WO2021084601A1 - 高周波線路接続構造 - Google Patents

高周波線路接続構造 Download PDF

Info

Publication number
WO2021084601A1
WO2021084601A1 PCT/JP2019/042293 JP2019042293W WO2021084601A1 WO 2021084601 A1 WO2021084601 A1 WO 2021084601A1 JP 2019042293 W JP2019042293 W JP 2019042293W WO 2021084601 A1 WO2021084601 A1 WO 2021084601A1
Authority
WO
WIPO (PCT)
Prior art keywords
line
signal
frequency line
ground
high frequency
Prior art date
Application number
PCT/JP2019/042293
Other languages
English (en)
French (fr)
Inventor
田野辺 博正
常祐 尾崎
Original Assignee
日本電信電話株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本電信電話株式会社 filed Critical 日本電信電話株式会社
Priority to US17/772,446 priority Critical patent/US20220384928A1/en
Priority to JP2021553918A priority patent/JP7255702B2/ja
Priority to CA3158938A priority patent/CA3158938C/en
Priority to PCT/JP2019/042293 priority patent/WO2021084601A1/ja
Priority to CN201980101823.4A priority patent/CN114631226B/zh
Priority to EP19950886.2A priority patent/EP4053992B1/en
Publication of WO2021084601A1 publication Critical patent/WO2021084601A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01PWAVEGUIDES; RESONATORS, LINES, OR OTHER DEVICES OF THE WAVEGUIDE TYPE
    • H01P1/00Auxiliary devices
    • H01P1/04Fixed joints
    • H01P1/047Strip line joints
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01PWAVEGUIDES; RESONATORS, LINES, OR OTHER DEVICES OF THE WAVEGUIDE TYPE
    • H01P3/00Waveguides; Transmission lines of the waveguide type
    • H01P3/02Waveguides; Transmission lines of the waveguide type with two longitudinal conductors
    • H01P3/08Microstrips; Strip lines
    • H01P3/081Microstriplines
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01PWAVEGUIDES; RESONATORS, LINES, OR OTHER DEVICES OF THE WAVEGUIDE TYPE
    • H01P11/00Apparatus or processes specially adapted for manufacturing waveguides or resonators, lines, or other devices of the waveguide type
    • H01P11/001Manufacturing waveguides or transmission lines of the waveguide type
    • H01P11/003Manufacturing lines with conductors on a substrate, e.g. strip lines, slot lines
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01PWAVEGUIDES; RESONATORS, LINES, OR OTHER DEVICES OF THE WAVEGUIDE TYPE
    • H01P3/00Waveguides; Transmission lines of the waveguide type
    • H01P3/003Coplanar lines
    • H01P3/006Conductor backed coplanar waveguides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01PWAVEGUIDES; RESONATORS, LINES, OR OTHER DEVICES OF THE WAVEGUIDE TYPE
    • H01P5/00Coupling devices of the waveguide type
    • H01P5/02Coupling devices of the waveguide type with invariable factor of coupling
    • H01P5/022Transitions between lines of the same kind and shape, but with different dimensions
    • H01P5/028Transitions between lines of the same kind and shape, but with different dimensions between strip lines
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/02Details
    • H05K1/0213Electrical arrangements not otherwise provided for
    • H05K1/0216Reduction of cross-talk, noise or electromagnetic interference
    • H05K1/023Reduction of cross-talk, noise or electromagnetic interference using auxiliary mounted passive components or auxiliary substances
    • H05K1/0231Capacitors or dielectric substances
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/02Details
    • H05K1/0213Electrical arrangements not otherwise provided for
    • H05K1/0237High frequency adaptations
    • H05K1/0243Printed circuits associated with mounted high frequency components
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/02Details
    • H05K1/0213Electrical arrangements not otherwise provided for
    • H05K1/0237High frequency adaptations
    • H05K1/025Impedance arrangements, e.g. impedance matching, reduction of parasitic impedance
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/22Secondary treatment of printed circuits
    • H05K3/222Completing of printed circuits by adding non-printed jumper connections
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/30Assembling printed circuits with electric components, e.g. with resistor
    • H05K3/32Assembling printed circuits with electric components, e.g. with resistor electrically connecting electric components or wires to printed circuits
    • H05K3/34Assembling printed circuits with electric components, e.g. with resistor electrically connecting electric components or wires to printed circuits by soldering
    • H05K3/341Surface mounted components
    • H05K3/3421Leaded components
    • H05K3/3426Leaded components characterised by the leads
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01PWAVEGUIDES; RESONATORS, LINES, OR OTHER DEVICES OF THE WAVEGUIDE TYPE
    • H01P1/00Auxiliary devices
    • H01P1/20Frequency-selective devices, e.g. filters
    • H01P1/2007Filtering devices for biasing networks or DC returns
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/30Assembling printed circuits with electric components, e.g. with resistor
    • H05K3/32Assembling printed circuits with electric components, e.g. with resistor electrically connecting electric components or wires to printed circuits
    • H05K3/34Assembling printed circuits with electric components, e.g. with resistor electrically connecting electric components or wires to printed circuits by soldering
    • H05K3/341Surface mounted components
    • H05K3/3421Leaded components

Definitions

  • the present invention relates to a high-frequency line connection structure for mounting a bridge substrate on a printed circuit board, crossing the high-frequency lines of the printed circuit board in three dimensions, and inserting electronic components into the high-frequency lines of the printed circuit board.
  • the printed circuit board has been established as a platform used when mounting various optoelectronic components due to its economic efficiency, and is widely used as a substrate on which optoelectronic components are mounted.
  • the printed circuit board is actually used, in order to prevent spatial interference between the high-frequency line and the optoelectronic component, many methods of diverting the high-frequency line to the inside of the printed circuit board, that is, the inner layer line are adopted.
  • the inner layer line In a structure that bypasses a high-frequency line to an inner layer line, it is inevitable that an open stub will occur due to the structure.
  • the effect of open stubs on high frequency characteristics has always been discussed.
  • Non-Patent Document 1 discloses a transition of a stub resonance frequency to a high frequency range by shortening the length of an open stub. By shortening the length of the open stub, the stub resonance frequency can be set to a frequency outside the roll-off frequency of the pass band, which is 20 GHz or more in the example of Non-Patent Document 1. However, it is physically difficult to eliminate the stub resonance itself, and the problem of roll-off of the passage characteristic due to the stub resonance remains.
  • Non-Patent Document 2 discloses a method of shortening the length of an open stub by maximizing the machining accuracy of back drilling.
  • the method disclosed in Non-Patent Document 2 requires a high-precision processing technique, which causes a problem that the cost of the printed circuit board increases and the economic efficiency is impaired. As described above, it has been difficult to realize a wide band from DC to 70 GHz without impairing economic efficiency by the prior art.
  • FIG. 18A is a plan view of a conventional multilayer printed circuit board
  • FIG. 18B is a sectional view taken along line AA'of the multilayer printed circuit board of FIG. 18A.
  • Two high-frequency lines, a differential microstrip line 101 and a single-phase coplanar line 102, are formed on the upper surface of the multilayer printed circuit board 100.
  • the single-phase coplanar line 102 is composed of a signal line 103 and a ground plane 104 formed around the signal line 103.
  • the single-phase coplanar line 102 is divided into two at the intersection with the differential microstrip line 101.
  • the hole 107 is formed by back drilling.
  • the open stub 108 will be formed due to the limitation of machining accuracy.
  • the presence of the open stub 108 induces a resonance phenomenon when the high frequency signal propagates to the inner layer line 106, which affects the passage characteristics of the single-phase coplanar line 102.
  • FIG. 19 is a diagram showing a reflection loss characteristic and a passing loss characteristic of the single-phase coplanar line 102 of the multilayer printed circuit board 100.
  • 200 in FIG. 19 shows a return loss characteristic
  • 201 shows a pass loss characteristic. Due to the presence of the open stub 108, the passage loss characteristic is dented at a specific resonance frequency (near 25 GHz in the example of FIG. 19), and the characteristic of suppressing the propagation of the high frequency signal appears.
  • a bridge substrate on which a high-frequency line is formed is mounted on a printed circuit board on which a coplanar line intersecting with the microstrip line is formed, and the coplanar line divided at a portion intersecting the microstrip line is divided into high-frequency lines on the bridge substrate.
  • a method of crossing the microstrip line and the coplanar line in a three-dimensional manner can be considered by connecting them via the above.
  • the connection portion between the bridge substrate and the printed circuit board is exposed in the air, so that the characteristic impedance of the connection portion increases as the electrical capacitance decreases.
  • impedance mismatch between the coplanar line of the printed circuit board and the high frequency line of the bridge board occurs.
  • a capacitor called a so-called DC block capacitor is inserted in series with the high frequency line.
  • a component such as a DC block capacitor is mounted on a printed circuit board using a bridge board
  • the connection portion between the bridge board and the printed circuit board is exposed in the air as described above, so that the coplanar line of the printed circuit board is exposed.
  • impedance mismatch of the high frequency line of the bridge board occurs.
  • the present invention has been made to solve the above problems, and when connecting a high frequency line using a bridge board, a high frequency line capable of suppressing impedance mismatch due to a connection portion between the bridge board and the printed circuit board can be suppressed.
  • the purpose is to provide a connection structure.
  • the present invention also provides a high-frequency line connection structure capable of suppressing impedance mismatch due to a connection portion between a bridge board and a printed circuit board when a component such as a DC block capacitor is mounted using the bridge board. With the goal.
  • the high-frequency line connection structure of the present invention includes a first substrate and a second substrate mounted on the first substrate, and the first substrate includes a first high-frequency line and the first substrate is provided.
  • the second substrate includes a second high-frequency line and a lead pin made of a conductor that electrically connects the first high-frequency line and the second high-frequency line, and the first high-frequency line is the first high-frequency line.
  • a first signal line formed on the first main surface of one substrate and having a portion divided into two in the middle, and the first signal line on the first main surface of the first substrate.
  • the second high-frequency line includes a first ground formed along the line and divided into two at the same position as the divided portion of the first signal line in the extending direction, and the second high-frequency line has the extending direction.
  • the second signal line formed on the first main surface of the second substrate facing the first substrate so as to be parallel to the extending direction of the first signal line, and the extending direction of the first signal line.
  • a second gland formed along the second signal line is provided on the first main surface of the second substrate so as to be parallel to the extending direction of the gland, and the lead pin is provided with the second gland.
  • the second substrate is located on the first signal line so that the second signal line is located on the divided portion of the first signal line and the second ground is located on the divided portion of the first ground.
  • both ends of the second gland so as to abut each of the divided one portion and the other portion of the first gland.
  • the first ground lead pin is composed of one ground lead pin connected to the ground lead pin. It is characterized in that the height of the ground lead pin from the first main surface of the substrate is higher than that of the signal lead pin.
  • the second substrate is a third main surface formed on the second main surface opposite to the first main surface of the second substrate.
  • a high-frequency line and an electronic component mounted on the second main surface of the second substrate and inserted in series with the third high-frequency line are further provided, and the third high-frequency line is the second high-frequency line.
  • the two electrodes of the electronic component are connected to one divided portion and the other portion of the third signal line, respectively, and provided with a third ground formed so as to surround the second high frequency.
  • the second signal line of the line has a portion divided into two in the middle, and the second ground of the second high frequency line is formed so as to surround the second signal line. Both ends of the third signal line are connected to each of one divided portion and the other portion of the second signal line via vias formed on the second substrate. Is to be.
  • the plurality of the first signal lines of the first high frequency line are arranged in parallel, and the plurality of the first grounds of the first high frequency line are arranged in parallel.
  • a plurality of the second signal lines of the second high frequency line are arranged in parallel, and a plurality of the second grounds of the second high frequency line are arranged in parallel.
