency f SW .
- Frequency f VCO during establishment of "V FB ⁇ V B" is fixed at a frequency f L
- the frequency f VCO during establishment of "V C ⁇ V FB" is fixed at the frequency f H.
- the frequency f VCO as the feedback voltage V FB rises from the voltage V B to the voltage V C is linearly be increased to a frequency f H from the frequency f L.
- the reset signal generation unit 120 will be described with reference to FIG. 11 again.
- the reset signal generation unit 120 includes slope compensation signal generation units 121 and 124, adders 122 and 125, comparators 123 and 126, and an OR circuit 127.
- the slope compensation signal generation unit 121 generates and outputs the slope compensation signal S SLPA
- the slope compensation signal generation unit 124 generates and outputs the slope compensation signal S SLPB.
- Each of the slope compensation signals S SLPA and S SLPB is a voltage signal whose signal value changes with the passage of time. For any voltage signal, the signal value of the voltage signal corresponds to the voltage value of the voltage signal.
- the change in signal value has periodicity, and the reciprocal of the period coincides with the frequency f VCO.
- the feedback signal S FB1 corresponding to the feedback voltage V FB and the slope compensation signal S SLPA from the slope compensation signal generation unit 121 are input to the adder 122.
- the feedback signal S FB1 is a voltage signal having a voltage value that is 1/4 times the feedback voltage V FB.
- the adder 122 adds the slope compensation signal S SLPA to the feedback signal S FB 1, and outputs a voltage signal based on the addition result as a turn-off threshold signal S OFFA .
- the signal value (that is, voltage value) of the turn-off threshold signal S OFFA is the signal value of the feedback signal S FB1 (that is, the voltage value; here V FB / 4) and the signal value of the slope compensation signal S SLPA (that is, the voltage value). It becomes the sum of.
- the turn-off threshold signal S OFFA represents the above-mentioned turn-off threshold I OFF in the form of a voltage signal, and the turn- off threshold I OFF is indicated by the turn-off threshold signal S OFFA.
- the turn-off threshold signal S OFFA to the inverting input terminal is input, the non-inverting input terminal a current detection signal S CS inputted.
- the current detection signal S CS is a voltage signal that indicates the value of the primary-side current I P.
- a voltage signal S LIM indicating a predetermined overcurrent detection voltage V LIM and a slope compensation signal S SLPB from the slope compensation signal generation unit 124 are input to the adder 125.
- the overcurrent detection voltage VLIM has a fixed voltage value. However, when the soft start operation is executed when the primary side control circuit 16 is started, the overcurrent detection voltage VLIM may be set to be smaller than the fixed voltage value.
- the adder 125 adds the slope compensation signal S SLPB to the voltage signal S LIM indicating the overcurrent detection voltage V LIM, and outputs the voltage signal based on the addition result as the overcurrent threshold signal S OFFB .
- the signal value of the overcurrent threshold signal S OFFB i.e.
- Signal S OFFB overcurrent threshold is a representation of the over-current threshold I LIM to the primary-side current I P in the form of a voltage signal, the signal for overcurrent threshold S OFFB Therefore overcurrent threshold I LIM is pointed.
- the comparator 126 to the inverting input terminal is input overcurrent threshold signal S OFFB, to the non-inverting input terminal a current detection signal S CS inputted.
- the OR circuit 127 outputs the OR signal of the output signals of the comparators 123 and 126 as a signal RST. Therefore, the signal RST is low level only when both the output signal of the comparator 123 and the output signal of the comparator 126 are low level, and the signal RST is high level when at least one of them is high level. ..
- any block of the first block including the slope compensation signal generator 121, the adder 122 and the comparator 123, and the second block consisting of the slope compensation signal generator 124, the adder 125 and the comparator 126.
- a signal ie, a high level signal RST
- the function of generating the reset signal is carried out by the first block in "V FB ⁇ V D " and by the second block in "V D ⁇ V FB " (with respect to the voltage V D , FIG. 4). reference).
- FIG. 15 shows the relationship between the signals OUT VCO , SET, S SLPA and S SLPB.
- the signal EN OSC is maintained at a high level
- the signal OUT VCO and the signal SET match.
- the slope compensation signals S SLPA and S SLPB each have predetermined initial signal values INI A and INI B at the timing when the up edge of the signal OUT VCO occurs.
- the initial signal values INI A and INI B are zero, but may be non-zero.
- the section from the timing at which the up edge occurs at the signal OUT VCO to the occurrence of the next up edge is referred to as a unit interval.
- the length of one unit interval coincides with the reciprocal of the frequency f VCO of the signal OUT VCO.
- Each unit interval consists of a front section P1 and a rear section P2.
- the pre-stage section P1 may be started at the same time as the start of the unit section, and the post-stage section P2 may be started at the same time as the end of the pre-stage section P1.
- the signal value (that is, the voltage value) of the slope compensation signal S SLPA increases with the passage of time starting from the initial signal value INI A, and the slope at the end timing of the pre-stage section P1.
- the signal value of the compensation signal SLPA has a predetermined signal value TOP A.
- the signal value (that is, the voltage value) of the slope compensation signal S SLPA decreases with the passage of time starting from the signal value TOP A, and the slope compensation is performed at the end timing of the latter section P2.
- the signal value of the signal S SLPA has a predetermined signal value BTM A.
- the signal value (that is, the voltage value) of the slope compensation signal S SLPB increases with the passage of time starting from the initial signal value INI B, and the slope at the end timing of the pre-stage section P1.
- the signal value of the compensation signal S SLPB has a predetermined signal value TOP B.
- the signal value (that is, the voltage value) of the slope compensation signal S SLPB decreases with the passage of time starting from the signal value TOP B, and the slope compensation is performed at the end timing of the latter section P2.
- the signal value of the signal S SLPB has a predetermined signal value BTM B.
- upslope compensation is realized in the preceding section P1.
- the decrease in the signal values of the slope compensation signals S SLPA and S SLPB in the latter section P2 is referred to as down slope compensation.
- Down slope compensation (generally also referred to as AC slope compensation) is introduced for the purpose of preventing subharmonic oscillation. Since the principle of preventing subharmonic oscillation by downslope compensation is known, the description thereof will be omitted.
- the start timing of the latter section P2 is set to be the timing after the start timing of the unit interval by the time “q ⁇ 1 / f VCO”.
- “1 / f VCO ” corresponds to the length of each unit interval.
- the coefficient q has a value greater than 0 and less than 1. In order to effectively prevent subharmonic oscillation, it is preferable to give the coefficient q a value of 0.5 or less, for example, “0.35 ⁇ q ⁇ 0.49”.
- each unit section is formed only from the front section P1 and the rear section P2, but in each unit section, the slope is formed after the end of the front section P1 and before the start of the rear section P2.
- the enable signal EN OSC is assumed that it is maintained at a high level
- the signal OUT VCO when the enable signal EN OSC is at a low level the relationship of S SLPA and S SLPB May be the same as described above.
- the enable signal EN OSC is at a low level
- the changes in the signals S SLPA and S SLPB have no meaning, so that the signal values of the signals S SLPA and S SLPB may be fixed to zero.
- the slope compensation signals S SLPA and S SLPB are the same signals.
- the slope compensation signal generation unit 124 is deleted, and the slope compensation signal S SLPA generated by the slope compensation signal generation unit 121 is sent to the adder 122.
- it may be input to the adder 125 as a slope compensation signal S SLPB .
- the slope compensation signals S SLPA and S SLPB may be different signals from each other.
- the drive unit 130 will be described with reference to FIG. 11 again.
- the drive unit 130 includes an RS-type flip-flop 131 (hereinafter referred to as FF131) and a driver 132.
- the FF131 includes a set input terminal (S), a reset input terminal (R), and an output terminal (Q).
- the signal SET is input to the set input terminal
- the signal RST is input to the reset input terminal
- the signal DRV is output from the output terminal.
- the FF131 outputs a high-level signal DRV from the output terminal if the signal SET is at a high level, and thereafter maintains a high level of the output signal DRV until the signal RST becomes a high level.
- the FF131 outputs a low level signal DRV from the output terminal, and thereafter maintains the low level of the output signal DRV until the signal SET becomes high level.
- the signal SET and the RST do not become high levels at the same time (the high level pulse width of the signal SET is set sufficiently short so as to do so).
- the driver 132 is connected to the gate of the switching transistor 14 via the output terminal TM1 (see FIG. 1) of the primary side control circuit 16 and controls the gate voltage of the switching transistor 14 based on the output signal DRV of the FF131. If the output signal DRV is high level, the driver 132 turns on the transistor 14 by raising the gate voltage of the transistor 14 to a high level, and if the output signal DRV is low level, the driver 132 lowers the gate voltage of the transistor 14. By setting the level, the transistor 14 is turned off.
- the reset signal is predominantly generated in the preceding section P1 and the upslope compensation is performed. Easy to function effectively. If the feedback voltage V FB is relatively high when the PWM operation is performed while “V FB ⁇ V D ” is established, the reset signal is predominantly generated in the subsequent section P2, and the downslope compensation is achieved. Easy to function effectively.
- the mode in which "V D ⁇ V FB " is established is particularly referred to as the current limit mode.
- current limit mode so that the reset signal is generated when the primary-side current I P reaches the over-current threshold I LIM.
- the upslope compensation is not applied to the overcurrent detection voltage VLIM in the current limit mode, the maximum power on the secondary side depends on the magnitude of the input voltage VIN due to the influence of the delay time t DLY described above. It will change.
- upslope compensation is applied by using the slope compensation signal generator 124 and the adder 125, so that the maximum power on the secondary side depends on the input voltage VIN. Change is suppressed.
- Waveform 661 is a current waveform to be compared with the primary-side current I P (waveform current having a turn-off threshold value I OFF) in the burst operation.
- Waveform 662 is a current waveform to be compared with the primary-side current I P in the PWM operation in the second mode (the waveform of current having a turn-off threshold value I OFF).
- Waveform 663 is a current waveform to be compared with the primary-side current I P in the PWM operation in the third mode (waveform current having a turn-off threshold value I OFF).
- Waveform 664 is the fourth mode and "V FB ⁇ V D" in the primary-side current I P Contrast electrical current waveform in the PWM mode (the waveform of current having a turn-off threshold value I OFF).
- Waveform 665 is a current waveform to be compared with the primary-side current I P in the current limit mode (the waveform of the current with the overcurrent threshold value I LIM).
- the relationship between the secondary side power P OUT and the switching frequency f SW is shown.
- the polygonal lines 681 and 682 are shown slightly offset from each other in FIG. 18, but ideally the polygonal lines 681 and 682 completely overlap.
- the set signal generation unit 110 uses the oscillator 112 to generate a set signal at a predetermined frequency f VCO (corresponding to the switching frequency f SW) in the PWM operation.
- the comparison result of the comparator 123 comparing the current detection signal S CS and the turn-off threshold signal S OFFA , and the current detection signal S CS and the overcurrent threshold signal S OFF B comparison result of the comparator 126 to be compared is referred to, based on their comparison result, when the value of the primary current I P becomes larger than the turn-off threshold I OFF or overcurrent threshold I LIM, the reset signal is generated It will be.
- S CS> S OFFA establishment of means that the value of the primary-side current I P is greater than the turn-off threshold value I OFF
- S CS> S OFFB established value of the primary current I P of Indicates that is greater than the overcurrent threshold ILIM.
- the slope compensation signal S SLPA whose signal value increases with the passage of time is added to the signal S FB1 proportional to the feedback voltage V FB for the turn-off threshold.
- the signal S OFFA is generated, and the overcurrent threshold signal S OFFB is generated by adding the slope compensation signal S SLPB whose signal value increases with the passage of time to the signal S LIM having a predetermined value.
- upslope compensation is realized.
- downslope compensation for the purpose of preventing subharmonic oscillation is applied.
- Second Embodiment A second embodiment of the present invention will be described.
- a modification technique, an applied technique, and the like with respect to the first embodiment will be described.
- the matters described in the second embodiment can be applied to the first embodiment.
- the second embodiment includes the following examples EX2_1 to EX2_3. Unless otherwise specified and without contradiction, the above-mentioned matters in the first embodiment are applied to the following Examples EX2_1 to EX2_3, and in each embodiment, the matters inconsistent with the above-mentioned matters in the first embodiment The description in each embodiment may be prioritized. Further, as long as there is no contradiction, the matters described in any of the examples EX2_1 to EX2_3 can be applied to any other embodiment (that is, any two or more implementations in the plurality of examples). It is also possible to combine examples).
- Example EX2_1 Prior to the description of Example EX2_1, the operation and configuration of the first embodiment will be supplemented.
- the main control unit 100 when the feedback voltage V FB is kept higher than the predetermined burst determination voltage V BST1, continuously performs PWM operation, the feedback voltage V FB Starts burst operation when the voltage falls below the burst determination voltage V BST1.
- the main control unit 100 starts the burst operation in response to the transition from the state where the feedback voltage V FB is higher than the burst judgment voltage V BST1 to the state where the feedback voltage V FB is lower than the burst judgment voltage V BST1 and bursts. after starting the operation, as shown in FIG.
- V BST2 the feedback voltage V FB exceeds the burst release voltage V BST2 set to generate a set signal (high-level signal sET) by the signal generating unit 110, then the reset signal by the reset signal generating unit 120 receives the value of the primary-side current I P exceeds the turn-off threshold value I OFF (high level Signal RST) is generated.
- V BST2 > V BST1 ".
- Example EX2_1 will be described.
- the feedback voltage VFB increases as the magnitude of the load LD decreases
- this configuration will be described as Example EX2_1.
- Example EX2_1 since the configuration in which the feedback voltage V FB increases as the magnitude of the load LD decreases is adopted, the feedback voltage V FB of the main control unit 100 is lower than the predetermined burst determination voltage V BST1.
- the PWM operation is continuously executed, and when the feedback voltage V FB exceeds the burst determination voltage V BST1 , the burst operation is started.
- the main control unit 100 starts the burst operation in response to the transition from the state where the feedback voltage V FB is lower than the burst judgment voltage V BST1 to the state where the feedback voltage V FB is higher than the burst judgment voltage V BST1. after the start, as shown in FIG.
- the switching transistor 14 turns on at the same time as the set signal is generated (the delay time t DLY is shown only for the turn-off).
- the value of the primary current I P is when it exceeds the turn-off threshold value I OFF, so that the "S CS> S OFFA" is established reset signal (high level signal RST) is generated.
- Example EX2_2 will be described.
- the AC / DC converter 1 of FIG. 1 is a kind of switching power supply device according to the present invention.
- the switching transistor 14 is an example of a switching element connected in series with the primary side winding W1 as an inductor
- the primary side control circuit 16 is an example of a switching control circuit for switching the switching element. It is possible to modify the switching element as a P-channel MOSFET, or as a bipolar transistor, junction FET or IGBT (Insulated Gate Bipolar Transistor).
- the input voltage V IN is applied to the series circuit of the inductor and the switching element, and the output voltage V OUT is generated at the output terminal TM OUT by switching the switching element.
- the feedback circuit 23, the photocoupler PC, and the feedback capacitor 18 form a feedback voltage generation circuit that generates a feedback voltage V FB based on the output voltage V OUT.
- the power adapter may be configured by using the AC / DC converter 1.
- an electric device incorporating the AC / DC converter 1 may be configured.
- the type of electrical equipment is not particularly limited, and any equipment such as an audio equipment, a refrigerator, a washing machine, and a vacuum cleaner having an AC / DC converter 1 built-in is arbitrary.
- the switching power supply device is not limited to an AC / DC converter, and is an isolated DC / DC converter that uses a transformer TR to generate an output voltage V OUT on the secondary side in an isolated form from the input voltage V IN on the primary side. It may be a non-isolated DC / DC converter that generates an output voltage V OUT from an input voltage V IN.
- Example EX2_3 will be described. The relationship between high level and low level may be reversed for any signal or voltage without compromising the above-mentioned gist.
Landscapes
- Engineering & Computer Science (AREA)
- Power Engineering (AREA)
- Dc-Dc Converters (AREA)
Abstract
The purpose of the present invention is to generate an output voltage by switching from an input voltage applied to a series circuit of an inductor and a switching element. A control unit performs a PWM operation or a burst operation on the basis of a feedback voltage corresponding to the magnitude of a load. During the burst operation, switching is stopped and a turn-on instruction for the switching element is given on the basis of the feedback voltage, and, upon the value of a current (IP) flowing through the switching element exceeding a turn-off threshold value (IOFF), a turn-off instruction for the switching element is given. The turn-off threshold value is increased over time in a predetermined interval after the turn-on instruction.
Description
本発明は、スイッチング制御回路及びスイッチング電源装置に関する。
The present invention relates to a switching control circuit and a switching power supply device.
インダクタ及びスイッチング素子の直列回路に加わる入力電圧から、スイッチング素子をスイッチングすることを通じ、出力電圧を生成するスイッチング電源装置が知られている。典型的には例えば、トランスを用いたAC/DCコンバータにおいて、インダクタとしての一次側巻線に対しスイッチング素子を直列接続して、それらの直列回路に対し交流電圧を全波整流して得た直流の入力電圧を印加し、スイッチング素子をスイッチング駆動することで二次側にて出力電圧を得る。
A switching power supply device that generates an output voltage by switching a switching element from an input voltage applied to a series circuit of an inductor and a switching element is known. Typically, for example, in an AC / DC converter using a transformer, a switching element is connected in series to the primary winding as an inductor, and an AC voltage is full-wave rectified to those series circuits to obtain a direct current. The output voltage is obtained on the secondary side by applying the input voltage of the above and switching driving the switching element.
この種のスイッチング電源装置では、通常、パルス幅変調を利用して、スイッチング素子をスイッチング周波数でスイッチングさせるPWM動作が実行される。軽負荷時には、電力消費の削減を目的としてバースト動作が実行されるタイプのスイッチング電源装置もある(例えば下記特許文献1参照)。バースト動作では、上記スイッチング周波数によるスイッチングを行わずに、周期性を持たない態様で必要な時にのみスイッチング素子のスイッチングを行う。
In this type of switching power supply, a PWM operation is usually performed in which a switching element is switched at a switching frequency by using pulse width modulation. There is also a type of switching power supply that executes burst operation for the purpose of reducing power consumption when the load is light (see, for example, Patent Document 1 below). In the burst operation, the switching element is switched only when necessary in a non-periodic manner without switching according to the switching frequency.
PWM動作及びバースト動作を切り替え実行可能なスイッチング電源装置では、負荷の大きさが監視され、負荷の大きさに応じたフィードバック電圧に基づき、PWM動作及びバースト動作が切り替え実行されることになる。このとき、PWM動作とバースト動作との切り替えの境界電力(バースト境界電力)が存在することになるが、従来のスイッチング電源装置では、この境界電力が、入力電圧の大小に依存して変化することがあった。
In a switching power supply device capable of switching and executing PWM operation and burst operation, the magnitude of the load is monitored, and the PWM operation and burst operation are switched and executed based on the feedback voltage according to the magnitude of the load. At this time, there is a boundary power (burst boundary power) for switching between PWM operation and burst operation, but in the conventional switching power supply device, this boundary power changes depending on the magnitude of the input voltage. was there.
即ち例えば、AC/DCコンバータで考えた場合、AC/DCコンバータへの入力交流電圧の実効値は100Vとなったり240Vとなったりすることがあり、それに連動して、トランスの一次側巻線とスイッチング素子との直列回路に加わる直流の入力電圧も様々に変化する。従来のスイッチング電源装置では、上記境界電力が、入力電圧の大小に依存して(例えばAC/DCコンバータへの入力交流電圧の実効値が100Vであるのか240Vであるのかに応じて)変化することがあった。これは、負荷の消費電力が同じであるのに、入力電圧によってバースト動作が行われたり行われなかったりすることを意味する(この現象の発生理由については後に詳説される)。
That is, for example, when considering an AC / DC converter, the effective value of the input AC voltage to the AC / DC converter may be 100V or 240V, and in conjunction with this, the primary winding of the transformer The DC input voltage applied to the circuit in series with the switching element also changes in various ways. In a conventional switching power supply device, the boundary power changes depending on the magnitude of the input voltage (for example, depending on whether the effective value of the input AC voltage to the AC / DC converter is 100V or 240V). was there. This means that the load power consumption is the same, but the burst operation is performed or not performed depending on the input voltage (the reason for this phenomenon will be explained in detail later).
入力電圧によってバースト動作が行われたり行われなかったりすること(換言すればバースト動作の実行条件が入力電圧に依存すること)は望ましくなく、バースト動作に関わる電力設計最適化の妨げとなる。
It is not desirable that the burst operation is performed or not performed depending on the input voltage (in other words, the execution condition of the burst operation depends on the input voltage), which hinders the optimization of the power design related to the burst operation.
本発明は、バースト動作の実行条件が入力電圧に応じて変化することを抑制するスイッチング制御回路及びスイッチング電源装置を提供することを目的とする。
An object of the present invention is to provide a switching control circuit and a switching power supply device that suppress the execution conditions of burst operation from changing according to an input voltage.
