WO2021084940A1 - 音響センサ - Google Patents

音響センサ Download PDF

Info

Publication number
WO2021084940A1
WO2021084940A1 PCT/JP2020/034647 JP2020034647W WO2021084940A1 WO 2021084940 A1 WO2021084940 A1 WO 2021084940A1 JP 2020034647 W JP2020034647 W JP 2020034647W WO 2021084940 A1 WO2021084940 A1 WO 2021084940A1
Authority
WO
WIPO (PCT)
Prior art keywords
sensitive
acoustic sensor
sensor according
optical fiber
optical
Prior art date
Application number
PCT/JP2020/034647
Other languages
English (en)
French (fr)
Inventor
矢野 隆
栄太郎 三隅
村松 順
Original Assignee
日本電気株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本電気株式会社 filed Critical 日本電気株式会社
Priority to JP2021554156A priority Critical patent/JP7363915B2/ja
Priority to US17/770,713 priority patent/US20220397451A1/en
Publication of WO2021084940A1 publication Critical patent/WO2021084940A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01HMEASUREMENT OF MECHANICAL VIBRATIONS OR ULTRASONIC, SONIC OR INFRASONIC WAVES
    • G01H9/00Measuring mechanical vibrations or ultrasonic, sonic or infrasonic waves by using radiation-sensitive means, e.g. optical means
    • G01H9/004Measuring mechanical vibrations or ultrasonic, sonic or infrasonic waves by using radiation-sensitive means, e.g. optical means using fibre optic sensors
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04RLOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
    • H04R23/00Transducers other than those covered by groups H04R9/00 - H04R21/00
    • H04R23/008Transducers other than those covered by groups H04R9/00 - H04R21/00 using optical signals for detecting or generating sound