  • a plurality of the signal lead pins are arranged in parallel along the alignment direction of the first signal line and the second signal line, and the plurality of ground lead pins are arranged. Is arranged in parallel along the alignment direction of the first ground and the second ground.
  • the plurality of the first signal lines of the first high frequency line are arranged in parallel, and the plurality of the first grounds of the first high frequency line are arranged in parallel.
  • a plurality of the second signal lines of the second high frequency line are arranged in parallel, and a plurality of the second grounds of the second high frequency line are arranged.
  • the third signal line is arranged so as to surround the second signal line, and a plurality of the third signal lines of the third high frequency line are arranged in parallel, and the third ground of the third high frequency line is arranged.
  • one electronic component is provided for each of the third signal lines, and a plurality of the signal lead pins are provided for the first signal.
  • the line, the second signal line, and the third signal line are arranged in parallel along the alignment direction, and a plurality of the ground lead pins are parallel in the alignment direction of the first ground and the second ground. It is characterized by being arranged in.
  • the electronic component is a DC block capacitor.
  • the present invention at the contact portion between the signal lead pin and the first signal line and the contact portion between the ground lead pin and the first ground, the ground lead pin from the first main surface of the first substrate By making the height higher than the signal lead pin, the signal lead pin is surrounded by the ground lead pin that functions as the ground of the high frequency line. According to this structure, in the present invention, it is possible to prevent a decrease in capacitance between the signal lead pin and the ground lead pin, and it is possible to suppress an increase in the characteristic impedance of the high frequency line. In the present invention, the impedance matching of the first high frequency line of the first substrate and the second high frequency line of the second substrate can be achieved, and the crosstalk between the signal lead pin and the adjacent signal lead pin can be reduced. it can. As a result, the present invention can provide a high-frequency line connection structure capable of realizing low reflection loss characteristics, low passage loss characteristics, and low crosstalk characteristics in a wide band.
  • a high-frequency line connection structure capable of realizing low reflection loss characteristics, low passage loss characteristics, and low crosstalk characteristics in a wide band is possible. Can be provided.
  • FIG. 1 is an exploded perspective view of a high-frequency line connection structure according to a first embodiment of the present invention.
  • FIG. 2 is an exploded perspective view of the high frequency line connection structure according to the first embodiment of the present invention.
  • FIG. 3 is a bottom view of a high-frequency line substrate having a high-frequency line connection structure according to the first embodiment of the present invention.
  • FIG. 4 is a perspective view of the high frequency line connection structure according to the first embodiment of the present invention.
  • FIG. 5 is a plan view of the high frequency line connection structure according to the first embodiment of the present invention.
  • FIG. 6 is a side view of the high frequency line connection structure according to the first embodiment of the present invention.
  • FIG. 1 is an exploded perspective view of a high-frequency line connection structure according to a first embodiment of the present invention.
  • FIG. 2 is an exploded perspective view of the high frequency line connection structure according to the first embodiment of the present invention.
  • FIG. 3 is a bottom view of a high-frequency line substrate having
  • FIG. 7 is a diagram showing simulation results of reflection loss characteristics and passage loss characteristics of the high-frequency line connection structure according to the first embodiment of the present invention.
  • FIG. 8 is a diagram showing simulation results of crosstalk characteristics and pass loss characteristics between adjacent channels of the high frequency line connection structure according to the first embodiment of the present invention.
  • FIG. 9 is an exploded perspective view of the high frequency line connection structure according to the second embodiment of the present invention.
  • FIG. 10 is an exploded perspective view of the high frequency line connection structure according to the second embodiment of the present invention.
  • FIG. 11 is a bottom view of a high-frequency line substrate having a high-frequency line connection structure according to a second embodiment of the present invention.
  • FIG. 12 is a plan view of a high-frequency line substrate having a high-frequency line connection structure according to a second embodiment of the present invention.
  • FIG. 13 is a perspective view of a high frequency line connection structure according to a second embodiment of the present invention.
  • FIG. 14 is a plan view of the high frequency line connection structure according to the second embodiment of the present invention.
  • FIG. 15 is a side view of the high frequency line connection structure according to the second embodiment of the present invention.
  • FIG. 16 is a diagram showing simulation results of reflection loss characteristics and passage loss characteristics of the high-frequency line connection structure according to the second embodiment of the present invention.
  • FIG. 17 is a diagram showing simulation results of crosstalk characteristics and pass loss characteristics between adjacent channels of the high frequency line connection structure according to the second embodiment of the present invention.
  • FIG. 18A is a plan view of a conventional multilayer printed circuit board.
  • FIG. 18B is a cross-sectional view of a conventional multilayer printed circuit board.
  • FIG. 19 is a diagram showing a reflection loss characteristic and a passing loss characteristic of a conventional multilayer printed circuit board.
  • FIG. 1 is an exploded perspective view of the high-frequency line connection structure according to the first embodiment of the present invention as viewed from above
  • FIG. 2 is an exploded perspective view of the high-frequency line connection structure of FIG. 1 as viewed from below.
  • the printed circuit board 2-2 first substrate
  • the printed circuit board 2-2 has a flat-plate-shaped dielectric 2-2-5 and an upper surface (first main surface) of the dielectric 2-2-5.
  • a signal consisting of a conductor formed on the upper surface of the dielectric 2-2-5 along a direction intersecting with the microstrip line 2-2-1.
  • Lines 2-2-3a and 2-2-3b (first signal line) and on the upper surface of the dielectric 2-2-5 were formed along the signal lines 2-2-3a and 2-2-3b.
  • Ground planes 2-2-2a and 2-2-2b (first ground) made of conductors, and ground plane 2 made of conductors formed on the lower surface (second main surface) of the dielectric 2-2-5.
  • a ground via 2-2 formed of ⁇ 2-4 and a dielectric 2-2-5 and composed of a conductor connecting the ground planes 2-2-2a and 2-2-2b and the ground plane 2-2-4. It has -6.
  • a plurality of signal lines 2-2-3a are arranged in parallel.
  • a plurality of ground planes 2-2-2a are arranged on both sides of the signal line 2-2-3a along the signal line 2-2-3a.
  • a plurality of signal lines 2-2-3b are arranged in parallel.
  • a plurality of ground planes 2-2-2b are arranged on both sides of the signal line 2-2-3b along the signal line 2-2-3b.
  • the signal line 2-2-3a and the signal line 2-2-3b are separated at the intersection with the microstrip line 2-2-1.
  • the ground planes 2-2-2a and the ground planes 2-2-2b are located on the signal lines 2-2-3a and 2-2-3b in the extension direction (X direction in FIGS. 1 and 2). It is in the form of being divided at the same position as the divided part of.
  • ground planes 2-2-2a and 2-2-2b are electrically connected to the ground plane 2-2-4 by ground vias 2-2-6 formed on the dielectric 2-2-5, respectively. ..
  • the signal lines 2-2-3a and 2-2-3b and the ground planes 2-2-2a and 2-2-2b are ground coplanar lines 2-2 having a ground plane 2-2-4 on the back surface of the substrate. It constitutes -7 (first high frequency line). As described above, the granded coplanar line 2-2-7 is divided at the intersection with the microstrip line 2-2-1.
  • FIG. 3 is a bottom view of the high frequency line substrate 2-1.
  • the description of the signal lead pin and the ground lead pin, which will be described later, is omitted in order to make the configuration of the high frequency line substrate 2-1 easy to understand.
  • the high-frequency line substrate 2-1 was formed on the lower surface of the flat plate-shaped dielectric 2-1-1 and the printed circuit board 2-2 of the dielectric 2-1-1.
  • a ground plane 2-1-4 made of a conductor, a dielectric 2-1-7 formed on the lower surface of the ground plane 2-1-4 facing the printed circuit board 2-2, and a high-frequency line board 2-1 are printed circuit boards.
  • the printed circuit board 2-2 of the dielectric 2-1-7 so that the stretching direction is parallel to the stretching direction of the signal lines 2-2-3a and 2-2-3b when mounted on 2-2.
  • the signal line 2-1-6 (second signal line) made of conductors formed on the opposite lower surfaces (first main surface) and the high-frequency line board 2-1 are mounted on the printed circuit board 2-2.
  • the high frequency line board 2-1 is a signal line so as to be in contact with the signal lines 2-2-3a and 2-2-3b, respectively, when the high frequency line board 2-1 is mounted on the printed circuit board 2-2.
  • the signal lead pins 2-1-3a and 2-1-3b which consist of conductors connected to both ends of 2-1-6
  • the high-frequency line board 2-1 are mounted on the printed circuit board 2-2.
  • -2b and a ground via 2-1-8 formed of a dielectric material 2-1-7 and composed of a conductor connecting the ground plane 2-1-4 and the ground plane 2-1-5 are provided.
  • Examples of the material of the dielectric 2-1-1,2-1-7,2-2-5 include low-loss ceramics such as alumina.
  • a plurality of signal lines 2-1-6 are arranged in parallel on the lower surface of the high-frequency line substrate 2-1.
  • the pitch in the alignment direction of the signal lines 2-1-6 (Y direction in FIGS. 1 to 3) is the same as the pitch in the alignment direction of the signal lines 2-2-3a and 2-2-3b.
  • a plurality of ground planes 2-1-5 are arranged on both sides of the signal line 2-1-6 along the signal line 2-1-6.
  • the pitch in the alignment direction of the ground planes 2-1-5 is the same as the pitch in the alignment direction of the ground planes 2-2-2a and 2-2-2b.
  • the ground plane 2-1-5 is electrically connected to the ground plane 2-1-4 by a ground via 2-1-8 formed on the dielectric 2-1-7.
  • the signal line 2-1-6 and the ground plane 2-1-5 are ground coplanar lines 2 having a ground plane 2-1-4 on the opposite surface with the dielectric 2-1-7 in between. It constitutes -1-9 (second high frequency line).
  • a plurality of signal lead pins 2-1-3a and 2-1-3b align the signal lines 2-2-3a and 2-2-3b and the signal lines 2-1-6 (Fig.). They are arranged in parallel along the Y direction of FIGS. 1 to 3).
  • the pitch in the alignment direction of the signal lead pins 2-1-3a and 2-1-3b is the same as the pitch in the alignment direction of the signal lines 2-2-3a and 2-2-3b and the signal line 2-1-6. ..
  • the plurality of ground lead pins 2-1-2a and 2-1-2b are arranged in the alignment direction of the ground planes 2-2-2a and 2-2-2b and the alignment direction of the ground planes 2-1-5 (FIGS. 1 to 3). It is arranged in parallel along the Y direction of.
  • the pitch in the alignment direction of the ground lead pins 2-1-2a and 2-1-2b is the same as the pitch in the alignment direction of the ground planes 2-2-2a and 2-2-2b and the ground plane 2-1-5. ..
  • the high frequency line board 2-1 and the printed circuit board 2-2 as described above are individually manufactured, the high frequency line board 2-1 is mounted on the printed circuit board 2-2.
  • the high-frequency line board 2-1 is mounted on the printed circuit board 2-2, and the divided grounded coplanar line 2-2-7 of the printed circuit board 2-2 is the grounded coplanar of the high-frequency line board 2-1.
  • 5 is a plan view of the high frequency line connection structure of FIG. 4
  • FIG. 6 is a side view of the high frequency line connection structure of FIG.
  • the surface on which the signal line 2-1-6 and the ground plane 2-1-5 of the high-frequency line substrate 2-1 are formed is turned down.
  • the signal line 2-1-6 is located above the divided points of the signal lines 2-2-3a and 2-2-3b, and the ground plane 2-1-5 is located on the ground planes 2-2-2a and 2-2-2.
  • the high-frequency line board 2-1 is mounted on the printed circuit board 2-2 by aligning it so that it is located above the divided portion of 2b.