本発明に係るスイッチング制御回路は、インダクタ及びスイッチング素子の直列回路に加わる入力電圧から、前記スイッチング素子をスイッチングすることを通じ、出力電圧を生成するためのスイッチング制御回路において、前記スイッチング素子に流れる電流を対象電流として検出する電流検出部と、前記出力電圧の供給を受ける負荷の大きさに応じたフィードバック電圧に基づき、前記スイッチング素子を設定されたスイッチング周波数でスイッチングさせるPWM動作、又は、バースト動作を実行する制御部と、を備え、前記制御部は、前記スイッチング素子のターンオンを指示するセット信号を発生させるセット信号発生部と、前記スイッチング素子のターンオフを指示するリセット信号を発生させるリセット信号発生部と、前記セット信号を受けたときに前記スイッチング素子をオン状態にするための信号を前記スイッチング素子に供給し且つ前記リセット信号を受けたときに前記スイッチング素子をオフ状態にするための信号を前記スイッチング素子に供給するドライブ部と、を有し、前記バースト動作では前記スイッチング周波数での前記スイッチング素子のスイッチングを停止し、前記バースト動作において、前記セット信号発生部は前記フィードバック電圧に基づき前記セット信号を発生させ、その後、前記リセット信号発生部は前記対象電流の値がターンオフ閾値を超えたことを契機に前記リセット信号を発生させ、前記リセット信号発生部は、前記セット信号の発生後の所定区間にて、前記ターンオフ閾値を時間経過と共に増大させる構成(第1の構成)である。
The switching control circuit according to the present invention transfers a current flowing through the switching element in a switching control circuit for generating an output voltage by switching the switching element from an input voltage applied to a series circuit of the inductor and the switching element. A PWM operation or burst operation for switching the switching element at a set switching frequency is executed based on the current detection unit that detects the target current and the feedback voltage according to the magnitude of the load to which the output voltage is supplied. The control unit includes a set signal generation unit that generates a set signal instructing the turn-on of the switching element, and a reset signal generation unit that generates a reset signal instructing the turn-off of the switching element. , The signal for turning on the switching element when receiving the set signal is supplied to the switching element, and the signal for turning off the switching element when receiving the reset signal is switched. It has a drive unit that supplies the element, and in the burst operation, the switching of the switching element at the switching frequency is stopped, and in the burst operation, the set signal generating unit generates the set signal based on the feedback voltage. After that, the reset signal generation unit generates the reset signal when the value of the target current exceeds the turn-off threshold, and the reset signal generation unit is set in a predetermined section after the generation of the set signal. Therefore, the turn-off threshold is increased with the passage of time (first configuration).
上記第1の構成に係るスイッチング制御回路において、前記ターンオフ閾値は、前記フィードバック電圧に応じた値を持つ構成(第2の構成)であっても良い。
In the switching control circuit according to the first configuration, the turn-off threshold value may have a value corresponding to the feedback voltage (second configuration).
上記第1又は第2の構成に係るスイッチング制御回路において、前記リセット信号発生部は、前記所定区間において時間経過と共に信号値が増大するスロープ補償信号を前記フィードバック電圧に比例する信号に加算することで前記ターンオフ閾値を示すターンオフ閾値用信号を生成し、前記バースト動作において、前記対象電流の値を示す電流検出信号と前記ターンオフ閾値用信号とを比較することにより前記リセット信号を発生させる構成(第3の構成)であっても良い。
In the switching control circuit according to the first or second configuration, the reset signal generator adds a slope compensation signal whose signal value increases with the passage of time in the predetermined section to a signal proportional to the feedback voltage. A configuration (third) in which a turn-off threshold signal indicating the turn-off threshold is generated, and in the burst operation, the reset signal is generated by comparing the current detection signal indicating the value of the target current with the turn-off threshold signal (third). The configuration of) may be used.
上記第3の構成に係るスイッチング制御回路において、前記セット信号発生部は、前記スイッチング周波数の信号を生成するオシレータを有し、前記PWM動作では、前記オシレータを用いて前記スイッチング周波数にて前記セット信号を発生させ、前記リセット信号発生部は、前記PWM動作において、前記電流検出信号と、前記ターンオフ閾値用信号と、所定の過電流閾値を示す過電流閾値用信号と、に基づいて、前記リセット信号を発生させる構成(第4の構成)であっても良い。
In the switching control circuit according to the third configuration, the set signal generator has an oscillator that generates a signal of the switching frequency, and in the PWM operation, the set signal is used at the switching frequency by using the oscillator. In the PWM operation, the reset signal generating unit generates the reset signal based on the current detection signal, the turn-off threshold signal, and the overcurrent threshold signal indicating a predetermined overcurrent threshold. (Fourth configuration) may be used.
上記第4の構成に係るスイッチング制御回路において、前記リセット信号発生部は、前記電流検出信号と前記ターンオフ閾値用信号とを比較する第1比較器、及び、前記電流検出信号と前記過電流閾値用信号とを比較する第2比較器を有し、前記PWM動作において、前記第1比較器及び前記第2比較器の各比較結果に基づき前記対象電流の値が前記ターンオフ閾値又は前記過電流閾値より大きくなったときに前記リセット信号を発生させる構成(第5の構成)であっても良い。
In the switching control circuit according to the fourth configuration, the reset signal generating unit is a first comparator that compares the current detection signal with the turn-off threshold signal, and the current detection signal and the overcurrent threshold. It has a second comparator that compares with a signal, and in the PWM operation, the value of the target current is higher than the turn-off threshold or the overcurrent threshold based on the comparison results of the first comparator and the second comparator. The configuration may be such that the reset signal is generated when the value becomes large (fifth configuration).
上記第4又は第5の構成に係るスイッチング制御回路において、前記リセット信号発生部は、前記所定区間において時間経過と共に信号値が増大する第1スロープ補償信号を前記フィードバック電圧に比例する信号に加算することで前記ターンオフ閾値用信号を生成し、且つ、前記所定区間において時間経過と共に信号値が増大する第2スロープ補償信号を所定値を持つ信号に加算することで前記過電流閾値用信号を生成する構成(第6の構成)であっても良い。
In the switching control circuit according to the fourth or fifth configuration, the reset signal generation unit adds a first slope compensation signal whose signal value increases with the passage of time in the predetermined section to a signal proportional to the feedback voltage. As a result, the turn-off threshold signal is generated, and the overcurrent threshold signal is generated by adding the second slope compensation signal whose signal value increases with the passage of time in the predetermined section to the signal having the predetermined value. It may be the configuration (sixth configuration).
上記第1~第6の構成の何れかに係るスイッチング制御回路において、前記負荷の大きさが減少するにつれて前記フィードバック電圧は低下し、前記制御部は、前記フィードバック電圧が所定のバースト判定電圧より高い状態に保たれているとき、前記PWM動作を継続的に実行し、前記フィードバック電圧が前記バースト判定電圧を下回ると前記バースト動作を開始する構成(第7の構成)であっても良い。
In the switching control circuit according to any one of the first to sixth configurations, the feedback voltage decreases as the magnitude of the load decreases, and the control unit has the feedback voltage higher than the predetermined burst determination voltage. When the state is maintained, the PWM operation may be continuously executed, and the burst operation may be started when the feedback voltage falls below the burst determination voltage (seventh configuration).
上記第7の構成に係るスイッチング制御回路において、前記制御部は、前記フィードバック電圧が前記バースト判定電圧より高い状態から前記バースト判定電圧より低い状態に移行したことを受けて前記バースト動作を開始し、前記バースト動作の開始後、前記フィードバック電圧が前記バースト判定電圧よりも高い所定のバースト解除電圧を上回るまで前記スイッチング素子をオフ状態に維持し、前記フィードバック電圧が前記バースト解除電圧を上回ると前記セット信号発生部により前記セット信号を発生させ、その後、前記対象電流の値がターンオフ閾値を超えたことを受けて前記リセット信号発生部により前記リセット信号を発生させる構成(第8の構成)であっても良い。
In the switching control circuit according to the seventh configuration, the control unit starts the burst operation in response to the transition from a state in which the feedback voltage is higher than the burst determination voltage to a state in which the feedback voltage is lower than the burst determination voltage. After the start of the burst operation, the switching element is kept in the off state until the feedback voltage exceeds a predetermined burst release voltage higher than the burst determination voltage, and when the feedback voltage exceeds the burst release voltage, the set signal Even in the configuration (eighth configuration), the set signal is generated by the generating unit, and then the reset signal is generated by the reset signal generating unit in response to the value of the target current exceeding the turn-off threshold. good.
上記第1~第6の構成の何れかに係るスイッチング制御回路において、前記負荷の大きさが減少するにつれて前記フィードバック電圧は上昇し、前記制御部は、前記フィードバック電圧が所定のバースト判定電圧より低い状態に保たれているとき、前記PWM動作を継続的に実行し、前記フィードバック電圧が前記バースト判定電圧を上回ると前記バースト動作を開始する構成(第9の構成)であっても良い。
In the switching control circuit according to any one of the first to sixth configurations, the feedback voltage increases as the magnitude of the load decreases, and the control unit has the feedback voltage lower than a predetermined burst determination voltage. When the state is maintained, the PWM operation may be continuously executed, and the burst operation may be started when the feedback voltage exceeds the burst determination voltage (9th configuration).
上記第9の構成に係るスイッチング制御回路において、前記制御部は、前記フィードバック電圧が前記バースト判定電圧より低い状態から前記バースト判定電圧より高い状態に移行したことを受けて前記バースト動作を開始し、前記バースト動作の開始後、前記フィードバック電圧が前記バースト判定電圧よりも低い所定のバースト解除電圧を下回るまで前記スイッチング素子をオフ状態に維持し、前記フィードバック電圧が前記バースト解除電圧を下回ると前記セット信号発生部により前記セット信号を発生させ、その後、前記対象電流の値がターンオフ閾値を超えたことを受けて前記リセット信号発生部により前記リセット信号を発生させる構成(第10の構成)であっても良い。
In the switching control circuit according to the ninth configuration, the control unit starts the burst operation in response to the transition from the state where the feedback voltage is lower than the burst determination voltage to the state where the feedback voltage is higher than the burst determination voltage. After the start of the burst operation, the switching element is kept in the off state until the feedback voltage falls below a predetermined burst release voltage lower than the burst determination voltage, and when the feedback voltage falls below the burst release voltage, the set signal Even in the configuration (10th configuration), the set signal is generated by the generating unit, and then the reset signal is generated by the reset signal generating unit in response to the value of the target current exceeding the turn-off threshold. good.
上記第1~第10の構成の何れかに係るスイッチング制御回路において、一次側巻線として前記インダクタを有し且つ二次側巻線を有するトランスを用いて、一次側に加わる前記入力電圧から二次側にて前記出力電圧が生成される構成(第11の構成)であっても良い。
In the switching control circuit according to any one of the first to tenth configurations, a transformer having the inductor and the secondary winding is used as the primary winding, and the input voltage applied to the primary side is two. The configuration may be such that the output voltage is generated on the next side (11th configuration).
本発明に係るスイッチング電源装置は、一次側巻線及び二次側巻線を有するトランスを用いスイッチング方式にて、一次側に加わる入力電圧から二次側にて出力電圧を生成するスイッチング電源装置において、インダクタとしての前記一次側巻線に直列接続されるスイッチング素子と、上記第1~第11の構成の何れかに係るスイッチング制御回路と、前記出力電圧に基づき前記フィードバック電圧を生成するフィードバック電圧生成回路と、を備えた構成(第12の構成)である。
The switching power supply device according to the present invention is a switching power supply device that uses a transformer having a primary side winding and a secondary side winding to generate an output voltage on the secondary side from an input voltage applied to the primary side by a switching method. A switching element connected in series to the primary winding as an inductor, a switching control circuit according to any one of the first to eleventh configurations, and a feedback voltage generation that generates the feedback voltage based on the output voltage. It is a configuration (12th configuration) including a circuit.
上記第12の構成に係るスイッチング電源装置において、前記入力電圧は交流電圧を整流及び平滑化することで生成される構成(第13の構成)であっても良い。
In the switching power supply device according to the twelfth configuration, the input voltage may be a configuration (13th configuration) generated by rectifying and smoothing an AC voltage.
本発明によれば、バースト動作の実行条件が入力電圧に応じて変化することを抑制するスイッチング制御回路及びスイッチング電源装置を提供することが可能となる。
According to the present invention, it is possible to provide a switching control circuit and a switching power supply device that suppress the execution conditions of burst operation from changing according to the input voltage.
以下、本発明の実施形態の例を、図面を参照して具体的に説明する。参照される各図において、同一の部分には同一の符号を付し、同一の部分に関する重複する説明を原則として省略する。尚、本明細書では、記述の簡略化上、情報、信号、物理量、素子又は部位等を参照する記号又は符号を記すことによって、該記号又は符号に対応する情報、信号、物理量、素子又は部位等の名称を省略又は略記することがある。例えば、後述の“14”によって参照されるスイッチングトランジスタは(図1参照)、スイッチングトランジスタ14と表記されることもあるし、トランジスタ14と略記されることもあり得るが、それらは全て同じものを指す。
Hereinafter, examples of embodiments of the present invention will be specifically described with reference to the drawings. In each of the referenced figures, the same parts are designated by the same reference numerals, and duplicate explanations regarding the same parts will be omitted in principle. In this specification, for the sake of simplification of description, by describing a symbol or a code that refers to an information, a signal, a physical quantity, an element or a part, etc., the information, a signal, a physical quantity, an element or a part corresponding to the symbol or the code is described. Etc. may be omitted or abbreviated. For example, the switching transistor referred to by "14" described later (see FIG. 1) may be referred to as a switching transistor 14 or abbreviated as a transistor 14, but they are all the same. Point to.
まず、本発明の実施形態の記述にて用いられる幾つかの用語について説明を設ける。本発明の実施形態において、ICとは集積回路(Integrated Circuit)の略称である。PWMとはパルス幅変調(Pulse Width Modulation)の略称である。レベルとは電位のレベルを指し、任意の信号又は電圧についてハイレベルはローレベルよりも高い電位を有する。任意の信号又は電圧において、ローレベルからハイレベルへの切り替わりをアップエッジと称し、ハイレベルからローレベルへの切り替わりをダウンエッジと称する。
First, some terms used in the description of the embodiment of the present invention will be explained. In the embodiment of the present invention, IC is an abbreviation for Integrated Circuit. PWM is an abbreviation for Pulse Width Modulation. Level refers to the level of potential, where a high level has a higher potential than a low level for any signal or voltage. For any signal or voltage, switching from low level to high level is called the up edge, and switching from high level to low level is called the down edge.
MOSFETを含むFET(電界効果トランジスタ)として構成された任意のトランジスタについて、オン状態とは、当該トランジスタのドレイン及びソース間が導通状態となっていることを指し、オフ状態とは、当該トランジスタのドレイン及びソース間が非導通状態(遮断状態)となっていることを指す。FETに分類されないトランジスタについても同様である。以下、オン状態、オフ状態を、単に、オン、オフと表現することもある。MOSFETは“metal-oxide-semiconductor field-effect transistor”の略称である。任意のトランジスタについて、オフ状態からオン状態への切り替わりをターンオンと表現し、オン状態からオフ状態への切り替わりをターンオフと表現する。
For any transistor configured as a FET (Field Effect Transistor) including a MOSFET, the on state means that the drain and source of the transistor are in a conductive state, and the off state means the drain of the transistor. And it means that there is a non-conduction state (interruption state) between the sources. The same applies to transistors that are not classified as FETs. Hereinafter, the on state and the off state may be simply expressed as on and off. MOSFET is an abbreviation for "metal-oxide-semiconductor field-effect transistor". For any transistor, switching from the off state to the on state is expressed as turn-on, and switching from the on state to the off state is expressed as turn-off.
<<第1実施形態>>
本発明の第1実施形態を説明する。図1は本発明の第1実施形態に係るAC/DCコンバータ1の全体構成図である。図1には、AC/DCコンバータ1に接続される負荷LDも示されている。AC/DCコンバータ1は、一次側に設けられた回路である一次側回路10と、二次側に設けられた回路である二次側回路20と、を備える。AC/DCコンバータ1において、一次側と二次側は互いに絶縁されている、換言すれば一次側回路10と二次側回路20は互いに絶縁されている。また、AC/DCコンバータ1は、一次側回路10と二次側回路20に亘って設けられるトランスTR及びフォトカプラPCを備える。トランスTRは、一次側回路10に配置された一次側巻線W1と、二次側回路20に配置された二次側巻線W2と、を備える。トランスTRにおいて、一次側巻線W1と二次側巻線W2とは電気的に絶縁されつつ互いに逆極性にて磁気結合されている。フォトカプラPCは、二次側回路20に配置された発光素子PCeと、一次側回路10に配置された受光素子PCrと、を備える。 << First Embodiment >>
The first embodiment of the present invention will be described. FIG. 1 is an overall configuration diagram of an AC /DC converter 1 according to the first embodiment of the present invention. FIG. 1 also shows a load LD connected to the AC / DC converter 1. The AC / DC converter 1 includes a primary side circuit 10 which is a circuit provided on the primary side and a secondary side circuit 20 which is a circuit provided on the secondary side. In the AC / DC converter 1, the primary side and the secondary side are insulated from each other, in other words, the primary side circuit 10 and the secondary side circuit 20 are insulated from each other. Further, the AC / DC converter 1 includes a transformer TR and a photocoupler PC provided over the primary side circuit 10 and the secondary side circuit 20. The transformer TR includes a primary winding W1 arranged in the primary circuit 10 and a secondary winding W2 arranged in the secondary circuit 20. In the transformer TR, the primary winding W1 and the secondary winding W2 are electrically insulated and magnetically coupled to each other with opposite polarities. The photocoupler PC includes a light emitting element PCe arranged in the secondary side circuit 20 and a light receiving element PCr arranged in the primary side circuit 10.
本発明の第1実施形態を説明する。図1は本発明の第1実施形態に係るAC/DCコンバータ1の全体構成図である。図1には、AC/DCコンバータ1に接続される負荷LDも示されている。AC/DCコンバータ1は、一次側に設けられた回路である一次側回路10と、二次側に設けられた回路である二次側回路20と、を備える。AC/DCコンバータ1において、一次側と二次側は互いに絶縁されている、換言すれば一次側回路10と二次側回路20は互いに絶縁されている。また、AC/DCコンバータ1は、一次側回路10と二次側回路20に亘って設けられるトランスTR及びフォトカプラPCを備える。トランスTRは、一次側回路10に配置された一次側巻線W1と、二次側回路20に配置された二次側巻線W2と、を備える。トランスTRにおいて、一次側巻線W1と二次側巻線W2とは電気的に絶縁されつつ互いに逆極性にて磁気結合されている。フォトカプラPCは、二次側回路20に配置された発光素子PCeと、一次側回路10に配置された受光素子PCrと、を備える。 << First Embodiment >>
The first embodiment of the present invention will be described. FIG. 1 is an overall configuration diagram of an AC /
AC/DCコンバータ1では、トランスTRを用いて入力電圧VINから絶縁形式で出力電圧VOUTが生成される。一次側回路10におけるグランドは“GND1”にて参照され、二次側回路20におけるグランドは“GND2”にて参照される。入力電圧VINはグランドGND1を基準とする一次側電圧であり、出力電圧VOUTはグランドGND2を基準とする二次側電圧である。一次側回路10及び二次側回路20の夫々において、グランドは0V(ゼロボルト)の基準電位を有する導電部(所定電位点)を指す又は基準電位そのものを指す。但し、グランドGND1とグランドGND2は互いに絶縁されているため、互いに異なる電位を有し得る。
In the AC / DC converter 1, an output voltage V OUT is generated in an isolated form from the input voltage V IN by using a transformer TR. The ground in the primary side circuit 10 is referred to by "GND1", and the ground in the secondary side circuit 20 is referred to by "GND2". The input voltage V IN is the primary side voltage with reference to the ground GND 1, and the output voltage V OUT is the secondary side voltage with reference to the ground GND 2. In each of the primary side circuit 10 and the secondary side circuit 20, ground refers to a conductive portion (predetermined potential point) having a reference potential of 0 V (zero volt) or refers to the reference potential itself. However, since the ground GND1 and the ground GND2 are insulated from each other, they may have different potentials from each other.
一次側回路10について説明する。一次側回路10には、フィルタ11、整流回路12、平滑コンデンサ13、スイッチングトランジスタ14、電流センス抵抗15、スイッチング制御回路の例である一次側制御回路16、電源生成回路17及びフィードバック用コンデンサ18が設けられる。スイッチングトランジスタ14はNチャネル型のMOSFET(metal-oxide-semiconductor field-effect transistor)として構成されている。
The primary side circuit 10 will be described. The primary side circuit 10 includes a filter 11, a rectifier circuit 12, a smoothing capacitor 13, a switching transistor 14, a current sense resistor 15, a primary side control circuit 16 which is an example of a switching control circuit, a power supply generation circuit 17, and a feedback capacitor 18. It is provided. The switching transistor 14 is configured as an N-channel MOSFET (metal-oxide-semiconductor field-effect transistor).