Definitions

  • the present invention relates to an acoustic sensor, and more particularly to a sound and vibration sensor that detects a sound that is a kind of vibration using an optical fiber.
  • DAS Distributed Acoustic Sensing
  • the optical fiber sensor does not require power supply, and does not require electrical wiring because the detected signal is transmitted by light. Therefore, it has features such as being unaffected by lightning strikes and being less susceptible to induced noise.
  • Today's optical fiber sensor system consists of an optical fiber that senses sound and vibration and a detector called an interrogator.
  • the interrogator means "inquirer”, and is intended to irradiate an optical fiber with probe light, receive reflected light or transmitted light from the optical fiber, and detect the state of sound waves and vibrations acting on the optical fiber.
  • the optical fiber is a part that senses the surrounding conditions, and is also a medium that transmits an optical signal between the sensitive part and the interrogator.
  • the term "sensor” refers to a sensitive part, but in the case of an optical fiber sensor, it often refers to all or part of a set of optical fibers and interrogators.
  • the optical fiber since the optical fiber is originally used as a transmission medium, it is not clear which part of the total length of the optical fiber plays the role of a sensor. Therefore, the portion of the optical fiber provided with the intention of sensing the surrounding conditions is referred to as a sensitive element or a sensitive portion to distinguish them.
  • Patent Document 1 As a method of using an optical fiber as an acoustic sensor, a configuration in which an optical fiber to be a sensor is routed in a coil shape, a spiral shape, or a mesh shape is known (Patent Document 1).
  • Microphones that sense the human audible range include omnidirectional microphones and directional microphones.
  • Omnidirectional microphones are versatile and do not require difficult adjustments, and are suitable for applications where recording with few failures is desired.
  • directional microphones are suitable for applications such as investigating the direction in which sound is coming and for professional applications in which sounds other than the sound source to be heard are to be excluded as much as possible.
  • a configuration having sensitivity in a wide range can be realized in a form different from that of the omnidirectional microphone. According to this configuration, for example, it is possible to identify the direction of the sound source and measure how the sound source moves. However, in order to realize this, in addition to increasing the number of sensors, the ability to process those output data is also required.
  • the sensitive part has directivity. It is known that it is highly sensitive to sound waves traveling along the longitudinal direction of linearly arranged optical fibers, but is not sensitive to sound waves arriving from the side of the optical fiber. As a method of homogenizing such directivity and making it omnidirectional, a configuration in which an optical fiber is helically wound has been proposed (Patent Documents 2 to 4).
  • Patent Document 4 explains the principle of optical fiber detecting sound waves and the reason why directivity occurs. It is stated that there are two effects of sound waves on optical fibers.
  • the first effect is the effect of changing the distance between light scattering points (by transmitting the sparse and dense waves of sound through the optical fiber), that is, the effect of expanding and contracting the optical fiber
  • the second effect is the effect of changing the speed of light (the effect of changing the speed of light). That is, the effect of changing the refractive index).
  • the first effect can be detected only when the longitudinal direction of the optical fiber expands and contracts, so it is strong. It will have directional.
  • the second effect has no directivity, but is a weak effect of about a fraction of the first effect. Therefore, a general DAS exclusively utilizes the first effect to detect sound waves and vibrations. Therefore, such a DAS has a directivity to detect sound waves and vibrations propagating in the extending direction of the optical fiber with high sensitivity.
  • Patent Documents 10 and 11 and Non-Patent Document 2 also disclose techniques for monitoring the expansion and contraction status of each point of an optical fiber by injecting probe light into the optical fiber and monitoring the scattered light behind the optical fiber.
  • Patent Documents 2 and 3 it has long been practiced in the field of optical fiber sensing to have a cable configuration in which an optical fiber (sensing part) is helically wound. It is recognized that this also has the effect of homogenizing the directivity of sound wave detection in DAS, and the technique for optimizing the sound wave detection is disclosed in, for example, Patent Document 4.
  • Patent Document 7 A configuration that utilizes the directivity of the optical fiber sensor is also disclosed (Patent Document 7).
  • the basic element is a configuration in which an optical fiber is wound around a mandrel, which is similar to that disclosed in Patent Documents 5 and 6.
  • the sound wave is first sensed by the mandrel, and the vibration is read by the expansion and contraction of the wound optical fiber.
  • the arrangement direction only the form oriented to the three orthogonal axes is disclosed.
  • a plurality of directional optical fiber sensors are arranged orthogonally on three axes. That is, a plurality of directional microphones are arranged in different directions. This provides an optical fiber sensor that is sensitive to all directions and can measure the direction and movement of a sound source.
  • Patent Documents 8 and 9 a technique for arranging long optical fibers for sensors into a sheet to facilitate handling is disclosed.
  • the present invention has been made in view of the above circumstances, and an object of the present invention is to provide an acoustic sensor having high directivity using an optical fiber.
  • the acoustic sensor is connected to a sensitive portion having a sensitive element made of an optical fiber and the sensitive portion, emits pulsed light to the sensitive portion, and reflects return light from the sensitive portion.
  • the sensitive element includes an interrogator that detects the sound wave vibration sensed by the sensitive unit, so that the optical fiber reciprocates a plurality of times along the directional direction in which the directional sensitivity is exhibited. It is folded into.
  • FIG. It is a perspective view of the sensitive part which concerns on Embodiment 1.
  • FIG. It is a figure explaining the shape of the sensitive part in a plane and schematically. It is a figure which shows typically the structure of the acoustic sensor which concerns on Embodiment 1.
  • FIG. It is a figure which shows the relationship between a sensitive part and an optical pulse. It is a figure explaining the shape of the modification of the sensitive part in a plane and schematically. It is a figure which shows typically the structure of the sensitive part formed on the sheet member. It is a figure which shows the structure of the tape core wire. It is a figure which shows the example of the V-groove array.
  • FIG. It is a figure which shows typically the structure of the sensitive part which concerns on Embodiment 4.
  • FIG. It is a figure which shows typically the structure of the 1st example of the sensitive part which concerns on Embodiment 5.
  • Embodiment 1 The sensitive portion according to the first embodiment will be described with reference to the perspective view of FIG. 1 and the plan view of FIG.
  • the sensing unit 10 is connected to the interrogator 1 as in the acoustic sensor 100 of FIG. 3, for example, to sense the sound and vibration arriving there.
  • the basic unit constituting the sensitive unit is referred to as a sensitive element.
  • the sensitive unit is used as a name for a combination of one or more sensitive elements and a sound insulating material, a shape-retaining material, or the like described later.
  • Reference numerals 10A are attached to the sensitive elements constituting the sensitive portion of FIG.
  • the interrogator 1 outputs the pulsed light P to the sensing unit 10 and receives the return light (reflected return light) RP.
  • the shape of the sensitive element 10A is an oval shape in a plan view, such as an oval shape, an oval shape, an elliptical shape, or a rounded rectangle (Obround). Due to this shape, the sensitive portion 10 has high sensitivity to vibration SW such as sound waves and pressure arriving in the major axis direction of the winding (X-axis direction in the figure), that is, exhibits directivity.
  • an optical fiber is described as being wound in a flat coil shape.
  • the vibration detected by the acoustic sensor is various vibration phenomena including not only longitudinal waves such as sound waves and pressure but also transverse waves.
  • the linear portions of the sensitive element 10A arranged in parallel are referred to as L1 and L2, respectively.
  • the extending direction of the straight lines L1 and L2 is the X direction
  • the direction orthogonal to the X direction (first direction) on the paper surface is the Y direction (second direction).
  • Various vibration propagation media such as air, water, and underground (earth and sand, rocks, etc.) can be considered as the vibration propagation medium around the sensitive element.
  • the optical fiber is expanded and contracted while these compressional waves (longitudinal waves) propagate, and the state is detected by an interrogator.
  • the sensitive element 10A has selective sensitivity, that is, directivity, with respect to the vibration wave SW propagating in the extending direction (X direction) of the linear portions L1 and L2.
  • the major axis in the X direction which is the maximum dimension of the outer shape of the sensitive element (winding wire) constituting the sensitive element 10A, is indicated as Lx
  • the minor axis in the Y direction which is the minimum dimension, is indicated as Ly.
  • the sensitive element is configured so that Lx is larger than Ly (Lx> Ly) in order to increase the sensitivity to the vibration wave propagating in the X direction.
  • Lx may be twice or more (Lx ⁇ 2Ly) of Ly.
  • Ly is short.
  • the optical fiber has a restriction on the minimum bending radius, the shape of the sensitive element is also restricted.
  • ITU-T International Telecommunication Union Telecommunication Standardization Sector
  • the minimum bending radius of a general optical fiber conforming to 652 is 30 mm.
  • the minimum allowable bending radius has been reduced to 5 mm by strengthening the confinement of light. 657.
  • An optical fiber compliant with B3 is also put into practical use, and Ly may be shortened by using such an optical fiber.
  • Lx is set to be within 1/2 of the wavelength of the sound to be observed. From the viewpoint of miniaturizing the sensitive element 10A, it is desirable that the size of Lx is short, but the detection sensitivity is lowered by that amount. Further, by increasing the number of turns T (the total length Lt of the winding naturally becomes longer), the sensitivity can be improved. However, even if the overall length Lt of the winding is lengthened, the sensitivity is limited by the spatial resolution Lp of the acoustic sensor 100.
  • FIG. 4 shows the relationship between the sensitive element and the optical pulse.
  • the winding of the sensitive element 10A is unwound and displayed as a linear optical fiber.
  • an optical pulse P is propagated through an optical fiber provided with a sensitive element 10A, and a scattering point that causes Rayleigh scattering when the optical pulse passes through a portion of the sensitive element 10A where a sound wave arrives.
  • the optical pulse is phase-modulated by shaking.
  • the total length Lt of the sensitive element 10A is longer than the pulse width Wp of the optical pulse P.
  • the optical pulse P is modulated only by the sound that reaches the section of the pulse width Wp, regardless of the total length Lt of the sensitive element 10A. That is, in this example, it is determined not by the total length Lt of the sensitive element 10A but by the pulse width Wp.
  • the pulse width of the optical pulse P is Wp
  • the spatial resolution of the acoustic sensor 100 is Lp. (The spatial resolution Lp can be made longer than the pulse width Wp by calculation, but cannot be less than the pulse width Wp.)
  • the sensitivity is limited by the spatial resolution Lp even if the number of turns T of the windings constituting the sensitive element 10A is increased to make the total length Lt longer than the spatial resolution Lp.
  • the sensitive element has been described as having an oval shape composed of an orbiting optical fiber, but the effect of the present invention is not impaired even if there is some deformation. Some deformation may occur depending on the mounting situation. For example, when the oval-shaped ring is twisted (twisted) to form a figure eight shape, the degree of influence is estimated.
  • the sensitive element 10B shown in FIG. 5 has a figure 8 shape due to the twist of the sensitive element 10A.
  • the length in the X direction is 2 Lx like the sensitive element 10A
  • the length in the Y direction is 4 Ly, which is twice the length of the sensitive element 10A. ing.
  • the directivity is proportional to the ratio of the optical fiber length in the X direction to the Y direction
  • the directivity of the sensitive element 10B is reduced to nearly half of that of the sensitive element 10A.
  • the ratio of the X direction to the Y direction still greatly exceeds 2, it is understood that the device operates as a sensitive element having directivity in the X direction.
  • an optical fiber wound in a flat coil shape has been described as an example of the realized shape of the sensitive element, but it is not an essential requirement to make the optical fiber into a wound shape.
  • the optical fiber is folded and reciprocated in a direction parallel to the direction in which the directivity is desired, and the optical fiber path in the direction parallel to the direction in which the directivity is not desired is shortened as much as possible to increase the ratio between the two. Is required to obtain the effect of. Since it is difficult to bend an optical fiber suddenly, a flat coil shape is one of the preferred embodiments.
  • the optical fiber wound in a coil shape is resin potted, or the folded optical fiber is made into a sheet shape, and the sheet is further formed into a tubular shape.
  • a configuration such as winding around is conceivable.
  • FIG. 6 schematically shows the configuration of the sensitive element 10C formed on the seat member.
  • the sensitive element 10C is a modification of the sensitive element 10A, and is configured by winding a fiber pair formed by folding one optical fiber in a spiral shape on an XY plane.
  • the optical fiber is spirally rotated clockwise (first circumferential direction) toward the central axis of the winding of the sensitive element 10C.
  • the optical fiber is folded back so that the circumferential direction is counterclockwise (second circumferential direction) in the vicinity of the central axis.
  • the optical fiber is spirally rotated counterclockwise toward the outer peripheral direction of the winding of the sensitive element 10C.
  • the winding can be formed on the seat member ST.
  • the seat member ST can be wound into a tubular shape about the X-axis direction. As a result, even after winding, the major axis direction of the sensitive element 10C remains the X-axis direction, so that the directivity is maintained. Since the sensitive element 10C is wrapped with the sheet member ST by winding, the sensitive element 10C can be reliably protected.
  • FIG. 7 shows the configuration of the tape core wire 5.
  • a plurality of optical fiber FGs are covered with a coating 5A and arranged side by side in a tape shape. If the end points of the optical fiber of the tape core wire are connected so as to be folded back, the same configuration as that of winding the optical fiber can be realized.