  • the signal lead pins 2-1-3a and 2-1-3b of the high-frequency line board 2-1 and the signal lines 2-2-3a and 2-2-3b of the printed circuit board 2-2 come into contact with each other, and the high-frequency line
  • the ground lead pins 2-1-2a and 2-1-2b of the substrate 2-1 and the ground planes 2-2-2a and 2-2-2b of the printed circuit board 2-2 are in contact with each other so that the printed circuit board 2-
  • the high frequency line board 2-1 is mounted on the 2.
  • the signal lead pins 2-1-3a and 2-1-3b of the high frequency line board 2-1 and the signal lines 2-2-3a and 2-2-3b of the printed circuit board 2-2 are connected by solder or the like.
  • the ground lead pins 2-1-2a and 2-1-2b of the high-frequency line board 2-1 and the ground planes 2-2-2a and 2-2-2b of the printed circuit board 2-2 are connected by soldering or the like. Will be done.
  • the signal line 2-2-3a of the printed circuit board 2-2 has the signal lead pin 2-1-3a, the signal line 2-1-6, and the signal lead pin 2- of the high frequency line board 2-1. It is electrically connected to the signal line 2-2-3b via 1-3b.
  • the ground plane 2-2-2a of the printed circuit board 2-2 has the ground lead pin 2-1-2a, the ground plane 2-1-5, and the ground lead pin 2-1-2b of the high frequency line board 2-1. It is electrically connected to the ground plane 2-2-2b via.
  • the microstrip line 2-2-1 formed on the upper surface of the printed circuit board 2-2 and the grounded coplanar line 2-2-7 can be three-dimensionally intersected.
  • the contact portion between the signal lead pins 2-1-3a and 2-1-3b and the signal lines 2-2-3a and 2-2-3b, and the ground lead pin 2- Ground lead pins 2-1-2a, 2-1 from the upper surface of the printed circuit board 2-2 at the contact portion between 1-2a, 2-1-2b and the ground planes 2-2-2a, 2-2-2b.
  • the shape of 1-3b is determined.
  • the height is the same as the height of the upper surface of the ground lead pins 2-1-2a, 2-1-2b at the connection between the ground lead pins 2-1-2a, 2-1-2b and the ground plane 2-1-5. Needless to say, there is.
  • the upper surfaces of the signal lead pins 2-1-3a and 2-1-3b become lower in height from the high-frequency line substrate 2-1 toward the signal lines 2-2-3a and 2-2-3b, respectively. It has a shape like this. ..
  • a high frequency signal propagates through the signal lead pin 2-1-3a from the printed circuit board 2-2 to the high frequency line board 2-1. Further, a high frequency signal propagates through the signal lead pin 2-1-3b from the high frequency line board 2-1 to the printed circuit board 2-2. At this time, since the signal lead pins 2-1-3a and 2-1-3b are exposed in the air, the signal lead pins 2-1-3a and 2-1-3b and the ground lead pins 2-1-2a and 2 The capacitance between 1-2b decreases, and the characteristic impedance of the coplanar line tends to increase.
  • the contact portion between the signal lead pins 2-1-3a and 2-1-3b and the signal lines 2-2-3a and 2-2-3b, and the ground lead pins 2-1-2a and 2 At the contact portion between 1-2b and the ground planes 2-2-2a and 2-2-2b, the heights of the ground lead pins 2-1-2a and 2-1-2b are signaled to the signal lead pins 2-1-2-3a, Make it higher than 2-1-3b. As a result, the signal lead pins 2-1-3a and 2-1-3b are surrounded by the ground lead pins 2-1-2a and 2-1-2b that function as the ground of the coplanar line.
  • this embodiment it is possible to prevent a decrease in capacitance between the signal lead pins 2-1-3a and 2-1-3b and the ground lead pins 2-1-2a and 2-1-2b. , It is possible to suppress an increase in the characteristic impedance of the coplanar line. As a result, impedance matching can be achieved between the grounded coplanar line 2-2-7 of the printed circuit board 2-2 and the grounded coplanar line 2-1-9 of the high frequency line board 2-1.
  • the signal lead pins 2-1-2a and 2-1-2b are used to connect the electric lines of force from the signal lead pins 2-1-3a and 2-1-3b to the signal lead pins 2-1-3a, It can be confined without leaking to 2-1-3b. As a result, crosstalk between the signal lead pins 2-1-3a and 2-1-3b and the adjacent signal lead pins 2-1-3a and 2-1-3b can be reduced.
  • FIG. 7 is a diagram showing simulation results of reflection loss characteristics and pass loss characteristics of the grounded coplanar line in the high frequency line connection structure of this embodiment
  • FIG. 8 is a diagram showing adjacent channels of the grounded coplanar line in the high frequency line connection structure of this embodiment. It is a figure which shows the simulation result of the inter-cross talk characteristic and the passage loss characteristic.
  • 700 in FIGS. 7 and 8 shows the reflection loss characteristic
  • 701 shows the pass loss characteristic
  • 702 in FIG. 8 shows crosstalk between adjacent channels when the shapes of the ground lead pins 2-1-2a and 2-1-2b are the same as those of the signal lead pins 2-1-3a and 2-1-3b
  • 703 shows crosstalk between adjacent channels. The crosstalk between adjacent channels in this example is shown.
  • the grounded coplanar line 2-2-7 is divided at the intersection with the microstrip line 2-2-1. Is connected via the high frequency line board 2-1. Then, in this embodiment, the heights of the ground lead pins 2-1-2a and 2-1-2b at the connection portion with the printed circuit board 2-2 are higher than those of the signal lead pins 2-1-3a and 2-1-3b. By doing so, impedance matching can be achieved between the grounded coplanar line 2-2-7 of the printed circuit board 2-2 and the grounded coplanar line 2-1-9 of the high frequency line board 2-1.
  • a line connection structure can be provided.
  • FIG. 9 is an exploded perspective view of the high-frequency line connection structure according to the second embodiment of the present invention as viewed from above
  • FIG. 10 is an exploded perspective view of the high-frequency line connection structure of FIG. 9 as viewed from below
  • FIG. 11 is a high-frequency line.
  • the bottom view of the substrate and FIG. 12 are plan views of the high frequency line substrate.
  • the description of the signal lead pin and the ground lead pin is omitted in order to make the configuration of the high frequency line substrate easy to understand.
  • FIG. 12 the description of the DC block capacitor is omitted in order to make the configuration of the high frequency line substrate easy to understand.
  • FIG. 13 is a perspective view of the high-frequency line connection structure after the high-frequency line board is mounted on the printed circuit board and the grounded coplanar lines of the printed circuit board are connected by the grounded coplanar lines of the high-frequency line board.
  • FIG. 14 is a perspective view of the high-frequency line connection structure.
  • FIG. 15 is a plan view of the high frequency line connection structure of FIG. 13, and FIG. 15 is a side view of the high frequency line connection structure of FIG.
  • the printed circuit board 3-2 (first substrate) of this embodiment is a flat plate-shaped dielectric 3-2-5 and a conductor formed on the upper surface (first main surface) of the dielectric 3-2-5.
  • Signal lines 3-2-3a and 3-2-3b (first signal line) composed of the same, and signal lines 3-2-3a and 3-2-3b on the upper surface of the dielectric 3-2-5 along the signal lines 3-2-3a and 3-2-3b.
  • It is composed of ground planes 3-2-2a and 3-2-2b (first ground) made of formed conductors and conductors formed on the lower surface (second main surface) of the dielectric 3-2-5.
  • a plurality of signal lines 3-2-3a are arranged in parallel.
  • a plurality of ground planes 3-2-2a are arranged on both sides of the signal line 3-2-3a along the signal line 3-2-3a.
  • a plurality of signal lines 3-2-3b are arranged in parallel.
  • a plurality of ground planes 3-2-2b are arranged on both sides of the signal line 3-2-3b along the signal line 3-2-3b.
  • the signal line 3-2-3a and the signal line 3-2-3b are separated at the position where the DC block capacitor is mounted, as will be described later.
  • the ground planes 3-2-2a and the ground planes 3-2-2b are located on the signal lines 3-2-3a and 3-2-3b in the extension direction (X direction in FIGS. 9 to 15). It is in the form of being divided at the same position as the divided part of.
  • ground planes 3-2-2a and 3-2-2b are electrically connected to the ground plane 3-2-4 by ground vias 3-2-6 formed on the dielectric 3-2-5, respectively. ..
  • the signal lines 3-2-3a and 3-2-3b and the ground planes 3-2-2a and 3-2-2b are ground coplanar lines 3-2 having a ground plane 3-2-4 on the back surface of the substrate. It constitutes -7 (first high frequency line). This grounded coplanar line 3-2-7 is divided at a place where a high frequency line board is mounted in order to insert a DC block capacitor in series as described later.
  • the high frequency line substrate 3-1 (second substrate) has a stretching direction when the flat plate-shaped dielectric 3-1-1 and the high frequency line substrate 3-1 are mounted on the printed circuit board 3-2. It was formed on the lower surface (first main surface) of the dielectric 3-1-1 facing the printed circuit board 3-2 so as to be parallel to the stretching direction of the signal lines 3-2-3a and 3-2-3b.
  • Signal lines 3-1-6a and 3-1-6b (second signal lines) made of conductors and signal lines 3-1-6a on the lower surface facing the printed circuit board 3-2 of the dielectric 3-1-1.
  • 3-1-5 (second ground) composed of conductors formed so as to surround 3-1-6b, and the upper surface (second main surface) of the dielectric 3-1-1.
  • Signal lines 3-1-7a, 3-1-7b (third signal line) made of formed conductors, and signal lines 3-1-7a, 3-1 on the upper surface of the dielectric 3-1-1. It is provided with a ground plane 3-1-4 (third ground) formed so as to surround -7b.
  • the high-frequency line board 3-1 is a signal line so as to come into contact with the signal lines 3-2-3a and 3-2-3b, respectively, when the high-frequency line board 3-1 is mounted on the printed circuit board 3-2.
  • Signal lead pins 3-1-3a and 3-1-3b, which consist of conductors connected to 3-1-6a and 3-1-6b one by one, and a high-frequency line board 3-1 are placed on the printed circuit board 3-2.
  • Ground lead pin 3-1-2a consisting of conductors connected to both ends of the ground plane 2-1-5 so that they come into contact with the ground planes 3-2-2a and 3-2-2b when mounted.
  • a ground via 3-1-8 formed of a dielectric 3-1-1 and composed of a conductor connecting the ground plane 3-1-4 and the ground plane 3-1-5.
  • Examples of the material of the dielectrics 3-1-1, 3-2-5 include low-loss ceramics such as alumina.
  • a plurality of signal lines 3-1-6a are arranged in parallel on the lower surface of the high-frequency line substrate 3-1.
  • a plurality of signal lines 3-1-6b are arranged in parallel.
  • the ground plane 3-1-5 is arranged so as to surround the signal lines 3-1-6a and 3-1-6b.
  • the signal line 3-1-6a and the signal line 3-1-6b are separated so that the DC block capacitor 3-1-10 is mounted on the opposite surface.
  • the pitch in the alignment direction of the signal lines 3-1-6a and 3-1-6b (Y direction in FIGS. 9 to 15) is the same as the pitch in the alignment direction of the signal lines 3-2-3a and 3-2-3b. Is.
  • a plurality of signal lines 3-1-7a are arranged in parallel on the upper surface of the high frequency line substrate 3-1.
  • a plurality of signal lines 3-1-7b are arranged in parallel.
  • the ground plane 3-1-4 is arranged so as to surround the signal lines 3-1-7a and 3-1-7b.
  • the signal line 3-1-7a and the signal line 3-1-7b are separated so that the DC block capacitor 3-1-10 is mounted on the upper surface of the high frequency line substrate 3-1.