フィルタ11は、AC/DCコンバータ1に入力された交流電圧VACのノイズを除去する。交流電圧VACは商用交流電圧であって良い。整流回路12は、フィルタ11を通じて供給された交流電圧VACを全波整流するダイオードブリッジ回路である。平滑コンデンサ13は整流回路12により全波整流された電圧を平滑化することで入力電圧VINを生成する。平滑コンデンサ13の両端間にグランドGND1を基準として入力電圧VINが加わる。平滑コンデンサ13の両端は入力電圧VINが加わる入力端子TMINに相当する又は入力端子TMINに接続されると解される。入力電圧VINは交流電圧VACの実効値に応じた電圧値を有する正の直流電圧である。入力電圧VINは交流電圧VACの周期にて若干脈動し得るが、ここでは当該脈動を無視する。
The filter 11 removes noise of the AC voltage VAC input to the AC / DC converter 1. AC voltage V AC may be a commercial AC voltage. The rectifier circuit 12 is a diode bridge circuit that full-wave rectifies the AC voltage DAC supplied through the filter 11. Smoothing capacitor 13 produces an input voltage V IN by smoothing the voltage full-wave rectified by the rectifier circuit 12. An input voltage V IN is applied between both ends of the smoothing capacitor 13 with reference to the ground GND1. Across the smoothing capacitor 13 is understood when connected corresponding to input terminals TM IN input voltage V IN is applied or to the input terminal TM IN. The input voltage V IN is a positive DC voltage having a voltage value corresponding to the effective value of the AC voltage VAC. The input voltage V IN may pulsate slightly in the cycle of the AC voltage VAC, but the pulsation is ignored here.
一次側巻線W1の一端に入力電圧VINが印加され、一次側巻線W1の他端はスイッチングトランジスタ14のドレインに接続される。スイッチングトランジスタ14のソースは電流センス抵抗15を介してグランドGND1に接続される。電流センス抵抗15で発生する電圧降下、即ち電流センス抵抗15の両端子間電圧が、電流センス電圧VCSとして一次側制御回路16に入力される。電流センス電圧VCSは、スイッチングトランジスタ14に流れる電流の値に比例した電圧値を持つ。また、スイッチングトランジスタ14に流れる電流、即ち、一次側巻線W1に流れる電流を一次側電流と称し、符号“IP”にて表す。
An input voltage V IN is applied to one end of the primary winding W1, and the other end of the primary winding W1 is connected to the drain of the switching transistor 14. The source of the switching transistor 14 is connected to the ground GND1 via the current sense resistor 15. Voltage drop caused by the current sensing resistor 15, i.e. the voltage between the two terminals of the current sensing resistor 15 is input to the primary side control circuit 16 as a current sense voltage V CS. The current sense voltage VCS has a voltage value proportional to the value of the current flowing through the switching transistor 14. Further, the current flowing through the switching transistor 14, that is, the current flowing through the primary winding W1, is referred to as a primary side current and is represented by the reference numeral "IP".
一次側制御回路16には、出力端子TM1、電流センス端子TM2、フィードバック端子TM3、電源端子TM4及びグランド端子TM5が設けられている。出力端子TM1はスイッチングトランジスタ14のゲートに接続される。電流センス端子TM2にて上述の電流センス電圧VCSを受ける。フィードバック端子TM3にて後述のフィードバック電圧VFBを受ける。フィードバック電圧VFBはフィードバック用コンデンサ18の両端子間電圧に相当し、コンデンサ18の一端がフィードバック端子TM3に接続され、コンデンサ18の他端がグランドGND1に接続される。電源端子TM4は電源生成回路17から提供される直流の電源電圧VCCを受ける。グランド端子TM5は一次側のグランドGND1に接続される。一次側制御回路16は電源電圧VCCに基づいて駆動する。
The primary side control circuit 16 is provided with an output terminal TM1, a current sense terminal TM2, a feedback terminal TM3, a power supply terminal TM4, and a ground terminal TM5. The output terminal TM1 is connected to the gate of the switching transistor 14. Receive a current sense voltage V CS of the above-mentioned by the current sense terminal TM2. The feedback terminal TM3 receives the feedback voltage VFB described later. The feedback voltage V FB corresponds to the voltage between both terminals of the feedback capacitor 18, one end of the capacitor 18 is connected to the feedback terminal TM3, and the other end of the capacitor 18 is connected to the ground GND1. Power terminal TM4 receives power supply voltage V CC of the direct current supplied from the power generating circuit 17. The ground terminal TM5 is connected to the ground GND1 on the primary side. The primary side control circuit 16 is driven based on the power supply voltage VCC.
電源生成回路17は、入力電圧VINを元に電源電圧VCCを生成して、電源電圧VCCを一次側制御回路16に供給する。トランスTRの一次側に補助巻線(不図示)が設けられていても良い。この場合、電源生成回路17は、スイッチングトランジスタ14がスイッチング駆動される際に補助巻線に生ずる誘起電圧を整流することで電源電圧VCCを生成する回路であって良い。或いは、電源生成回路17は、入力電圧VINをDC/DC変換することで電源電圧VCCを生成するDC/DCコンバータであっても良い。
The power supply generation circuit 17 generates a power supply voltage V CC based on the input voltage V IN , and supplies the power supply voltage V CC to the primary side control circuit 16. An auxiliary winding (not shown) may be provided on the primary side of the transformer TR. In this case, the power supply generation circuit 17 can be a circuit switching transistor 14 generates a power supply voltage V CC by rectifying the induced voltage generated in the auxiliary winding when the driven switching. Alternatively, the power supply generation circuit 17, the input voltage V IN may be a DC / DC converter for generating a supply voltage V CC by converting DC / DC.
一次側制御回路16は、トランジスタ14のゲートにスイッチング信号を供給してトランジスタ14のゲート電圧を制御することで、トランジスタ14をスイッチング駆動する。スイッチング信号は、信号レベルがローレベル及びハイレベル間で切り替わる矩形波状の信号である。トランジスタ14のゲートにローレベル、ハイレベルの信号が供給されているとき、トランジスタ14は、夫々、オフ状態、オン状態となる。
The primary side control circuit 16 switches and drives the transistor 14 by supplying a switching signal to the gate of the transistor 14 and controlling the gate voltage of the transistor 14. The switching signal is a rectangular wavy signal whose signal level switches between low level and high level. When a low level signal and a high level signal are supplied to the gate of the transistor 14, the transistor 14 is turned off and turned on, respectively.
一次側制御回路16を電源ICの形態で形成しても良い。図2に電源ICとしての電子部品1ICの外観斜視図を示す。電子部品1ICは、一次側制御回路16を構成する半導体集積回路が形成された半導体チップと、半導体チップを収容する筐体(パッケージ)と、筐体に取り付けられ且つ筐体から露出した複数の外部端子と、を備えた電子部品(半導体装置)であり、半導体チップを樹脂にて構成された筐体内に封入することで形成される。上記複数の外部端子の中に図1の端子TM1~TM5が含まれる。
The primary side control circuit 16 may be formed in the form of a power supply IC. Figure 2 shows a perspective view of an electronic component 1 IC as a power supply IC. The electronic component 1 IC includes a semiconductor chip in which a semiconductor integrated circuit constituting the primary side control circuit 16 is formed, a housing (package) for accommodating the semiconductor chip, and a plurality of ICs attached to the housing and exposed from the housing. It is an electronic component (semiconductor device) provided with an external terminal, and is formed by enclosing a semiconductor chip in a housing made of resin. The terminals TM1 to TM5 of FIG. 1 are included in the plurality of external terminals.
二次側回路20について説明する。二次側回路20には、整流ダイオード21、平滑コンデンサ22及びフィードバック回路23が設けられる。ここでは、AC/DCコンバータ1の構成要素の内、二次側に配置される回路を二次側回路20と称している。このため、AC/DCコンバータ1の構成要素に含まれない負荷LDは、二次側に配置されてはいるものの、二次側回路20には属さない。
The secondary side circuit 20 will be described. The secondary side circuit 20 is provided with a rectifier diode 21, a smoothing capacitor 22, and a feedback circuit 23. Here, among the components of the AC / DC converter 1, the circuit arranged on the secondary side is referred to as the secondary side circuit 20. Therefore, although the load LD not included in the components of the AC / DC converter 1 is arranged on the secondary side, it does not belong to the secondary side circuit 20.
トランスTRにおいて、二次側巻線W2の一端は整流ダイオード21のアノードに接続され、二次側巻線W2の他端はグランドGND2に接続される。整流ダイオード21のカソードは平滑コンデンサ22の一端に接続され、平滑コンデンサ22の他端はグランドGND2に接続される。このため、スイッチングトランジスタ14がオンであるときに入力電圧VINに基づく電流が一次側巻線W1に流れて一次側巻線W1にエネルギが蓄積され、その後、スイッチングトランジスタ14がオフとされると、蓄積されたエネルギが二次側巻線W2から整流ダイオード21を通じて平滑コンデンサ22に向けて出力される。この結果、平滑コンデンサ22の両端間に出力電圧VOUTが生じる。平滑コンデンサ22の両端は出力電圧VOUTが加わる出力端子TMOUTに相当する又は出力端子TMOUTに接続されると解される。出力電圧VOUTは、入力電圧VINと、一次側巻線W1の巻き数及び二次側巻線W2の巻き数の比と、に応じた電圧値を有する正の直流電圧である。出力電圧VOUTは若干脈動し得るが、ここでは当該脈動を無視する。通常、一次側巻線W1の巻き数に対し二次側巻線W2の巻き数は少なく、よって、出力電圧VOUTは入力電圧VINよりも小さい(即ち出力電圧VOUTは入力電圧VINよりも低い電圧値を有する)。
In the transformer TR, one end of the secondary winding W2 is connected to the anode of the rectifier diode 21, and the other end of the secondary winding W2 is connected to the ground GND2. The cathode of the rectifying diode 21 is connected to one end of the smoothing capacitor 22, and the other end of the smoothing capacitor 22 is connected to the ground GND2. Therefore, when the switching transistor 14 is on, a current based on the input voltage VIN flows to the primary winding W1 to accumulate energy in the primary winding W1, and then the switching transistor 14 is turned off. The stored energy is output from the secondary winding W2 to the smoothing capacitor 22 through the rectifying diode 21. As a result, an output voltage V OUT is generated between both ends of the smoothing capacitor 22. Across the smoothing capacitor 22 it is understood when connected to the corresponding or output terminal TM OUT to the output terminal TM OUT of the output voltage V OUT is applied. The output voltage V OUT is a positive DC voltage having a voltage value corresponding to the ratio of the input voltage V IN to the number of turns of the primary winding W1 and the number of turns of the secondary winding W2. The output voltage V OUT may pulsate slightly, but the pulsation is ignored here. Normally, the number of turns of the secondary winding W2 is smaller than the number of turns of the primary winding W1, so that the output voltage V OUT is smaller than the input voltage V IN (that is, the output voltage V OUT is smaller than the input voltage V IN) . Also has a low voltage value).
負荷LDは、出力端子TMOUTに接続されて出力電圧VOUTに基づき駆動する任意の負荷であり、例えば、マイコンコンピュータ、DSP(Digital Signal Processor)、DC/DCコンバータである。負荷LDの消費電流、即ち、平滑コンデンサ22を放電させる向きに平滑コンデンサ22及び負荷LD間に流れる電流を負荷電流又は出力電流と称し、符号“ILD”にて表す。
The load LD is an arbitrary load connected to the output terminal TM OUT and driven based on the output voltage V OUT , and is, for example, a microcomputer computer, a DSP (Digital Signal Processor), or a DC / DC converter. The current consumed by the load LD, that is, the current flowing between the smoothing capacitor 22 and the load LD in the direction of discharging the smoothing capacitor 22, is referred to as a load current or an output current, and is represented by the symbol "ILD".
フィードバック回路23は、出力電圧VOUTが所定の目標電圧VTGと一致するようにフォトカプラPCの発光素子PCeを駆動する。例えば、フィードバック回路23は、出力電圧VOUTと所定の目標電圧VTGとの間の誤差に応じた電流を発光素子PCeに供給する。フィードバック回路23はシャントレギュレータやエラーアンプ等にて構成される。目標電圧VTGは、出力電圧VOUTが一致すべき、出力電圧VOUTの目標電圧である。
The feedback circuit 23 drives the light emitting element PCe of the photocoupler PC so that the output voltage V OUT matches the predetermined target voltage V TG. For example, the feedback circuit 23 supplies the light emitting element PCe with a current corresponding to an error between the output voltage V OUT and the predetermined target voltage V TG. The feedback circuit 23 is composed of a shunt regulator, an error amplifier, and the like. The target voltage V TG is the target voltage of the output voltage V OUT that the output voltage V OUT should match.
フォトカプラPCの受光素子PCrにはフィードバック電流IFBが流れる。フィードバック電流IFBの大きさは、発光素子PCeに流れる電流の大きさが増大するにつれて増大し、減少するにすれて減少する。受光素子PCrはフィードバック端子TM3とグランドGND1との間に設けられ、フィードバック電流IFBはフィードバック端子TM3からグランドGND1に向けて流れる。
A feedback current I FB flows through the light receiving element PCr of the photocoupler PC. The magnitude of the feedback current I FB increases as the magnitude of the current flowing through the light emitting element PCe increases, decreases by decreasing to. Receiving element PCr is provided between the feedback terminal TM3 and ground GND1, the feedback current I FB flows toward the feedback terminal TM3 to ground GND1.
尚、ここでは、ダイオード整流方式(非同期整流方式)且つフライバック方式にて出力電圧VOUTを生成する例を挙げているが、AC/DCコンバータ1において、同期整流方式にて出力電圧VOUTを生成するようにしても良いし、フォワード方式にて出力電圧VOUTを生成するようにしても良い。
Here, although an example of generating an output voltage V OUT at the diode rectification (asynchronous rectification type) and a flyback type, the AC / DC converter 1, the output voltage V OUT at synchronous rectification It may be generated, or the output voltage V OUT may be generated by a forward method.
図3を参照し、出力電圧VOUT及び負荷電流ILDとフィードバック電圧VFBとの関係について説明を加える。一次側制御回路16では、電源電圧VCCを元に所定の内部電源電圧Vregが生成されている。内部電源電圧Vregは、グランドGND1を基準とする正の直流電圧であり、例えば4Vである。一次側制御回路16にはフィードバック用抵抗RFBが設けられている。フィードバック用抵抗RFBの一端に内部電源電圧Vregが加えられ、フィードバック用抵抗RFBの他端にフィードバック端子TM3が接続される。
With reference to FIG. 3, the relationship between the output voltage V OUT and the load current ILD and the feedback voltage V FB will be described. In the primary side control circuit 16, a predetermined internal power supply voltage Vreg based is generating the power supply voltage V CC. The internal power supply voltage Vreg is a positive DC voltage with reference to the ground GND1, and is, for example, 4V. The primary side control circuit 16 is provided with a feedback resistor R FB. The internal power supply voltage Vreg is applied to one end of the feedback resistor R FB, feedback terminal TM3 is connected to the other end of the feedback resistor R FB.
負荷電流ILDはAC/DCコンバータ1にとっての負荷LDの大きさを表しており、負荷電流ILDが大きいほど負荷LDの大きさは大きく、負荷電流ILDが小さいほど負荷LDの大きさは小さい。負荷LDの大きさが大きいことは負荷LDが重いとも表現され、負荷LDの大きさが小さいことは負荷LDが軽いとも表現される。尚、負荷電流ILDの大/小とは、負荷電流ILDの瞬時値の大/小ではなく、負荷電流ILDの平均値の大/小を指すと解して良い。
Load current I LD represents the magnitude of the load LD for the AC / DC converter 1, the magnitude of the load current I LD larger the load LD is large, the magnitude of the load current I LD smaller the load LD small. A large load LD is also expressed as a heavy load LD, and a small load LD is also expressed as a light load LD. Incidentally, the large / small of the load current I LD is not a large / small of the instantaneous value of the load current I LD, may be construed to refer to large / small of the mean value of the load current I LD.
スイッチングトランジスタ14がターンオンされた後にターンオフされるという一連の動作を単位スイッチング動作と称する。AC/DCコンバータ1から負荷LDへの供給電力は、単位時間当たりのスイッチング動作数(即ち、単位時間当たりの単位スイッチング動作の繰り返し実行回数)と、各単位スイッチング動作における一次側電流IPのピーク電流値(以下、単にピーク電流値IPEAKと称され得る)と、により決定される。
A series of operations in which the switching transistor 14 is turned on and then turned off is referred to as a unit switching operation. Power supplied from the AC / DC converter 1 to the load LD, the switching operation per unit time (i.e., repeatedly executed the number of unit switching operations per unit time), the peak of the primary-side current I P of each unit switching operation It is determined by the current value (hereinafter, may be simply referred to as the peak current value I PEAK).
出力電圧VOUTが目標電圧VTGにて安定化されている或る状態を起点として、負荷LDの大きさが大きくなると(即ち負荷電流ILDが増大すると)、出力電圧VOUTが目標電圧VTGから低下する方向に向かう。これを受けて、フィードバック回路23は発光素子PCeへの電流供給量を減少させる(ゼロになりうる)。この結果、フィードバック電流IFBが減少してフィードバック電圧VFBが上昇する。この際、負荷電流ILDが大きくなるにつれて、フィードバック電流IFBの減少量及びフィードバック電圧VFBの上昇量は大きくなる。但し、フィードバック電圧VFBの上昇は内部電源電圧Vregまでに制限される。
When the magnitude of the load LD increases (that is, when the load current I LD increases) starting from a certain state in which the output voltage V OUT is stabilized by the target voltage V TG , the output voltage V OUT becomes the target voltage V. It goes down from TG. In response to this, the feedback circuit 23 reduces (can be zero) the amount of current supplied to the light emitting element PCe. As a result, the feedback current I FB decreases and the feedback voltage V FB rises. At this time, as the load current I LD increases, the amount of decrease in the feedback current I FB and the amount of increase in the feedback voltage V FB increase. However, the increase in the feedback voltage VFB is limited to the internal power supply voltage Vreg.
フィードバック電圧VFBが上昇すると、一次側制御回路16は、単位時間当たりの平均スイッチング動作数、又は、各単位スイッチング動作におけるピーク電流値IPEAKが増大するように、スイッチングトランジスタ14のスイッチング制御を実行する。これにより、負荷電流ILDの増大に抗して出力電圧VOUTを目標電圧VTGにて安定化させる。
When the feedback voltage VFB rises, the primary side control circuit 16 executes switching control of the switching transistor 14 so that the average number of switching operations per unit time or the peak current value I PEAK in each unit switching operation increases. To do. Thus, to stabilize the output voltage V OUT against the increase in the load current I LD with the target voltage V TG.
逆に、出力電圧VOUTが目標電圧VTGにて安定化されている或る状態を起点として、負荷LDの大きさが小さくなると(即ち負荷電流ILDが減少すると)、出力電圧VOUTが目標電圧VTGから上昇する方向に向かう。これを受けて、フィードバック回路23は発光素子PCeへの電流供給量を増大させる。この結果、フィードバック電流IFBが増大してフィードバック電圧VFBが低下する。この際、負荷電流ILDが小さくなるにつれて、フィードバック電流IFBの増大量及びフィードバック電圧VFBの低下量は大きくなる。但し、フィードバック電圧VFBの低下はグランドGND1の電位までに制限される。
On the contrary, when the magnitude of the load LD becomes smaller (that is, when the load current I LD decreases) starting from a certain state in which the output voltage V OUT is stabilized at the target voltage V TG , the output voltage V OUT becomes higher. It goes in the direction of rising from the target voltage VTG. In response to this, the feedback circuit 23 increases the amount of current supplied to the light emitting element PCe. As a result, the feedback current I FB increases and the feedback voltage V FB decreases. At this time, as the load current I LD becomes smaller, the amount of increase in the feedback current I FB and the amount of decrease in the feedback voltage V FB become larger. However, the decrease in the feedback voltage VFB is limited to the potential of the ground GND1.
フィードバック電圧VFBが低下すると、一次側制御回路16は、単位時間当たりの平均スイッチング動作数、又は、各単位スイッチング動作におけるピーク電流値IPEAKが減少するように、スイッチングトランジスタ14のスイッチング制御を実行する。これにより、負荷電流ILDの減少に抗して出力電圧VOUTを目標電圧VTGにて安定化させる。
When the feedback voltage V FB decreases, the primary side control circuit 16 executes switching control of the switching transistor 14 so that the average number of switching operations per unit time or the peak current value I PEAK in each unit switching operation decreases. To do. Thus, to stabilize the output voltage V OUT against the decrease of the load current I LD with the target voltage V TG.
このように、フィードバック電圧VFBは負荷LDの大きさに応じた電圧となる。本実施形態に係る構成では、負荷電流ILDが大きいほど(負荷電流ILDの平均値が大きいほど)フィードバック電圧VFBは高くなり、負荷電流ILDが小さいほど(負荷電流ILDの平均値が小さいほど)フィードバック電圧VFBは低くなる。
In this way, the feedback voltage V FB becomes a voltage corresponding to the magnitude of the load LD. In the configuration according to the present embodiment, the load current I LD is higher (the larger the average value of the load current I LD) large feedback voltage V FB is high, the load current as I LD is small (average value of the load current I LD (The smaller), the lower the feedback voltage VFB.