  • a tape core wire it becomes easy to stably manage an optical fiber that is mechanically unstable and easily damaged.
  • a typical configuration as a connection method between the end portion of the tape core wire and the optical folding portion is a connection by passive alignment using a V-groove array as shown in FIG.
  • a V-groove array is integrally molded with the optical input / output portion of the optical folding portion, the coating at the end of the tape core wire is removed, and the V-groove array is placed and fixed to obtain a bond with the optical folding portion. Is.
  • FIG. 8 shows an enlarged view of the coupling portion formed by the V-groove array.
  • the V-groove array VA a plurality of V-groove VGs are arranged on a substrate SUB, and an optical fiber is placed on each of the V-groove VGs.
  • the optical fiber F1 and the optical fiber F2 are joined (butt joint) on the V-groove VG. Since it is necessary to sufficiently suppress the reflection of the joint portion, the surroundings may be filled with a refractive index matching liquid or the like.
  • FIG. 9 shows an example of the appearance of the optical folding portion package in which the tape core wire and the optical folding circuit are connected.
  • the optical folding circuit and the tape core wire 5 are optically connected by using a V-groove array VA, and have strength that can be handled as a sensitive element. It is fixed as.
  • FIG. 10 the display of the coating 5A of the tape core wire 5 is omitted in order to facilitate understanding of the optical fiber path.
  • FIG. 10 shows a first configuration example of the light folding portion.
  • the above-mentioned V-groove array and micromirror array are manufactured on a Si substrate by etching or the like.
  • Si optical circuits 6A also referred to as a first optical circuit
  • 6B also referred to as a second optical circuit
  • the optical fibers at both ends of the tape core wire 5 are aligned by the V-groove arrays 7A and 7B of the Si optical circuits 6A and 6B.
  • one or more micromirror MMs are provided so as to optically connect the ends of the two optical fibers so as to face the aligned optical fibers. It is provided. Take measures to suppress Fresnel reflected return light at the end of the optical fiber, such as filling the optical path with a refractive index matching fluid.
  • an optical fiber F is connected to the end of the two optical fibers of the tape core wire 5, and one of them (also referred to as a connecting optical fiber) is connected to the interrogator 1 or another sensitive element.
  • connection with the optical fiber F for connection may be made after passing through the optical circuit 6A and going out to the outside.
  • One or more Si optical circuits 6B also face the aligned optical fiber.
  • Micromirror MM also referred to as a first mirror
  • the Si optical circuits 6A and 6B and the tape core wire form an optical path in which light reciprocates a predetermined number of times to serve as a sensitive element.
  • FIG. 11 shows a second configuration example of the light folding portion.
  • a SiO 2 optical waveguide which is a known optical circuit configuration technique, is used.
  • light folding circuits 8A also referred to as a first optical circuit
  • 8B also referred to as a second optical circuit
  • the ends of the two optical fibers are connected by a SiO 2 optical waveguide WG.
  • the allowable bending radius of the SiO 2 optical waveguide is about several mm, the component size is larger than that of the Si optical circuit of the first example.
  • FIG. 12 shows a third configuration example of the light folding portion.
  • the tape core wire is also used for folding back instead of the SiO 2 optical waveguide of the second example. Both ends of the tape core wire 5 to be folded back are folded back by the bent tape core wires 9A and 9B.
  • the outlines of the coatings of the tape core wires 9A (also referred to as the first optical circuit) and 9B (also referred to as the second optical circuit) are indicated by broken lines.
  • the tape core wires 9A and 9B of the folded portion include the optical fiber, it is necessary to secure a minimum bending radius of about several cm (the size of the folded portion is the same in FIGS. 11 and 12).
  • the folded portion in FIG. 12 is several times larger than the folded portion in FIG. 11).
  • the optical fibers of the tape core wires 9A and 9B of the folded portion have sensitivity to vibration, it is desirable to hold the tape core wires 9A and 9B in consideration of appropriate soundproofing and vibration-proofing so as not to receive unnecessary vibration.
  • the tape core wires 5 and the tape core wires 9A and 9B are connected by, for example, V-groove arrays 7C and 7D.
  • the V-groove arrays 7C and 7D may be formed on a Si substrate or a SiO 2 substrate.
  • a device for fusion-bonding the tape core wires to each other is widely used, it may be used, but for that purpose, the folded portion of the tape core wires 9A and 9B has the same connection end point as the tape core wire. It is necessary to form the shape so that it has a shape, for example, by using the technique of the optical fiber sheet used in FIG.
  • any of the first to third examples it is important for the optical fiber sensing application to suppress the reflection at the connection point of the folded portion to a sufficiently small level.
  • the method of connecting by the V-groove array has been described, but a general fusion splicing may be used as a method of connecting the optical fibers.
  • Embodiment 2 In the first embodiment, the directional sensor has been described, but in this configuration, it is not possible to distinguish whether the sound wave comes from the right side or the left side. Therefore, in the second embodiment, a configuration that enables the distinction will be described.
  • FIG. 13 schematically shows the configuration of the sensitive unit 20 according to the second embodiment.
  • the sensitive unit 20 has two sensitive elements 20A (also referred to as a first sensitive element) and 20B (also referred to as a second sensitive element).
  • the sensitive elements 20A and 20B have the same configurations as the sensitive elements of the sensitive element 10A according to the first embodiment, respectively.
  • the sensitive elements 20A and 20B are arranged side by side in the X direction so that the major axis is along an axis parallel to the X direction.
  • a sound insulating member IS is provided between the sensitive element 20A and the sensitive element 20B.
  • the sound wave propagating from the right side (X + side) of FIG. 13 reaches the sensitive element 20A, but is shielded by the sound insulating member IS and does not reach the sensitive element 20B.
  • the sound wave propagating from the left side (X ⁇ side) of FIG. 13 reaches the sensitive element 20B, but is shielded by the sound insulating member IS and does not reach the sensitive element 20A.
  • the sound wave propagating from the right side (X + side) of FIG. 13 is sensed by the sensitive element 20A, and the sound wave propagating from the left side (X ⁇ side) of FIG. 13 is sensed by the sensitive element 20B.
  • the sensitive element 20A the sound wave propagating from the right side (X + side) of FIG. 13 is sensed by the sensitive element 20A
  • the sound wave propagating from the left side (X ⁇ side) of FIG. 13 is sensed by the sensitive element 20B.
  • the sound insulation member IS may be configured as a sound insulation member that absorbs sound, or may be configured as a reflection member that reflects sound. Needless to say, when a reflective member is used, attention should be paid to the arrangement and the like so that the reflected sound is further reflected by any one of them to generate an echo.
  • the sound wave SW1 propagating from the right (X + side) and the sound wave SW2 propagating from the left (X ⁇ side) can be obtained by the following equations. .. Thereby, the influence of the sound that cannot be completely muted by the sound insulating member IS can be alleviated.
  • the coefficients ⁇ BA and ⁇ AB are the sound wave transmittances of the sound insulation member IS obtained in advance by the calibration work.
  • the configuration of the second embodiment is configured by using two sensing elements 10A, but the configuration in which a plurality of the sensing elements 10A are combined will be described below with this as a basic unit.
  • the configuration of the second form is also referred to as a sensitive element.
  • the sensing unit 21 shown in FIG. 14 will be described.
  • the sound insulation member IS shields the sound coming from the side opposite to the desired direction.
  • This sensing unit 21 is also a composite in which the sensing element 10A and the sound insulating member IS are combined.
  • the configuration of the sensing unit 21 is referred to as a sensing element for convenience. Refer to.
  • Embodiment 3 The application form in which the sensitive elements described above are used as basic units and combined with them will be described below.
  • a composite portion in which a plurality of sensitive elements are combined will be referred to as a sensitive portion.
  • the sensitive element not only the sensitive element but also the sensitive element and the sound insulating member can be combined in the sensitive unit described in the following embodiments of the present embodiment, as in the sensitive unit 20 in FIG. 13 and the sensitive unit 21 in FIG. May be combined in combination of two or more. Therefore, from the present embodiment onward, each of the plurality of light receiving elements combined in the sensitive portion, each of the plurality of sensitive portions 20, and each of the plurality of sensitive portions 21 are collectively referred to as a sensitive structure. ..
  • FIG. 15 schematically shows the configuration of the sensing unit 30, which is the first configuration example according to the third embodiment.
  • the sensing unit 30 is an example in which two sensing elements 30A and 30B having different major axis lengths are combined.
  • the sensitive elements 30A and 30B are configured in the same manner as in the first or second embodiment, but have different major axis lengths from each other.
  • the major axis LxA of the sensitive element 30A is longer than the major axis LxB of the sensitive element 30B.
  • the sensitive elements 30A and 30B are arranged side by side in the Y direction so that the major axis is along an axis parallel to the X direction. Sensitive elements 30A and 30B are arranged close to each other so that sound waves in the same sound field can be sensed.
  • a dummy section D having a predetermined light storage time is provided between the two.
  • the predetermined light retention time is a long time with a sufficient margin than the light pulse width Wp.
  • a typical embodiment of the dummy section D is a delay line made of an optical fiber. For example, when the optical pulse width Wp is 40 ns, the optical pulse length in the optical fiber is about 8 m, so the optical fiber delay line is set to 8 m or more.
  • the dummy section it is possible to prevent one optical pulse from propagating across the sensitive elements 30A and 30B, so that leakage of sound wave sensing information in the sensitive elements 30A and 30B can be prevented. It will be possible. Further, in order to prevent the dummy section D itself from being sensed by sound waves, it is desirable that the dummy section D is housed inside the sound insulation member IS0 as necessary.
  • the sensitive element 30A has a relatively wide band and low sensitivity, and is sensitive.
  • the element 30B has a relatively narrow band and high sensitivity. Therefore, according to this configuration, it is possible to sense sound waves under a wider range of conditions by combining sensitive elements having different sensitive bands and sensitivities.
  • FIG. 16 schematically shows the configuration of the sensing unit 31, which is a second configuration example according to the third embodiment.
  • this configuration example a parallel arrangement of a plurality of sensing elements having the same outer shape but different numbers of turns will be described.
  • the sensitive unit 31 has three sensitive elements 31A to 31C configured in the same manner as in the first embodiment or the second embodiment.
  • the sensitive element 31C has a configuration (number of turns 32) shown by the design value in Calculation Example 1.
  • the sensitive elements 31A and 31B have the same outer shape as the sensitive element 31C, but are configured to have fewer turns than the sensitive element 31C.
  • the number of turns of the sensitive element 31B is 8, and the number of turns of the sensitive element 31A is 2. That is, since the sensitive elements 31A and 31B have a smaller number of turns than the 32 turns for exhibiting the maximum sensitivity, the sensitivity is lower than that of the sensitive element 31C.
  • the sensitive elements 31A to 31C are arranged side by side in the Y direction so that the major axis is along an axis parallel to the X direction.
  • the optical fiber is configured to be sufficiently longer than the optical pulse width Wp, as in the first configuration example of the third embodiment.
  • a dummy section is inserted in between. The reason why this is necessary is as described above.
  • a dummy section DA is provided between the sensitive element 31A and the sensitive element 31B
  • a dummy section DB is provided between the sensitive element 31B and the sensitive element 31C.
  • the dummy sections DA and DB are housed inside the sound insulation member IS1.
  • a high-sensitivity sensitive element tends to saturate the output value when a large-amplitude input is applied, and even if a low-sensitivity sensitive element receives a large-amplitude input, the sensitive element is unlikely to saturate. Therefore, in this configuration, a sensing unit is configured by combining sensing elements having different sensitivities. As a result, a wide dynamic range can be realized.
  • FIG. 17 schematically shows the configuration of the sensitive portion 40 according to the fourth embodiment.
  • This example is a configuration for the purpose of switching the characteristics with an optical switch instead of preparing a plurality of sensitive elements having different turns as shown in FIG.
  • the sensitive unit 40 has two sensitive elements 40A and 40B and an optical switch OS.
  • the sensitive elements 40A and 40B have the same configurations as the sensitive elements 31A and 31B of the sensitive unit 31 according to the fourth embodiment, respectively.
  • no dummy section is provided between the sensitive element 40A and the sensitive element 40B.
  • the optical switch OS is, for example, an optical crossbar switch, and it is possible to switch between the bar state and the cross state.
  • the bar state since the light pulse passes only through the sensitive element 40A having the number of turns 2, the sound wave is sensed with relatively low sensitivity.
  • the cross state the optical pulse passes through the sensitive element 40A having the number of turns 2 and the sensitive element 40B having the number of turns 8, so that the sound waves can be sensed with higher sensitivity.
  • the parameters of the sensitive element can be switched as needed.
  • flexible operation such as sensing sound waves with high sensitivity and lowering the sensitivity when a large input is detected becomes possible.
  • the minimum unit of the sensitive element constituting the directional sensor is the configuration shown in FIG. 13, and is represented by a symbol such as 50A in the figure. Since the connection method between a plurality of sensitive elements and the provision of a dummy section as necessary when connecting beads (series connection) are as described above, the description thereof will be omitted in the following embodiments.
  • FIG. 18 schematically shows the configuration of the first example of the sensitive portion according to the fifth embodiment.
  • the sensing portion 50 of FIG. 18 has two sensing elements 50A (also referred to as a first sensing element) and 50B (also referred to as a second sensing element), and is arranged so as to be orthogonal to each other.