  • the pitch in the alignment direction of the signal lines 3-1-7a and 3-1-7b (Y direction in FIGS. 9 to 15) is the same as the pitch in the alignment direction of the signal lines 3-1-6a and 3-1-6b. Is.
  • the ground plane 3-1-5 is electrically connected to the ground plane 3-1-4 by a ground via 3-1-8 formed on the dielectric 3-1-1.
  • the end of the signal line 3-1-7a is one of two divided parts of the second signal line via vias 3-1-9a formed on the dielectric 3-1-1 ( It is electrically connected to the signal line 3-1-6a).
  • the end of the signal line 3-1-7b is the other part of the two divided parts of the second signal line via the via 3-1-9b formed on the dielectric 3-1-1 ( It is electrically connected to the signal line 3-1-6b).
  • a ground plane 3-1-5 is formed around the signal lines 3-1-6a and 3-1-6b, and a ground plane 3-1 is formed around the signal lines 3-1-7a and 3-1-7b. -4 is formed. Therefore, the signal lines 3-1-6a, 3-1-7a, the via 3-1-9a, and the ground plane 3-1-4, 3-1-5 are connected to the high frequency line substrate 3-1 (dielectric 3-). It constitutes a pseudo-coaxial line structure 3-1-13a formed along the vertical direction of 1-1). Similarly, the signal lines 3-1-6b, 3-1-7b, the via 3-1-9b, and the ground plane 3-1-4, 3-1-5 have a pseudo-coaxial line structure 3-1-13b. It is configured.
  • the signal lines 3-1-6a, 3-1-6b and the ground plane 3-1-5 are provided with a ground plane 3-1-4 on the opposite surface with the dielectric 3-1-1 sandwiched between them. It constitutes the ground coplanar line 3-1-11 (second high frequency line).
  • the grounded coplanar line 3-1-11 is divided into two in order to insert a DC block capacitor 3-1-10 in series.
  • the signal lines 3-1-7a, 3-1-7b and the ground plane 3-1-4 are provided with a ground plane 3-1-5 on the opposite surface with the dielectric 3-1-1 sandwiched between them. It constitutes the ground coplanar line 3-1-12 (third high frequency line). This grounded coplanar line 3-1-12 is divided into two in order to insert a DC block capacitor 3-1-10 in series.
  • One electrode of the DC block capacitor 3-1-10 is soldered to one part (signal line 3-1-7a) of the two divided parts of the third signal line.
  • the other electrode of the DC block capacitor 3-1-10 is soldered to the other part (signal line 3-1-7b) of the two divided parts of the third signal line.
  • the DC block capacitor 3-1-10 is mounted on the high-frequency line substrate 3-1 and the DC block capacitor 3-1 is connected in series with the grounded coplanar line 3-1-11,3-1-12. -10 is inserted.
  • the high frequency line board 3-1 is mounted on the printed circuit board 3-2.
  • the signal lines 3-1-6a and 3-1-6b and the ground plane 3-1-5 of the high-frequency line substrate 3-1 are formed. With the front side down, the signal lines 3-1-6a, 3-1-6b, 3-1-7a, 3-1-7b are above the division points of the signal lines 3-2-3a, 3-2-3b. Aligned so that the ground planes 3-1-5 and 3-1-4 are located above the divided points of the ground planes 3-2-2a and 3-2-2b, the high-frequency line board 3-1 is mounted on the printed circuit board 3-2.
  • the signal lead pins 3-1-3a and 3-1-3b of the high-frequency line board 3-1 and the signal lines 3-2-3a and 3-2-3b of the printed circuit board 3-2 come into contact with each other, and the high-frequency line
  • the ground lead pins 3-1-2a and 3-1-2b of the substrate 3-1 and the ground planes 3-2-2a and 3-2-2b of the printed circuit board 3-2 are in contact with each other so that the printed circuit board 3-
  • the high frequency line board 3-1 is mounted on the 2.
  • the signal lead pins 3-1-3a and 3-1-3b of the high frequency line board 3-1 and the signal lines 3-2-3a and 3-2-3b of the printed circuit board 3-2 are connected by solder or the like.
  • the ground lead pins 3-1-2a and 3-1-2b of the high-frequency line board 3-1 and the ground planes 3-2-2a and 3-2-2b of the printed circuit board 3-2 are connected by soldering or the like. Will be done.
  • the signal line 3-2-3a of the printed circuit board 3-2 has the signal lead pin 3-1-3a, the signal line 3-1-6a, and the via 3-1 of the high frequency line board 3-1. -9a, signal line 3-1-7a, DC block capacitor 3-1-10, signal line 3-1-7b, via 3-1-9b, signal line 3-1-6b, and signal lead pin 3-1-3b. It is electrically connected to the signal line 3-2-3b via and.
  • the ground plane 3-2-2a of the printed circuit board 3-2 is grounded via the ground lead pin 3-1-2a of the high frequency line board 3-1 and the ground plane 3-1-5 and the ground lead pin 3-1-2b. It is electrically connected to the plane 3-2-2b. In this way, by mounting the high-frequency line board 3-1 on which the DC block capacitor 3-1-10 is mounted on the printed circuit board 3-2, the DC block capacitor is connected in series with the grounded coplanar line 3-2-7. 3-1-10 can be inserted.
  • the contact portion between the signal lead pins 3-1-3a and 3-1-3b and the signal lines 3-2-3a and 3-2-3b, and the ground lead pin 3- Ground lead pins 3-1-2a, 3-1 from the upper surface of the printed circuit board 3-2 at the contact portion between 1-2a, 3-1-2b and the ground planes 3-2-2a, 3-2-2b.
  • the shape of 1-3b is determined.
  • signal lead pins 3-1-3a, 3- at the connection portion between the signal lead pins 3-1-3a, 3-1-3b and the signal lines 3-1-6a, 3-1-6b.
  • the upper surfaces of the signal lead pins 3-1-3a and 3-1-3b become lower in height from the high-frequency line substrate 3-1 toward the signal lines 3-2-3a and 3-2-3b, respectively. It has a shape like this.
  • a high frequency signal propagates through the signal lead pin 3-1-3a from the printed circuit board 3-2 to the high frequency line board 3-1. Further, a high frequency signal propagates through the signal lead pin 3-1-3b from the high frequency line board 3-1 to the printed circuit board 3-2. At this time, since the signal lead pins 3-1-3a and 3-1-3b are exposed in the air, the signal lead pins 3-1-3a and 3-1-3b and the ground lead pins 3-1-2a and 3 The capacitance between 1-2b decreases, and the characteristic impedance of the coplanar line tends to increase.
  • the contact portion between the signal lead pins 3-1-3a, 3-1-3b and the signal lines 3-2-3a, 3-2-3b, and the ground lead pins 3-1-2a, 3 At the contact portion between 1-2b and the ground planes 3-2-2a and 3-2-2b, the heights of the ground lead pins 3-1-2a and 3-1-2b are signaled to the signal lead pins 3-1-3a, Make it higher than 3-1-3b. As a result, the signal lead pins 3-1-3a and 3-1-3b are surrounded by the ground lead pins 3-1-2a and 3-1-2b that function as the ground of the coplanar line.
  • this embodiment it is possible to prevent a decrease in capacitance between the signal lead pins 3-1-3a and 3-1-3b and the ground lead pins 3-1-2a and 3-1-2b. , It is possible to suppress an increase in the characteristic impedance of the coplanar line. As a result, impedance matching can be achieved between the grounded coplanar line 3-2-7 of the printed circuit board 3-2 and the grounded coplanar line 3-1-11,3-1-12 of the high frequency line board 3-1.
  • the signal lead pins 3-1-2a and 3-1-2b are adjacent to the electric lines of force from the signal lead pins 3-1-3a and 3-1-3b by the ground lead pins 3-1-2a and 3-1-2b. It can be confined to 3-1-3b without leaking. As a result, crosstalk between the signal lead pins 3-1-3a and 3-1-3b and the adjacent signal lead pins 3-1-3a and 3-1-3b can be reduced.
  • FIG. 16 is a diagram showing simulation results of reflection loss characteristics and pass loss characteristics of the grounded coplanar line in the high frequency line connection structure of the present embodiment
  • FIG. 17 is a diagram showing adjacent channels of the grounded coplanar line in the high frequency line connection structure of the present embodiment. It is a figure which shows the simulation result of the inter-cross talk characteristic and the passage loss characteristic.
  • 600 in FIGS. 16 and 17 shows a reflection loss characteristic
  • 601 shows a passage loss characteristic
  • 602 in FIG. 17 shows crosstalk between adjacent channels when the shapes of the ground lead pins 3-1-2a and 3-1-2b are the same as those of the signal lead pins 3-1-3a and 3-1-3b
  • 603 is a crosstalk between adjacent channels. The crosstalk between adjacent channels in this example is shown.
  • the DC block capacitor 3-1-10 is inserted in series with the grounded coplanar line 3-2-7 by mounting the high frequency line board 3-1 on the printed circuit board 3-2. Then, in this embodiment, the height of the ground lead pins 3-1-2a and 3-1-2b at the contact portion with the printed circuit board 3-2 is set higher than that of the signal lead pins 3-1-3a and 3-1-3b. By increasing the height, impedance matching is achieved between the grounded coplanar line 3-2-7 of the printed circuit board 3-2 and the grounded coplanar line 3-1-11,3-1-12 of the high-frequency line board 3-1. Can be done.
  • a line connection structure can be provided.
  • a DC block capacitor is taken as an example as an electronic component to be inserted in series with the coplanar line, but an electronic component other than the DC block capacitor may be used.
  • the dielectric 2 constituting the grounded coplanar line 2-1-9, 2-2-7, 3-1-11, 3-1-12, 3-2-7 -1-1,2-1-7,2-2-5,3-1-1,-3-2-5 are low-loss ceramics such as alumina, but liquid crystal polymer, dielectric, quartz glass, etc. can be used instead. It goes without saying that it is possible.
  • the signal lead pins 2-1-3a and 2-1 are mounted. Connection between -3b, 3-1-3a, 3-1-3b and signal lines 2-2-3a, 2-2-3b, 3-2-3a, 3-2-3b, ground lead pin 2-1 Connections between -2a, 2-1-2b, 3-1-2a, 3-1-2b and ground planes 2-2-2a, 2-2-2b, 3-2-2a, 3--2-2b , Signal lead pins 2-1-3a, 2-1-3b, 3-1-3a, 3-1-3b and signal lines 2-1-6, 3-1-6a, 3-1-6b , 2-1-2a, 2-1-2b, 3-1-2a, 3-1-2b and ground plane 2-1-5, 3-1-5, solder wettability It is common to apply gold plating to each connection part for the purpose of improvement, but since gold plating is not the essence of the present invention, it is not specified in particular.
  • the present invention can be applied to a technique of crossing a high frequency line of a printed circuit board in a three-dimensional manner or inserting an electronic component into the high frequency line of a printed circuit board.