一次側制御回路16は、複数のモードの何れかを自身の動作モードに設定し、設定した動作モードにて動作する。ここでは、複数のモードに第1~第5モードが含まれているものとする。一次側制御回路16はフィードバック電圧VFBに基づき第1~第5モードの何れかを動作モードに設定する。図4には、フィードバック電圧VFBと動作モードとの関係が示されている。
The primary side control circuit 16 sets any of a plurality of modes to its own operation mode, and operates in the set operation mode. Here, it is assumed that the first to fifth modes are included in the plurality of modes. The primary side control circuit 16 sets any of the first to fifth modes as the operation mode based on the feedback voltage V FB. FIG. 4 shows the relationship between the feedback voltage VFB and the operation mode.
第2~第4モードでは一次側制御回路16によりPWM動作が実行される。PWM動作では、スイッチングトランジスタ14が、設定されたスイッチング周波数fSWにて周期的にスイッチングされる。つまり、スイッチング周波数fSWは、PWM動作の実行時におけるスイッチングトランジスタ14のスイッチング周波数(即ち、1秒当たりの単位スイッチング動作の繰り返し実行回数)である。詳細は後述の説明から明らかとなるが、PWM動作における各単位スイッチング動作において、スイッチングトランジスタ14がターンオンされた後、一次側電流IPの値が或る電流値(例えばフィートバック電圧VFBに基づく電流値又は過電流検出電圧に基づく電流値)に達すると、スイッチングトランジスタ14はターンオフされる。つまり、一次側制御回路16は、所謂PWMカレントモードでトランジスタ14のスイッチング制御を行うことができる。
In the second to fourth modes, the PWM operation is executed by the primary side control circuit 16. In the PWM operation, the switching transistor 14 is periodically switched at the set switching frequency fSW. That is, the switching frequency fSW is the switching frequency of the switching transistor 14 at the time of executing the PWM operation (that is, the number of times the unit switching operation is repeatedly executed per second). Details will become apparent from the following description, in each unit switching operation in the PWM operation, after the switching transistor 14 is turned on, based on the primary-side current I value certain current value of P (e.g., foot-back voltage V FB When the current value or the current value based on the overcurrent detection voltage is reached, the switching transistor 14 is turned off. That is, the primary side control circuit 16 can perform switching control of the transistor 14 in the so-called PWM current mode.
一次側制御回路16の動作モードは、所定の電圧VA、VB、VC、VD及びVEとフィードバック電圧VFBとの関係に基づき、“VFB<VA”の成立時に第1モードに設定され、“VA≦VFB<VB”の成立時に第2モードに設定され、“VB≦VFB<VC”の成立時に第3モードに設定され、“VC≦VFB<VE”の成立時に第4モードに設定され、“VE≦VFB”の成立時に第5モードに設定される。“0<VA<VB<VC<VD<VE”が成立し、ここでは、電圧VA、VB、VC、VD、VEは、夫々、0.40V、0.55V、1.25V、2.00V、2.80V(ボルト)であるとする。電圧VDの意義は後述の説明から明らかとなる。
Operation mode of the primary side control circuit 16, a predetermined voltage V A, V B, V C , based on the relationship between V D and V E and the feedback voltage V FB, "V FB <V A" first upon establishment of is set in the mode, "V a ≦ V FB < V B" is set to the second mode when the establishment of, is set to the third mode when the establishment of "V B ≦ V FB <V C", "V C ≦ V When FB < VE "is established, the fourth mode is set, and when" VE ≤ V FB "is established, the fifth mode is set. "0 <V A <V B <V C <V D <V E" satisfied, where the voltage V A, V B, V C , V D, V E , respectively, 0.40 V, 0. It is assumed that the voltage is 55V, 1.25V, 2.00V, and 2.80V (volt). The significance of the voltage V D becomes clear from the explanation described later.
上述したように、第2~第4モードではPWM動作が実行される。それらの内、第2モードはスイッチング周波数fSWが所定周波数fLにて固定されるf固定モードであり、第4モードはスイッチング周波数fSWが所定周波数fLよりも高い所定周波数fHにて固定されるf固定モードである。周波数fL、fHは、ここでは、夫々、25kHz、100kHz(キロヘルツ)であるとする。第3モードはフィードバック電圧VFBの低下につれてスイッチング周波数fSWを低下させるf低減モードである。具体的には、第3モードでは、フィードバック電圧VFBが電圧VCから電圧VBに低下するにつれてスイッチング周波数fSWが周波数fHから周波数fLへと線型的に低下せしめられ、逆に、フィードバック電圧VFBが電圧VBから電圧VCに上昇するにつれてスイッチング周波数fSWが周波数fLから周波数fHへと線型的に増大せしめられる。
As described above, the PWM operation is executed in the second to fourth modes. Among them, the second mode is f fixed mode the switching frequency f SW is fixed at a predetermined frequency f L, in the fourth mode the switching frequency f SW predetermined frequency f is higher than L predetermined frequency f H It is a fixed f fixed mode. Here, the frequencies f L and f H are assumed to be 25 kHz and 100 kHz (kilohertz), respectively. The third mode is an f reduction mode in which the switching frequency f SW is lowered as the feedback voltage V FB is lowered. Specifically, in the third mode, the switching frequency f SW is linear manner is caused to drop to a frequency f L from the frequency f H as the feedback voltage V FB falls from the voltage V C to the voltage V B, conversely, the switching frequency f SW is brought into linearly increased to a frequency f H from the frequency f L as the feedback voltage V FB rises from the voltage V B to the voltage V C.
PWM動作が実行される際、負荷LDが相対的に軽いときにスイッチング周波数fSWが低減されることで、電力の変換効率を高めることができる。尚、第2モードは削除されても良い。この場合、“VA=VB”とみなせば良い。
When the PWM operation is executed, the switching frequency fSW is reduced when the load LD is relatively light, so that the power conversion efficiency can be improved. The second mode may be deleted. In this case, it may be regarded as " VA = V B".
第5モードは過負荷モードである。第5モードにおいて、“VE≦VFB”が成立する状態が所定時間(例えば64ミリ秒)以上継続した場合、一次側制御回路16は、AC/DCコンバータ1が過負荷状態にあると判断して過負荷保護動作を行う。過負荷保護動作では、PWM動作や後述のバースト動作を行うことなく、スイッチングトランジスタ14のスイッチングを停止してトランジスタ14をオフ状態に維持する。尚、“VE≦VFB”の非成立状態から“VE≦VFB”の成立状態に移行した後、過負荷保護動作が行われるまでは、“fSW=fH”によるPWM動作が実行される。第5モードは、本発明の特異な特徴に関与しないため、以下、特に必要なき限り、常に“VFB<VE”が成立するものとして第5モードの存在を無視する。
The fifth mode is an overload mode. In the fifth mode, if the "V E ≦ V FB" state is established continues for a predetermined time (e.g. 64 ms) or more, a primary side control circuit 16, determines that the AC / DC converter 1 is overloaded And perform overload protection operation. In the overload protection operation, the switching of the switching transistor 14 is stopped and the transistor 14 is maintained in the off state without performing the PWM operation or the burst operation described later. Incidentally, after shifting to hold state from the non-establishment state of "V E ≦ V FB"" V E ≦ V FB", until the overload protection operation is performed, the PWM operation by the "f SW = f H" Will be executed. Since the fifth mode does not relate to the peculiar feature of the present invention, the existence of the fifth mode is ignored below, assuming that "V FB <VE" is always established unless otherwise necessary.
第1モードはバーストモードである。PWM動作が行われている状態からフィードバック電圧VFBが低下して“VFB<VA”が成立するとバーストモードへの移行が発生して、一次側制御回路16によりバースト動作が実行される。バースト動作では、上記スイッチング周波数fSWでのスイッチングトランジスタ14のスイッチングが停止され、周期性を持たない態様でスイッチングトランジスタ14がスイッチングされる。バースト動作におけるスイッチングトランジスタ14のスイッチングが、偶然、周期性を持つこともあるが、このときのスイッチングトランジスタ14のスイッチング周波数は周波数fLよりも低くなる。尚、詳細は後述の説明から明らかとなるが、“VFB<VA”が成立している区間ではスイッチングトランジスタ14がオフ状態に保たれ、フィードバック電圧VFBが電圧VA近辺で上下することでバースト動作が実現されることになる。
The first mode is a burst mode. When the feedback voltage V FB drops from the state in which the PWM operation is performed and “V FB < VA ” is established, the transition to the burst mode occurs, and the burst operation is executed by the primary side control circuit 16. In the burst operation, the switching of the switching transistor 14 at the switching frequency fSW is stopped, and the switching transistor 14 is switched in a non-periodic manner. The switching of the switching transistor 14 in the burst operation may have periodicity by chance, but the switching frequency of the switching transistor 14 at this time is lower than the frequency f L. The details will be clarified from the explanation described later, but in the section where "V FB < VA " is established, the switching transistor 14 is kept in the off state, and the feedback voltage V FB fluctuates in the vicinity of the voltage VA. Burst operation will be realized with.
図5を参照し、バースト動作について説明する。図5には、バースト動作が実行されているときのフィードバック電圧VFBの波形とスイッチングトランジスタ14の状態変化とが示されている。電圧VBST1は所定のバースト判定電圧であり、電圧VBST2は所定のバースト解除電圧である。バースト判定電圧VBST1は図4の電圧VAに相当し、ここでは0.40Vである。バースト解除電圧VBST2はバースト判定電圧VBST1よりも高く、ここでは、0.45Vであるとする。
The burst operation will be described with reference to FIG. FIG. 5 shows the waveform of the feedback voltage VFB and the state change of the switching transistor 14 when the burst operation is executed. The voltage V BST1 is a predetermined burst determination voltage, and the voltage V BST2 is a predetermined burst release voltage. The burst determination voltage V BST1 corresponds to the voltage V A in FIG. 4, which is 0.40 V here. The burst release voltage V BST2 is higher than the burst determination voltage V BST1 , and here, it is assumed to be 0.45V.
負荷LDが軽いが故に“VFB<VBST1”が成立しているタイミングt1を基準にして考える。タイミングt1においてスイッチングトランジスタ14はオフ状態である。トランジスタ14がオフ状態に保たれていると出力電圧VOUTの低下に伴ってフィードバック電圧VFBが上昇してゆく。そして、タイミングt2にてフィードバック電圧VFBがバースト解除電圧VBST2を上回ると、それを契機に一次側制御回路16によりトランジスタ14がターンオンされる。バースト動作において、トランジスタ14がターンオンされた後、タイミングt3にて一次側電流IPの値がターンオフ閾値IOFFに達すると、スイッチングトランジスタ14がターンオフされる。
Consider the timing t 1 at which "V FB <V BST1 " is established because the load LD is light. Switching transistor 14 at the timing t 1 is in the OFF state. When the transistor 14 is kept in the off state, the feedback voltage V FB increases as the output voltage V OUT decreases. Then, when the feedback voltage V FB exceeds the burst release voltage V BST 2 at the timing t 2, the transistor 14 is turned on by the primary side control circuit 16 as a trigger. In the burst operation, the transistor 14 after being turned on, when the value of the primary current I P at a timing t 3 reaches the turn-off threshold value I OFF, the switching transistor 14 is turned off.
図5の例では、トランジスタ14の一回分のスイッチングにてフィードバック電圧VFBが再びバースト判定電圧VBST1を下回っており、以後、タイミングt1~t3間の動作と同じ動作がバースト動作において繰り返される。タイミングt2にてフィードバック電圧VFBがバースト解除電圧VBST2を上回った後、トランジスタ14の一回分のスイッチングにてフィードバック電圧VFBがバースト判定電圧VBST1を下回らないこともあり、この場合には、フィードバック電圧VFBがバースト判定電圧VBST1を下回るまで周波数fLにてトランジスタ14のターンオンが繰り返される。負荷LDが重くなることでフィードバック電圧VFBが安定的にバースト判定電圧VBST1を上回るのであれば、一次側制御回路16にて実行される動作がバースト動作からPWM動作が移行することになる。
In the example of FIG. 5, the feedback voltage V FB at a dose of switching transistor 14 is below the burst determination voltage V BST1 again, thereafter, the same operation as the operation between the timings t 1 ~ t 3 is repeated in the burst operation Is done. After the feedback voltage V FB at a timing t 2 exceeds the burst release voltage V BST2, sometimes the feedback voltage V FB at a dose of switching transistor 14 does not fall below a burst determination voltage V BST1, in this case The turn-on of the transistor 14 is repeated at the frequency f L until the feedback voltage V FB falls below the burst determination voltage V BST1. If the feedback voltage V FB stably exceeds the burst determination voltage V BST1 due to the heavy load LD, the operation executed by the primary side control circuit 16 shifts from the burst operation to the PWM operation.
ここで、図6(a)~(c)を参照し、上述のターンオフ閾値IOFFとして、固定値を有するターンオフ閾値IOFF[const]を用いると仮定したときのバースト動作について考える。図6(a)の実線波形610、図6(b)の破線波形620は、夫々、第1、第2仮想状況における一次側電流IPの波形を示している。第1仮想状況は“IOFF=IOFF[const]”且つ“VIN=VINL”であるときにバースト動作が実行される状況であり、第2仮想状況は“IOFF=IOFF[const]”且つ“VIN=VINH”であるときにバースト動作が実行される状況である。ここで、入力電圧VINの第1例である電圧VINLは入力電圧VINの第2例である電圧VINHよりも低い。例えば、電圧VINL、VINHは、夫々、図1の交流電圧VACの実効値が100V、240Vであるときの入力電圧VINに相当する。第1、第2仮想状況における一次側電流IPは、夫々、符号“IP[VINL]”、“IP[VINH]”にて参照される。図6(c)では、図6(a)に示される一次側電流IP[VINL]の波形610と図6(b)に示される一次側電流IP[VINH]の波形620とが重ねあわせて示されている。但し、図示の便宜上、図6(c)では、波形610及び620を若干互いに上下にずらして示している。
Here, with reference to FIGS. 6 (a) to 6 (c), a burst operation when it is assumed that a turn-off threshold value I OFF [const] having a fixed value is used as the above-mentioned turn-off threshold value I OFF will be considered. The solid line waveform 610 in FIG. 6 (a), the broken line waveform 620 in FIG. 6 (b), respectively, first, shows the waveform of the primary-side current I P in the second virtual situation. The first virtual situation is a situation in which a burst operation is executed when “I OFF = I OFF [const]” and “V IN = V INL ”, and the second virtual situation is a situation in which “I OFF = I OFF [const]”. ] ”And“ V IN = V INH ”, the burst operation is executed. Here, voltage V INL is the first example of the input voltage V IN is lower than the voltage V INH is a second example of the input voltage V IN. For example, the voltage V INL, V INH, respectively, the effective value of the AC voltage V AC in FIG. 1 corresponds to the input voltage V IN when 100 V, is 240V. First, the primary-side current I P in the second virtual status, respectively, the code "I P [V INL]" , are referred to by "I P [V INH]" . In FIG. 6 (c), and the primary-side current I P primary current shown in the waveform 610 and FIG. 6 (b) of [V INL] I P [V INH] waveforms 620 shown in FIG. 6 (a) It is shown superimposed. However, for convenience of illustration, in FIG. 6C, the waveforms 610 and 620 are slightly shifted vertically from each other.
第1及び第2仮想状況の何れにおいても、バースト動作においてスイッチングトランジスタ14がターンオンされた後、一次側電流IPの値がターンオフ閾値IOFF(ここではIOFF[const])に達したことを契機にスイッチングトランジスタ14がターンオフされる。但し、一次側電流IPの値がターンオフ閾値IOFF(ここではIOFF[const])に達したタイミングから、所定の遅延時間tDLYが経過した後に、スイッチングトランジスタ14が実際にターンオフする。遅延時間tDLYは、一次側制御回路16内の信号遅延や、スイッチングトランジスタ14のゲート容量の充放電時間に基づいている。
In any of the first and second virtual situation, after the switching transistor 14 is turned on in a burst operation, the value of the primary-side current I P (here the I OFF [const]) off threshold I OFF reached The switching transistor 14 is turned off as an opportunity. However, the timing has been reached (I OFF [const] in this case) the value of the primary current I P is turned off threshold I OFF, after the t DLY has predetermined delay time has elapsed, the switching transistor 14 is actually turned off. The delay time t DLY is based on the signal delay in the primary side control circuit 16 and the charge / discharge time of the gate capacitance of the switching transistor 14.
遅延時間tDLYは、入力電圧VINの大小に拘らず一定である。しかしながら、遅延時間tDLYに対する一次側電流IPの変化量は入力電圧VINの大小に依存する。スイッチングトランジスタ14がオンである時の一次側電流IPの単位時間当たりの変化量は、一次側巻線W1のインダクタンス値に反比例し且つ入力電圧VINに比例するからである。結果、第1仮想状況における一次側電流IPのピーク電流値IPEAKであるピーク電流値IP1と、第2仮想状況における一次側電流IPのピーク電流値IPEAKであるピーク電流値IP2とを比較したとき、“IP1<IP2”となる。
The delay time t DLY is constant regardless of the magnitude of the input voltage VIN. However, the variation of the primary current I P with respect to the delay time t DLY is dependent on the magnitude of the input voltage V IN. The amount of change per unit time of the primary-side current I P when switching transistor 14 is on, is proportional to the inverse proportion and the input voltage V IN to the inductance value of the primary winding W1. Result, the peak current value I P1 is the peak current value I PEAK of the primary-side current I P in the first virtual situation, the peak current value is the peak current value I PEAK of the primary-side current I P in the second virtual situation I P2 When compared with, it becomes " IP1 <IP2".
そうすると、“IOFF=IOFF[const]”であったならば、図7に示す如く、バースト境界電力PBSTが入力電圧VINの大小に応じて(換言すれば交流電圧VACの大小に応じて)変化することになる。バースト境界電力PBSTとは、バースト動作とPWM動作との切り替えの境界となる電力を指す。つまり、AC/DCコンバータ1から負荷LDへの供給電力(即ち出力電圧VOUTと負荷電流ILDとの積)が、バースト境界電力PBSTよりも大きければPWM動作が実行され、バースト境界電力PBSTよりも小さければバースト動作が実行される。
Then, if "I OFF = I OFF [const]", as shown in FIG. 7, the burst boundary power BPST depends on the magnitude of the input voltage V IN (in other words, the magnitude of the AC voltage V AC). Will change (according to). Burst boundary power PBST refers to the power that is the boundary between the burst operation and the PWM operation. That is, the electric power supplied from the AC / DC converter 1 to the load LD (i.e. the product of the output voltage V OUT and load current I LD) is, PWM operation is executed is larger than the burst boundary power P BST, a burst boundary power P If it is smaller than BST, burst operation is executed.
バースト動作は軽負荷時でのAC/DCコンバータ1の電力消費を低減するものであるが、入力電圧VINによって、バースト動作が行われたり行われなかったりすることは望ましくなく、バースト動作に関わる電力設計最適化の妨げとなる。
The burst operation reduces the power consumption of the AC / DC converter 1 at the time of a light load, but it is not desirable that the burst operation is performed or not performed depending on the input voltage VIN, which is related to the burst operation. It hinders power design optimization.
これを考慮し、一次側制御回路16では、スイッチングトランジスタ14のターンオンの後、ターンオフ閾値IOFFを徐々に増加させる補償(以下、アップスロープ補償と称する)を行う。
In consideration of this, in the primary side control circuit 16, after the switching transistor 14 is turned on, compensation for gradually increasing the turn-off threshold value I OFF (hereinafter referred to as upslope compensation) is performed.
図8において、実線波形630、破線波形640は、夫々、第1、第2実状況における一次側電流IPの波形を示している。第1実状況はターンオフ閾値IOFFにアップスロープ補償が適用され且つ“VIN=VINL”であるときにバースト動作が実行される状況であり、第2実状況はターンオフ閾値IOFFにアップスロープ補償が適用され且つ“VIN=VINH”であるときにバースト動作が実行される状況である。尚、図示の便宜上、図8では、波形630及び640を若干互いに上下にずらして示している。
8, the solid line waveform 630, the dashed line waveform 640, respectively, first, shows the waveform of the primary-side current I P in the second real situation. The first actual situation is a situation in which upslope compensation is applied to the turn-off threshold value I OFF and a burst operation is executed when "V IN = V INL ", and the second actual situation is an up slope to the turn-off threshold value I OFF. This is a situation in which a burst operation is executed when compensation is applied and “V IN = V INH”. For convenience of illustration, in FIG. 8, the waveforms 630 and 640 are slightly shifted vertically from each other.
第1及び第2実状況の何れにおいても、バースト動作においてスイッチングトランジスタ14がターンオンされた後、一次側電流IPの値がターンオフ閾値IOFFに達したことを契機にスイッチングトランジスタ14がターンオフされる。但し、一次側電流IPの値がターンオフ閾値IOFFに達したタイミングから、所定の遅延時間tDLYが経過した後に、スイッチングトランジスタ14が実際にターンオフする。
In any of the first and second actual status, after the switching transistor 14 is turned on in a burst operation, the switching transistor 14 is turned off in response to the value of the primary-side current I P reaches the turn-off threshold value I OFF .. However, the timing at which the value of the primary-side current I P reaches the turn-off threshold value I OFF, after the t DLY has predetermined delay time has elapsed, the switching transistor 14 is actually turned off.