  • the sensitive element 50A is arranged along the X axis
  • the sensitive element 50B is arranged along the Y axis.
  • Sensitive elements 50A and 50B are arranged as close as possible so that sound waves in the same sound field can be sensed.
  • the sensitive elements 50A and 50B may be individually connected to an interrogator, may be connected to one interrogator in a string (series connection), or may be a mixture thereof.
  • a dummy section is appropriately provided to ensure sufficient separation from the adjacent sensing element. The meaning of the dummy section and points to be noted in the configuration will be described in the third embodiment.
  • the thin broken line in FIG. 18 shows the isosensitivity curve of each sensitive element, and the thick broken line shows the isosensitivity curve of the entire sensitive portion obtained by synthesizing the isosensitivity curves of the two sensitive elements.
  • FIG. 19 schematically shows the configuration of the second example of the sensitive portion according to the fifth embodiment.
  • the sensitive unit 51 is a modified example of the sensitive unit 50, and the number of sensitive elements is increasing.
  • the sensitive unit 51 has three sensitive elements 51A to 51C (also referred to as first to third sensitive elements, respectively), and is arranged so as to have different orientations by 60 ° from each other in the XY plane.
  • the thin broken line in FIG. 19 shows the isosensitivity curve of each sensitive element, and the thick broken line shows the isosensitivity curve of the entire sensitive portion obtained by synthesizing the isosensitivity curves of the three sensitive elements.
  • the isosensitivity curve of the sensitive portion 50 has a dent
  • the isosensitivity curve of the sensitive portion 51 composed of six sensitive elements has a dent reduced and approaches a circle. This is because the region where the sensitivity is weak is reduced because the angular interval of the arrangement of the sensitive elements is shortened. Therefore, according to this configuration, the shape of the composite isosensitivity curve is closer to a circle than that of the sensitive portion 50, and the orientation can be identified more evenly.
  • FIG. 20 schematically shows the configuration of the third example of the sensitive portion according to the fifth embodiment.
  • the sensitive unit 52 has three sensitive elements 52A to 52C (also referred to as first to third sensitive elements, respectively).
  • Each of the sensitive elements 52A to 52C is arranged so as to be different by 120 ° in the XY plane with the origin as the center.
  • a sensitive element devised so as not to pick up the sound on the back side as shown in FIG. 14 is used. Therefore, the scale of the sensitive element 52 of the sensitive unit 52 is halved as compared with that of the sensitive unit 51.
  • the sound absorbing materials of the three elements may be integrated to form the sound absorbing material.
  • the direction dependence of the sensitivity becomes stronger than that of the sensitive unit 51, but a more economical sensitive unit can be realized by reducing the scale of the sensitive element.
  • FIG. 21 schematically shows the configuration of the first example according to the sixth embodiment.
  • the sensitive unit 60 has three sensitive elements 60A to 60C (also referred to as first to third sensitive elements, respectively) similar to the sensitive unit 51 or 52, and is arranged so as to be orthogonal to each other. Specifically, the sensitive element 60A is arranged along the X axis, the sensitive element 60B is arranged along the Y axis, and the sensitive element 60C is arranged along the Z axis (third direction). This enables three-dimensional orientation identification.
  • the sensitive elements 60A to 60C are arranged as close as possible so that sound waves in the same sound field can be sensed.
  • the sensitive elements 60A to 60C may be combined and arranged as shown in FIG. In this case, the entire sensitive portion can be miniaturized. The same applies to the configuration described below.
  • FIGS. 21 and 22 the isosensitivity curve of each sensitive element and the isosensitivity curve of the entire sensitive portion obtained by synthesizing them are not shown, but the same idea as in FIG. 18 and the like can be extended three-dimensionally. .. It is possible to sense sound waves coming from all angles in three-dimensional space.
  • the synthetic isosensitivity curve becomes closer to a sphere, and sound waves can be sensed more evenly.
  • the number of elements can be reduced by lowering the directivity of the sensitive elements facing the Z-axis direction and covering a wider area with one. You can also do it.
  • the sensitive elements 60A to 60C may be individually connected to the interrogator, may be connected to one interrogator in a string (series connection), or may be a mixture thereof. However, when connecting beads, a dummy section is appropriately provided to ensure sufficient separation from the adjacent sensing element. The meaning of the dummy section and points to be noted in the configuration will be described in the third embodiment.
  • FIG. 23 schematically shows the configuration of the second example of the sensitive portion according to the sixth embodiment.
  • the sensitive unit 61 has a configuration capable of three-dimensional orientation identification, and is realized by four sensitive elements 61A to 61D (also referred to as first to fourth sensitive elements, respectively).
  • the sensitive elements 61A to 61D are arranged so that their major axes are along the center points in the directions toward different vertices of the regular tetrahedron.
  • the four elements are drawn slightly separated from each other for convenience of explanation, but it is desirable to bring them as close as possible while paying attention not to actually cause a shadow.
  • the orientation can be identified more evenly.
  • Embodiments 5 and 6 are techniques for realizing orientation identification by arranging directional sensing elements in different directions. Needless to say, the techniques of the third and fourth embodiments, that is, a technique of combining different parameters of each sensing element and a technique of making the element parameters variable, may be combined.
  • Embodiment 7 In the present embodiment, a sensitive unit whose directivity can be controlled by calculation will be described.
  • the directivity of the sensitive unit 70 according to the seventh embodiment can be controlled by calculation according to a principle similar to that of the phased array antenna.
  • FIG. 24 schematically shows the configuration of the sensitive unit 70 according to the seventh embodiment.
  • the sensitive unit 70 arranges eight sensitive elements 70A to 70H having directivity in the X direction in the Y direction.
  • Each of the sensitive elements 70A to 70H may be bidirectional as shown in FIG. 13 or unidirectional as shown in FIG. 14, but since it is considered that there is little need to collect sound from the back side, FIG. 14 It is considered that the configuration in which the one-way elements of the above are arranged by integrating the sound absorbing material is excellent in economy.
  • each sensing element is connected in series to one interrogator, connected to multiple interrogators, or a mixture thereof. It is the same as the embodiment of the part.
  • the outputs from the sensitive elements 70A to 70H are shifted and added by the virtual phase shifters PS1 to PS8 by the calculation inside the calculation unit 710 (addition by the synthesis unit 711).
  • the direction of the directivity can be changed only by changing the time shift amount, which is a calculation parameter, without changing the physical direction of the sensitive elements 70A to 70H.
  • the calculation unit 710 and the conversion unit 711 may be provided in the interrogator 1.
  • the sensitive elements are arranged linearly (one-dimensionally) for convenience of explanation, but they may be arranged planarly (two-dimensionally) in the same manner as the two-dimensional phased array antenna. Needless to say.
  • the techniques of the third and fourth embodiments that is, a technique of combining different parameters of each sensing element and a technique of making the element parameters variable, may be combined.
  • Embodiments The present invention is not limited to the above embodiments, and can be appropriately modified without departing from the spirit.
  • a dummy section composed of an optical fiber longer than the spatial resolution is inserted between two sensing elements connected in series to one interrogator.
  • the method of realizing the dummy section is not limited to this.
  • the dummy section may be composed of any optical component other than the optical fiber as long as the light can be stored for a predetermined time.
  • the sensitive portion capable of three-dimensional orientation identification may be configured.
  • the sensitive units 50 to 51 two sensitive elements are arranged side by side on one straight line as in the second embodiment. Therefore, as in the second embodiment, the sound may be input from a known direction in advance, and the amplitude output from each sensitive element may be set as the leakage coefficient.
  • the sensitive unit 52 emits sound waves from the direction having the directivity of each sensitive element, records the output of the element that should be originally sensed and the output of the other elements, and sets it as a leakage coefficient. May be good. For example, when a sound wave is emitted from the + direction of the Y-axis, the sensitive element 52A should be sensitive, and if the sensitive elements 52B and 52C are sensitive, it is a leak component. In this way, the leakage coefficient between the elements is calibrated and weighed in advance, and the output of each sensitive element is weighted and synthesized, so that the leakage component can be reduced or removed.
  • sampling frequency in the length of the optical fiber that can be sensed by one interrogator. Therefore, it may be appropriately distributed to a plurality of interrogators.
  • an interrogator based on the principle of receiving backscattered light from an optical fiber has been described, but the present invention has a directional sense of a phenomenon in which an optical fiber expands and contracts due to an incoming sound wave. Since this is a technical disclosure of a method for realizing a sensitive portion having a new function of performing, any method may be used for sensing the expansion and contraction of the optical fiber. A method of receiving light transmitted through an optical fiber may be used.
  • a sensitive unit having a sensitive element composed of an optical fiber is connected to the sensitive unit, pulsed light is sent to the sensitive unit, and the sensitive unit is based on the reflected return light from the sensitive unit.
  • the sensitive element comprises an interrogator that detects sound wave vibrations that the optical fiber senses, and the sensitive element is formed by folding the optical fiber so as to reciprocate a plurality of times along a directional direction that expresses directional sensitivity. Sensor.
  • Appendix 2 The size of the portion of the sensitive element that reciprocates a plurality of times along the direction in which the optical fiber expresses the directional sensitivity is the velocity of the acoustic wave in the medium, and the acoustic wave frequency to be observed.
  • the acoustic sensor according to Appendix 1 which is substantially equal to or smaller than the value divided by twice the upper limit of the band.
  • Appendix 3 The acoustic sensor according to Appendix 1 or 2, wherein the total length of the optical fiber constituting the sensitive element is substantially equal to the pulse length of the pulsed light propagating in the optical fiber.
  • Supplementary note 4 The acoustic sensor according to any one of Supplementary note 1 to 3, wherein the sensitive element is formed by winding the optical fiber in an oval shape having a major axis in the directivity direction.
  • the sensitive element is formed by rotating the optical fiber in a flat spiral shape on a sheet member that can be wound into a tubular shape, and the major axis direction of the flat spiral is the said.
  • the acoustic sensor according to any one of Supplementary note 1 to 3, wherein the seat member is wound, fixed and protected so as to be in the longitudinal direction of a cylinder formed by winding the seat member.
  • the sensitive element includes a tape core wire in which a plurality of optical fibers are arranged in parallel and a tape core wire.
  • the acoustic sensor according to any one of Supplementary note 1 to 4, comprising optical folding portions connected to both ends of the tape core wire.
  • Appendix 8 The acoustic sensor according to Appendix 7, wherein the optical folding portion is composed of a silicon optical circuit.
  • Appendix 9 The acoustic sensor according to Appendix 7, wherein the optical folding portion is composed of a quartz optical circuit.
  • Appendix 10 The acoustic sensor according to Appendix 7, wherein the optical folding portion is also composed of a tape core wire.
  • the sensitive structure is composed of the sensitive element and a sound insulating member.
  • one of the sensitivity directivities existing in two directions in the front-rear direction when viewed from the sensitive element is blocked by providing the sound insulating member.
  • the sensing structure includes first and second sensing elements which are the sensing elements arranged in a straight line so that the directivity directions are the same, and the first and second sensing elements are provided.
  • Appendix 15 The plurality of the sensitive structures are arranged so as to sense the acoustic vibration in the same place.
  • the acoustic sensor according to any one of Appendix 11 to 14.
  • Appendix 16 The acoustic sensor according to Appendix 15, wherein the plurality of sensing structures having different dimensions in the directivity direction of the sensing element are combined in the same directivity direction.
  • Appendix 18 The plurality of sensory structures are connected in series, and a dummy section for holding light is provided between the adjacent sensory structures, and the time during which the dummy section holds light is the pulse of the pulsed light.
  • the acoustic sensor according to Appendix 15 which is longer than the length.
  • Appendix 19 The acoustic sensor according to Appendix 18, wherein the dummy section is composed of an optical fiber and is maintained in a sound-insulated environment.
  • Appendix 23 The acoustic sensor according to Appendix 21 or 22, wherein the plurality of sensitive structures are arranged radially around a predetermined point.
  • Appendix 24 The acoustic sensor according to Appendix 23, wherein the first to third sensitive structures are arranged on a two-dimensional plane with their directivities differed by 60 ° from each other.
  • Appendix 25 The acoustic sensor according to Appendix 23, wherein the first to third sensitive structures are arranged on a two-dimensional plane with their directivities differed by 120 °.
  • the plurality of sensitive structures are arranged on a plane perpendicular to the directivity so that their respective directivities are aligned, and the interrogator obtains a sound wave sensitive waveform obtained by the plurality of sensitive structures.
  • the plurality of sensitive structures function as one sensitive portion as a whole, and by changing the phase shift amount of each sound wave sensitive waveform, the directivity of the sensitive portion is controlled.
  • Multiple optical fibers IS, IS0, IS1 Sound insulation member L1, L2 Straight part MM
  • Micromirror OS Optical Switch P Optical Pulse PS1 to PS8 Phase Shifter ST Sheet Member SUB Substrate VA, 7A, 7B, 7C, 7D V Groove Array VG V Groove WG SiO 2 Optical Waveguide 1 Interrogator 5, 9A, 9B Tape Core Wire 5A Coating 6A, 6B Si Optical Circuits 8A and 8B Folding Circuits 10, 11, 20, 21, 30, 31, 40, 50, 51, 52, 60, 61, 70 Sensing Units 10A-10C, 20A, 20B, 30A, 30B, 31A- 31C, 40A, 40B, 50A, 50B, 51A to 51C, 52A to 52C, 60A to 60C, 61A to 61