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Manufacturing & Machinery (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Structure Of Printed Boards (AREA)

Abstract

高周波線路基板(2-1)は、プリント基板(2-2)上に搭載される。プリント基板(2-2)は、第1の高周波線路を備える。高周波線路基板(2-1)は、第2の高周波線路と、第1の高周波線路と第2の高周波線路とを接続するリードピン(2-1-2a,2-1-2b,2-1-3a,2-1-3b)を備える。シグナルリードピン(2-1-3a,2-1-3b)と高周波線路基板(2-1)の第2の高周波線路との当接部、およびグランドリードピン(2-1-2a,2-1-2b)と高周波線路基板(2-1)の第2の高周波線路との当接部において、プリント基板(2-2)の上面からのグランドリードピン(2-1-2a,2-1-2b)の高さは、シグナルリードピン(2-1-3a,2-1-3b)よりも高い。

Description

高周波線路接続構造
 本発明は、プリント基板上にブリッジ基板を搭載して、プリント基板の高周波線路を立体交差させたり、プリント基板の高周波線路に電子部品を挿入したりするための高周波線路接続構造に関するものである。
 複数の様々な光電子部品を限られた面積のプリント基板上で電気的に接続する際、接続箇所においてDCから40GHzに亘る広帯域化が必要とされる。さらに近年の1Tbps光通信技術の進展に見られるように、70GHz以上の広帯域化が、接続箇所においても必須となりつつある。
 一方で、プリント基板は、その経済性から、様々な光電子部品を搭載する際に使用されるプラットフォームとして確立しており、光電子部品を搭載する基板として多数使用されている。プリント基板を実際に使用する際において、高周波線路と光電子部品との空間的な干渉を防ぐため、高周波線路をプリント基板の内部、すなわち内層線路へ迂回させる手法が多数採用されている。高周波線路を内層線路へ迂回させる構造においては、その構造上、オープンスタブが生じることは避けられない。従来より、オープンスタブが高周波特性に与える影響が常に議論されてきた。
 高周波線路にオープンスタブが存在すると、そのオープンスタブに起因した共振が生じる。非特許文献1には、オープンスタブの長さを短くすることによるスタブ共振周波数の高域への遷移について開示されている。オープンスタブの長さを短くすることによって、スタブ共振周波数を、通過帯域のロールオフ周波数の帯域外、非特許文献1の例では20GHz以上の周波数にすることを可能としている。しかしながら、スタブ共振そのものをなくすことは物理的に困難であり、スタブ共振による通過特性のロールオフの問題は残されたままである。
 一方、非特許文献2には、バックドリル加工の機械加工精度を極限まで高めることにより、オープンスタブを短尺化する手法について開示されている。しかしながら、非特許文献2に開示された手法では、高精度の加工技術が必要となるため、プリント基板のコストが上昇し、経済性が損なわれるという問題点があった。このように、DCから70GHzまでの広帯域化を、経済性を損なうことなく実現することは、従来技術では困難であった。
 以下、従来技術の課題をより詳細に説明する。図18Aは従来の多層プリント基板の平面図、図18Bは図18Aの多層プリント基板のA-A’線断面図である。多層プリント基板100の上面には、差動マイクロストリップ線路101と単相コプレーナ線路102の2つの高周波線路が形成されている。単相コプレーナ線路102は、シグナル線路103と、シグナル線路103の周りに形成されたグランドプレーン104とから構成される。限られた面積の多層プリント基板を用いる際、このように複数の高周波線路が備えられるケースがある。
 単相コプレーナ線路102は、差動マイクロストリップ線路101と交差する箇所で2つに分断されている。差動マイクロストリップ線路101の両側に配置された単相コプレーナ線路102を接続するため、図18Bに示されるように、多層プリント基板100の垂直方向に形成された2つの垂直ビア105と水平方向に形成された内層線路106とによって高周波信号を中継する構造を備えている。垂直ビア105は、多層プリント基板における製造工程の1つであるバックドリル加工によって基板裏面から不要箇所が削除される。
 図18Bの例では、バックドリル加工によって穴107が形成されている。しかしながら、機械加工の精度の限界によって、オープンスタブ108が形成されてしまうのは避けられない。このオープンスタブ108の存在により、高周波信号が内層線路106へと伝搬する際に共振現象が誘発され、単相コプレーナ線路102の通過特性に影響を与えてしまう。
 図19は、多層プリント基板100の単相コプレーナ線路102の反射損失特性、通過損失特性を示す図である。図19の200は反射損失特性を示し、201は通過損失特性を示している。オープンスタブ108の存在により、特定の共振周波数(図19の例では25GHz近傍)において通過損失特性に凹みが生じ、高周波信号の伝播を抑制する特性が現れる。
 DCから70GHzまでの広帯域化を実現するためには、スタブ長を100μm以下に加工する必要がある。しかしながら、スタブ長を100μm以下に加工するためには、多層プリント基板を構成する絶縁層1枚よりも薄い精密加工精度が要求されるため、スタブ長の短尺化を実現することは困難であった。
 そこで、マイクロストリップ線路と交差するコプレーナ線路が形成されたプリント基板上に、高周波線路が形成されたブリッジ基板を搭載し、マイクロストリップ線路と交差する部分で分断されたコプレーナ線路をブリッジ基板の高周波線路を介して接続することにより、マイクロストリップ線路とコプレーナ線路とを立体交差させる方法が考えられる。しかしながら、このようなブリッジ基板を用いた立体交差の方法では、ブリッジ基板とプリント基板との接続部が空気中に露出するため、電気的な容量性の低下に伴って接続部の特性インピーダンスが上昇し、プリント基板のコプレーナ線路とブリッジ基板の高周波線路のインピーダンス不整合が発生するという課題があった。
 また、DCから70GHzまでの広い帯域において、通過損失ならびに反射損失を十分に抑圧した電気的な接続を実現するために、いわゆるDCブロックキャパシタと呼ばれるコンデンサを、高周波線路に対して直列に挿入することがある。このようなDCブロックキャパシタ等の部品をブリッジ基板を利用してプリント基板上に搭載する場合、上記と同様にブリッジ基板とプリント基板との接続部が空気中に露出するため、プリント基板のコプレーナ線路とブリッジ基板の高周波線路のインピーダンス不整合が発生するという課題があった。
Qinghua Bill Chen,Jianmin Zhang,Kelvin Qiu,Darja Padilla,Zhiping Yang,Antonio C.Scogna,Jun Fan,"Enabling Terabit Per Second Switch Linecard Design Through Chip/Package/PCB Co-design",on Proceedings of IEEE International Symposium on Electromagnetic Compatibility,July 2010,USA 八木貴弘,小池清,飯長裕,"高速伝送プリント基板の開発",OKIテクニカルレビュー,p.36-P.39,Vol.82,第225号,5月,2015年
 本発明は、上記課題を解決するためになされたもので、ブリッジ基板を利用して高周波線路を接続する場合にブリッジ基板とプリント基板との接続部によるインピーダンス不整合を抑制することができる高周波線路接続構造を提供することを目的とする。
 また、本発明は、ブリッジ基板を利用してDCブロックキャパシタ等の部品を搭載する場合にブリッジ基板とプリント基板との接続部によるインピーダンス不整合を抑制することができる高周波線路接続構造を提供することを目的とする。
 本発明の高周波線路接続構造は、第1の基板と、前記第1の基板上に搭載された第2の基板とを備え、前記第1の基板は、第1の高周波線路を備え、前記第2の基板は、第2の高周波線路と、前記第1の高周波線路と前記第2の高周波線路とを電気的に接続する導体からなるリードピンとを備え、前記第1の高周波線路は、前記第1の基板の第1の主面に形成され、途中で2つに分断された箇所を有する第1のシグナル線路と、前記第1の基板の第1の主面に前記第1のシグナル線路に沿って形成され、延伸方向上の位置が前記第1のシグナル線路の分断箇所と同じ位置で2つに分断された第1のグランドとを備え、前記第2の高周波線路は、延伸方向が前記第1のシグナル線路の延伸方向と平行になるように、前記第2の基板の前記第1の基板と向かい合う第1の主面に形成された第2のシグナル線路と、延伸方向が前記第1のグランドの延伸方向と平行になるように、前記第2の基板の第1の主面に前記第2のシグナル線路に沿って形成された第2のグランドとを備え、前記リードピンは、前記第2のシグナル線路が前記第1のシグナル線路の分断箇所の上に位置し、前記第2のグランドが前記第1のグランドの分断箇所の上に位置するように前記第2の基板が前記第1の基板上に搭載された状態で、前記第1のシグナル線路の分断された一方の部分と他方の部分とそれぞれ当接するように前記第2のシグナル線路の両端に1本ずつ接続されたシグナルリードピンと、前記第2の基板が前記第1の基板上に搭載された状態で、前記第1のグランドの分断された一方の部分と他方の部分とそれぞれ当接するように前記第2のグランドの両端に1本ずつ接続されたグランドリードピンとからなり、前記シグナルリードピンと前記第1のシグナル線路との当接部、および前記グランドリードピンと前記第1のグランドとの当接部において、前記第1の基板の第1の主面からの前記グランドリードピンの高さが前記シグナルリードピンよりも高いことを特徴とするものである。
 また、本発明の高周波線路接続構造の1構成例において、前記第2の基板は、前記第2の基板の前記第1の主面と反対側の第2の主面に形成された第3の高周波線路と、前記第2の基板の第2の主面に搭載され、前記第3の高周波線路に直列に挿入された電子部品とをさらに備え、前記第3の高周波線路は、前記第2の基板の第2の主面に形成され、途中で2つに分断された箇所を有する第3のシグナル線路と、前記第2の基板の第2の主面に前記第3のシグナル線路の周りを囲むように形成された第3のグランドとを備え、前記電子部品の2つの電極は、前記第3のシグナル線路の分断された一方の部分と他方の部分にそれぞれ接続され、前記第2の高周波線路の第2のシグナル線路は、途中で2つに分断された箇所を有し、前記第2の高周波線路の第2のグランドは、前記第2のシグナル線路の周りを囲むように形成され、前記第3のシグナル線路の両端部は、前記第2の基板に形成されたビアを介して前記第2のシグナル線路の分断された一方の部分と他方の部分のそれぞれと接続されることを特徴とするものである。
 また、本発明の高周波線路接続構造の1構成例は、前記第1の高周波線路の複数の前記第1のシグナル線路が平行に配置され、前記第1の高周波線路の複数の前記第1のグランドが前記第1のシグナル線路に沿って両側に配置され、前記第2の高周波線路の複数の前記第2のシグナル線路が平行に配置され、前記第2の高周波線路の複数の前記第2のグランドが前記第2のシグナル線路に沿って両側に配置され、複数の前記シグナルリードピンが前記第1のシグナル線路と前記第2のシグナル線路の整列方向に沿って平行に配置され、複数の前記グランドリードピンが前記第1のグランドと前記第2のグランドの整列方向に沿って平行に配置されることを特徴とするものである。