第1及び第2実状況では、スイッチングトランジスタ14のターンオンの後、ターンオフ閾値IOFFが徐々に増加する。このため、第1実状況における一次側電流IPのピーク電流値IPEAKであるピーク電流値IP1’と、第2実状況における一次側電流IPのピーク電流値IPEAKであるピーク電流値IP2’とを比較したとき、それらの差の大きさ|IP1’-IP2’|は、上述の仮想状況に対応する差の大きさ|IP1-IP2|よりも小さくなる。理想的には、|IP1’-IP2’|がゼロとされる(そうなるようにアップスロープ補償が設計される)。あらゆる状況において、|IP1’-IP2’|をゼロとすることは難しい場合もあるが、|IP1’-IP2’|が極力ゼロに近づくようにアップスロープ補償が設計される。
In the first and second actual situations, the turn-off threshold value I OFF gradually increases after the switching transistor 14 is turned on. Therefore, the peak current value I P1 'is the peak current value I PEAK of the primary-side current I P in the first real situation, the peak current value is the peak current value I PEAK of the primary-side current I P in the second real situation 'when compared with the magnitude of their difference | I P1' I P2 -I P2 '| , the magnitude of the difference corresponding to the virtual status of the above | I P1 -I P2 | is smaller than. Ideally, | I P1 '-I P2' | is to be zero (the up-slope compensation make it so designed). In all circumstances, | I P1 '-I P2' | While some cases difficult to zero, | I P1 '-I P2' | such approaches as much as possible to zero up slope compensation is designed.
図9に、アップスロープ補償がターンオフ閾値IOFFに適用された場合における、入力電圧VINとバースト境界電力PBSTとの関係を示す。アップスロープ補償の利用により、バースト境界電力PBSTにおける入力電圧VINへの依存性が低下し、バースト境界電力PBSTを入力電圧VINに依存せず実質的に一定とすることも可能となる。結果、AC/DCコンバータ1を含む装置のバースト動作に関わる電力設計の最適化が容易となる。
FIG. 9 shows the relationship between the input voltage VIN and the burst boundary power PBS T when the upslope compensation is applied to the turn-off threshold value I OFF. The use of up-slope compensation, decrease dependency on the input voltage V IN at the burst boundary power P BST, it is possible to substantially constant independently of the burst boundary power P BST to the input voltage V IN .. As a result, it becomes easy to optimize the power design related to the burst operation of the device including the AC / DC converter 1.
図10に、一次側制御回路16の概略的な内部ブロック図を示す。一次側制御回路16は、セット信号発生部110、リセット信号発生部120及びドライブ部130を有するメイン制御部100と、電流検出部140と、を備える。電流検出部140は、電流センス抵抗15を用いてスイッチングトランジスタ14に流れる一次側電流IP(対象電流)を検出し、その検出結果を示す電流検出信号SCSを生成及び出力する。具体的には、電流検出部140に対し、グランドGND1を基準として電流センス抵抗15にて生じる電圧降下(即ち電流センス電圧VCS)が与えられる。電流検出部140は、増幅器及びフィルタ等を含んで構成され、電流センス電圧VCSをk倍した電圧値を有する電圧信号を電流検出信号SCSとして生成及び出力する。ここで、kは正の任意の実数である。
FIG. 10 shows a schematic internal block diagram of the primary side control circuit 16. The primary side control circuit 16 includes a main control unit 100 having a set signal generation unit 110, a reset signal generation unit 120, and a drive unit 130, and a current detection unit 140. Current detecting unit 140 detects the primary-side current I P (target current) flowing through the switching transistor 14 with a current sensing resistor 15, and generates and outputs a current detection signal S CS indicating the detection result. Specifically, the current detection unit 140 is given a voltage drop (that is, a current sense voltage VCS ) that occurs in the current sense resistor 15 with reference to the ground GND1. Current detecting section 140 is configured to include amplifiers and filters, etc., to generate and output a voltage signal having a voltage value k times the current sense voltage V CS as a current detection signal S CS. Here, k is any positive real number.
電流検出信号SCSはメイン制御部100に与えられる。また、フィードバック電圧VFBもメイン制御部100に与えられる。メイン制御部100は、フィードバック電圧VFB及び電流検出信号SCSに基づき(従って、フィードバック電圧VFB及び電流センス電圧VCSに基づき)、スイッチングトランジスタ14のゲートにスイッチング信号を供給してトランジスタ14のゲート電圧を制御し、これによってトランジスタ14をスイッチング駆動する。尚、トランジスタ14のゲートに供給される信号をゲート信号と表記することもある。
The current detection signal SCS is given to the main control unit 100. Further, the feedback voltage VFB is also given to the main control unit 100. The main control unit 100 supplies a switching signal to the gate of the switching transistor 14 based on the feedback voltage V FB and the current detection signal S CS (thus, based on the feedback voltage V FB and the current sense voltage V CS), and the transistor 14 The gate voltage is controlled, thereby switching and driving the transistor 14. The signal supplied to the gate of the transistor 14 may be referred to as a gate signal.
セット信号発生部110は信号SETを生成する。リセット信号発生部120は信号RSTを生成する。信号SET及びRSTはドライブ部130に供給される。信号SET及びRSTの夫々は、ローレベル及びハイレベルの何れかの信号レベルをとる二値化信号である。ハイレベルの信号SETは、スイッチングトランジスタ14のターンオンを指示するセット信号として機能し、ローレベルの信号SETはセット信号として機能しない(無効である)。ハイレベルの信号RSTは、スイッチングトランジスタ14のターンオフを指示するリセット信号として機能し、ローレベルの信号RSTはリセット信号として機能しない(無効である)。
The set signal generation unit 110 generates a signal SET. The reset signal generation unit 120 generates the signal RST. The signals SET and RST are supplied to the drive unit 130. Each of the signal SET and RST is a binarized signal that takes either a low level or a high level signal level. The high-level signal SET functions as a set signal instructing the turn-on of the switching transistor 14, and the low-level signal SET does not function as a set signal (invalid). The high-level signal RST functions as a reset signal instructing the turn-off of the switching transistor 14, and the low-level signal RST does not function as a reset signal (invalid).
ドライブ部130は、セット信号を受けたとき(即ちハイレベルの信号SETを受けたとき)、スイッチングトランジスタ14をオン状態にするための信号(即ちハイレベルのゲート信号)をスイッチングトランジスタ14のゲートに供給する。ドライブ部130は、リセット信号を受けたとき(即ちハイレベルの信号RSTを受けたとき)、スイッチングトランジスタ14をオフ状態にするための信号(即ちローレベルのゲート信号)をスイッチングトランジスタ14のゲートに供給する。
When the drive unit 130 receives the set signal (that is, when it receives the high-level signal SET), the drive unit 130 sends a signal for turning on the switching transistor 14 (that is, a high-level gate signal) to the gate of the switching transistor 14. Supply. When the drive unit 130 receives the reset signal (that is, when it receives the high-level signal RST), the drive unit 130 sends a signal for turning off the switching transistor 14 (that is, a low-level gate signal) to the gate of the switching transistor 14. Supply.
また、メイン制御部100は、フィードバック電圧VFBに基づき、スイッチングトランジスタ14を設定されたスイッチング周波数fSWでスイッチングさせるPWM動作、又は、バースト動作を実行する。バースト動作では、上述の如く、スイッチング周波数fSWでのトランジスタ14のスイッチングを停止させる。
The main control unit 100, based on the feedback voltage V FB, PWM operation for switching at a switching frequency f SW that is set to the switching transistor 14, or to perform a burst operation. In the burst operation, as described above, the switching of the transistor 14 at the switching frequency fSW is stopped.
バースト動作において、セット信号発生部110はフィードバック電圧VFBに基づきセット信号を発生させ(図5参照;“VFB>VBST2”となったことを受けてセット信号を発生させ)、その後、リセット信号発生部120は電流検出信号SCSを参照し一次側電流IPの値がターンオフ閾値IOFFを超えたことを契機にリセット信号を発生させる。ここで、ターンオフ閾値IOFFには上述のアップスロープ補償が適用される。
In the burst operation, the set signal generator 110 generates a set signal based on the feedback voltage V FB (see FIG. 5; generates a set signal in response to "V FB > V BST2"), and then resets. signal generating unit 120 generates a reset signal in response to the value of the current detection signal S reference to CS and the primary-side current I P exceeds the turn-off threshold I OFF. Here, the above-mentioned upslope compensation is applied to the turn-off threshold value I OFF.
図11にメイン制御部100の詳細な構成例を示す。
FIG. 11 shows a detailed configuration example of the main control unit 100.
セット信号発生部110について説明する。図11の構成例において、セット信号発生部110は、比較器111及びオシレータ112を備える。比較器111は、ヒステリシス付きの比較器であって、フィードバック電圧VFBに応じたフィードバック信号SFB2に基づき、オシレータ112に対するイネーブル信号ENOSCを生成する。ここでは、フィードバック信号SFB2は、フィードバック電圧VFBの1/2倍の電圧値を有する電圧信号であるとする。比較器111は、フィードバック信号SFB2による電圧(VFB/2)と電圧(VBST1/2)又は電圧(VBST2/2)とを比較して、それらの大小関係を示す信号をイネーブル信号ENOSCとして出力する。イネーブル信号ENOSCは、ローレベル及びハイレベルの何れかの信号レベルをとる二値化信号である。
The set signal generation unit 110 will be described. In the configuration example of FIG. 11, the set signal generation unit 110 includes a comparator 111 and an oscillator 112. The comparator 111 is a comparator with hysteresis, and generates an enable signal EN OSC for the oscillator 112 based on the feedback signal S FB2 corresponding to the feedback voltage V FB. Here, it is assumed that the feedback signal S FB2 is a voltage signal having a voltage value that is 1/2 times the feedback voltage V FB. The comparator 111, a feedback signal S FB2 compared voltage (V FB / 2) and a voltage (V BST1 / 2) or voltage (V BST2 / 2) by the signal enable signal EN indicating their magnitude relationship Output as OSC. The enable signal EN OSC is a binarized signal that takes either a low level or a high level signal level.
比較器111において、電圧(VFB/2)と電圧(VBST1/2)又は電圧(VBST2/2)との比較は、フィードバック電圧VFBとバースト判定電圧VBST1又はバースト解除電圧VBST2との比較と等価である。故に、電圧VFBと電圧VBST1又はVBST2との大小関係に注目して比較器111の動作を説明する。図12に、電圧VFB、VBST1及びVBST2と、イネーブル信号ENOSCを含む各種信号との関係を示す(図12に示される信号OUTVCOについては後述)。
In the comparator 111, the comparison between the voltage (V FB / 2) and the voltage (V BST1 / 2) or the voltage (V BST2 / 2) is made with the feedback voltage V FB and the burst determination voltage V BST1 or the burst release voltage V BST2 . Is equivalent to the comparison of. Therefore, the operation of the comparator 111 will be described by paying attention to the magnitude relationship between the voltage V FB and the voltage V BST1 or V BST2. 12, the voltage V FB, and V BST1 and V BST2, (described later signal OUT VCO shown in FIG. 12) showing the relationship between the various signals, including an enable signal EN OSC.
一次側制御回路16の起動直後においては、所定の起動シーケンスによりフィードバック電圧VFBはバースト判定電圧VBST1及びバースト解除電圧VBST2よりも十分に高く、このとき、比較器111の出力信号であるイネーブル信号ENOSCはハイレベルとなっている。
Immediately after the primary side control circuit 16 is started, the feedback voltage V FB is sufficiently higher than the burst determination voltage V BST1 and the burst release voltage V BST2 according to a predetermined start sequence, and at this time, the enable which is the output signal of the comparator 111. The signal EN OSC is at a high level.
図12に示す如く、比較器111の出力信号(ENOSC)がハイレベルであるとき、比較器111では、フィードバック電圧VFBとバースト判定電圧VBST1とが比較され、“VFB>VBST1”の成立時にはイネーブル信号ENOSCがハイレベルに維持される一方、“VFB<VBST1”の成立時にはイネーブル信号ENOSCがハイレベルからローレベルに切り替えられる。比較器111の出力信号がハイレベルであるときにおいて、“VFB=VBST1”であったときには、イネーブル信号ENOSCはハイレベル及びローレベルの何れかとなる。
As shown in FIG. 12, when the output signal (EN OSC ) of the comparator 111 is at a high level, in the comparator 111, the feedback voltage V FB and the burst determination voltage V BST1 are compared, and “V FB > V BST1 ”. The enable signal EN OSC is maintained at a high level when is established, while the enable signal EN OSC is switched from a high level to a low level when "V FB <V BEST1" is established. When the output signal of the comparator 111 is high level and “V FB = V BST1 ”, the enable signal EN OSC is either high level or low level.
図12に示す如く、比較器111の出力信号(ENOSC)がローレベルであるとき、比較器111では、フィードバック電圧VFBとバースト解除電圧VBST2とが比較され、“VFB<VBST2”の成立時にはイネーブル信号ENOSCがローレベルに維持される一方、“VFB>VBST2”の成立時にはイネーブル信号ENOSCがローレベルからハイレベルに切り替えられる。比較器111の出力信号がローレベルであるときにおいて、“VFB=VBST2”であったときには、イネーブル信号ENOSCはハイレベル及びローレベルの何れかとなる。
As shown in FIG. 12, when the output signal (EN OSC ) of the comparator 111 is low level, the comparator 111 compares the feedback voltage V FB and the burst release voltage V BST2, and “V FB <V BST2 ”. The enable signal EN OSC is maintained at the low level when is established, while the enable signal EN OSC is switched from the low level to the high level when “V FB > V BEST2” is established. When the output signal of the comparator 111 is low level and “V FB = V BST2 ”, the enable signal EN OSC is either high level or low level.
オシレータ112は、フィードバック電圧VFBに応じた周波数を有する矩形波信号を生成し、イネーブル信号ENOSCがハイレベルであるときに限り、生成した矩形波信号を信号SETとして出力する。イネーブル信号ENOSCがローレベルであるならば、信号SETはローレベルに維持される。
The oscillator 112 generates a square wave signal having a frequency corresponding to the feedback voltage VFB, and outputs the generated square wave signal as a signal SET only when the enable signal EN OSC is at a high level. If the enable signal EN OSC is low level, the signal SET is maintained at low level.
図13にオシレータ112の機能ブロック図を示す。図12も併せて参照し、オシレータ112は、フィードバック電圧VFBに応じた周波数fVCOを有する矩形波信号OUTVCOを連続的に生成及び出力する電圧制御発振器112aと、イネーブル信号ENOSCがハイレベルであるときに限り、電圧制御発振器112aから出力される矩形波信号OUTVCOを信号SETとしてオシレータ112の外部に出力するスイッチ部112bと、で構成されると考えることができる。イネーブル信号ENOSCがローレベルであるときには信号SETはローレベルで固定されるものとする。
FIG. 13 shows a functional block diagram of the oscillator 112. Also referring to FIG. 12, the oscillator 112 has a voltage controlled oscillator 112a that continuously generates and outputs a square wave signal OUT VCO having a frequency f VCO corresponding to the feedback voltage V FB , and an enable signal EN OSC at a high level. Only when this is the case, it can be considered that the switch unit 112b outputs the rectangular wave signal OUT VCO output from the voltage controlled oscillator 112a to the outside of the oscillator 112 as a signal SET. When the enable signal EN OSC is low level, the signal SET shall be fixed at low level.
図14にフィードバック電圧VFBと周波数fVCOとの関係を示す。周波数fVCOには上限及び下限が存在する。周波数fVCOの上限は上述の周波数fHであり、周波数fVCOの下限は上述の周波数fLである(図4参照)。PWM動作が行われるとき、周波数fVCOが上述のスイッチング周波数fSWとなる。“VFB≦VB”の成立時には周波数fVCOは周波数fLで固定され、“VC≦VFB”の成立時には周波数fVCOは周波数fHで固定される。“VB≦VFB≦VC”の成立時には、フィードバック電圧VFBが電圧VBから電圧VCに上昇するにつれて周波数fVCOが周波数fLから周波数fHへと線型的に増大する。
FIG. 14 shows the relationship between the feedback voltage V FB and the frequency f VCO. The frequency f VCO has an upper limit and a lower limit. The upper limit of the frequency f VCO is the above-mentioned frequency f H , and the lower limit of the frequency f VCO is the above-mentioned frequency f L (see FIG. 4). When the PWM operation is performed, the frequency f VCO becomes the above-mentioned switching frequency f SW . Frequency f VCO during establishment of "V FB ≦ V B" is fixed at a frequency f L, the frequency f VCO during establishment of "V C ≦ V FB" is fixed at the frequency f H. During establishment of "V B ≦ V FB ≦ V C", the frequency f VCO as the feedback voltage V FB rises from the voltage V B to the voltage V C is linearly be increased to a frequency f H from the frequency f L.
矩形波信号OUTVCOでは、微小時間だけ信号レベルがハイレベルとなるパルスが周波数fVCOにて繰り返し発生する。故に、イネーブル信号ENOSCがハイレベルであるときには、信号SETにおいてアップエッジが周波数fVCOにて繰り返し生じることになる。
In the rectangular wave signal OUT VCO , pulses having a high signal level for a short time are repeatedly generated at the frequency f VCO. Therefore, when the enable signal EN OSC is at a high level, the up edge will repeatedly occur at the frequency f VCO in the signal SET.
図11を再度参照し、リセット信号発生部120について説明する。図11の構成例において、リセット信号発生部120は、スロープ補償信号生成部121及び124と、加算器122及び125と、比較器123及び126と、論理和回路127と、を備える。
The reset signal generation unit 120 will be described with reference to FIG. 11 again. In the configuration example of FIG. 11, the reset signal generation unit 120 includes slope compensation signal generation units 121 and 124, adders 122 and 125, comparators 123 and 126, and an OR circuit 127.
スロープ補償信号生成部121はスロープ補償信号SSLPAを生成及び出力し、スロープ補償信号生成部124はスロープ補償信号SSLPBを生成及び出力する。スロープ補償信号SSLPA及びSSLPBの夫々は、時間経過と共に信号値が変化する電圧信号である。任意の電圧信号について、当該電圧信号の信号値は、当該電圧信号の電圧値に相当する。スロープ補償信号SSLPA及びSSLPBの夫々において、信号値の変化は周期性を有し、その周期の逆数は周波数fVCOと一致する。
The slope compensation signal generation unit 121 generates and outputs the slope compensation signal S SLPA , and the slope compensation signal generation unit 124 generates and outputs the slope compensation signal S SLPB. Each of the slope compensation signals S SLPA and S SLPB is a voltage signal whose signal value changes with the passage of time. For any voltage signal, the signal value of the voltage signal corresponds to the voltage value of the voltage signal. In each of the slope compensation signals S SLPA and S SLPB , the change in signal value has periodicity, and the reciprocal of the period coincides with the frequency f VCO.
加算器122には、フィードバック電圧VFBに応じたフィードバック信号SFB1と、スロープ補償信号生成部121からのスロープ補償信号SSLPAが入力される。ここでは、フィードバック信号SFB1は、フィードバック電圧VFBの1/4倍の電圧値を有する電圧信号であるとする。加算器122は、フィードバック信号SFB1にスロープ補償信号SSLPAを加算し、加算結果による電圧信号をターンオフ閾値用信号SOFFAとして出力する。ターンオフ閾値用信号SOFFAの信号値(即ち電圧値)は、フィードバック信号SFB1の信号値(即ち電圧値;ここではVFB/4)と、スロープ補償信号SSLPAの信号値(即ち電圧値)との和となる。ターンオフ閾値用信号SOFFAは、上述のターンオフ閾値IOFFを電圧信号の形態で表したものであり、ターンオフ閾値用信号SOFFAによってターンオフ閾値IOFFが指し示される。
The feedback signal S FB1 corresponding to the feedback voltage V FB and the slope compensation signal S SLPA from the slope compensation signal generation unit 121 are input to the adder 122. Here, it is assumed that the feedback signal S FB1 is a voltage signal having a voltage value that is 1/4 times the feedback voltage V FB. The adder 122 adds the slope compensation signal S SLPA to the feedback signal S FB 1, and outputs a voltage signal based on the addition result as a turn-off threshold signal S OFFA . The signal value (that is, voltage value) of the turn-off threshold signal S OFFA is the signal value of the feedback signal S FB1 (that is, the voltage value; here V FB / 4) and the signal value of the slope compensation signal S SLPA (that is, the voltage value). It becomes the sum of. The turn-off threshold signal S OFFA represents the above-mentioned turn-off threshold I OFF in the form of a voltage signal, and the turn- off threshold I OFF is indicated by the turn-off threshold signal S OFFA.
比較器123において、反転入力端子にはターンオフ閾値用信号SOFFAが入力され、非反転入力端子には電流検出信号SCSが入力される。図10等を参照した説明から理解されるよう、電流検出信号SCSは一次側電流IPの値を指し示す電圧信号である。
In comparator 123, the turn-off threshold signal S OFFA to the inverting input terminal is input, the non-inverting input terminal a current detection signal S CS inputted. As it will be understood from reference to the description of FIG. 10 or the like, the current detection signal S CS is a voltage signal that indicates the value of the primary-side current I P.