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Acoustics & Sound (AREA)
  • Signal Processing (AREA)
  • Geophysics And Detection Of Objects (AREA)
  • Measurement Of Mechanical Vibrations Or Ultrasonic Waves (AREA)

Abstract

光ファイバを用いた高い指向性を有する音響センサを提供する。音響センサ(100)は、感受部(10)及びインテロゲーター(1)を有する。感受部(10)は、光ファイバで構成される感受素子を有する。インテロゲーター(1)は、感受部(10)と接続され、感受部(10)にパルス光Pを送出し、感受部(10)からの反射戻り光(RP)に基づいて、感受部(10)が感受する音響波(SW)を検出する。感受素子は、光ファイバが、指向性感度を発現させる指向性方向に沿って複数回往復するように折り畳まれて成る。

Description

音響センサ
 本発明は、音響センサに関し、特に光ファイバを用いて振動の一種である音をも検出する音及び振動センサに関する。
 光ファイバに音波を当てると光ファイバを通過する光が変調され、その反射光または透過光を検波することで、遠隔地の音波をモニタすることができる。一般に、このようなセンサシステムは、近年DAS(Distributed Acoustic Sensing)と呼称されている。光ファイバセンサは給電不要であり、かつ、検知した信号を光で送るため電気配線が不要である。そのため、落雷の影響を受けない、誘導ノイズを受けにくい、などの特徴を有している。
 今日の光ファイバセンサシステムは、音や振動を感じる光ファイバとインテロゲーター(Interrogator)と呼ばれる検出部とからなる。インテロゲーターは「問い合わせる者」の意味で、光ファイバにプローブ光を当て、光ファイバからの反射光又は透過光を受光し、光ファイバに作用する音波や振動の状態を検出するものである。
 光ファイバは、その周囲の状況を感受する部位であるとともに、その感受部とインテロゲーターとの間での光信号を伝える媒体でもある。通常、「センサ」という用語は感受部を指すが、光ファイバセンサの場合には、光ファイバやインテロゲーターのセットのうち全部又は一部を指し示すことが多い。また、元来、光ファイバは伝送媒体として用いられるものであり、光ファイバの全長のうち、どの部位がセンサの役割を担うのかは明確でない。そこで、周囲状況を感受する意図を持って設けられた光ファイバの部位を、感受素子もしくは感受部と呼んで区別する。
 光ファイバを音響センサとして利用する手法として、センサとなる光ファイバをコイル状、スパイラル状又は網目状に引き回す構成が知られている(特許文献1)。
 人間の可聴音域をセンシングするマイクロフォンには、無指向性マイクロフォンと指向性マイクロフォンとがある。無指向性マイクロフォンは、難しい調整が不要な汎用であり、失敗の少ない録音をしたい用途に向いている。一方、指向性マイクロフォンは、音の来る方向を調べる用途や、聞こうとする音源以外の音をなるべく除外したい専門的な用途に向いている。
 さらに、複数個の指向性マイクロフォンを互いに異なる方向に向けて配置した構成にすれば、無指向性マイクロフォンとは異なる形で、広い範囲に感度を持つ構成を実現できる。本構成によれば、例えば音源の方位を同定し、音源が移動する様子を計測することも可能となる。ただしその実現には、センサ数を増すことに加えて、それらの出力データを処理する能力も必要となる。
 光ファイバを用いた音響や振動を検出するセンサでは、感受部は指向性を有することが知られている。直線状に配置された光ファイバの長手方向に沿う方向に進む音波に対しては高感度であるが、光ファイバの真横から到来する音波に対する感度が無いことが知られている。こうした指向性を均質化して、無指向化する手法として、光ファイバをヘリカル巻きにする構成が提案されている(特許文献2~4)。
 特許文献4の段落[0003]に、光ファイバが音波を検出する原理と指向性が生じる理由が説明されている。音波が光ファイバに与える影響には2つあることが記載されている。第1の効果は(音の疎密波が光ファイバを伝わることで)光散乱点間の間隔が変化する効果、すなわち光ファイバが伸縮する効果であり、第2の効果は光速が変化する効果(すなわち屈折率が変化する効果)である。光ファイバにプローブ光を入射し、その後方散乱光をモニタすることで、光ファイバ各点の状況を検出する場合、第1の効果は光ファイバの長手方向が伸縮する場合のみ検知可能なので、強い指向性をもつことになる。一方、第2の効果は指向性をもたないが、第1の効果の数分の一程度の弱い効果である。そのため、一般的なDASは、もっぱら第1の効果を利用して、音波や振動を検出する。よって、このようなDASは、光ファイバの延在方向に伝搬する音波や振動を高感度に検出する指向性を有することとなる。
 光ファイバにプローブ光を入射して、その後方散乱光をモニタすることにより、光ファイバ各点の伸縮状況をモニタする技術も、特許文献10及び11、非特許文献2などに開示されている。
 特許文献2及び3などに開示されているように、光ファイバ(感受部)をヘリカル巻きしたケーブル構成とすることは光ファイバセンシング分野において以前から行われていた。これがDASにおいて音波検知の指向性を均質化する効果も持つことが認識され、その最適化の技術が例えば特許文献4に開示されている。
 また、感受部を構成するうえで、音や振動を光ファイバとは別の物体で感受し、感受した振動をさらに光ファイバに伝えてセンシングするという構成も開示されている(特許文献5及び6)。
 光ファイバセンサが有する指向性を利用する構成も開示されている(特許文献7)。ただし、この先行技術では、特許文献5及び6に開示されているのと類似の、光ファイバを心棒(マンドレル:mandrel)に巻き付ける構成を基本素子としている。音波はまず心棒で感受され、その振動を、巻き付けた光ファイバの伸縮で読み取るものである。また配置方位として、直交した3軸に向ける形態のみが開示されている。この構成では、複数個の指向性を持つ光ファイバセンサを三軸直交配置している。すなわち、複数個の指向性マイクロフォンが、それぞれ異なる方向に向けて配置されている。これにより、全方位に対して感度を有し、かつ、音源の方位や移動を計測できる光ファイバセンサを提供している。
 さらに、長尺のセンサ用光ファイバをシート状にまとめて、取り扱いを容易にする技術が開示されている(特許文献8及び9)。
米国特許第4,162,397号明細書 米国特許第4,524,436号明細書 特開昭61-151485号公報 国際公開第2013/090544号 特開平2-107927号公報 特開平6-339193号公報 国際公開第2007/130744号 特開昭60-210791号公報 特開平8-086920号公報 特開昭59-148835号公報 特許第2746424号公報
Y. M. Sabry, D. Khalil, and T. Bourouina, "Monolithic silicon-micromachined free-space optical interferometers onchip", Laser Photonics Reviews, 2015, vol. 9, no. 1, pp. 1-24. R.Posey Jr., G.A. Johnson and S.T. Vohra, "Strain Sensing based on coherent Rayleigh scattering in an optical fibre", Electronics Letters, 2000, vol.36, No.20, pp.1688-1689.
 音波などの媒質の振動を検知するセンサでは、なるべく鋭い指向性を有することが望ましいことは、言うまでもない。よって、鋭い指向性を実現するため、光ファイバセンサが持つ指向性を積極的に利用して、音響センサとなる光ファイバ感受部の指向性を向上させることが求められている。
 また、鋭い指向性を持つセンサ部を複数組み合わせて、より鋭い指向性や、素子を傾けずに指向性を振ることができるセンサ集合体を実現する技術は、これまで存在しなかった。
 本発明は、上記の事情に鑑みて成されたものであり、光ファイバを用いた高い指向性を有する音響センサを提供することを目的とする。
 本発明の一態様である音響センサは、光ファイバで構成される感受素子を有する感受部と、前記感受部と接続され、前記感受部にパルス光を送出し、前記感受部からの反射戻り光に基づいて、前記感受部が感受する音波振動を検出するインテロゲーターと、を備え、前記感受素子は、前記光ファイバが、指向性感度を発現させる指向性方向に沿って複数回往復するように折り畳まれて成るものである。
 本発明によれば、光ファイバを用いた高い指向性を有する音響センサを提供することができる。
実施の形態1にかかる感受部の斜視図である。 感受部の形状を平面かつ模式的に説明する図である。 実施の形態1にかかる音響センサの構成を模式的に示す図である。 感受部と光パルスとの関係を示す図である。 感受部の変形例の形状を平面かつ模式的に説明する図である。 シート部材上に形成した感受部の構成を模式的に示す図である。 テープ心線の構成を示す図である。 V溝アレイの例を示す図である。 テープ心線と光折り返し回路を結合した光折り返し部パッケージの外観の一例を示す図である。 光の折り返し部の第1の構成例を示す図である。 光の折り返し部の第2の構成例を示す図である。 光の折り返し部の第3の構成例を示す図である。 実施の形態2にかかる感受部の構成を模式的に示す図である。 実施の形態2にかかる感受部の変形例の構成を模式的に示す図である。 実施の形態3にかかる感受部の構成を模式的に示す図である。 実施の形態3にかかる感受部の構成を模式的に示す図である。 実施の形態4にかかる感受部の構成を模式的に示す図である。 実施の形態5にかかる感受部の第1の例の構成を模式的に示す図である。 実施の形態5にかかる感受部の第2の例の構成を模式的に示す図である。 実施の形態5にかかる感受部の第3の例の構成を模式的に示す図である。 実施の形態6にかかる感受部の第1の例の構成を模式的に示す図である。 実施の形態6にかかる感受部の第1の例の変形構成を模式的に示す図である。 実施の形態6にかかる感受部の第2の例の構成を模式的に示す図である。 実施の形態7にかかる感受部の構成を模式的に示す図である。
 以下、図面を参照して本発明の実施の形態について説明する。各図面においては、同一要素には同一の符号が付されており、必要に応じて重複説明は省略される。
 実施の形態1
 実施の形態1にかかる感受部を図1の斜視図および図2の平面図を用いて説明する。この感受部10は、例えば図3の音響センサ100のようにインテロゲーター(Interrogator)1と接続することで、そこに到来する音や振動をセンシングするものである。以下では、感受部を構成する基本単位を感受素子と称する。感受部は1つ以上の感受素子および後述する遮音材や形状保持材などを組み合わせたものの呼称として用いる。図1の感受部を構成する感受素子には、符号10Aを付している。図2および図3の感受素子10Aは、光ファイバFを1周以上巻いて構成される最も基本的な感受素子の構成例である。本実施の形態では、インテロゲーター1はパルス光Pを感受部10へ出力し、その戻り光(反射戻り光)RPを受信する。感受素子10Aの形は、卵形、長円形、楕円形、角丸長方形(Obround)など、平面視でオーバル形状となるように構成されることが望ましい。当該形状により、感受部10は、巻線の長径方向(図のX軸方向)に到来する音波や圧力などの振動SWに対して高い感度を有する、すなわち指向性を示す。本実施の形態では感受素子の典型的な実現形状として光ファイバを偏平なコイル状に巻いたものとして説明する。
 なお、以下においては、音響センサが検出する振動は、音波や圧力などの縦波だけでなく、横波も含む、各種の振動現象であるものとする。
 図2及び図3に示すように、感受素子10Aの、平行に配置された直線部をそれぞれL1及びL2と称する。直線部L1及びL2の延在方向がX方向であり、紙面上でX方向(第1の方向)に直交する方向をY方向(第2の方向)とする。感受素子の周囲の振動伝搬媒質には、空気、水、地中(土砂や岩など)、など様々なものが考えられる。典型的には、それらの疎密波(縦波)が伝搬しながら光ファイバを伸縮させて、その様子がインテロゲーターにより検出される。したがって、感受素子10Aは、直線部L1及びL2の延在方向(X方向)を伝搬する振動波SWに対して選択的な感度すなわち指向性を有する。なお、図3では、感受素子10Aの構成する感受素子(巻線)の外形の最大寸法であるX方向の長径をLx、最小寸法であるY方向の短径をLyとして表示している。
 X方向に伝搬する振動波に対する感度を高めるため、LxがLyよりも大きくなる(Lx>Ly)ように感受素子が構成される。例えば、X方向の伝搬する振動に対する感度を高めるため、LxをLyの2倍以上(Lx≧2Ly)としてもよい。
鋭い指向性を実現するため、すなわちLxとLyとの比(Lx/Ly)を大きくするためには、Lyは短い方が望ましい。しかし、光ファイバには最小曲げ半径の制約があるため、感受素子の形状としてもその制約を受ける。例えば、ITU-T(International Telecommunication Union Telecommunication Standardization Sector) G.652に準拠している一般的な光ファイバの最小曲げ半径は30mmである。なお、近年では光の閉じ込めを強化することで許容最小曲げ半径を5mmまで小さくしたITU-T G.657.B3に準拠する光ファイバも実用に供されており、このような光ファイバを用いることでLyを短くしてもよい。