 また、本発明の高周波線路接続構造の1構成例は、前記第1の高周波線路の複数の前記第1のシグナル線路が平行に配置され、前記第1の高周波線路の複数の前記第1のグランドが前記第1のシグナル線路に沿って両側に配置され、前記第2の高周波線路の複数の前記第2のシグナル線路が平行に配置され、前記第2の高周波線路の前記第2のグランドが複数の前記第2のシグナル線路の周りを囲むように配置され、前記第3の高周波線路の複数の前記第3のシグナル線路が平行に配置され、前記第3の高周波線路の前記第3のグランドが複数の前記第3のシグナル線路の周りを囲むように配置され、前記電子部品は、前記第3のシグナル線路のそれぞれに対して1つずつ設けられ、複数の前記シグナルリードピンが前記第1のシグナル線路と前記第2のシグナル線路と前記第3のシグナル線路の整列方向に沿って平行に配置され、複数の前記グランドリードピンが前記第1のグランドと前記第2のグランドの整列方向に沿って平行に配置されることを特徴とするものである。
 また、本発明の高周波線路接続構造の1構成例において、前記電子部品は、DCブロックキャパシタである。
 本発明によれば、シグナルリードピンと第1のシグナル線路との当接部、およびグランドリードピンと第1のグランドとの当接部において、第1の基板の第1の主面からのグランドリードピンの高さをシグナルリードピンよりも高くすることにより、高周波線路のグランドとして機能するグランドリードピンによってシグナルリードピンを囲い込む構造とする。この構造により、本発明では、シグナルリードピンとグランドリードピンとの間の容量の低下を防ぐことができ、高周波線路の特性インピーダンスの上昇を抑制することができる。本発明では、第1の基板の第1の高周波線路と第2の基板の第2の高周波線路のインピーダンス整合をとることができ、シグナルリードピンと隣接するシグナルリードピン間のクロストークを低減することができる。その結果、本発明では、低反射損失特性、低通過損失特性、低クロストーク特性を広帯域で実現することが可能な高周波線路接続構造を提供することができる。
 また、本発明では、プリント基板の第1の高周波線路に電子部品を挿入する構成において、低反射損失特性、低通過損失特性、低クロストーク特性を広帯域で実現することが可能な高周波線路接続構造を提供することができる。
図1は、本発明の第1の実施例に係る高周波線路接続構造の分解斜視図である。 図2は、本発明の第1の実施例に係る高周波線路接続構造の分解斜視図である。 図3は、本発明の第1の実施例に係る高周波線路接続構造の高周波線路基板の下面図である。 図4は、本発明の第1の実施例に係る高周波線路接続構造の斜視図である。 図5は、本発明の第1の実施例に係る高周波線路接続構造の平面図である。 図6は、本発明の第1の実施例に係る高周波線路接続構造の側面図である。 図7は、本発明の第1の実施例に係る高周波線路接続構造の反射損失特性、通過損失特性のシミュレーション結果を示す図である。 図8は、本発明の第1の実施例に係る高周波線路接続構造の隣接チャネル間クロストーク特性、通過損失特性のシミュレーション結果を示す図である。 図9は、本発明の第2の実施例に係る高周波線路接続構造の分解斜視図である。 図10は、本発明の第2の実施例に係る高周波線路接続構造の分解斜視図である。 図11は、本発明の第2の実施例に係る高周波線路接続構造の高周波線路基板の下面図である。 図12は、本発明の第2の実施例に係る高周波線路接続構造の高周波線路基板の平面図である。 図13は、本発明の第2の実施例に係る高周波線路接続構造の斜視図である。 図14は、本発明の第2の実施例に係る高周波線路接続構造の平面図である。 図15は、本発明の第2の実施例に係る高周波線路接続構造の側面図である。 図16は、本発明の第2の実施例に係る高周波線路接続構造の反射損失特性、通過損失特性のシミュレーション結果を示す図である。 図17は、本発明の第2の実施例に係る高周波線路接続構造の隣接チャネル間クロストーク特性、通過損失特性のシミュレーション結果を示す図である。 図18Aは、従来の多層プリント基板の平面図である。 図18Bは、従来の多層プリント基板の断面図である。 図19は、従来の多層プリント基板の反射損失特性、通過損失特性を示す図である。
 以下、本発明の実施例について図面を用いて詳細に説明する。
[第1の実施例]
 図1は本発明の第1の実施例に係る高周波線路接続構造を上から見た分解斜視図、図2は図1の高周波線路接続構造を下から見た分解斜視図である。図1、図2に示すように、プリント基板2-2(第1の基板)は、平板状の誘電体2-2-5と、誘電体2-2-5の上面(第1の主面)に形成された導体からなるマイクロストリップ線路2-2-1と、誘電体2-2-5の上面にマイクロストリップ線路2-2-1と交差する方向に沿って形成された導体からなるシグナル線路2-2-3a,2-2-3b(第1のシグナル線路)と、誘電体2-2-5の上面にシグナル線路2-2-3a,2-2-3bに沿って形成された導体からなるグランドプレーン2-2-2a,2-2-2b(第1のグランド)と、誘電体2-2-5の下面(第2の主面)に形成された導体からなるグランドプレーン2-2-4と、誘電体2-2-5に形成され、グランドプレーン2-2-2a,2-2-2bとグランドプレーン2-2-4とを接続する導体からなるグランドビア2-2-6とを備えている。
 本実施例では、複数のシグナル線路2-2-3aが平行に配置されている。複数のグランドプレーン2-2-2aは、シグナル線路2-2-3aに沿ってシグナル線路2-2-3aの両側に配置されている。同様に、複数のシグナル線路2-2-3bが平行に配置されている。複数のグランドプレーン2-2-2bは、シグナル線路2-2-3bに沿ってシグナル線路2-2-3bの両側に配置されている。
 シグナル線路2-2-3aとシグナル線路2-2-3bとは、マイクロストリップ線路2-2-1と交差する箇所で分断された形態となっている。同様に、グランドプレーン2-2-2aとグランドプレーン2-2-2bとは、延伸方向(図1、図2のX方向)上の位置がシグナル線路2-2-3a,2-2-3bの分断箇所と同じ位置で分断された形態となっている。
 グランドプレーン2-2-2a,2-2-2bは、それぞれ誘電体2-2-5に形成されたグランドビア2-2-6によってグランドプレーン2-2-4と電気的に接続されている。
 シグナル線路2-2-3a,2-2-3bとグランドプレーン2-2-2a,2-2-2bとは、基板裏面にグランドプレーン2-2-4を備えたグランデッドコプレーナ線路2-2-7(第1の高周波線路)を構成している。上記の説明のとおり、グランデッドコプレーナ線路2-2-7は、マイクロストリップ線路2-2-1と交差する箇所で分断されている。
 次に、マイクロストリップ線路2-2-1の両側の分断されたグランデッドコプレーナ線路2-2-7を接続するための高周波線路基板2-1(第2の基板)について説明する。図3は高周波線路基板2-1の下面図である。なお、図3では、高周波線路基板2-1の構成を分かり易くするため、後述するシグナルリードピンおよびグランドリードピンの記載を省略している。
 図1~図3に示すように、高周波線路基板2-1は、平板状の誘電体2-1-1と、誘電体2-1-1のプリント基板2-2と向かい合う下面に形成された導体からなるグランドプレーン2-1-4と、グランドプレーン2-1-4のプリント基板2-2と向かい合う下面に形成された誘電体2-1-7と、高周波線路基板2-1がプリント基板2-2上に搭載されたときに延伸方向がシグナル線路2-2-3a,2-2-3bの延伸方向と平行になるように、誘電体2-1-7のプリント基板2-2と向かい合う下面(第1の主面)に形成された導体からなるシグナル線路2-1-6(第2のシグナル線路)と、高周波線路基板2-1がプリント基板2-2上に搭載されたときに延伸方向がグランドプレーン2-2-2a,2-2-2bの延伸方向と平行になるように、誘電体2-1-7のプリント基板2-2と向かい合う下面にシグナル線路2-1-6に沿って形成された導体からなるグランドプレーン2-1-5(第2のグランド)とを備えている。
 さらに、高周波線路基板2-1は、高周波線路基板2-1がプリント基板2-2上に搭載されたときにシグナル線路2-2-3a,2-2-3bとそれぞれ当接するようにシグナル線路2-1-6の両端に1本ずつ接続された導体からなるシグナルリードピン2-1-3a,2-1-3bと、高周波線路基板2-1がプリント基板2-2上に搭載されたときにグランドプレーン2-2-2a,2-2-2bとそれぞれ当接するようにグランドプレーン2-1-5の両端に1本ずつ接続された導体からなるグランドリードピン2-1-2a,2-1-2bと、誘電体2-1-7に形成され、グランドプレーン2-1-4とグランドプレーン2-1-5とを接続する導体からなるグランドビア2-1-8とを備えている。
 誘電体2-1-1,2-1-7,2-2-5の材料としては、例えばアルミナ等の低損失セラミックスがある。
 本実施例では、高周波線路基板2-1の下面に複数のシグナル線路2-1-6が平行に配置されている。シグナル線路2-1-6の整列方向(図1~図3のY方向)のピッチは、シグナル線路2-2-3a,2-2-3bの整列方向のピッチと同一である。
 複数のグランドプレーン2-1-5は、シグナル線路2-1-6に沿ってシグナル線路2-1-6の両側に配置されている。グランドプレーン2-1-5の整列方向のピッチは、グランドプレーン2-2-2a,2-2-2bの整列方向のピッチと同一である。
 グランドプレーン2-1-5は、誘電体2-1-7に形成されたグランドビア2-1-8によってグランドプレーン2-1-4と電気的に接続されている。
 シグナル線路2-1-6とグランドプレーン2-1-5とは、誘電体2-1-7を間に挟んだ反対側の面にグランドプレーン2-1-4を備えたグランデッドコプレーナ線路2-1-9(第2の高周波線路)を構成している。
 本実施例では、複数のシグナルリードピン2-1-3a,2-1-3bがシグナル線路2-2-3a,2-2-3bの整列方向およびシグナル線路2-1-6の整列方向(図1~図3のY方向)に沿って平行に配置されている。シグナルリードピン2-1-3a,2-1-3bの整列方向のピッチは、シグナル線路2-2-3a,2-2-3bとシグナル線路2-1-6の整列方向のピッチと同一である。
 複数のグランドリードピン2-1-2a,2-1-2bは、グランドプレーン2-2-2a,2-2-2bの整列方向およびグランドプレーン2-1-5の整列方向(図1~図3のY方向)に沿って平行に配置されている。グランドリードピン2-1-2a,2-1-2bの整列方向のピッチは、グランドプレーン2-2-2a,2-2-2bとグランドプレーン2-1-5の整列方向のピッチと同一である。
 シグナルリードピン2-1-3a,2-1-3bのシグナル線路2-1-6への固定方法、およびグランドリードピン2-1-2a,2-1-2bのグランドプレーン2-1-5への固定方法としては、例えばろう付け、ハンダ付けなどがあるが、他の固定方法を採用してもよいことは言うまでもない。
 以上のような高周波線路基板2-1とプリント基板2-2とを個別に作製した後で、プリント基板2-2の上に高周波線路基板2-1を搭載する。
 図4はプリント基板2-2の上に高周波線路基板2-1が搭載され、プリント基板2-2の分断されたグランデッドコプレーナ線路2-2-7が高周波線路基板2-1のグランデッドコプレーナ線路2-1-9によって接続された後の高周波線路接続構造の斜視図である。図5は図4の高周波線路接続構造の平面図、図6は図4の高周波線路接続構造の側面図である。
 図4~図6に示すような高周波線路接続構造を作製するには、高周波線路基板2-1のシグナル線路2-1-6およびグランドプレーン2-1-5が形成された面を下にし、シグナル線路2-1-6がシグナル線路2-2-3a,2-2-3bの分断箇所の上に位置し、グランドプレーン2-1-5がグランドプレーン2-2-2a,2-2-2bの分断箇所の上に位置するように位置合わせをして、高周波線路基板2-1をプリント基板2-2上に搭載する。
 このとき、高周波線路基板2-1のシグナルリードピン2-1-3a,2-1-3bとプリント基板2-2のシグナル線路2-2-3a,2-2-3bとが当接し、高周波線路基板2-1のグランドリードピン2-1-2a,2-1-2bとプリント基板2-2のグランドプレーン2-2-2a,2-2-2bとが当接するようにして、プリント基板2-2の上に高周波線路基板2-1を搭載する。
 高周波線路基板2-1のシグナルリードピン2-1-3a,2-1-3bとプリント基板2-2のシグナル線路2-2-3a,2-2-3bとは、ハンダ等によって接続される。同様に、高周波線路基板2-1のグランドリードピン2-1-2a,2-1-2bとプリント基板2-2のグランドプレーン2-2-2a,2-2-2bとは、ハンダ等によって接続される。