“SCS>SOFFA”の成立は“IP>IOFF”の成立に相当し、“SCS<SOFFA”の成立は“IP<IOFF”の成立に相当する。比較器123は、“SCS>SOFFA”が成立しているとき、即ち、電流検出信号SCSの信号値(電圧値)がターンオフ閾値用信号SOFFAの信号値(電圧値)よりも大きいとき、ハイレベルの信号を出力し、そうでないとき、ローレベルの信号を出力する。但し、“SCS=SOFFA”の成立時において比較器123の出力信号はハイレベルとなり得る。
Establishment of "S CS> S OFFA" is equivalent to the establishment of "I P> I OFF", the establishment of "S CS <S OFFA" is equivalent to the establishment of "I P <I OFF". In the comparator 123, when "S CS > S OFFA " is established, that is, the signal value (voltage value) of the current detection signal S CS is larger than the signal value (voltage value) of the turn-off threshold signal S OFFA. When it outputs a high level signal, when it does not, it outputs a low level signal. However, when "S CS = S OFFA " is established, the output signal of the comparator 123 may be at a high level.
加算器125には、所定の過電流検出電圧VLIMを示す電圧信号SLIMと、スロープ補償信号生成部124からのスロープ補償信号SSLPBが入力される。過電流検出電圧VLIMは固定電圧値を有する。但し、一次側制御回路16の起動時におけるソフトスタート動作の実行時において、過電流検出電圧VLIMは上記固定電圧値よりも小さく設定されることがある。加算器125は、過電流検出電圧VLIMを示す電圧信号SLIMにスロープ補償信号SSLPBを加算し、加算結果による電圧信号を過電流閾値用信号SOFFBとして出力する。過電流閾値用信号SOFFBの信号値(即ち電圧値)は、電圧信号SLIMの信号値(即ち電圧値;ここではVLIM)と、スロープ補償信号SSLPBの信号値(即ち電圧値)との和となる。過電流閾値用信号SOFFBは、一次側電流IPに対する過電流閾値ILIMを電圧信号の形態で表したものであり、過電流閾値用信号SOFFBよって過電流閾値ILIMが指し示される。
A voltage signal S LIM indicating a predetermined overcurrent detection voltage V LIM and a slope compensation signal S SLPB from the slope compensation signal generation unit 124 are input to the adder 125. The overcurrent detection voltage VLIM has a fixed voltage value. However, when the soft start operation is executed when the primary side control circuit 16 is started, the overcurrent detection voltage VLIM may be set to be smaller than the fixed voltage value. The adder 125 adds the slope compensation signal S SLPB to the voltage signal S LIM indicating the overcurrent detection voltage V LIM, and outputs the voltage signal based on the addition result as the overcurrent threshold signal S OFFB . The signal value of the overcurrent threshold signal S OFFB (i.e. voltage value), the signal value of the voltage signal S LIM (i.e. the voltage value; V LIM here) and the signal value of the slope compensation signal S SLPB (ie voltage value) It becomes the sum of. Signal S OFFB overcurrent threshold is a representation of the over-current threshold I LIM to the primary-side current I P in the form of a voltage signal, the signal for overcurrent threshold S OFFB Therefore overcurrent threshold I LIM is pointed.
比較器126において、反転入力端子には過電流閾値用信号SOFFBが入力され、非反転入力端子には電流検出信号SCSが入力される。
The comparator 126, to the inverting input terminal is input overcurrent threshold signal S OFFB, to the non-inverting input terminal a current detection signal S CS inputted.
“SCS>SOFFB”の成立は“IP>ILIM”の成立に相当し、“SCS<SOFFB”の成立は“IP<ILIM”の成立に相当する。比較器126は、“SCS>SOFFB”が成立しているとき、即ち、電流検出信号SCSの信号値(電圧値)が過電流閾値用信号SOFFBの信号値(電圧値)よりも大きいとき、ハイレベルの信号を出力し、そうでないとき、ローレベルの信号を出力する。但し、“SCS=SOFFB”の成立時において比較器126の出力信号はハイレベルとなり得る。
Establishment of "S CS> S OFFB" is equivalent to the establishment of "I P> I LIM", the establishment of "S CS <S OFFB" is equivalent to the establishment of "I P <I LIM". In the comparator 126, when "S CS > S OFFB " is established, that is, the signal value (voltage value) of the current detection signal S CS is larger than the signal value (voltage value) of the overcurrent threshold signal S OFFB. When it is large, it outputs a high-level signal, and when it is not, it outputs a low-level signal. However, when "S CS = S OFFB " is established, the output signal of the comparator 126 may be at a high level.
論理和回路127は、比較器123及び126の出力信号の論理和信号を信号RSTとして出力する。従って、比較器123の出力信号及び比較器126の出力信号の内、双方がローレベルである場合に限り信号RSTはローレベルとなり、少なくとも一方がハイレベルであれば、信号RSTはハイレベルとなる。
The OR circuit 127 outputs the OR signal of the output signals of the comparators 123 and 126 as a signal RST. Therefore, the signal RST is low level only when both the output signal of the comparator 123 and the output signal of the comparator 126 are low level, and the signal RST is high level when at least one of them is high level. ..
故に、スロープ補償信号生成部121、加算器122及び比較器123から成る第1ブロックと、スロープ補償信号生成部124、加算器125及び比較器126から成る第2ブロックの何れかのブロックにより、リセット信号(即ちハイレベルの信号RST)が生成されることになる。後にも説明されるが、リセット信号を生成する機能は、“VFB<VD”では第1ブロックが担い、“VD≦VFB”では第2ブロックが担う(電圧VDに関し、図4参照)。
Therefore, it is reset by any block of the first block including the slope compensation signal generator 121, the adder 122 and the comparator 123, and the second block consisting of the slope compensation signal generator 124, the adder 125 and the comparator 126. A signal (ie, a high level signal RST) will be generated. As will be explained later, the function of generating the reset signal is carried out by the first block in "V FB <V D " and by the second block in "V D ≤ V FB " (with respect to the voltage V D , FIG. 4). reference).
図15に、信号OUTVCO、SET、SSLPA及びSSLPBの関係を示す。図15では、信号ENOSCがハイレベルに維持されていることを想定しているため、信号OUTVCOと信号SETとが一致している。
FIG. 15 shows the relationship between the signals OUT VCO , SET, S SLPA and S SLPB. In FIG. 15, since it is assumed that the signal EN OSC is maintained at a high level, the signal OUT VCO and the signal SET match.
スロープ補償信号SSLPA及びSSLPBは、信号OUTVCOのアップエッジが生じるタイミングにおいて、夫々、所定の初期信号値INIA、INIBを有する。初期信号値INIA及びINIBはゼロであるが、ゼロ以外で有り得ても良い。
The slope compensation signals S SLPA and S SLPB each have predetermined initial signal values INI A and INI B at the timing when the up edge of the signal OUT VCO occurs. The initial signal values INI A and INI B are zero, but may be non-zero.
信号OUTVCOにてアップエッジが生じたタイミングから次のアップエッジが生じるまでの区間を、単位区間と称する。1つの単位区間の長さは信号OUTVCOの周波数fVCOの逆数と一致する。各単位区間は前段区間P1と後段区間P2とから成る。各単位区間において、単位区間の開始と同時に前段区間P1が開始され、前段区間P1の終了と同時に後段区間P2が開始されて良い。
The section from the timing at which the up edge occurs at the signal OUT VCO to the occurrence of the next up edge is referred to as a unit interval. The length of one unit interval coincides with the reciprocal of the frequency f VCO of the signal OUT VCO. Each unit interval consists of a front section P1 and a rear section P2. In each unit interval, the pre-stage section P1 may be started at the same time as the start of the unit section, and the post-stage section P2 may be started at the same time as the end of the pre-stage section P1.
各単位区間において、前段区間P1では、スロープ補償信号SSLPAの信号値(即ち電圧値)が初期信号値INIAを起点にして時間経過と共に増大してゆき、前段区間P1の終了タイミングにてスロープ補償信号SSLPAの信号値は所定の信号値TOPAを有する。当然“INIA<TOPA”である。各単位区間において、後段区間P2では、スロープ補償信号SSLPAの信号値(即ち電圧値)が信号値TOPAを起点にして時間経過と共に減少してゆき、後段区間P2の終了タイミングにてスロープ補償信号SSLPAの信号値は所定の信号値BTMAを有する。図15の例では、“BTMA<INIA”となっているが、“BTMA=INIA”又は“BTMA>INIA”で有り得て良い。
In each unit section, in the pre-stage section P1, the signal value (that is, the voltage value) of the slope compensation signal S SLPA increases with the passage of time starting from the initial signal value INI A, and the slope at the end timing of the pre-stage section P1. The signal value of the compensation signal SLPA has a predetermined signal value TOP A. Naturally, "INI A <TOP A ". In each unit section, in the latter section P2, the signal value (that is, the voltage value) of the slope compensation signal S SLPA decreases with the passage of time starting from the signal value TOP A, and the slope compensation is performed at the end timing of the latter section P2. The signal value of the signal S SLPA has a predetermined signal value BTM A. In the example of FIG. 15, "BTM A <INI A " is set, but it may be "BTM A = INI A " or "BTM A > INI A ".
各単位区間において、前段区間P1では、スロープ補償信号SSLPBの信号値(即ち電圧値)が初期信号値INIBを起点にして時間経過と共に増大してゆき、前段区間P1の終了タイミングにてスロープ補償信号SSLPBの信号値は所定の信号値TOPBを有する。当然“INIB<TOPB”である。各単位区間において、後段区間P2では、スロープ補償信号SSLPBの信号値(即ち電圧値)が信号値TOPBを起点にして時間経過と共に減少してゆき、後段区間P2の終了タイミングにてスロープ補償信号SSLPBの信号値は所定の信号値BTMBを有する。図15の例では、“BTMB<INIB”となっているが、“BTMB=INIB”又は“BTMB>INIB”で有り得て良い。
In each unit section, in the pre-stage section P1, the signal value (that is, the voltage value) of the slope compensation signal S SLPB increases with the passage of time starting from the initial signal value INI B, and the slope at the end timing of the pre-stage section P1. The signal value of the compensation signal S SLPB has a predetermined signal value TOP B. Naturally, "INI B <TOP B ". In each unit section, in the latter section P2, the signal value (that is, the voltage value) of the slope compensation signal S SLPB decreases with the passage of time starting from the signal value TOP B, and the slope compensation is performed at the end timing of the latter section P2. The signal value of the signal S SLPB has a predetermined signal value BTM B. In the example of FIG. 15, "BTM B <INI B " is set, but "BTM B = INI B " or "BTM B > INI B " may be used.
前段区間P1にて上述のアップスロープ補償が実現される。後段区間P2におけるスロープ補償信号SSLPA及びSSLPBの信号値の減少は、ダウンスロープ補償と称される。ダウンスロープ補償(一般にACスロープ補償とも称され得る)は、サブハーモニック発振の防止を目的として導入されるものである。ダウンスロープ補償によるサブハーモニック発振の防止の原理は公知であるため、その説明を省略する。
The above-mentioned upslope compensation is realized in the preceding section P1. The decrease in the signal values of the slope compensation signals S SLPA and S SLPB in the latter section P2 is referred to as down slope compensation. Down slope compensation (generally also referred to as AC slope compensation) is introduced for the purpose of preventing subharmonic oscillation. Since the principle of preventing subharmonic oscillation by downslope compensation is known, the description thereof will be omitted.
各単位区間において、後段区間P2の開始タイミングは、当該単位区間の開始タイミングから時間“q・1/fVCO”だけ後のタイミングとされる。“1/fVCO”は各単位区間の長さに相当する。係数qは、0より大きく且つ1より小さな値を持つ。サブハーモニック発振を有効に防止すべく、係数qに0.5以下の値を持たせると良く、例えば、“0.35<q<0.49”とされる。
In each unit interval, the start timing of the latter section P2 is set to be the timing after the start timing of the unit interval by the time “q · 1 / f VCO”. “1 / f VCO ” corresponds to the length of each unit interval. The coefficient q has a value greater than 0 and less than 1. In order to effectively prevent subharmonic oscillation, it is preferable to give the coefficient q a value of 0.5 or less, for example, “0.35 <q <0.49”.
尚、図15の例では、各単位区間が前段区間P1及び後段区間P2のみから形成されているが、各単位区間において、前段区間P1の終了後、後段区間P2が開始される前に、スロープ補償信号SSLPA、SSLPBの信号値が夫々信号値TOPA、TOPBにて固定される有限の区間が存在していても良いし、後段区間P2の終了後、次の単位区間が開始される前に、スロープ補償信号SSLPA、SSLPBの信号値が夫々信号値BTMA、BTMBにて固定される有限の区間が存在していても良い。
In the example of FIG. 15, each unit section is formed only from the front section P1 and the rear section P2, but in each unit section, the slope is formed after the end of the front section P1 and before the start of the rear section P2. There may be a finite interval in which the signal values of the compensation signals S SLPA and S SLPB are fixed by the signal values TOP A and TOP B , respectively, and the next unit interval is started after the end of the latter section P2. Before this, there may be a finite interval in which the signal values of the slope compensation signals S SLPA and S SLPB are fixed by the signal values BTM A and BTM B, respectively.
また、図15の例では、イネーブル信号ENOSCがハイレベルに維持されていることを想定しているが、イネーブル信号ENOSCがローレベルであるときの信号OUTVCO、SSLPA及びSSLPBの関係も上述したものと同じであって良い。但し、イネーブル信号ENOSCがローレベルであるときには、信号SSLPA及びSSLPBの変化は意味を持たないため、信号SSLPA及びSSLPBの信号値はゼロに固定されていても良い。
Further, in the example of FIG. 15, although the enable signal EN OSC is assumed that it is maintained at a high level, the signal OUT VCO when the enable signal EN OSC is at a low level, the relationship of S SLPA and S SLPB May be the same as described above. However, when the enable signal EN OSC is at a low level, the changes in the signals S SLPA and S SLPB have no meaning, so that the signal values of the signals S SLPA and S SLPB may be fixed to zero.
ここでは、スロープ補償信号SSLPA及びSSLPBは互いに同じ信号であるとする。スロープ補償信号SSLPA及びSSLPBが互いに同じ信号である場合、スロープ補償信号生成部124を削除し、スロープ補償信号生成部121にて生成されるスロープ補償信号SSLPAを、加算器122に対して入力すると共に、加算器125に対しスロープ補償信号SSLPBとして入力しても良い。但し、スロープ補償信号SSLPA及びSSLPBは互いに異なる信号であっても良い。
Here, it is assumed that the slope compensation signals S SLPA and S SLPB are the same signals. When the slope compensation signal S SLPA and S SLPB are the same signal, the slope compensation signal generation unit 124 is deleted, and the slope compensation signal S SLPA generated by the slope compensation signal generation unit 121 is sent to the adder 122. At the same time, it may be input to the adder 125 as a slope compensation signal S SLPB . However, the slope compensation signals S SLPA and S SLPB may be different signals from each other.
図11を再度参照し、ドライブ部130について説明する。図11の構成例において、ドライブ部130は、RS型のフリップフロップ131(以下、FF131と表記する)と、ドライバ132と、を備える。
The drive unit 130 will be described with reference to FIG. 11 again. In the configuration example of FIG. 11, the drive unit 130 includes an RS-type flip-flop 131 (hereinafter referred to as FF131) and a driver 132.
FF131は、セット入力端子(S)、リセット入力端子(R)及び出力端子(Q)を備える。FF131において、セット入力端子に対し信号SETが入力され、リセット入力端子に対し信号RSTが入力され、出力端子から信号DRVが出力される。図16に示す如く、FF131は、信号SETがハイレベルであれば出力端子からハイレベルの信号DRVを出力し、以後、信号RSTがハイレベルとなるまで出力信号DRVのハイレベルを維持する。FF131は、信号RSTがハイレベルであれば出力端子からローレベルの信号DRVを出力し、以後、信号SETがハイレベルとなるまで出力信号DRVのローレベルを維持する。メイン制御部100において、信号SET及びRSTが同時にハイレベルとなることは無い(そうなるように、信号SETのハイレベルのパルス幅は十分に短く設定されている)。
The FF131 includes a set input terminal (S), a reset input terminal (R), and an output terminal (Q). In the FF131, the signal SET is input to the set input terminal, the signal RST is input to the reset input terminal, and the signal DRV is output from the output terminal. As shown in FIG. 16, the FF131 outputs a high-level signal DRV from the output terminal if the signal SET is at a high level, and thereafter maintains a high level of the output signal DRV until the signal RST becomes a high level. If the signal RST is high level, the FF131 outputs a low level signal DRV from the output terminal, and thereafter maintains the low level of the output signal DRV until the signal SET becomes high level. In the main control unit 100, the signal SET and the RST do not become high levels at the same time (the high level pulse width of the signal SET is set sufficiently short so as to do so).
ドライバ132は、一次側制御回路16の出力端子TM1(図1参照)を介してスイッチングトランジスタ14のゲートに接続され、FF131の出力信号DRVに基づき、スイッチングトランジスタ14のゲート電圧を制御する。ドライバ132は、出力信号DRVがハイレベルであれば、トランジスタ14のゲート電圧をハイレベルにすることでトランジスタ14をオン状態とし、出力信号DRVがローレベルであれば、トランジスタ14のゲート電圧をローレベルにすることでトランジスタ14をオフ状態とする。但し、FF131の出力信号DRVのアップエッジに応答してトランジスタ14が実際にオン状態に切り替わるまでには遅延が存在し、FF131の出力信号DRVのダウンエッジに応答してトランジスタ14が実際にオフ状態に切り替わるまでには遅延が存在する。
The driver 132 is connected to the gate of the switching transistor 14 via the output terminal TM1 (see FIG. 1) of the primary side control circuit 16 and controls the gate voltage of the switching transistor 14 based on the output signal DRV of the FF131. If the output signal DRV is high level, the driver 132 turns on the transistor 14 by raising the gate voltage of the transistor 14 to a high level, and if the output signal DRV is low level, the driver 132 lowers the gate voltage of the transistor 14. By setting the level, the transistor 14 is turned off. However, there is a delay before the transistor 14 actually switches to the on state in response to the up edge of the output signal DRV of the FF131, and the transistor 14 actually turns off in response to the down edge of the output signal DRV of the FF131. There is a delay before switching to.
図11の構成例に関してバースト動作を説明する。“VFB<VD”の成立下では“SOFFA<SOFFB”が成立するよう過電流検出電圧VLIMが設定されている(電圧VDに関し、図4参照)。故に、バースト動作では、電流検出信号SCSの信号値がターンオフ閾値用信号SOFFAの信号値を上回ることを契機に(即ち一次側電流IPがターンオフ閾値IOFFを上回ることを契機に)、リセット信号(ハイレベルの信号RST)が発生する。バースト動作が行われるときには、フォードバック電圧VFBが十分に小さいが故に、リセット信号の発生タイミングが常に前段区間P1に属することとなり、アップスロープ補償が有効に機能して図8及び図9に示したような効果が得られる。
The burst operation will be described with respect to the configuration example of FIG. "V FB <V D" in the establishment of a "S OFFA <S OFFB" that holds overcurrent detection voltage V LIM is set (with respect to the voltage V D, see FIG. 4). Thus, in a burst operation, (in response to that or primary-side current I P is above the turn-off threshold value I OFF) current detection signal S CS signal value in response to exceed the signal value of the signal S OFFA off threshold, A reset signal (high level signal RST) is generated. When the burst operation is performed, since the Fordback voltage VFB is sufficiently small, the reset signal generation timing always belongs to the preceding section P1, and the upslope compensation functions effectively, as shown in FIGS. 8 and 9. The same effect can be obtained.
次に、“VFB<VD”の成立下でのPWM動作について説明する。上述したように、“VFB<VD”の成立下では“SOFFA<SOFFB”が成立するよう過電流検出電圧VLIMが設定されている。故に、“VFB<VD”の成立下でのPWM動作では、バースト動作と同様、電流検出信号SCSの信号値がターンオフ閾値用信号SOFFAの信号値を上回ることを契機に(即ち一次側電流IPがターンオフ閾値IOFFを上回ることを契機に)、リセット信号(ハイレベルの信号RST)が発生する。このリセット信号の発生タイミングが前段区間P1に属しておれば、アップスロープ補償が有効に機能する。一方で、サブハーモニック発振の抑制も重要であり、リセット信号の発生タイミングが後段区間P2に属しておれば、ダウンスロープ補償によるサブハーモニック発振の抑制効果が得られる。
Next, the PWM operation under the establishment of "V FB <V D" will be described. As described above, "V FB <V D" in the establishment of a "S OFFA <S OFFB" that holds overcurrent detection voltage V LIM is set. Therefore, in the PWM operation under the establishment of "V FB <V D ", as in the burst operation, the signal value of the current detection signal S CS exceeds the signal value of the turn-off threshold signal S OFFA (that is, the primary). triggered by the side current I P is above the turn-off threshold value I OFF), the reset signal (high level signal RST) is generated. If the generation timing of this reset signal belongs to the preceding section P1, the upslope compensation functions effectively. On the other hand, suppression of sub-harmonic oscillation is also important, and if the reset signal generation timing belongs to the latter section P2, the effect of suppressing sub-harmonic oscillation by downslope compensation can be obtained.