 次いで、感受素子10Aの設計パラメータについて検討する。例えば、特許文献1では、Lxを観測対象の音の波長の1/2以内としている。感受素子10Aを小型化する観点からはLxの寸法は短いことが望ましいが、その分、検出感度が低下する。また巻数Tを増やすことで(自ずと巻線の全長Ltが長くなる)、感度を向上できる。ただし巻線の全長Ltを長くしても、感度は音響センサ100の空間分解能Lpの制約を受ける。
 図4に、感受素子と光パルスとの関係を示す。図4の例では、感受素子10Aの全長Ltと光パルスPのパルス幅Wpとを比較するため、感受素子10Aの巻線をほどいて直線状の光ファイバとして表示している。音響センサ100では、感受素子10Aが設けられた光ファイバに光パルスPを伝搬させ、感受素子10Aのうちで音波が到来している部分を光パルスが通過する際に、レイリー散乱を生じる散乱点が揺すられることで、当該光パルスが位相変調される。この例では、感受素子10Aの全長Ltは、光パルスPのパルス幅Wpよりも長くなっている。この場合、感受素子10Aの全長Ltの長さにかかわらず、パルス幅Wpの区間に到達した音のみによって光パルスPが変調される。つまり、この例では、感受素子10Aの全長Ltではなく、パルス幅Wpによって決定されることとなる。以下では、光パルスPのパルス幅をWp、音響センサ100の空間分解能をLpとする。(空間分解能Lpは、演算によってパルス幅Wpより長くすることは可能だが、パルス幅Wp未満にすることはできない。)
 つまり、感受素子10Aの感受素子を構成する巻線の巻数Tを増やして全長Ltを空間分解能Lpより長くしても、感度は空間分解能Lpによって制約されることが理解できる。
 以上より、検出対象の音の媒質中における速度をv、観測対象とする音響波周波数帯の上限をfとすると、v=λ×fであるから、巻線の設計について以下の式が成立する。これらの式[1]及び[2]を満たすようにLx、Ly及び巻線の巻数Tを設計することで、巻線の好適な設計値を導くことができる。
Figure JPOXMLDOC01-appb-M000001
Figure JPOXMLDOC01-appb-M000002
 ここで、式[1]及び[2]を用いて、巻線の設計値の具体例を示す。
計算例1
 f=5kHz、Wp=Lp=8m、v=1500m(水中)である場合、Lx≦15cmである。Lx=15cm、Ly=3cmとすると、T=23巻が適切な設計値となる。
計算例2
 f=100Hz、Wp=Lp=8m、v=1500m(水中)である場合、Lx≦7.5mである。Lx=1m、Ly=3cmとすると、T=4巻が適切な設計値となる。
 言うまでもないが、Lx及びTを式[1]及び[2]で導出されるものよりも小さくした場合には、感度は低下する。Tを式[1]及び[2]で導出されるものよりも大きくしても、感度含めた特性の向上に寄与しない光ファイバを増やすことになる。
 ここまでは、感受素子は周回する光ファイバによって構成されるオーバル形状を有するものとして説明したが、多少の変形があっても本発明の効果が損なわれてしまうことはない。実装状況によっては多少の変形が生じることもあり得る。例えば、オーバル形状の環がよじれて(ツイストして)、8の字の形状となる場合でその影響度合いを推測する。
 図5に示す感受素子10Bは、感受素子10Aがツイストしてしまい8の字状になったものである。この場合、感受素子10Bの光ファイバ長のうち、X方向の長さは、感受素子10Aと同様に2Lxであるのに対して、Y方向の長さは感受素子10Aの2倍の4Lyとなっている。指向性が光ファイバ長のY方向に対するX方向の比に比例すると簡単化して考えると、感受素子10Bは、感受素子10Aと比べて指向性が半分近くに低下してしまうことになる。ただしそれでもY方向に対するX方向の比がまだ2を大きく超えていれば、X方向に指向性を持った感受素子として動作することが理解される。
 本実施の形態では、光ファイバを偏平なコイル状に巻いたものを感受素子の実現形状の例に用いて説明したが、巻線状にすることは必須要件ではない。指向性を得たい方向と平行な方向に光ファイバを折りたたんで往復させ、指向性を持ちたくない方向と平行な方向の光ファイバ経路は極力短くして、両者の比を大きくとることが本発明の効果を得るために必要とされる。光ファイバは急に曲げることが難しいために、偏平コイル状が好適な実施例の一つとなっている。
 以上述べた感受素子を取り扱いしやすいようにパッケージ化する構成例を説明する。音波は空気や水などの音波を伝える媒体を介して感受素子10Aに到達するので、感受素子10Aは音波を伝える媒体と接触している必要が有る。しかし、光ファイバは機械的強度が小さいので傷つきやすい。そのため、光ファイバを保護するための部材(保護部材)を設けることが望ましい。また、光ファイバだけでは棒状の形を維持することはできないので、形状を維持するための形状保持部材が必要となる。なお、これらの保護部材及び形状保持部材は、測定対象の音波や振動の光ファイバへの伝搬をなるべく阻害しない素材で構成されることが望ましい。
 具体的には、光ファイバの形状を保持及び保護するために、コイル状に巻いた光ファイバを樹脂でポッティング(resin potting)したり、折り畳んだ光ファイバをシート状にしてさらにそのシートを筒状に巻くなどの構成が考えられる。
 図6に、シート部材上に形成した感受素子10Cの構成を模式的に示す。感受素子10Cは、感受素子10Aの変形例であり、1本の光ファイバを折り返して構成したファイバペアをX-Y平面上で渦巻き状に巻くことで構成される。図6の上段に示すように、光ファイバを感受素子10Cの巻線の中心軸に向かって、時計回り(第1の周回方向)に渦状に周回させる。そして、中心軸近傍で周回方向が反時計回り(第2の周回方向)となるように光ファイバを折り返す。その後、光ファイバを感受素子10Cの巻線の外周方向に向かって、反時計回りに渦状に周回させる。これにより、シート部材ST上に巻線を構成することができる。
 図6の下段に示すように、シート部材STは、X軸方向を軸として筒状に巻き取りが可能である。これにより、巻き取り後でも、感受素子10Cの長径方向はX軸方向のままであるので、指向性が維持される。巻き取りによって感受素子10Cがシート部材STで包まれるので、感受素子10Cを確実に保護することができる。
 次いで、感受素子10Aを、広く普及しているテープ心線(リボン心線とも呼ばれる)を利用して実現する構成例を説明する。図7に、テープ心線5の構成を示す。テープ心線5は、複数の光ファイバFGが被覆5Aに覆われてテープ状に並んで配置されている。そのテープ心線の光ファイバの端点を、折り返すように接続していけば、光ファイバを巻いたのと同じ構成が実現できる。テープ心線を用いることで、機械的に不安定で傷つきやすい光ファイバを安定的に管理しやすくなる。
 テープ心線を用いる構成における、端点の折り返し部の構成例について以下に説明する。その際、テープ心線の端部と光折り返し部との接続方法として典型的な構成は、図8に示すようなV溝アレイを用いた受動アライメントによる接続である。光折り返し部の光入出力部にV溝アレイを一体成型しておき、テープ心線端部の被覆を除去してV溝アレイに載せて固定することで、光折り返し部との結合を得るものである。
 図8は、V溝アレイによる結合部分を拡大して示している。V溝アレイVAは、基板SUBに複数のV溝VGが配列されており、V溝VGのそれぞれに光ファイバを載せる。図8に示すように、V溝VG上で、光ファイバF1と光ファイバF2とを接合(バットジョイント)する。接合部の反射を十分抑える必要があることから、屈折率整合液体などで周囲を満たしてもよい。
 図9は、テープ心線と光折り返し回路を結合した光折り返し部パッケージの外観の一例を示している。テープ心線を用いた感受素子の光折り返し部パッケージRTにおいて、光折り返し回路とテープ心線5は、V溝アレイVAを用いて光学的に接続され、感受素子としての取り扱いが可能な強度を備えるように固定されている。
 以下、図10~12を参照して、3つの具体的な光折り返し部の構成例について説明する。なお、図10では、光ファイバの経路の理解を容易にするため、テープ心線5の被覆5Aの表示を省略している。
 図10に、光の折り返し部の第1の構成例を示す。例えば、Si基板上に、エッチングなどよって、上述したV溝アレイとマイクロミラーアレイを作製する。(このような光回路作成技術は例えば、非特許文献1を参照)この例では、光折り返し部であるSi光回路6A(第1の光回路とも称する)及び6B(第2の光回路とも称する)の間にテープ心線5を延在させ、テープ心線5の両端それぞれの光ファイバをSi光回路6A及び6BのV溝アレイ7A及び7Bでアライメントする。Si光回路6Aには、アライメントされた光ファイバに対向して、2本の光ファイバの端部を光学的に接続するように、1つ以上のマイクロミラーMM(第1のミラーとも称する)が設けられている。光路を屈折率整合流体で満たすなどの、光ファイバ端部でのフレネル反射戻り光を抑制する措置を行う。Si光回路6Aでは、テープ心線5の2本光ファイバの端部には光ファイバFが接続され、その一方(接続用光ファイバとも称する)はインテロゲーター1又は他の感受素子と接続される。(接続用光ファイバFとの接続は、光回路6Aをスルーして、外部に出てから行ってもよい。)Si光回路6Bにも、アライメントされた光ファイバに対向するように1つ以上のマイクロミラーMM(第1のミラーとも称する)が設けられている。これにより、Si光回路6A及び6Bとテープ心線とによって、光が規定回数往復する光経路が構成され、感受素子となる。
 図11に、光の折り返し部の第2の構成例を示す。図11では、既知の光回路の構成技術であるSiO光導波路を用いている。この例では、テープ心線5の両端それぞれに、曲線のSiO光導波路WGで構成された光の折り返し回路8A(第1の光回路とも称する)及び8B(第2の光回路とも称する)が設けられている。本構成では、図10のマイクロミラーに代えて、2本の光ファイバの端部がSiO光導波路WGによって接続されている。この場合、SiO光導波路の曲げの許容半径は数mm程度になるため、第1の例のSi光回路と比べて、部品寸法は大きくなる。
 図12に、光の折り返し部の第3の構成例を示す。この例は、第2の例のSiO光導波路に代えて折り返しにもテープ心線を用いるものである。折り返し対象のテープ心線5の両端を、屈曲させたテープ心線9A及び9Bで折り返している。図12では、テープ心線9A(第1の光回路とも称する)及び9B(第2の光回路とも称する)の被覆の外形線を破線で表示している。この場合、折り返し部のテープ心線9A及び9Bは光ファイバを含んでいるため、数cm程度の最小曲げ半径を確保する必要がある(図11と図12とでは折り返し部のサイズが同じように表示されているが、これは図の表記上の都合であって図12の折り返し部は図11の折り返し部よりも数倍大きい)。この場合、折り返し部のテープ心線9A及び9Bの光ファイバが振動に対する感度を持ってしまうため、不要な振動を受けないよう、適切な防音や防振を考慮して保持することが望ましい。
テープ心線5とテープ心線9A、9Bとの接続は、例えばV溝アレイ7C、7Dで接続されている。V溝アレイ7C及び7Dは、Si基板上に形成されてもよいし、SiO基板に形成されてもよい。またテープ心線同士を融着接続する機器が広く普及しているので、それを用いてもよいが、そのためにはテープ心線9A及び9Bの折り返し部を、その接続端点がテープ心線と同形状になるように、例えば図6でも利用した光ファイバシートの技法を使うなどしてフォーミングしておく必要がある。
 第1~第3の例のいずれでも、折り返し部の接続点での反射を十分小さいレベルに抑えることが、光ファイバセンシング用途では重要となることは、言うまでもない。これらの例ではV溝アレイによる接続の方法を説明したが、光ファイバ同士を接続する方法として一般的な融着接続を用いてもよい。
 以上、本構成によれば、感受素子を構成する光ファイバ巻線の長径方向に高い感度を示す指向性を有する音響センサを実現することができる。
 実施の形態2
 実施の形態1では、指向性を有する感受素子について説明したが、この構成では、音波が右から到来したのか、左から到来したのかの区別はできない。そこで実施の形態2では、その区別を可能とする構成について説明する。
 図13に、実施の形態2にかかる感受部20の構成を模式的に示す。感受部20は、2つの感受素子20A(第1の感受素子とも称する)及び20B(第2の感受素子とも称する)を有する。感受素子20A及び20Bは、それぞれ実施の形態1にかかる感受素子10Aの感受素子と同様の構成を有する。感受素子20A及び20Bは、長径がX方向と平行な軸に沿うように、X方向に並んで配置される。
 感受素子20Aと感受素子20Bとの間には、遮音部材ISが設けられる。これにより、図13の右(X+側)から伝搬してきた音波は感受素子20Aには到達するが、遮音部材ISで遮音されて感受素子20Bには到達しない。図13の左(X-側)から伝搬してきた音波は感受素子20Bには到達するが、遮音部材ISで遮音されて感受素子20Aには到達しない。
 よって、図13の右(X+側)から伝搬してきた音波は感受素子20Aが感受し、図13の左(X-側)から伝搬してきた音波は感受素子20Bが感受する。これにより、本構成によれば、実施の形態1では区別できなかった、2つの音波の到来方向を一つに絞り込むことが可能となる。
 なお、遮音部材ISは、音を吸収する遮音部材として構成してもよいし、音を反射する反射部材として構成してもよい。反射部材を用いる場合には、反射した音がさらにいずれかで反射してエコーを生じるなどの支障が生じないように、配置等について留意することは、言うまでもない。
 なお、本構成では、遮音部材ISによって消音しきれない場合でも、2つの感受素子の一方が音波を強く感受することとなる。この場合、2つの感受素子での感受結果の差分を求める演算処理を行うことで、音波を好適に検出することができる。
 感受素子20Aの出力をA、感受素子20Bの出力をBとすると、右(X+側)から伝搬する音波SW1及び左(X-側)から伝搬する音波SW2は、以下の式で求めることができる。これにより、遮音部材ISによって消音しきれない音の影響を緩和することができる。