 以上の高周波線路接続構造により、プリント基板2-2のシグナル線路2-2-3aは、高周波線路基板2-1のシグナルリードピン2-1-3aとシグナル線路2-1-6とシグナルリードピン2-1-3bとを介してシグナル線路2-2-3bと電気的に接続される。同様に、プリント基板2-2のグランドプレーン2-2-2aは、高周波線路基板2-1のグランドリードピン2-1-2aとグランドプレーン2-1-5とグランドリードピン2-1-2bとを介してグランドプレーン2-2-2bと電気的に接続される。こうして、本実施例では、プリント基板2-2の上面に形成されたマイクロストリップ線路2-2-1とグランデッドコプレーナ線路2-2-7とを立体的に交差させることが可能となる。
 本実施例では、図6に示すように、シグナルリードピン2-1-3a,2-1-3bとシグナル線路2-2-3a,2-2-3bとの当接部、およびグランドリードピン2-1-2a,2-1-2bとグランドプレーン2-2-2a,2-2-2bとの当接部において、プリント基板2-2の上面からのグランドリードピン2-1-2a,2-1-2bの高さがシグナルリードピン2-1-3a,2-1-3bよりも高くなるように、グランドリードピン2-1-2a,2-1-2bおよびシグナルリードピン2-1-3a,2-1-3bの形状が決められている。
 図6から明らかなように、シグナルリードピン2-1-3a,2-1-3bとシグナル線路2-1-6との接続部におけるシグナルリードピン2-1-3a,2-1-3bの上面の高さと、グランドリードピン2-1-2a,2-1-2bとグランドプレーン2-1-5との接続部におけるグランドリードピン2-1-2a,2-1-2bの上面の高さとは同一であることは言うまでもない。そして、シグナルリードピン2-1-3a,2-1-3bは、それぞれ高周波線路基板2-1からシグナル線路2-2-3a,2-2-3bの方に向かって上面の高さが低くなるような形状となっている。。
 プリント基板2-2から高周波線路基板2-1へと高周波信号がシグナルリードピン2-1-3aを伝搬する。また、高周波線路基板2-1からプリント基板2-2へと高周波信号がシグナルリードピン2-1-3bを伝搬する。このとき、シグナルリードピン2-1-3a,2-1-3bが空気中に露出しているために、シグナルリードピン2-1-3a,2-1-3bとグランドリードピン2-1-2a,2-1-2bとの間の容量が低下し、コプレーナ線路の特性インピーダンスが上昇し易くなる。
 そこで、本実施例では、シグナルリードピン2-1-3a,2-1-3bとシグナル線路2-2-3a,2-2-3bとの当接部、およびグランドリードピン2-1-2a,2-1-2bとグランドプレーン2-2-2a,2-2-2bとの当接部において、グランドリードピン2-1-2a,2-1-2bの高さをシグナルリードピン2-1-3a,2-1-3bよりも高くする。これにより、コプレーナ線路のグランドとして機能するグランドリードピン2-1-2a,2-1-2bによってシグナルリードピン2-1-3a,2-1-3bを囲い込む構造とする。
 このような構造により、本実施例では、シグナルリードピン2-1-3a,2-1-3bとグランドリードピン2-1-2a,2-1-2bとの間の容量の低下を防ぐことができ、コプレーナ線路の特性インピーダンスの上昇を抑制することができる。その結果、プリント基板2-2のグランデッドコプレーナ線路2-2-7と高周波線路基板2-1のグランデッドコプレーナ線路2-1-9のインピーダンス整合をとることができる。
 さらに、本実施例では、グランドリードピン2-1-2a,2-1-2bによってシグナルリードピン2-1-3a,2-1-3bからの電気力線を隣接するシグナルリードピン2-1-3a,2-1-3bに漏えいさせることなく閉じ込めることができる。その結果、シグナルリードピン2-1-3a,2-1-3bと隣接するシグナルリードピン2-1-3a,2-1-3bとの間のクロストークを低減することができる。
 図7は本実施例の高周波線路接続構造におけるグランデッドコプレーナ線路の反射損失特性、通過損失特性のシミュレーション結果を示す図、図8は本実施例の高周波線路接続構造におけるグランデッドコプレーナ線路の隣接チャネル間クロストーク特性、通過損失特性のシミュレーション結果を示す図である。
 図7、図8の700は反射損失特性を示し、701は通過損失特性を示している。図8の702はグランドリードピン2-1-2a,2-1-2bの形状をシグナルリードピン2-1-3a,2-1-3bと同じにした場合の隣接チャネル間クロストークを示し、703は本実施例における隣接チャネル間クロストークを示している。
 本実施例では、プリント基板2-2の上に高周波線路基板2-1を搭載することにより、マイクロストリップ線路2-2-1と交差する箇所で分断されたグランデッドコプレーナ線路2-2-7を高周波線路基板2-1を介して接続する。そして、本実施例では、プリント基板2-2との接続部におけるグランドリードピン2-1-2a,2-1-2bの高さをシグナルリードピン2-1-3a,2-1-3bよりも高くすることにより、プリント基板2-2のグランデッドコプレーナ線路2-2-7と高周波線路基板2-1のグランデッドコプレーナ線路2-1-9とのインピーダンス整合をとることができる。
 その結果、本実施例では、図7、図8に示すように良好な特性を得ることができ、低反射損失特性、低通過損失特性、低クロストーク特性を広帯域で実現することが可能な高周波線路接続構造を提供することができる。
[第2の実施例]
 次に、本発明の第2の実施例について説明する。図9は本発明の第2の実施例に係る高周波線路接続構造を上から見た分解斜視図、図10は図9の高周波線路接続構造を下から見た分解斜視図、図11は高周波線路基板の下面図、図12は高周波線路基板の平面図である。なお、図11では、高周波線路基板の構成を分かり易くするため、シグナルリードピンおよびグランドリードピンの記載を省略している。また、図12では、高周波線路基板の構成を分かり易くするため、DCブロックキャパシタの記載を省略している。
 図13はプリント基板の上に高周波線路基板が搭載され、プリント基板のグランデッドコプレーナ線路が高周波線路基板のグランデッドコプレーナ線路によって接続された後の高周波線路接続構造の斜視図、図14は図13の高周波線路接続構造の平面図、図15は図13の高周波線路接続構造の側面図である。
 本実施例のプリント基板3-2(第1の基板)は、平板状の誘電体3-2-5と、誘電体3-2-5の上面(第1の主面)に形成された導体からなるシグナル線路3-2-3a,3-2-3b(第1のシグナル線路)と、誘電体3-2-5の上面にシグナル線路3-2-3a,3-2-3bに沿って形成された導体からなるグランドプレーン3-2-2a,3-2-2b(第1のグランド)と、誘電体3-2-5の下面(第2の主面)に形成された導体からなるグランドプレーン3-2-4と、誘電体3-2-5に形成され、グランドプレーン3-2-2a,3-2-2bとグランドプレーン3-2-4とを接続する導体からなるグランドビア3-2-6とを備えている。
 本実施例では、複数のシグナル線路3-2-3aが平行に配置されている。複数のグランドプレーン3-2-2aは、シグナル線路3-2-3aに沿ってシグナル線路3-2-3aの両側に配置されている。同様に、複数のシグナル線路3-2-3bが平行に配置されている。複数のグランドプレーン3-2-2bは、シグナル線路3-2-3bに沿ってシグナル線路3-2-3bの両側に配置されている。
 シグナル線路3-2-3aとシグナル線路3-2-3bとは、後述のようにDCブロックキャパシタを搭載する位置で分断された形態となっている。同様に、グランドプレーン3-2-2aとグランドプレーン3-2-2bとは、延伸方向(図9~図15のX方向)上の位置がシグナル線路3-2-3a,3-2-3bの分断箇所と同じ位置で分断された形態となっている。
 グランドプレーン3-2-2a,3-2-2bは、それぞれ誘電体3-2-5に形成されたグランドビア3-2-6によってグランドプレーン3-2-4と電気的に接続されている。
 シグナル線路3-2-3a,3-2-3bとグランドプレーン3-2-2a,3-2-2bとは、基板裏面にグランドプレーン3-2-4を備えたグランデッドコプレーナ線路3-2-7(第1の高周波線路)を構成している。このグランデッドコプレーナ線路3-2-7は、後述のようにDCブロックキャパシタを直列に挿入するために、高周波線路基板を搭載する箇所で分断されている。
 一方、高周波線路基板3-1(第2の基板)は、平板状の誘電体3-1-1と、高周波線路基板3-1がプリント基板3-2上に搭載されたときに延伸方向がシグナル線路3-2-3a,3-2-3bの延伸方向と平行になるように、誘電体3-1-1のプリント基板3-2と向かい合う下面(第1の主面)に形成された導体からなるシグナル線路3-1-6a,3-1-6b(第2のシグナル線路)と、誘電体3-1-1のプリント基板3-2と向かい合う下面に、シグナル線路3-1-6a,3-1-6bを周りを囲むように形成された導体からなるグランドプレーン3-1-5(第2のグランド)と、誘電体3-1-1の上面(第2の主面)に形成された導体からなるシグナル線路3-1-7a,3-1-7b(第3のシグナル線路)と、誘電体3-1-1の上面に、シグナル線路3-1-7a,3-1-7bの周りを囲むように形成されたグランドプレーン3-1-4(第3のグランド)とを備えている。
 さらに、高周波線路基板3-1は、高周波線路基板3-1がプリント基板3-2上に搭載されたときにシグナル線路3-2-3a,3-2-3bとそれぞれ当接するようにシグナル線路3-1-6a,3-1-6bに1本ずつ接続された導体からなるシグナルリードピン3-1-3a,3-1-3bと、高周波線路基板3-1がプリント基板3-2上に搭載されたときにグランドプレーン3-2-2a,3-2-2bとそれぞれ当接するようにグランドプレーン2-1-5の両端に1本ずつ接続された導体からなるグランドリードピン3-1-2a,3-1-2bと、誘電体3-1-1に形成され、グランドプレーン3-1-4とグランドプレーン3-1-5とを接続する導体からなるグランドビア3-1-8と、誘電体3-1-1に形成され、シグナル線路3-1-6a,3-1-6bとシグナル線路3-1-7a,3-1-7bとを接続する導体からなるビア3-1-9a,3-1-9bと、DCブロックキャパシタ3-1-10(電子部品)とを備えている。
 誘電体3-1-1,3-2-5の材料としては、例えばアルミナ等の低損失セラミックスがある。
 本実施例では、高周波線路基板3-1の下面に複数のシグナル線路3-1-6aが平行に配置されている。同様に、複数のシグナル線路3-1-6bが平行に配置されている。グランドプレーン3-1-5は、シグナル線路3-1-6a,3-1-6bの周りを囲むように配置されている。シグナル線路3-1-6aとシグナル線路3-1-6bとは、反対側の面にDCブロックキャパシタ3-1-10を搭載するために分断された形態となっている。シグナル線路3-1-6a,3-1-6bの整列方向(図9~図15のY方向)のピッチは、シグナル線路3-2-3a,3-2-3bの整列方向のピッチと同一である。
 また、本実施例では、高周波線路基板3-1の上面に複数のシグナル線路3-1-7aが平行に配置されている。同様に、複数のシグナル線路3-1-7bが平行に配置されている。グランドプレーン3-1-4は、シグナル線路3-1-7a,3-1-7bの周りを囲むように配置されている。シグナル線路3-1-7aとシグナル線路3-1-7bとは、高周波線路基板3-1の上面にDCブロックキャパシタ3-1-10を搭載するために分断された形態となっている。シグナル線路3-1-7a,3-1-7bの整列方向(図9~図15のY方向)のピッチは、シグナル線路3-1-6a,3-1-6bの整列方向のピッチと同一である。
 グランドプレーン3-1-5は、誘電体3-1-1に形成されたグランドビア3-1-8によってグランドプレーン3-1-4と電気的に接続されている。