“VFB<VD”の成立下でPWM動作が行われるときにおいてフィードバック電圧VFBが比較的低ければ、前段区間P1にてリセット信号が発生することが支配的となって、アップスロープ補償が有効に機能し易い。“VFB<VD”の成立下でPWM動作が行われるときにおいてフィードバック電圧VFBが比較的高ければ、後段区間P2にてリセット信号が発生することが支配的となって、ダウンスロープ補償が有効に機能し易い。
If the feedback voltage V FB is relatively low when the PWM operation is performed under the establishment of "V FB <V D ", the reset signal is predominantly generated in the preceding section P1 and the upslope compensation is performed. Easy to function effectively. If the feedback voltage V FB is relatively high when the PWM operation is performed while “V FB <V D ” is established, the reset signal is predominantly generated in the subsequent section P2, and the downslope compensation is achieved. Easy to function effectively.
次に、“VD<VFB”の成立下でのPWM動作について説明する。“VD<VFB”の成立下では“SOFFA>SOFFB” が成立するよう過電流検出電圧VLIMが設定されている。故に、“VD<VFB”の成立下でのPWM動作では、電流検出信号SCSの信号値が過電流閾値用信号SOFFBの信号値を上回ることを契機に(即ち一次側電流IPが過電流閾値ILIMを上回ることを契機に)、リセット信号(ハイレベルの信号RST)が発生する。このリセット信号の発生タイミングが前段区間P1に属しておれば、アップスロープ補償が有効に機能する。一方で、サブハーモニック発振の抑制も重要であり、リセット信号の発生タイミングが後段区間P2に属しておれば、ダウンスロープ補償によるサブハーモニック発振の抑制効果が得られる。
Next, the PWM operation under the establishment of “V D <V FB” will be described. Under the establishment of "V D <V FB ", the overcurrent detection voltage V LIM is set so that "S OFFA > S OFFB" is established. Thus, "V D <V FB" in the PWM operation in establishment of a current detection signal S CS signal value overcurrent threshold signal S signal values OFFB triggered by exceeding (or primary-side current I P Triggered to exceed the overcurrent threshold ILIM), a reset signal (high level signal RST) is generated. If the generation timing of this reset signal belongs to the preceding section P1, the upslope compensation functions effectively. On the other hand, suppression of sub-harmonic oscillation is also important, and if the reset signal generation timing belongs to the latter section P2, the effect of suppressing sub-harmonic oscillation by downslope compensation can be obtained.
第4モード(図4参照)の内、“VD<VFB”が成立するモードは特にカレントリミットモードと称される。カレントリミットモードでは、一次側電流IPが過電流閾値ILIMに達したときにリセット信号が発生されることになる。カレントリミットモードにおいて、過電流検出電圧VLIMに対しアップスロープ補償を適用しなければ、上記の遅延時間tDLYの影響により、二次側での最大電力が入力電圧VINの大小に依存して変化することになる。図11の構成では、カレントリミットモードにおいて、スロープ補償信号生成部124及び加算器125を用いてアップスロープ補償が適用されているので、二次側での最大電力が入力電圧VINに依存して変化することが抑制される。
Among the fourth modes (see FIG. 4), the mode in which "V D <V FB " is established is particularly referred to as the current limit mode. In current limit mode, so that the reset signal is generated when the primary-side current I P reaches the over-current threshold I LIM. If the upslope compensation is not applied to the overcurrent detection voltage VLIM in the current limit mode, the maximum power on the secondary side depends on the magnitude of the input voltage VIN due to the influence of the delay time t DLY described above. It will change. In the configuration of FIG. 11, in the current limit mode, upslope compensation is applied by using the slope compensation signal generator 124 and the adder 125, so that the maximum power on the secondary side depends on the input voltage VIN. Change is suppressed.
図17に、リセット信号を発生させるために一次側電流IPと対比される電流の波形661~665を示す。波形661は、バースト動作において一次側電流IPと対比される電流波形(ターンオフ閾値IOFFを持つ電流の波形)である。波形662は、第2モードでのPWM動作において一次側電流IPと対比される電流波形(ターンオフ閾値IOFFを持つ電流の波形)である。波形663は、第3モードでのPWM動作において一次側電流IPと対比される電流波形(ターンオフ閾値IOFFを持つ電流の波形)である。波形664は、第4モード且つ“VFB<VD”でのPWM動作において一次側電流IPと対比される電流波形(ターンオフ閾値IOFFを持つ電流の波形)である。波形665は、カレントリミットモードにおいて一次側電流IPと対比される電流波形(過電流閾値ILIMを持つ電流の波形)である。
17 shows the waveforms 661-665 of currents to be compared with the primary current I P to generate a reset signal. Waveform 661 is a current waveform to be compared with the primary-side current I P (waveform current having a turn-off threshold value I OFF) in the burst operation. Waveform 662 is a current waveform to be compared with the primary-side current I P in the PWM operation in the second mode (the waveform of current having a turn-off threshold value I OFF). Waveform 663 is a current waveform to be compared with the primary-side current I P in the PWM operation in the third mode (waveform current having a turn-off threshold value I OFF). Waveform 664 is the fourth mode and "V FB <V D" in the primary-side current I P Contrast electrical current waveform in the PWM mode (the waveform of current having a turn-off threshold value I OFF). Waveform 665 is a current waveform to be compared with the primary-side current I P in the current limit mode (the waveform of the current with the overcurrent threshold value I LIM).
アップスロープ補償は、バースト動作が行われるときだけではなくPWM動作が行われるときにも実行されるので、PWM動作において、二次側電力POUT(=VOUT×ILD)が入力電圧VINの変動に対して影響を受けなくなる又は受けにくくなる(但し、前半区間P1でリセット信号が発生した場合)。つまり、図9に示したような効果をPWM動作の実行時にも得ることができるようになる。
Since the upslope compensation is executed not only when the burst operation is performed but also when the PWM operation is performed, the secondary side power P OUT (= V OUT × I LD ) is the input voltage V IN in the PWM operation. It becomes unaffected or less susceptible to the fluctuation of (however, when the reset signal is generated in the first half section P1). That is, the effect shown in FIG. 9 can be obtained even when the PWM operation is executed.
結果、PWM動作が行われるとき、図18に示す如く、二次側電力POUTとスイッチング周波数fSWの関係を、入力電圧VINの変化に対して不変とすることも可能となる。これにより、入力電圧VINの変動があることを気にすることなく回路設計を行うことができ、設計の容易化が期待される(アップスロープ補償が無い場合、例えば、“VIN=VINL”であるときと“VIN=VINH”であるときの双方を考慮して回路設計を行う必要がある)。図18において、実線折れ線681は“VIN=VINL”であるときの二次側電力POUT及びスイッチング周波数fSW間の関係を示し、破線折れ線682は“VIN=VINH”であるときの二次側電力POUT及びスイッチング周波数fSW間の関係を示す。図示の便宜上、図18では、折れ線681及び682が若干互いに上下にずらして示されているが、理想的には折れ線681及び682は完全に重なり合う。
As a result, when the PWM operation is performed, as shown in FIG. 18, the relationship between the secondary power P OUT and the switching frequency f SW can be made invariant with respect to the change of the input voltage VIN. As a result, circuit design can be performed without worrying about fluctuations in the input voltage V IN , and simplification of the design is expected (when there is no upslope compensation, for example, "V IN = V INL". It is necessary to design the circuit in consideration of both the case of "" and the case of "V IN = V INH"). In FIG. 18, the solid line polygonal line 681 shows the relationship between the secondary power P OUT and the switching frequency f SW when “V IN = V INL ”, and the broken line polygonal line 682 shows the relationship between “V IN = V INH ”. The relationship between the secondary side power P OUT and the switching frequency f SW is shown. For convenience of illustration, the polygonal lines 681 and 682 are shown slightly offset from each other in FIG. 18, but ideally the polygonal lines 681 and 682 completely overlap.
上述の説明から理解されるよう、セット信号発生部110は、PWM動作において、オシレータ112を用い所定周波数fVCO(スイッチング周波数fSWに相当)にてセット信号を発生させる。リセット信号発生部120は、PWM動作において、電流検出信号SCSと、ターンオフ閾値IOFFを示すターンオフ閾値用信号SOFFAと、過電流閾値ILIMを示す過電流用閾値用信号SOFFBと、に基づき、リセット信号を発生させる。
As can be understood from the above description, the set signal generation unit 110 uses the oscillator 112 to generate a set signal at a predetermined frequency f VCO (corresponding to the switching frequency f SW) in the PWM operation. Reset signal generating unit 120, the PWM operation, and the current detection signal S CS, and the turn-off threshold signal S OFFA indicating the turn-off threshold value I OFF, and overcurrent threshold signal S OFFB indicating the overcurrent threshold I LIM, the Based on this, a reset signal is generated.
より具体的には、PWM動作においては、電流検出信号SCSとターンオフ閾値用信号SOFFAとを比較する比較器123の比較結果、及び、電流検出信号SCSと過電流閾値用信号SOFFBとを比較する比較器126の比較結果が参照され、それらの比較結果に基づき、一次側電流IPの値がターンオフ閾値IOFF又は過電流閾値ILIMより大きくなったときに、リセット信号が発生することになる。上述したように、“SCS>SOFFA”の成立は一次側電流IPの値がターンオフ閾値IOFFより大きいことを表し、“SCS>SOFFB”の成立は一次側電流IPの値が過電流閾値ILIMより大きいことを表す。
More specifically, in the PWM operation, the comparison result of the comparator 123 comparing the current detection signal S CS and the turn-off threshold signal S OFFA , and the current detection signal S CS and the overcurrent threshold signal S OFF B comparison result of the comparator 126 to be compared is referred to, based on their comparison result, when the value of the primary current I P becomes larger than the turn-off threshold I OFF or overcurrent threshold I LIM, the reset signal is generated It will be. As described above, "S CS> S OFFA" establishment of means that the value of the primary-side current I P is greater than the turn-off threshold value I OFF, "S CS> S OFFB" established value of the primary current I P of Indicates that is greater than the overcurrent threshold ILIM.
セット信号の発生後の所定区間(前段区間P1に相当)においては、時間経過と共に信号値が増大するスロープ補償信号SSLPAをフィードバック電圧VFBに比例する信号SFB1に加算することでターンオフ閾値用信号SOFFAが生成され、且つ、時間経過と共に信号値が増大するスロープ補償信号SSLPBを所定値を持つ信号SLIMに加算することで過電流閾値用信号SOFFBが生成される。これにより、アップスロープ補償が実現される。上記所定区間の後には、サブハーモニック発振の防止を目的としたダウンスロープ補償が適用される。
In the predetermined section after the set signal is generated (corresponding to the previous section P1), the slope compensation signal S SLPA whose signal value increases with the passage of time is added to the signal S FB1 proportional to the feedback voltage V FB for the turn-off threshold. The signal S OFFA is generated, and the overcurrent threshold signal S OFFB is generated by adding the slope compensation signal S SLPB whose signal value increases with the passage of time to the signal S LIM having a predetermined value. As a result, upslope compensation is realized. After the predetermined section, downslope compensation for the purpose of preventing subharmonic oscillation is applied.
<<第2実施形態>>
本発明の第2実施形態を説明する。第2実施形態では、第1実施形態に対する変形技術や応用技術等を説明する。第2実施形態に記載の事項を第1実施形態に適用することができる。 << Second Embodiment >>
A second embodiment of the present invention will be described. In the second embodiment, a modification technique, an applied technique, and the like with respect to the first embodiment will be described. The matters described in the second embodiment can be applied to the first embodiment.
本発明の第2実施形態を説明する。第2実施形態では、第1実施形態に対する変形技術や応用技術等を説明する。第2実施形態に記載の事項を第1実施形態に適用することができる。 << Second Embodiment >>
A second embodiment of the present invention will be described. In the second embodiment, a modification technique, an applied technique, and the like with respect to the first embodiment will be described. The matters described in the second embodiment can be applied to the first embodiment.
第2実施形態は以下の実施例EX2_1~EX2_3を含む。第1実施形態にて上述した事項は、特に記述無き限り且つ矛盾無き限り、以下の実施例EX2_1~EX2_3に適用され、各実施例において、第1実施形態での上述事項と矛盾する事項については各実施例での記載が優先されて良い。また矛盾無き限り、実施例EX2_1~EX2_3の内、任意の実施例に記載した事項を、他の任意の実施例に適用することもできる(即ち複数の実施例の内の任意の2以上の実施例を組み合わせることも可能である)。
The second embodiment includes the following examples EX2_1 to EX2_3. Unless otherwise specified and without contradiction, the above-mentioned matters in the first embodiment are applied to the following Examples EX2_1 to EX2_3, and in each embodiment, the matters inconsistent with the above-mentioned matters in the first embodiment The description in each embodiment may be prioritized. Further, as long as there is no contradiction, the matters described in any of the examples EX2_1 to EX2_3 can be applied to any other embodiment (that is, any two or more implementations in the plurality of examples). It is also possible to combine examples).
実施例EX2_1の説明に先立ち、第1実施形態の動作及び構成について補足する。第1実施形態では、負荷LDの大きさが減少するにつれてフィードバック電圧VFBが低下する構成が採用されている。このため、第1実施形態に係るメイン制御部100は、フィードバック電圧VFBが所定のバースト判定電圧VBST1より高い状態に保たれているとき、PWM動作を継続的に実行し、フィードバック電圧VFBがバースト判定電圧VBST1を下回るとバースト動作を開始する。
Prior to the description of Example EX2_1, the operation and configuration of the first embodiment will be supplemented. In the first embodiment, a configuration is adopted in which the feedback voltage VFB decreases as the magnitude of the load LD decreases. Therefore, the main control unit 100 according to the first embodiment, when the feedback voltage V FB is kept higher than the predetermined burst determination voltage V BST1, continuously performs PWM operation, the feedback voltage V FB Starts burst operation when the voltage falls below the burst determination voltage V BST1.
つまり、第1実施形態に係るメイン制御部100は、フィードバック電圧VFBがバースト判定電圧VBST1より高い状態からバースト判定電圧VBST1より低い状態に移行したことを受けてバースト動作を開始し、バースト動作の開始後、図19に示す如く、フィードバック電圧VFBが所定のバースト解除電圧VBST2を上回るまでスイッチングトランジスタ14をオフ状態に維持し、フィードバック電圧VFBがバースト解除電圧VBST2を上回るとセット信号発生部110によりセット信号(ハイレベルの信号SET)を発生させ、その後、一次側電流IPの値がターンオフ閾値IOFFを超えたことを受けてリセット信号発生部120によりリセット信号(ハイレベルの信号RST)を発生させる。第1実施形態では“VBST2>VBST1”である。
That is, the main control unit 100 according to the first embodiment starts the burst operation in response to the transition from the state where the feedback voltage V FB is higher than the burst judgment voltage V BST1 to the state where the feedback voltage V FB is lower than the burst judgment voltage V BST1 and bursts. after starting the operation, as shown in FIG. 19, and maintains the switching transistor 14 off until the feedback voltage V FB exceeds a predetermined burst release voltage V BST2, the feedback voltage V FB exceeds the burst release voltage V BST2 set to generate a set signal (high-level signal sET) by the signal generating unit 110, then the reset signal by the reset signal generating unit 120 receives the value of the primary-side current I P exceeds the turn-off threshold value I OFF (high level Signal RST) is generated. In the first embodiment, "V BST2 > V BST1 ".
尚、図19では、セット信号の発生と同時にスイッチングトランジスタ14がターンオンすると仮定している(ターンオフに対してのみ遅延時間tDLYを図示している)。図11の構成において、一次側電流IPの値がターンオフ閾値IOFFを超えたとき、“SCS>SOFFA”が成立してリセット信号(ハイレベルの信号RST)が発生することになる。
In FIG. 19, it is assumed that the switching transistor 14 turns on at the same time as the set signal is generated (the delay time t DLY is shown only for the turn-off). In the configuration of FIG. 11, the value of the primary current I P is when it exceeds the turn-off threshold value I OFF, so that the "S CS> S OFFA" is established reset signal (high level signal RST) is generated.
[実施例EX2_1]
実施例EX2_1を説明する。AC/DCコンバータ1において、負荷LDの大きさが減少するにつれてフィードバック電圧VFBが上昇する構成が採用されていても良く、この構成を実施例EX2_1として説明する。 [Example EX2_1]
Example EX2_1 will be described. In the AC / DC converter 1, a configuration in which the feedback voltage VFB increases as the magnitude of the load LD decreases may be adopted, and this configuration will be described as Example EX2_1.
実施例EX2_1を説明する。AC/DCコンバータ1において、負荷LDの大きさが減少するにつれてフィードバック電圧VFBが上昇する構成が採用されていても良く、この構成を実施例EX2_1として説明する。 [Example EX2_1]
Example EX2_1 will be described. In the AC / DC converter 1, a configuration in which the feedback voltage VFB increases as the magnitude of the load LD decreases may be adopted, and this configuration will be described as Example EX2_1.
実施例EX2_1では、負荷LDの大きさが減少するにつれてフィードバック電圧VFBが上昇する構成が採用されているが故に、メイン制御部100は、フィードバック電圧VFBが所定のバースト判定電圧VBST1より低い状態に保たれているとき、PWM動作を継続的に実行し、フィードバック電圧VFBがバースト判定電圧VBST1を上回るとバースト動作を開始する。
In Example EX2_1, since the configuration in which the feedback voltage V FB increases as the magnitude of the load LD decreases is adopted, the feedback voltage V FB of the main control unit 100 is lower than the predetermined burst determination voltage V BST1. When the state is maintained, the PWM operation is continuously executed, and when the feedback voltage V FB exceeds the burst determination voltage V BST1 , the burst operation is started.
つまり、実施例EX2_1に係るメイン制御部100は、フィードバック電圧VFBがバースト判定電圧VBST1より低い状態からバースト判定電圧VBST1より高い状態に移行したことを受けてバースト動作を開始し、バースト動作の開始後、図20に示す如く、フィードバック電圧VFBが所定のバースト解除電圧VBST2を下回るまでスイッチングトランジスタ14をオフ状態に維持し、フィードバック電圧VFBがバースト解除電圧VBST2を下回るとセット信号発生部110によりセット信号(ハイレベルの信号SET)を発生させ、その後、一次側電流IPの値がターンオフ閾値IOFFを超えたことを受けてリセット信号発生部120によりリセット信号(ハイレベルの信号RST)を発生させる。実施例EX2_1では“VBST2<VBST1”である。
That is, the main control unit 100 according to the embodiment EX2_1 starts the burst operation in response to the transition from the state where the feedback voltage V FB is lower than the burst judgment voltage V BST1 to the state where the feedback voltage V FB is higher than the burst judgment voltage V BST1. after the start, as shown in FIG. 20, and maintains the switching transistor 14 off until the feedback voltage V FB falls below a predetermined burst release voltage V BST2, a set signal when the feedback voltage V FB is below the burst release voltage V BST2 to generate a set signal (high-level signal sET) by generating unit 110, then the primary current I P values by receiving that exceeds the turn-off threshold value I OFF the reset signal generator 120 by the reset signal (high level Signal RST) is generated. In Example EX2_1, "V BST2 <V BST1 ".
尚、図20では、セット信号の発生と同時にスイッチングトランジスタ14がターンオンすると仮定している(ターンオフに対してのみ遅延時間tDLYを図示している)。図11の構成において、一次側電流IPの値がターンオフ閾値IOFFを超えたとき、“SCS>SOFFA”が成立してリセット信号(ハイレベルの信号RST)が発生することになる。
In FIG. 20, it is assumed that the switching transistor 14 turns on at the same time as the set signal is generated (the delay time t DLY is shown only for the turn-off). In the configuration of FIG. 11, the value of the primary current I P is when it exceeds the turn-off threshold value I OFF, so that the "S CS> S OFFA" is established reset signal (high level signal RST) is generated.
[実施例EX2_2]
実施例EX2_2を説明する。図1のAC/DCコンバータ1は本発明に係るスイッチング電源装置の一種である。図1において、スイッチングトランジスタ14は、インダクタとしての一次側巻線W1に直列接続されるスイッチング素子の例であり、一次側制御回路16は、スイッチング素子をスイッチングするスイッチング制御回路の例である。スイッチング素子をPチャネル型のMOSFETとして構成する変形も可能であるし、バイポーラトランジスタ、接合型FET又はIGBT(Insulated Gate Bipolar Transistor)として構成する変形も可能である。何れにせよ、インダクタ及びスイッチング素子の直列回路に対し入力電圧VINが加えられ、スイッチング素子をスイッチングすることを通じ、出力端子TMOUTに出力電圧VOUTが発生する。 [Example EX2_2]
Example EX2_2 will be described. The AC /DC converter 1 of FIG. 1 is a kind of switching power supply device according to the present invention. In FIG. 1, the switching transistor 14 is an example of a switching element connected in series with the primary side winding W1 as an inductor, and the primary side control circuit 16 is an example of a switching control circuit for switching the switching element. It is possible to modify the switching element as a P-channel MOSFET, or as a bipolar transistor, junction FET or IGBT (Insulated Gate Bipolar Transistor). In any case, the input voltage V IN is applied to the series circuit of the inductor and the switching element, and the output voltage V OUT is generated at the output terminal TM OUT by switching the switching element.