 PA=A-B・γBA
 PB=B-A・γAB

 但し、係数γBA及びγABは、校正作業によって予め求められた、遮音部材ISの音波透過率である。校正作業において、右から音を伝搬させた状態でB/Aを計算することでγABを求め(γAB=B/A)、左から音を伝搬させた状態でA/Bを計算することでγBAを求める(γBA=A/B)ことができる。
 この実施の形態2の構成は、感受素子10Aを2つ使用した構成をしているが、以降ではこれを基本単位として、それを複数組み合わせた構成を説明するので、その都合上、以降では実施の形態2の構成も感受素子と称する。
 実施の形態2の変形例として、図14に示す感受部21を説明する。感受素子20Bの背面側から到来する音を検知する必要がない場合は、感受素子10Aを2つ使用する必要はなく1つで十分である。遮音部材ISにより、感受したい方向とは反対側から到来する音は遮音される。この感受部21も感受素子10Aと遮音部材ISを組み合わせた複合体であるが、以降ではこれを基本単位として複数組み合わせた構成を説明するので、その都合上、感受部21の構成を感受素子と称する。
 実施の形態3
 以上説明した感受素子を基本単位として、それらを組み合わせた応用形態を、以降で説明する。複数の感受素子を組み合わせた複合部を感受部と称して説明する。なお、本実施の形態以降で説明する感受部において組み合わせることができるのは感受素子だけでなく、図13の感受部20及び図14の感受部21のように感受素子と遮音部材とからなる構造を複数組み合わせてもよい。したがって、本実施の形態以降においては、感受部において組み合わされ複数の受光素子のそれぞれと、複数の感受部20のそれぞれ、及び、複数の感受部21のそれぞれを、感受構造と総称するものとする。
 図15に、実施の形態3にかかる第1の構成例である感受部30の構成を模式的に示す。感受部30は、互いに長径の長さが異なる2つの感受素子30A及び30Bを組み合わせた実施例である。感受素子30A及び30Bは、実施の形態1または実施の形態2と同様に構成されるが、互いに長径の長さが異なっている。この例では、感受素子30Aの長径LxAは、感受素子30Bの長径LxBよりも長くなっている。感受素子30A及び30Bは、長径がX方向と平行な軸に沿うように、Y方向に並んで配置される。感受素子30A及び30Bは、同一の音場の音波を感受できるように、近接して配置される。
 感受素子30Aと感受素子30Bとを直列接続して、共通のインテロゲーターでセンシングする場合には、両者の間に所定の光保持(storage)時間を有するダミー区間Dが設けられる。所定の光保持時間とは、光パルス幅Wpよりも十分な余裕を持って長い時間である。ダミー区間Dの典型的な実施形態は光ファイバで構成された遅延線である。例えば光パルス幅Wpが40nsである時、光ファイバ内での光パルス長さはおよそ8mであるから、光ファイバ遅延線は8m以上とする。このダミー区間の設置により、1つの光パルスが、感受素子30Aと感受素子30Bとにまたがって伝搬することを防止できるので、感受素子30A及び30Bでの音波のセンシング情報の漏れ込みを防ぐことが可能となる。また、ダミー区間D自体で音波を感受してしまうことを防止するため、ダミー区間Dは必要に応じて遮音部材IS0の内部に収容することが望ましい。
 感受素子30A及び30Bで光パルスが通過するタイミングがたとえわずかにずれていても、音波の変化に比べて光が光ファイバを伝搬する速度の方が遙かに速いため、実質的に同じ音波状態を感受できる。そのうえで上述したように、感受素子30Aの長径LxAは感受素子30Bの長径LxBよりも長いため、両者の光ファイバ長がほぼ同じとすると、感受素子30Aは比較的に広帯域かつ低感度であり、感受素子30Bは比較的に狭帯域かつ高感度である。よって、本構成によれば、感受帯域及び感度が異なる感受素子を組み合わせることで、より広範囲の条件で音波を感受することが可能となる。
 図16に、実施の形態3にかかる第2の構成例である感受部31の構成を模式的に示す。この構成例では、同じ外形を有するが巻数が異なる複数の感受素子の並列配置について説明する。
 感受部31は、実施の形態1または実施の形態2と同様に構成される3つの感受素子31A~31Cを有する。感受素子31Cは、計算例1での設計値で示される構成(巻数32)を有するものである。これに対し、感受素子31A及び31Bは、感受素子31Cと外形が同じであるが、感受素子31Cよりも巻数が少なくなるように構成される。ここでは、感受素子31Bの巻数を8、感受素子31Aの巻数を2としている。つまり、感受素子31A及び31Bは最大感度を発揮するための巻数32よりも少ない巻数であるため、感受素子31Cよりも低感度となる。感受素子31A~31Cは、長径がX方向と平行な軸に沿うように、Y方向に並んで配置される。
 感受素子31A~31Cを直列接続して、共通のインテロゲーターでセンシングする場合には、実施の形態3の第1の構成例と同様に、光パルス幅Wpよりも十分長い光ファイバで構成されるダミー区間が間に挿入される。これは必要な理由は前述のとおりである。本構成では、感受素子31Aと感受素子31Bとの間にはダミー区間DA、感受素子31Bと感受素子31Cとの間にはダミー区間DBが設けられている。また、ダミー区間DA及びDBで音波を感受してしまうことを防止するため、ダミー区間DA及びDBは遮音部材IS1の内部に収容することが望ましい。
 一般に、高感度の感受素子は大振幅の入力の際に出力値が飽和しやすく、低感度の感受素子に大振幅の入力があっても感受素子は飽和しにくい。そのため本構成では、感度の異なる感受素子を組み合わせた感受部の構成としている。これにより、広いダイナミックレンジを実現できる。
 感度を下げることは、Ltよりも光パルス幅Wpを短くしても得られるが、光パルス幅を狭くするには光変調器およびその駆動回路の動作速度を速める必要があるなど物理的に制約がある場合もある。また光パルス幅Wpを変更すると別のセンサ特性に影響する恐れもある。それに対して本実施の形態を用いれば、光パルス幅Wpを変えることなく広いダイナミックレンジを実現できる。
 本実施の形態では、感受素子を2種類、もしくは3種類組み合わせた例について説明したが、それ以上の感受素子を組み合わせた構成としてもよいことは言うまでもない。
 実施の形態4
 図15や図16の構成は、感受素子のパラメータは固定的であった。それに対して、本実施の形態では、光スイッチと組み合わせることでパラメータを切り替え可能な感受部について説明する。図17に、実施の形態4にかかる感受部40の構成を模式的に示す。この例は図16にあるような巻き数の異なる感受素子を複数用意する代わりに光スイッチで特性を切り替える目的の構成である。感受部40は、2つの感受素子40A及び40Bと、光スイッチOSとを有する。感受素子40A及び40Bは、それぞれ実施の形態4にかかる感受部31の感受素子31A及び31Bと同様の構成を有する。感受部40では、感受素子40Aと感受素子40Bとの間に、ダミー区間を設けない。
 光スイッチOSは、例えば光クロスバー(crossbar)スイッチであり、そのバー(bar)ステートとクロス(cross)ステートとの間で切り換えが可能である。バー(bar)ステートの場合には、光パルスは巻数2の感受素子40Aだけを通過するので、比較的低感度で音波を感受することとなる。クロスステートの場合には、光パルスは、巻数2の感受素子40Aと巻数8の感受素子40Bとを通過することとなるので、より高感度で音波を感受できる。
 すなわち、本構成によれば、必要に応じて感受素子のパラメータを切り換えることができる。これにより、例えば、通常は高感度で音波の感受を行い、大きな入力を検知した場合に感度を下げるといった柔軟な運用が可能となる。
 以上説明した指向性を持つ感受素子を、異なる方向に向けて複数組み合わせて用いる実施の形態を、以降では説明していく。指向性を持つ感受部を構成する感受素子の最小単位は図13に示す構成とし、図中では50Aのようなシンボルで表記する。なお複数の感受素子間の接続方法、および数珠繋ぎ(直列接続)する場合に必要に応じてダミー区間を設けることについては前述のとおりであるので、以下の実施形態説明ではその説明は省略する。
 実施の形態5
 本実施の形態では、指向性を有する感受素子を、互いに異なる角度で交わるように配置して、2次元の方位同定を可能とする感受部について説明する。図18に、実施の形態5にかかる感受部の第1の例の構成を模式的に示す。図18の感受部50は、2つの感受素子50A(第1の感受素子とも称する)及び50B(第2の感受素子とも称する)を有し、互いに直交するように配置されている。具体的には、感受素子50AはX軸に、感受素子50BはY軸に沿うように配置される。これにより2次元の方位識別が可能となる。浅海エリアのように空間がほぼ2次元で表せる場合には2次元の方位同定ができれば十分である。
感受素子50A及び50Bは、同一の音場の音波を感受できるように、なるべく近接して配置される。感受素子50A及び50Bは、それぞれ単独にインテロゲーター(Interrogator)に接続されてもよいし、1つのインテロゲーターに数珠繋ぎに(直列接続)されてもよいし、その混在でもよい。ただし数珠繋ぎする場合は、隣接する感受素子との分離を十分に確保するために適切にダミー区間を設ける。ダミー区間の意味及び構成上の留意点は、実施の形態3にて説明している。
 本構成によれば、異なる方向の音波を区別して感受できるので、各感受素子の出力を分析して音波の到来方向を識別可能な音響センサを実現できる。
 図18の細い破線は各感受素子の等感度曲線を示し、太い破線は2つの感受素子の等感度曲線を合成した感受部全体の等感度曲線を示している。このように、2つの感受素子を配置することで、X-Y平面において、あらゆる角度から到来する音波を感受することが可能となる。
 次いで、図19に、実施の形態5にかかる感受部の第2の例の構成を模式的に示す。感受部51は、感受部50の変形例であり、感受素子の数が増えている。感受部51は、3つの感受素子51A~51C(それぞれ、第1~第3の感受素子とも称する)を有し、X-Y平面において互いに60°ずつ向きが異なるように配置される。
 図19の細い破線は各感受素子の等感度曲線を示し、太い破線は3つの感受素子の等感度曲線を合成した感受部全体の等感度曲線を示している。このように、3つの感受素子を放射状に配置することで、X-Y平面において、あらゆる角度から到来する音波を感受することが可能となる。
 また、感受部50の等感度曲線には凹みが存在しているのに対し、6つの感受素子からなる感受部51の等感度曲線では凹みが低減されて円に近づいている。これは、感受素子の配置の角度間隔が縮まったことで、感度が弱い領域が減少したためである。よって、本構成によれば、感受部50と比べて、合成等感度曲線の形状がより円に近づき、よりまんべんなく方位同定できることになる。
 次いで、図20に、実施の形態5にかかる感受部の第3の例の構成を模式的に示す。感受部52は、3つの感受素子52A~52C(それぞれ、第1~第3の感受素子とも称する)を有する。感受素子52A~52Cのそれぞれは、原点を中心として、X-Y平面において120°ずつ異なるように配置される。ここで用いる感受素子は、図14に示すような背面側の音を拾わないように工夫した感受素子を用いる。そのため感受部52は、感受部51に比べて、感受素子の規模が半減している。3つの素子の吸音材を統合して構成しても構わない。
 本構成によれば、感受部51と比べて感度の方向依存性が強くなってしまうものの、感受素子の規模を減らすことでより経済的な感受部を実現できる。
 実施の形態6
 実施の形態5では2次元の方位識別を可能とする感受部について説明した。実施の形態6では、3次元の方位識別を可能とする感受部について説明する。図21に、実施の形態6にかかる第1の例の構成を模式的に示す。感受部60では、感受部51又は52と同様の3つの感受素子60A~60C(それぞれ、第1~第3の感受素子とも称する)を有し、互いに直交するように配置される。具体的には、感受素子60AはX軸に、感受素子60BはY軸に、感受素子60CはZ軸(第3の方向)に沿うように配置される。これにより3次元の方位識別が可能となる。感受素子60A~60Cは、同一の音場の音波を感受できるように、なるべく近接して配置される。
 感受素子60A~60Cの複合が可能であれば複合して図22のように配置してもよい。この場合、感受部全体の小型化が可能となる。以下に述べる構成でも同様である。
 図21及び22では、各感受素子の等感度曲線およびそれらを合成した感受部全体の等感度曲線は図示を省略しているが、図18などと同様の考えを3次元に拡張することができる。3次元空間のあらゆる角度から到来する音波を感受することが可能となる。
素子数をさらに増やせば、合成等感度曲線が球に近づき、よりまんべんなく音波を感受できることになる。しかしながら利用状況によっては、特定の方向については精緻に調べたいが、別の特定の方向はおおざっぱで構わないので経済的に実現したい、というケースも考えらえる。例えばX-Y平面は緻密に調べるが、Z軸方向はおおざっぱでよいというような場合は、Z軸方向を向く感受素子の指向性を下げて1つでより広範囲をカバーすれば素子数を減らすこともできる。
 感受素子60A~60Cは、それぞれ単独にインテロゲーターに接続されてもよいし、1つのインテロゲーターに数珠繋ぎに(直列接続)されてもよいし、その混在でもよい。ただし数珠繋ぎする場合は、隣接する感受素子との分離を十分に確保するために適切にダミー区間を設ける。ダミー区間の意味及び構成上の留意点は、実施の形態3にて説明している。
 次いで、図23に、実施の形態6にかかる感受部の第2の例の構成を模式的に示す。感受部61は、3次元の方位識別が可能な構成で、それを4つの感受素子61A~61D(それぞれ、第1~第4の感受素子とも称する)で実現している。感受素子61A~61Dは、中心点を中心として、それぞれ正四面体の異なる頂点に向かう方向に長径が沿うように配置される。図23では説明の都合上、4つの素子をやや離して描いているが、実際には影が生じぬよう留意しつつなるべく近接させることが望ましい。
 本構成によれば、それぞれ異なる方向に指向性を有する感受素子61A~61Dでの音波の感受を区別することができるので、各感受素子の感受結果を合成して3次元の音波の到来方向を識別できる音響センサを実現できる。
 また、感受部60と比べて感受素子の数が増えているので、よりまんべんなく方位同定できる。
 実施の形態5,6は、指向性を持つ感受素子を互いに向きを異ならせて配置することで方位同定を実現する技術である。ここに実施の形態3,4の技術、すなわち各感受素子のパラメータが異なるものを組み合わせる技術、素子パラメータを可変とする技術を組み合わせてもよいことは言うまでもない。
 実施の形態7
 本実施の形態では、指向性を演算で制御できる感受部について説明する。実施の形態7にかかる感受部70は、フェーズドアレイアンテナに類似の原理により、演算でその指向性を制御できる。
 図24に、実施の形態7にかかる感受部70の構成を模式的に示す。感受部70は、X方向に指向性を有する8つの感受素子70A~70HをY方向に配列している。感受素子70A~70Hのそれぞれは、図13のような双方向のものでも図14のような片方向のものでもよいが、背面側からの音を採る必要性は低いと考えられるため、図14の片方向の素子を、吸音材を統合して並べる構成が経済性に優れると考えられる。
 各感受素子は互いに独立性が確保されていれば、一つのインテロゲーターに直列つなぎになっていても、複数のインテロゲーターに接続されていてもその混在でも構わないことは上述の組み合わせ感受部の実施例と同様である。
 本構成では、感受素子70A~70Hからの出力を、演算部710内部での演算によって、仮想的な位相シフタPS1~PS8で所定の時間だけシフトして加算(合成部711で加算)する。これにより、感受素子70A~70Hの物理的な向きを変えることなく、演算パラメータである時間シフト量を変えるだけで指向性の向きを変化できる。なお、演算部710及び換算部711は、インテロゲーター1内に設けてもよいことは、言うまでもない。
 図24では、説明の都合上、感受素子を線状に(一次元的に)配列しているが、二次元フェーズドアレイアンテナ同様に、面状に(二次元的に)配置してもよいことは言うまでもない。
実施の形態3及び4の技術、すなわち各感受素子のパラメータが異なるものを組み合わせる技術、素子パラメータを可変とする技術を組み合わせてもよいことは言うまでもない。
 その他の実施の形態
 なお、本発明は上記実施の形態に限られたものではなく、趣旨を逸脱しない範囲で適宜変更することが可能である。例えば、実施の形態3などで、1台のインテロゲーターに直列接続された2つの感受素子の間に、空間分解能よりも長い光ファイバで構成されるダミー区間を挿入することについて説明したが、ダミー区間の実現方法はこれに限定されるものではない。ダミー区間は、所定時間だけ光をストレージできるものであれば、光ファイバ以外の任意の光部品で構成してもよい。
 感受部50~52のように、2次元の方位同定が可能な感受部を互いに直交するように配置することで、3次元の方位同定が可能な感受部を構成してもよい。
 感受部50~51では、実施の形態2と同様に、1本の直線上に2つの感受素子が並んで配置されている。よって、実施の形態2と同様に、予め既知の方位から音を入力し、各感受素子から出力される振幅を漏れ込み係数として設定してもよい。同様に、感受部52では、それぞれの感受素子の指向性を有する方向から音波を出して、本来感受すべき素子の出力と、それ以外の素子の出力を記録し、漏れ込み係数として設定してもよい。例えばY軸の+方向から音波を出したとき、感受素子52Aが感受すべきであって、感受素子52B、52Cが感受しているとすればそれは漏れ込み成分である。このように互いの素子間での漏れ込み係数を予め較正計量しておき、各感受素子の出力に重み付けをして合成することにより、漏れ込み成分を低減、除去することが可能である。
 1つのインテロゲーターでセンシングできる光ファイバの長さにはサンプリング周波数に制約がある。そのため、適宜複数のインテロゲーターに振り分けてもよい。
 なお、本発明では、光ファイバから後方散乱された光を受信する原理のインテロゲーターを用いることで説明したが、本発明は到来音波によって光ファイバが伸縮する現象を、指向性を持って感受するという新たな機能を備えた感受部の実現方法の技術開示であるので、光ファイバの伸縮をセンシングする方法はどのようなものを用いても構わない。光ファイバを透過する光を受信する方式を用いてもよい。
 また、感受部の光ファイバがヘリカル状に巻かれる場合、特許文献4に記載されるように指向性は低下するものの、指向性を有する振動の検出が可能であることは、言うまでもない。
 上記の実施形態の一部又は全部は、以下の付記のようにも記載されうるが、以下には限られない。
 (付記1)光ファイバで構成される感受素子を有する感受部と、前記感受部と接続され、前記感受部にパルス光を送出し、前記感受部からの反射戻り光に基づいて、前記感受部が感受する音波振動を検出するインテロゲーターと、を備え、前記感受素子は、前記光ファイバが、指向性感度を発現させる指向性方向に沿って複数回往復するように折り畳まれて成る、音響センサ。
 (付記2)前記感受素子は、前記光ファイバが前記指向性感度を発現させる方向に沿って複数回往復する部分の寸法は、媒質中での音響波の速度を、観測対象とする音響波周波数帯上限値の2倍で除した値と略等しい又は前記値よりも小さい、付記1記載の音響センサ。
 (付記3)前記感受素子を構成する光ファイバの全長は、前記光ファイバを伝搬する前記パルス光のパルス長と略等しい、付記1又は2に記載の音響センサ。
 (付記4)前記感受素子は、前記指向性方向を長径とするオーバル形状に前記光ファイバが巻かれて成る、付記1乃至3のいずれか1つに記載の音響センサ。
 (付記5)前記感受素子を構成する前記光ファイバは、樹脂ポッテイングによって固定及び保護される、付記1乃至4のいずれか1つに記載の音響センサ。
 (付記6)前記感受素子は、前記光ファイバを、筒状に巻き取り可能なシート部材上に、偏平な渦巻状に周回させてなることで構成され、前記偏平な渦巻きの長径方向が、前記シート部材を巻き取ってなる筒形の長手方向となるように、前記シート部材が巻かれて固定及び保護される、付記1乃至3のいずれか1つに記載の音響センサ。
 (付記7)前記感受素子は、複数本の光ファイバが並列に配置されたテープ心線と、
 前記テープ心線の両端に接続される光折り返し部と、から成る、付記1乃至4のいずれか1つに記載の音響センサ。
 (付記8)前記光折り返し部は、シリコン光回路で構成された、付記7に記載の音響センサ。
 (付記9)前記光折り返し部は、石英光回路で構成された、付記7に記載の音響センサ。
 (付記10)前記光折り返し部も、テープ心線で構成された、付記7に記載の音響センサ。
 (付記11)前記感受部は、少なくとも1つの前記感受素子を含む感受構造が1つ以上設けられる、付記1乃至10のいずれか1つに記載の音響センサ。
 (付記12)前記感受構造は、前記感受素子と遮音部材からなり、前記感受構造では、前記感受素子から見て前後2方向存在する感度指向性の一方を、遮音部材を設けることにより、阻止することを特徴とする、付記11に記載の音響センサ。
 (付記13)前記感受構造は、前記指向性方向が同一方向となるように一直線上に配置された、前記感受素子である第1及び第2の感受素子を備え、前記第1及び第2の感受素子との間に、前記遮音部材が設けられる、付記12に記載の音響センサ。
 (付記14)前記遮音部材を透過して前記第1の感受素子へ到達する音波振動の第1の透過率と、前記遮音部材を透過して前記第2の感受素子へ到達する音波振動の第2の透過率と、が予め検量され、前記第1の透過率を用いて前記遮音部材を透過して前記第1の感受素子へ到達する振動による感受を除外することで、前記第1の感受素子での感受結果を求め、前記第2の透過率を用いて前記遮音部材を透過して前記第2の感受素子へ到達する振動による感受を除外することで、前記第2の感受素子での感受結果を求める、付記13に記載の音響センサ。
 (付記15)複数の前記感受構造が、同じ場の音響振動を感受するように配置される、
 付記11乃至14のいずれか1つに記載の音響センサ。
 (付記16)前記感受素子の前記指向性方向の寸法が互いに異なる前記複数の感受構造を、指向性方向を揃えて組み合わせた、付記15に記載の音響センサ。
 (付記17)前記感受素子が互いに異なる光ファイバ往復回数を持った前記複数の感受構造を、指向性方向を揃えて組み合わせた、付記15に記載の音響センサ。
 (付記18)前記複数の感受構造は、縦続接続され、隣接する前記感受構造の間に、光を保持するダミー区間が設けられ、前記ダミー区間が光を保持する時間は、前記パルス光のパルス長より長い、付記15に記載の音響センサ。
 (付記19)前記ダミー区間は、光ファイバで構成され、かつ、遮音した環境に保持される、付記18に記載の音響センサ。
 (付記20)前記感受部は、前記複数の感受構造と、光スイッチとからなり、前記光スイッチによって、特定の前記感受構造の組み込みを選択可能とする、付記15に記載の音響センサ。
 (付記21)前記複数の感受構造、2次元平面上又は3次元空間において互いの指向性が異なる方向に配置して組み合わせた、付記15に記載の音響センサ。
 (付記22)前記複数の感受構造、2次元平面上又は3次元空間において互いの指向性が直交する方向に配置して組み合わせた、付記15に記載の音響センサ。
 (付記23)前記複数の感受構造を、所定の点を中心として放射状に配置した、付記21又は22に記載の音響センサ。
 (付記24)第1~第3の前記感受構造を、2次元平面上において互いの指向性を60°ずつ異ならせて配置した、付記23に記載の音響センサ。
 (付記25)第1~第3の前記感受構造を、2次元平面上において互いの指向性を120°ずつ異ならせて配置した、付記23に記載の音響センサ。
 (付記26)第1~第4の前記感受構造を、各々の指向性が、正四面体の中心と4つの頂点とを結ぶそれぞれ異なる方向に向くように配置した、付記23に記載の音響センサ。
 (付記27)前記複数の感受構造は、各々の指向性が揃うように、前記指向性と垂直な面上に配置され、前記インテロゲーターは、前記複数の感受構造で得られる音波感受波形を、所定量位相シフトして合成することで、前記複数の感受構造を全体で一つの感受部として機能させ、各音波感受波形の位相シフト量を変化することで、前記感受部の指向性を制御する、付記15に記載の音響センサ。
 以上、実施の形態を参照して本願発明を説明したが、本願発明は上記によって限定されるものではない。本願発明の構成や詳細には、発明のスコープ内で当業者が理解し得る様々な変更をすることができる。
 この出願は、2019年10月29日に出願された日本出願特願2019-196746を基礎とする優先権を主張し、その開示の全てをここに取り込む。
RT テープ心線を用いた感受素子の光折り返し部パッケージ
D、DA、DB ダミー区間
F、F1、F2 光ファイバ
FG 複数の光ファイバ
IS、IS0、IS1 遮音部材
L1、L2 直線部
MM マイクロミラー
OS 光スイッチ
P 光パルス
PS1~PS8 位相シフタ
ST シート部材
SUB 基板
VA、7A、7B、7C、7D V溝アレイ
VG V溝
WG SiO光導波路
1 インテロゲーター
5、9A、9B テープ心線
5A 被覆
6A、6B Si光回路
8A及び8B 折り返し回路
10、11、20、21、30、31、40、50、51、52、60、61、70 感受部
10A~10C、20A、20B、30A、30B、31A~31C、40A、40B、50A、50B、51A~51C、52A~52C、60A~60C、61A~61D、70A~70H 感受素子
100 音響センサ
710 演算部
711 合成部

Claims (27)

  1.  光ファイバで構成される感受素子を有する感受部と、
     前記感受部と接続され、前記感受部にパルス光を送出し、前記感受部からの反射戻り光に基づいて、前記感受部が感受する音波振動を検出するインテロゲーターと、を備え、
     前記感受素子は、前記光ファイバが、指向性感度を発現させる指向性方向に沿って複数回往復するように折り畳まれて成る、
     音響センサ。
  2.  前記感受素子は、前記光ファイバが前記指向性感度を発現させる方向に沿って複数回往復する部分の寸法は、媒質中での音響波の速度を、観測対象とする音響波周波数帯上限値の2倍で除した値と略等しい又は前記値よりも小さい、
     請求項1記載の音響センサ。
  3.  前記感受素子を構成する光ファイバの全長は、前記光ファイバを伝搬する前記パルス光のパルス長と略等しい、
     請求項1又は2に記載の音響センサ。
  4.  前記感受素子は、前記指向性方向を長径とするオーバル形状に前記光ファイバが巻かれて成る、
     請求項1乃至3のいずれか一項に記載の音響センサ。
  5.  前記感受素子を構成する前記光ファイバは、樹脂ポッテイングによって固定及び保護される、
     請求項1乃至4のいずれか一項に記載の音響センサ。
  6.  前記感受素子は、前記光ファイバを、筒状に巻き取り可能なシート部材上に、偏平な渦巻状に周回させてなることで構成され、
     前記偏平な渦巻きの長径方向が、前記シート部材を巻き取ってなる筒形の長手方向となるように、前記シート部材が巻かれて固定及び保護される、
     請求項1乃至3のいずれか一項に記載の音響センサ。
  7.  前記感受素子は、複数本の光ファイバが並列に配置されたテープ心線と、
     前記テープ心線の両端に接続される光折り返し部と、から成る、
     請求項1乃至4のいずれか一項に記載の音響センサ。
  8.  前記光折り返し部は、シリコン光回路で構成された、
     請求項7に記載の音響センサ。
  9.  前記光折り返し部は、石英光回路で構成された、
     請求項7に記載の音響センサ。
  10.  前記光折り返し部も、テープ心線で構成された、
     請求項7に記載の音響センサ。
  11.  前記感受部は、少なくとも1つの前記感受素子を含む感受構造が1つ以上設けられる、
     請求項1乃至10のいずれか一項に記載の音響センサ。
  12.  前記感受構造は、前記感受素子と遮音部材からなり、
     前記感受構造では、前記感受素子から見て前後2方向存在する感度指向性の一方を、遮音部材を設けることにより、阻止することを特徴とする
     請求項11に記載の音響センサ。
  13.  前記感受構造は、前記指向性方向が同一方向となるように一直線上に配置された、前記感受素子である第1及び第2の感受素子を備え、
     前記第1及び第2の感受素子との間に、前記遮音部材が設けられる、
     請求項12に記載の音響センサ。
  14.  前記遮音部材を透過して前記第1の感受素子へ到達する音波振動の第1の透過率と、前記遮音部材を透過して前記第2の感受素子へ到達する音波振動の第2の透過率と、が予め検量され、
     前記第1の透過率を用いて前記遮音部材を透過して前記第1の感受素子へ到達する振動による感受を除外することで、前記第1の感受素子での感受結果を求め、
     前記第2の透過率を用いて前記遮音部材を透過して前記第2の感受素子へ到達する振動による感受を除外することで、前記第2の感受素子での感受結果を求める、
     請求項13に記載の音響センサ。
  15.  複数の前記感受構造が、同じ場の音響振動を感受するように配置される、
     請求項11乃至14のいずれか一項に記載の音響センサ。
  16.  前記感受素子の前記指向性方向の寸法が互いに異なる前記複数の感受構造を、指向性方向を揃えて組み合わせた、
     請求項15に記載の音響センサ。
  17.  前記感受素子が互いに異なる光ファイバ往復回数を持った前記複数の感受構造を、指向性方向を揃えて組み合わせた、
     請求項15に記載の音響センサ。
  18.  前記複数の感受構造は、縦続接続され、
     隣接する前記感受構造の間に、光を保持するダミー区間が設けられ、
     前記ダミー区間が光を保持する時間は、前記パルス光のパルス長より長い、
     請求項15に記載の音響センサ。
  19.  前記ダミー区間は、光ファイバで構成され、かつ、遮音した環境に保持される、
     請求項18に記載の音響センサ。
  20.  前記感受部は、前記複数の感受構造と、光スイッチとからなり、
     前記光スイッチによって、特定の前記感受構造の組み込みを選択可能とする、
     請求項15に記載の音響センサ。
  21.  前記複数の感受構造、2次元平面上又は3次元空間において互いの指向性が異なる方向に配置して組み合わせた、
     請求項15に記載の音響センサ。
  22.  前記複数の感受構造、2次元平面上又は3次元空間において互いの指向性が直交する方向に配置して組み合わせた、
     請求項15に記載の音響センサ。
  23.  前記複数の感受構造を、所定の点を中心として放射状に配置した、
     請求項21又は22に記載の音響センサ。
  24.  第1~第3の前記感受構造を、2次元平面上において互いの指向性を60°ずつ異ならせて配置した、
     請求項23に記載の音響センサ。
  25.  第1~第3の前記感受構造を、2次元平面上において互いの指向性を120°ずつ異ならせて配置した、
     請求項23に記載の音響センサ。
  26.  第1~第4の前記感受構造を、各々の指向性が、正四面体の中心と4つの頂点とを結ぶそれぞれ異なる方向に向くように配置した、
     請求項23に記載の音響センサ。
  27.  前記複数の感受構造は、各々の指向性が揃うように、前記指向性と垂直な面上に配置され、
     前記インテロゲーターは、前記複数の感受構造で得られる音波感受波形を、所定量位相シフトして合成することで、前記複数の感受構造を全体で一つの感受部として機能させ、
     各音波感受波形の位相シフト量を変化することで、前記感受部の指向性を制御する、
     請求項15に記載の音響センサ。
PCT/JP2020/034647 2019-10-29 2020-09-14 音響センサ WO2021084940A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2021554156A JP7363915B2 (ja) 2019-10-29 2020-09-14 音響センサ
US17/770,713 US20220397451A1 (en) 2019-10-29 2020-09-14 Acoustic sensor

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019-196746 2019-10-29
JP2019196746 2019-10-29

Publications (1)

Publication Number Publication Date
WO2021084940A1 true WO2021084940A1 (ja) 2021-05-06

Family

ID=75714499

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/034647 WO2021084940A1 (ja) 2019-10-29 2020-09-14 音響センサ

Country Status (3)

Country Link
US (1) US20220397451A1 (ja)
JP (1) JP7363915B2 (ja)
WO (1) WO2021084940A1 (ja)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114422025B (zh) * 2022-01-24 2024-02-27 南京邮电大学 一种基于声波传输的光缆路由寻找方法

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5948663A (ja) * 1982-09-13 1984-03-19 Sumitomo Electric Ind Ltd アレイ状光学式ハイドロフオンシステム
JPS61214699A (ja) * 1985-03-19 1986-09-24 Mitsubishi Heavy Ind Ltd 音声入力器
JPH02103422A (ja) * 1988-10-12 1990-04-16 Fujikura Ltd 光ファイバ音響センサ
JP2001041817A (ja) * 1999-07-28 2001-02-16 Fujikura Ltd 光ファイバ干渉型センサおよび光ファイバ干渉型信号検出方法
WO2005095909A1 (ja) * 2004-03-30 2005-10-13 Toudai Tlo, Ltd. 振動計測装置
JP2009535643A (ja) * 2006-05-04 2009-10-01 ノースロップ グルーマン コーポレーション 3軸高周波光ファイバ音響センサ
US20120280117A1 (en) * 2011-04-08 2012-11-08 Qinetiq Limited Fibre Optic Distributed Sensing
CN105547453A (zh) * 2015-11-30 2016-05-04 威海北洋电气集团股份有限公司 一种时分复用光纤水听器阵列的光路结构
US20160131520A1 (en) * 2013-06-13 2016-05-12 Schlumberger Technology Corporation Fiber Optic Distributed Vibration Sensing With Directional Sensitivity
CN109186743A (zh) * 2018-11-09 2019-01-11 中国石油大学(华东) 一种相位敏感光时域反射计分布式光纤三分量声敏感系统

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5948663A (ja) * 1982-09-13 1984-03-19 Sumitomo Electric Ind Ltd アレイ状光学式ハイドロフオンシステム
JPS61214699A (ja) * 1985-03-19 1986-09-24 Mitsubishi Heavy Ind Ltd 音声入力器
JPH02103422A (ja) * 1988-10-12 1990-04-16 Fujikura Ltd 光ファイバ音響センサ
JP2001041817A (ja) * 1999-07-28 2001-02-16 Fujikura Ltd 光ファイバ干渉型センサおよび光ファイバ干渉型信号検出方法
WO2005095909A1 (ja) * 2004-03-30 2005-10-13 Toudai Tlo, Ltd. 振動計測装置
JP2009535643A (ja) * 2006-05-04 2009-10-01 ノースロップ グルーマン コーポレーション 3軸高周波光ファイバ音響センサ
US20120280117A1 (en) * 2011-04-08 2012-11-08 Qinetiq Limited Fibre Optic Distributed Sensing
US20160131520A1 (en) * 2013-06-13 2016-05-12 Schlumberger Technology Corporation Fiber Optic Distributed Vibration Sensing With Directional Sensitivity
CN105547453A (zh) * 2015-11-30 2016-05-04 威海北洋电气集团股份有限公司 一种时分复用光纤水听器阵列的光路结构
CN109186743A (zh) * 2018-11-09 2019-01-11 中国石油大学(华东) 一种相位敏感光时域反射计分布式光纤三分量声敏感系统

Also Published As

Publication number Publication date
US20220397451A1 (en) 2022-12-15
JPWO2021084940A1 (ja) 2021-05-06
JP7363915B2 (ja) 2023-10-18

Similar Documents

Publication Publication Date Title
CN102822645B (zh) 光纤和纤维光学感测
US10345139B2 (en) Non-isotropic acoustic cable
ES2665144T3 (es) Sensor de presión completamente óptico
Saheban et al. Hydrophones, fundamental features, design considerations, and various structures: A review
US6354147B1 (en) Fluid parameter measurement in pipes using acoustic pressures
SA515360326B1 (ar) كبل ألياف ضوئية للاستشعار الصوتي/الزلزالي
US9599505B2 (en) Fiber optic directional acoustic sensor
US7262834B2 (en) Sensor for measuring velocity of vibration using light waveguide
WO2012084997A2 (en) Detecting the direction of acoustic signals with a fiber optical distributed acoustic sensing (das) assembly
JP5167249B2 (ja) 3軸高周波光ファイバ音響センサ
US10682119B2 (en) Shape sensing for flexible ultrasound transducers
WO2021084940A1 (ja) 音響センサ
US5574699A (en) Fiber optic lever towed array
KR101832075B1 (ko) 음향 변환기, 음향 변환 시스템, 광학 수중 청음기, 음향 변환 어레이 및 선박
US5394378A (en) Hydrophone transduction mechanism
Manu et al. Enhancement of hydrophone sensitivity by varying mandrel parameters for detection of acoustic waves in underwater environment
JPS62285027A (ja) 光ハイドロホン
GB2518216A (en) Non-isotropic acoustic cable
JP2022111084A (ja) 音響検出センサ、音響検出装置
Agbodjan et al. Modeling an omnidirectional fiber-optic strain transducer
JPS61151485A (ja) 光フアイバハイドロホン

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20882134

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2021554156

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20882134

Country of ref document: EP

Kind code of ref document: A1