実施例EX2_2を説明する。図1のAC/DCコンバータ1は本発明に係るスイッチング電源装置の一種である。図1において、スイッチングトランジスタ14は、インダクタとしての一次側巻線W1に直列接続されるスイッチング素子の例であり、一次側制御回路16は、スイッチング素子をスイッチングするスイッチング制御回路の例である。スイッチング素子をPチャネル型のMOSFETとして構成する変形も可能であるし、バイポーラトランジスタ、接合型FET又はIGBT(Insulated Gate Bipolar Transistor)として構成する変形も可能である。何れにせよ、インダクタ及びスイッチング素子の直列回路に対し入力電圧VINが加えられ、スイッチング素子をスイッチングすることを通じ、出力端子TMOUTに出力電圧VOUTが発生する。 [Example EX2_2]
Example EX2_2 will be described. The AC /
フィードバック回路23、フォトカプラPC及びフィードバック用コンデンサ18は、出力電圧VOUTに基づきフィードバック電圧VFBを生成するフィードバック電圧生成回路を構成する。
The feedback circuit 23, the photocoupler PC, and the feedback capacitor 18 form a feedback voltage generation circuit that generates a feedback voltage V FB based on the output voltage V OUT.
AC/DCコンバータ1を用いて電源アダプタを構成しても良い。或いは、AC/DCコンバータ1を内蔵する電気機器を構成しても良い。電気機器の種類は特に限定されず、オーディオ機器、冷蔵庫、洗濯機、掃除機など、AC/DCコンバータ1を内蔵する機器であれば任意である。
The power adapter may be configured by using the AC / DC converter 1. Alternatively, an electric device incorporating the AC / DC converter 1 may be configured. The type of electrical equipment is not particularly limited, and any equipment such as an audio equipment, a refrigerator, a washing machine, and a vacuum cleaner having an AC / DC converter 1 built-in is arbitrary.
本発明に係るスイッチング電源装置はAC/DCコンバータに限定されず、トランスTRを用い一次側の入力電圧VINから絶縁形式で二次側にて出力電圧VOUTを生成する絶縁型DC/DCコンバータであっても良いし、入力電圧VINから出力電圧VOUTを生成する非絶縁型DC/DCコンバータであっても良い。
The switching power supply device according to the present invention is not limited to an AC / DC converter, and is an isolated DC / DC converter that uses a transformer TR to generate an output voltage V OUT on the secondary side in an isolated form from the input voltage V IN on the primary side. It may be a non-isolated DC / DC converter that generates an output voltage V OUT from an input voltage V IN.
[実施例EX2_3]
実施例EX2_3を説明する。上述の主旨を損なわない形で、任意の信号又は電圧に関して、ハイレベルとローレベルの関係を逆にしても良い。 [Example EX2_3]
Example EX2_3 will be described. The relationship between high level and low level may be reversed for any signal or voltage without compromising the above-mentioned gist.
実施例EX2_3を説明する。上述の主旨を損なわない形で、任意の信号又は電圧に関して、ハイレベルとローレベルの関係を逆にしても良い。 [Example EX2_3]
Example EX2_3 will be described. The relationship between high level and low level may be reversed for any signal or voltage without compromising the above-mentioned gist.
本発明の実施形態は、特許請求の範囲に示された技術的思想の範囲内において、適宜、種々の変更が可能である。以上の実施形態は、あくまでも、本発明の実施形態の例であって、本発明ないし各構成要件の用語の意義は、以上の実施形態に記載されたものに制限されるものではない。上述の説明文中に示した具体的な数値は、単なる例示であって、当然の如く、それらを様々な数値に変更することができる。
The embodiment of the present invention can be appropriately modified within the scope of the technical idea shown in the claims. The above embodiments are merely examples of the embodiments of the present invention, and the meanings of the terms of the present invention and the constituent requirements are not limited to those described in the above embodiments. The specific numerical values shown in the above description are merely examples, and as a matter of course, they can be changed to various numerical values.
1 AC/DCコンバータ(スイッチング電源装置)
14 スイッチングトランジスタ(スイッチング素子)
16 一次側制御回路(スイッチング制御回路)
100 メイン制御部
110 セット信号発生部
120 リセット信号発生部
130 ドライブ部
140 電流検出部 1 AC / DC converter (switching power supply)
14 Switching transistor (switching element)
16 Primary side control circuit (switching control circuit)
100Main control unit 110 Set signal generation unit 120 Reset signal generation unit 130 Drive unit 140 Current detection unit
14 スイッチングトランジスタ(スイッチング素子)
16 一次側制御回路(スイッチング制御回路)
100 メイン制御部
110 セット信号発生部
120 リセット信号発生部
130 ドライブ部
140 電流検出部 1 AC / DC converter (switching power supply)
14 Switching transistor (switching element)
16 Primary side control circuit (switching control circuit)
100
Claims (13)
- インダクタ及びスイッチング素子の直列回路に加わる入力電圧から、前記スイッチング素子をスイッチングすることを通じ、出力電圧を生成するためのスイッチング制御回路において、前記スイッチング素子に流れる電流を対象電流として検出する電流検出部と、前記出力電圧の供給を受ける負荷の大きさに応じたフィードバック電圧に基づき、前記スイッチング素子を設定されたスイッチング周波数でスイッチングさせるPWM動作、又は、バースト動作を実行する制御部と、を備え、
前記制御部は、前記スイッチング素子のターンオンを指示するセット信号を発生させるセット信号発生部と、前記スイッチング素子のターンオフを指示するリセット信号を発生させるリセット信号発生部と、前記セット信号を受けたときに前記スイッチング素子をオン状態にするための信号を前記スイッチング素子に供給し且つ前記リセット信号を受けたときに前記スイッチング素子をオフ状態にするための信号を前記スイッチング素子に供給するドライブ部と、を有し、前記バースト動作では前記スイッチング周波数での前記スイッチング素子のスイッチングを停止し、
前記バースト動作において、前記セット信号発生部は前記フィードバック電圧に基づき前記セット信号を発生させ、その後、前記リセット信号発生部は前記対象電流の値がターンオフ閾値を超えたことを契機に前記リセット信号を発生させ、
前記リセット信号発生部は、前記セット信号の発生後の所定区間にて、前記ターンオフ閾値を時間経過と共に増大させる
ことを特徴とするスイッチング制御回路。 In a switching control circuit for generating an output voltage by switching the switching element from the input voltage applied to the series circuit of the inductor and the switching element, a current detector that detects the current flowing through the switching element as a target current. A control unit that executes a PWM operation or a burst operation for switching the switching element at a set switching frequency based on a feedback voltage according to the magnitude of a load supplied with the output voltage.
When the control unit receives the set signal generation unit that generates a set signal instructing the turn-on of the switching element, the reset signal generation unit that generates the reset signal instructing the turn-off of the switching element, and the set signal. A drive unit that supplies a signal for turning on the switching element to the switching element and supplies a signal for turning off the switching element to the switching element when the reset signal is received. In the burst operation, the switching of the switching element at the switching frequency is stopped.
In the burst operation, the set signal generating unit generates the set signal based on the feedback voltage, and then the reset signal generating unit generates the reset signal when the value of the target current exceeds the turn-off threshold value. Generate,
The reset signal generation unit is a switching control circuit characterized in that the turn-off threshold value is increased with the passage of time in a predetermined section after the generation of the set signal. - 前記ターンオフ閾値は、前記フィードバック電圧に応じた値を持つ
ことを特徴とする請求項1に記載のスイッチング制御回路。 The switching control circuit according to claim 1, wherein the turn-off threshold value has a value corresponding to the feedback voltage. - 前記リセット信号発生部は、
前記所定区間において時間経過と共に信号値が増大するスロープ補償信号を前記フィードバック電圧に比例する信号に加算することで前記ターンオフ閾値を示すターンオフ閾値用信号を生成し、
前記バースト動作において、前記対象電流の値を示す電流検出信号と前記ターンオフ閾値用信号とを比較することにより前記リセット信号を発生させる
ことを特徴とする請求項1又は2に記載のスイッチング制御回路。 The reset signal generator is
A turn-off threshold signal indicating the turn-off threshold is generated by adding a slope compensation signal whose signal value increases with the passage of time in the predetermined section to a signal proportional to the feedback voltage.
The switching control circuit according to claim 1 or 2, wherein in the burst operation, the reset signal is generated by comparing the current detection signal indicating the value of the target current with the turn-off threshold signal. - 前記セット信号発生部は、前記スイッチング周波数の信号を生成するオシレータを有し、前記PWM動作では、前記オシレータを用いて前記スイッチング周波数にて前記セット信号を発生させ、
前記リセット信号発生部は、前記PWM動作において、前記電流検出信号と、前記ターンオフ閾値用信号と、所定の過電流閾値を示す過電流閾値用信号と、に基づいて、前記リセット信号を発生させる
ことを特徴とする請求項3に記載のスイッチング制御回路。 The set signal generation unit has an oscillator that generates a signal of the switching frequency, and in the PWM operation, the set signal is generated at the switching frequency by using the oscillator.
In the PWM operation, the reset signal generating unit generates the reset signal based on the current detection signal, the turn-off threshold signal, and the overcurrent threshold signal indicating a predetermined overcurrent threshold. The switching control circuit according to claim 3. - 前記リセット信号発生部は、前記電流検出信号と前記ターンオフ閾値用信号とを比較する第1比較器、及び、前記電流検出信号と前記過電流閾値用信号とを比較する第2比較器を有し、前記PWM動作において、前記第1比較器及び前記第2比較器の各比較結果に基づき前記対象電流の値が前記ターンオフ閾値又は前記過電流閾値より大きくなったときに前記リセット信号を発生させる
ことを特徴とする請求項4に記載のスイッチング制御回路。 The reset signal generator includes a first comparator that compares the current detection signal with the turn-off threshold signal, and a second comparator that compares the current detection signal with the overcurrent threshold signal. In the PWM operation, the reset signal is generated when the value of the target current becomes larger than the turn-off threshold or the overcurrent threshold based on the comparison results of the first comparator and the second comparator. The switching control circuit according to claim 4. - 前記リセット信号発生部は、前記所定区間において時間経過と共に信号値が増大する第1スロープ補償信号を前記フィードバック電圧に比例する信号に加算することで前記ターンオフ閾値用信号を生成し、且つ、前記所定区間において時間経過と共に信号値が増大する第2スロープ補償信号を所定値を持つ信号に加算することで前記過電流閾値用信号を生成する
ことを特徴とする請求項4又は5に記載のスイッチング制御回路。 The reset signal generation unit generates the turn-off threshold signal by adding a first slope compensation signal whose signal value increases with the passage of time in the predetermined section to a signal proportional to the feedback voltage, and also generates the predetermined signal. The switching control according to claim 4 or 5, wherein the overcurrent threshold signal is generated by adding a second slope compensation signal whose signal value increases with the passage of time in a section to a signal having a predetermined value. circuit. - 前記負荷の大きさが減少するにつれて前記フィードバック電圧は低下し、
前記制御部は、前記フィードバック電圧が所定のバースト判定電圧より高い状態に保たれているとき、前記PWM動作を継続的に実行し、前記フィードバック電圧が前記バースト判定電圧を下回ると前記バースト動作を開始する
ことを特徴とする請求項1~6の何れかに記載のスイッチング制御回路。 As the magnitude of the load decreases, the feedback voltage decreases.
The control unit continuously executes the PWM operation when the feedback voltage is kept higher than a predetermined burst determination voltage, and starts the burst operation when the feedback voltage falls below the burst determination voltage. The switching control circuit according to any one of claims 1 to 6, wherein the switching control circuit is characterized. - 前記制御部は、前記フィードバック電圧が前記バースト判定電圧より高い状態から前記バースト判定電圧より低い状態に移行したことを受けて前記バースト動作を開始し、前記バースト動作の開始後、前記フィードバック電圧が前記バースト判定電圧よりも高い所定のバースト解除電圧を上回るまで前記スイッチング素子をオフ状態に維持し、前記フィードバック電圧が前記バースト解除電圧を上回ると前記セット信号発生部により前記セット信号を発生させ、その後、前記対象電流の値がターンオフ閾値を超えたことを受けて前記リセット信号発生部により前記リセット信号を発生させる
ことを特徴とする請求項7に記載のスイッチング制御回路。 The control unit starts the burst operation in response to the transition from a state in which the feedback voltage is higher than the burst determination voltage to a state in which the feedback voltage is lower than the burst determination voltage. The switching element is kept in the off state until a predetermined burst release voltage higher than the burst determination voltage is exceeded, and when the feedback voltage exceeds the burst release voltage, the set signal generator generates the set signal, and then the set signal is generated. The switching control circuit according to claim 7, wherein the reset signal is generated by the reset signal generator in response to the value of the target current exceeding the turn-off threshold. - 前記負荷の大きさが減少するにつれて前記フィードバック電圧は上昇し、
前記制御部は、前記フィードバック電圧が所定のバースト判定電圧より低い状態に保たれているとき、前記PWM動作を継続的に実行し、前記フィードバック電圧が前記バースト判定電圧を上回ると前記バースト動作を開始する
ことを特徴とする請求項1~6の何れかに記載のスイッチング制御回路。 The feedback voltage rises as the magnitude of the load decreases,
The control unit continuously executes the PWM operation when the feedback voltage is kept lower than a predetermined burst determination voltage, and starts the burst operation when the feedback voltage exceeds the burst determination voltage. The switching control circuit according to any one of claims 1 to 6, wherein the switching control circuit is characterized. - 前記制御部は、前記フィードバック電圧が前記バースト判定電圧より低い状態から前記バースト判定電圧より高い状態に移行したことを受けて前記バースト動作を開始し、前記バースト動作の開始後、前記フィードバック電圧が前記バースト判定電圧よりも低い所定のバースト解除電圧を下回るまで前記スイッチング素子をオフ状態に維持し、前記フィードバック電圧が前記バースト解除電圧を下回ると前記セット信号発生部により前記セット信号を発生させ、その後、前記対象電流の値がターンオフ閾値を超えたことを受けて前記リセット信号発生部により前記リセット信号を発生させる
ことを特徴とする請求項9に記載のスイッチング制御回路。 The control unit starts the burst operation in response to the transition from a state in which the feedback voltage is lower than the burst determination voltage to a state in which the feedback voltage is higher than the burst determination voltage. The switching element is kept in the off state until it falls below a predetermined burst release voltage lower than the burst determination voltage, and when the feedback voltage falls below the burst release voltage, the set signal generator generates the set signal, and then the set signal is generated. The switching control circuit according to claim 9, wherein the reset signal is generated by the reset signal generator in response to the value of the target current exceeding the turn-off threshold. - 一次側巻線として前記インダクタを有し且つ二次側巻線を有するトランスを用いて、一次側に加わる前記入力電圧から二次側にて前記出力電圧が生成される
ことを特徴とする請求項1~10の何れかに記載のスイッチング制御回路。 A claim, wherein a transformer having the inductor and a secondary winding is used as the primary winding, and the output voltage is generated on the secondary side from the input voltage applied to the primary side. The switching control circuit according to any one of 1 to 10. - 一次側巻線及び二次側巻線を有するトランスを用いスイッチング方式にて、一次側に加わる入力電圧から二次側にて出力電圧を生成するスイッチング電源装置において、
インダクタとしての前記一次側巻線に直列接続されるスイッチング素子と、
請求項1~11の何れかに記載のスイッチング制御回路と、
前記出力電圧に基づき前記フィードバック電圧を生成するフィードバック電圧生成回路と、を備えた
ことを特徴とするスイッチング電源装置。 In a switching power supply that uses a transformer with a primary winding and a secondary winding to generate an output voltage on the secondary side from an input voltage applied to the primary side by a switching method.
A switching element connected in series with the primary winding as an inductor,
The switching control circuit according to any one of claims 1 to 11.
A switching power supply device including a feedback voltage generation circuit that generates the feedback voltage based on the output voltage. - 前記入力電圧は交流電圧を整流及び平滑化することで生成される
ことを特徴とする請求項12に記載のスイッチング電源装置。 The switching power supply device according to claim 12, wherein the input voltage is generated by rectifying and smoothing an AC voltage.
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2021554172A JP7543296B2 (en) | 2019-10-28 | 2020-09-18 | Switching control circuit and switching power supply device |
CN202080075505.8A CN114600355A (en) | 2019-10-28 | 2020-09-18 | Switch control circuit and switching power supply device |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2019-195332 | 2019-10-28 | ||
JP2019195332 | 2019-10-28 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2021084964A1 true WO2021084964A1 (en) | 2021-05-06 |
Family
ID=75715086
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2020/035433 WO2021084964A1 (en) | 2019-10-28 | 2020-09-18 | Switching control circuit and switching power supply apparatus |
Country Status (3)
Country | Link |
---|---|
JP (1) | JP7543296B2 (en) |
CN (1) | CN114600355A (en) |
WO (1) | WO2021084964A1 (en) |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2008005567A (en) * | 2006-06-20 | 2008-01-10 | Sanken Electric Co Ltd | Switching power supply |
US20090284994A1 (en) * | 2008-05-14 | 2009-11-19 | Tzu-Chen Lin | Control circuit and method for a flyback converter |
US20120147630A1 (en) * | 2010-12-08 | 2012-06-14 | On-Bright Electronics (Shanghai) Co., Ltd. | System and method providing over current protection based on duty cycle information for power converter |
JP2014117056A (en) * | 2012-12-10 | 2014-06-26 | Rohm Co Ltd | Dc/dc converter and control circuit thereof, and power supply device, power supply adapter and electronic device using the same |
JP2018007515A (en) * | 2016-07-08 | 2018-01-11 | ローム株式会社 | Insulation type dc/dc converter, primary-side controller thereof, control method, power source adapter arranged by use thereof, and electronic device |
Family Cites Families (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP4251877B2 (en) | 2003-02-03 | 2009-04-08 | 新電元工業株式会社 | Power circuit |
-
2020
- 2020-09-18 JP JP2021554172A patent/JP7543296B2/en active Active
- 2020-09-18 WO PCT/JP2020/035433 patent/WO2021084964A1/en active Application Filing
- 2020-09-18 CN CN202080075505.8A patent/CN114600355A/en active Pending
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2008005567A (en) * | 2006-06-20 | 2008-01-10 | Sanken Electric Co Ltd | Switching power supply |
US20090284994A1 (en) * | 2008-05-14 | 2009-11-19 | Tzu-Chen Lin | Control circuit and method for a flyback converter |
US20120147630A1 (en) * | 2010-12-08 | 2012-06-14 | On-Bright Electronics (Shanghai) Co., Ltd. | System and method providing over current protection based on duty cycle information for power converter |
JP2014117056A (en) * | 2012-12-10 | 2014-06-26 | Rohm Co Ltd | Dc/dc converter and control circuit thereof, and power supply device, power supply adapter and electronic device using the same |
JP2018007515A (en) * | 2016-07-08 | 2018-01-11 | ローム株式会社 | Insulation type dc/dc converter, primary-side controller thereof, control method, power source adapter arranged by use thereof, and electronic device |
Also Published As
Publication number | Publication date |
---|---|
JP7543296B2 (en) | 2024-09-02 |
JPWO2021084964A1 (en) | 2021-05-06 |
CN114600355A (en) | 2022-06-07 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US10158282B1 (en) | Switching power supply device | |
JP4481879B2 (en) | Switching power supply | |
JP4210868B2 (en) | Switching power supply | |
US9825540B2 (en) | Switching power supply apparatus | |
US8953348B2 (en) | Switching power supply circuit and power factor controller | |
US7511929B2 (en) | Switching power supply and semiconductor device used therefor | |
US7778049B2 (en) | Switching power supply | |
JP5668291B2 (en) | Power supply controller, power supply integrated circuit controller, and power supply | |
US6980444B2 (en) | Switching power supply | |
US8159846B2 (en) | Switching control circuit, semiconductor device and switching power source apparatus | |
US20080174286A1 (en) | Quick response switching regulator and control method thereof | |
US20100220500A1 (en) | Power converter and method for controlling power converter | |
TW201946351A (en) | Semiconductor device for power control, switching power device and design method thereof | |
JP6569414B2 (en) | Switching power supply | |
JP7123712B2 (en) | power control unit | |
CN111010040B (en) | Synchronous rectification control device, insulated synchronous rectification type DC/DC converter, gate drive device, and AC/DC converter | |
JP2011015557A (en) | Switching power supply apparatus, and semiconductor device for control of the same | |
US10491127B2 (en) | Power supply control unit and isolation type switching power supply device | |
CN111684697A (en) | Control device for switching power supply device | |
US20100033992A1 (en) | Switching power supply controller and semiconductor device used for the same | |
US11336170B2 (en) | Frequency setting in a power supply device, power supply control device, and power supply control method | |
CN111641340A (en) | Switching power supply device | |
JP2010124573A (en) | Switching power supply unit and semiconductor apparatus used for the same | |
JP7123733B2 (en) | power control unit | |
WO2021084964A1 (en) | Switching control circuit and switching power supply apparatus |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 20881696 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 2021554172 Country of ref document: JP Kind code of ref document: A |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 20881696 Country of ref document: EP Kind code of ref document: A1 |