 シグナル線路3-1-7aの端部は、誘電体3-1-1に形成されたビア3-1-9aを介して第2のシグナル線路の分断された2つの部分のうち一方の部分(シグナル線路3-1-6a)と電気的に接続されている。シグナル線路3-1-7bの端部は、誘電体3-1-1に形成されたビア3-1-9bを介して第2のシグナル線路の分断された2つの部分のうち他方の部分(シグナル線路3-1-6b)と電気的に接続されている。
 シグナル線路3-1-6a,3-1-6bの周囲にはグランドプレーン3-1-5が形成され、シグナル線路3-1-7a,3-1-7bの周囲にはグランドプレーン3-1-4が形成されている。したがって、シグナル線路3-1-6a,3-1-7aとビア3-1-9aとグランドプレーン3-1-4,3-1-5とは、高周波線路基板3-1(誘電体3-1-1)の垂直方向に沿って形成された疑似同軸線路構造3-1-13aを構成している。同様に、シグナル線路3-1-6b,3-1-7bとビア3-1-9bとグランドプレーン3-1-4,3-1-5とは、疑似同軸線路構造3-1-13bを構成している。
 シグナル線路3-1-6a,3-1-6bとグランドプレーン3-1-5とは、誘電体3-1-1を間に挟んだ反対側の面にグランドプレーン3-1-4を備えたグランデッドコプレーナ線路3-1-11(第2の高周波線路)を構成している。このグランデッドコプレーナ線路3-1-11は、DCブロックキャパシタ3-1-10を直列に挿入するために2つに分断されている。
 シグナル線路3-1-7a,3-1-7bとグランドプレーン3-1-4とは、誘電体3-1-1を間に挟んだ反対側の面にグランドプレーン3-1-5を備えたグランデッドコプレーナ線路3-1-12(第3の高周波線路)を構成している。このグランデッドコプレーナ線路3-1-12は、DCブロックキャパシタ3-1-10を直列に挿入するために2つに分断されている。
 DCブロックキャパシタ3-1-10の一方の電極は、第3のシグナル線路の分断された2つの部分のうち一方の部分(シグナル線路3-1-7a)にハンダ付けされている。DCブロックキャパシタ3-1-10の他方の電極は、第3のシグナル線路の分断された2つの部分のうち他方の部分(シグナル線路3-1-7b)にハンダ付けされている。こうして、DCブロックキャパシタ3-1-10が高周波線路基板3-1上に実装されると共に、グランデッドコプレーナ線路3-1-11,3-1-12に対して直列にDCブロックキャパシタ3-1-10が挿入される。
 シグナルリードピン3-1-3a,3-1-3bのシグナル線路3-1-6a,3-1-6bへの固定方法、およびグランドリードピン3-1-2a,3-1-2bのグランドプレーン3-1-5への固定方法としては、例えばろう付け、ハンダ付けなどがあるが、他の固定方法を採用してもよいことは言うまでもない。
 以上のような高周波線路基板3-1とプリント基板3-2とを個別に作製した後で、プリント基板3-2の上に高周波線路基板3-1を搭載する。
 図13~図15に示すような高周波線路接続構造を作製するには、高周波線路基板3-1のシグナル線路3-1-6a,3-1-6bおよびグランドプレーン3-1-5が形成された面を下にし、シグナル線路3-1-6a,3-1-6b,3-1-7a,3-1-7bがシグナル線路3-2-3a,3-2-3bの分断箇所の上に位置し、グランドプレーン3-1-5,3-1-4がグランドプレーン3-2-2a,3-2-2bの分断箇所の上に位置するように位置合わせをして、高周波線路基板3-1をプリント基板3-2上に搭載する。
 このとき、高周波線路基板3-1のシグナルリードピン3-1-3a,3-1-3bとプリント基板3-2のシグナル線路3-2-3a,3-2-3bとが当接し、高周波線路基板3-1のグランドリードピン3-1-2a,3-1-2bとプリント基板3-2のグランドプレーン3-2-2a,3-2-2bとが当接するようにして、プリント基板3-2の上に高周波線路基板3-1を搭載する。
 高周波線路基板3-1のシグナルリードピン3-1-3a,3-1-3bとプリント基板3-2のシグナル線路3-2-3a,3-2-3bとは、ハンダ等によって接続される。同様に、高周波線路基板3-1のグランドリードピン3-1-2a,3-1-2bとプリント基板3-2のグランドプレーン3-2-2a,3-2-2bとは、ハンダ等によって接続される。
 以上の高周波線路接続構造により、プリント基板3-2のシグナル線路3-2-3aは、高周波線路基板3-1のシグナルリードピン3-1-3aとシグナル線路3-1-6aとビア3-1-9aとシグナル線路3-1-7aとDCブロックキャパシタ3-1-10とシグナル線路3-1-7bとビア3-1-9bとシグナル線路3-1-6bとシグナルリードピン3-1-3bとを介してシグナル線路3-2-3bと電気的に接続される。
 プリント基板3-2のグランドプレーン3-2-2aは、高周波線路基板3-1のグランドリードピン3-1-2aとグランドプレーン3-1-5とグランドリードピン3-1-2bとを介してグランドプレーン3-2-2bと電気的に接続される。
 こうして、DCブロックキャパシタ3-1-10が搭載された高周波線路基板3-1をプリント基板3-2上に搭載することにより、グランデッドコプレーナ線路3-2-7に対して直列にDCブロックキャパシタ3-1-10を挿入することができる。
 本実施例では、図15に示すように、シグナルリードピン3-1-3a,3-1-3bとシグナル線路3-2-3a,3-2-3bとの当接部、およびグランドリードピン3-1-2a,3-1-2bとグランドプレーン3-2-2a,3-2-2bとの当接部において、プリント基板3-2の上面からのグランドリードピン3-1-2a,3-1-2bの高さがシグナルリードピン3-1-3a,3-1-3bよりも高くなるように、グランドリードピン3-1-2a,3-1-2bおよびシグナルリードピン3-1-3a,3-1-3bの形状が決められている。
 図15から明らかなように、シグナルリードピン3-1-3a,3-1-3bとシグナル線路3-1-6a,3-1-6bとの接続部におけるシグナルリードピン3-1-3a,3-1-3bの上面の高さと、グランドリードピン3-1-2a,3-1-2bとグランドプレーン3-1-5との接続部におけるグランドリードピン3-1-2a,3-1-2bの上面の高さとは同一であることは言うまでもない。そして、シグナルリードピン3-1-3a,3-1-3bは、それぞれ高周波線路基板3-1からシグナル線路3-2-3a,3-2-3bの方に向かって上面の高さが低くなるような形状となっている。
 プリント基板3-2から高周波線路基板3-1へと高周波信号がシグナルリードピン3-1-3aを伝搬する。また、高周波線路基板3-1からプリント基板3-2へと高周波信号がシグナルリードピン3-1-3bを伝搬する。このとき、シグナルリードピン3-1-3a,3-1-3bが空気中に露出しているために、シグナルリードピン3-1-3a,3-1-3bとグランドリードピン3-1-2a,3-1-2bとの間の容量が低下し、コプレーナ線路の特性インピーダンスが上昇し易くなる。
 そこで、本実施例では、シグナルリードピン3-1-3a,3-1-3bとシグナル線路3-2-3a,3-2-3bとの当接部、およびグランドリードピン3-1-2a,3-1-2bとグランドプレーン3-2-2a,3-2-2bとの当接部において、グランドリードピン3-1-2a,3-1-2bの高さをシグナルリードピン3-1-3a,3-1-3bよりも高くする。これにより、コプレーナ線路のグランドとして機能するグランドリードピン3-1-2a,3-1-2bによってシグナルリードピン3-1-3a,3-1-3bを囲い込む構造とする。
 このような構造により、本実施例では、シグナルリードピン3-1-3a,3-1-3bとグランドリードピン3-1-2a,3-1-2bとの間の容量の低下を防ぐことができ、コプレーナ線路の特性インピーダンスの上昇を抑制することができる。その結果、プリント基板3-2のグランデッドコプレーナ線路3-2-7と高周波線路基板3-1のグランデッドコプレーナ線路3-1-11,3-1-12のインピーダンス整合をとることができる。
 さらに、本実施例では、グランドリードピン3-1-2a,3-1-2bによってシグナルリードピン3-1-3a,3-1-3bからの電気力線を隣接するシグナルリードピン3-1-3a,3-1-3bに漏えいさせることなく閉じ込めることができる。その結果、シグナルリードピン3-1-3a,3-1-3bと隣接するシグナルリードピン3-1-3a,3-1-3bとの間のクロストークを低減することができる。
 図16は本実施例の高周波線路接続構造におけるグランデッドコプレーナ線路の反射損失特性、通過損失特性のシミュレーション結果を示す図、図17は本実施例の高周波線路接続構造におけるグランデッドコプレーナ線路の隣接チャネル間クロストーク特性、通過損失特性のシミュレーション結果を示す図である。
 図16、図17の600は反射損失特性を示し、601は通過損失特性を示している。図17の602はグランドリードピン3-1-2a,3-1-2bの形状をシグナルリードピン3-1-3a,3-1-3bと同じにした場合の隣接チャネル間クロストークを示し、603は本実施例における隣接チャネル間クロストークを示している。
 本実施例では、プリント基板3-2の上に高周波線路基板3-1を搭載することにより、DCブロックキャパシタ3-1-10をグランデッドコプレーナ線路3-2-7に直列に挿入する。そして、本実施例では、プリント基板3-2との当接部におけるグランドリードピン3-1-2a,3-1-2bの高さをシグナルリードピン3-1-3a,3-1-3bよりも高くすることにより、プリント基板3-2のグランデッドコプレーナ線路3-2-7と高周波線路基板3-1のグランデッドコプレーナ線路3-1-11,3-1-12とのインピーダンス整合をとることができる。
 その結果、本実施例では、図16、図17に示すように良好な特性を得ることができ、低反射損失特性、低通過損失特性、低クロストーク特性を広帯域で実現することが可能な高周波線路接続構造を提供することができる。
 なお、本実施例では、コプレーナ線路に直列に挿入する電子部品として、DCブロックキャパシタを例に挙げて説明しているが、DCブロックキャパシタ以外の電子部品を用いてもよい。
 第1、第2の実施例においては、グランデッドコプレーナ線路2-1-9,2-2-7,3-1-11,3-1-12,3-2-7を構成する誘電体2-1-1,2-1-7,2-2-5,3-1-1,3-2-5をアルミナ等の低損失セラミックスとしているが、液晶ポリマ、ポリミィド、あるいは石英ガラス等でも代替可能であることは言うまでもない。
 また、第1、第2の実施例において、プリント基板2-2,3-2上に高周波線路基板2-1,3-1を搭載する際に、シグナルリードピン2-1-3a,2-1-3b,3-1-3a,3-1-3bとシグナル線路2-2-3a,2-2-3b,3-2-3a,3-2-3bとの接続部、グランドリードピン2-1-2a,2-1-2b,3-1-2a,3-1-2bとグランドプレーン2-2-2a,2-2-2b,3-2-2a,3-2-2bとの接続部、シグナルリードピン2-1-3a,2-1-3b,3-1-3a,3-1-3bとシグナル線路2-1-6,3-1-6a,3-1-6bとの接続部、グランドリードピン2-1-2a,2-1-2b,3-1-2a,3-1-2bとグランドプレーン2-1-5,3-1-5との接続部において、ハンダの濡れ性向上を目的とした金めっきをそれぞれの接続部に施すのが一般であるが、金めっきについては本発明の本質ではないため、特に明記しないこととした。
 本発明は、プリント基板の高周波線路を立体交差させたり、プリント基板の高周波線路に電子部品を挿入したりする技術に適用することができる。
 2-1,3-1…高周波線路基板、2-1-1,2-2-5,3-1-1,3-2-5…誘電体、2-1-2a,2-1-2b,3-1-2a,3-1-2b…グランドリードピン、2-1-3a,2-1-3b,3-1-3a,3-1-3b…シグナルリードピン、2-1-4,2-1-5,2-2-2a,2-2-2b,2-2-4,3-1-4,3-1-5,3-2-2a,3-2-2b…グランドプレーン、2-1-6,2-2-3a,2-2-3b,3-1-6a,3-1-6b,3-1-7a,3-1-7b,3-2-3a,3-2-3b…シグナル線路、2-1-7…誘電体、2-1-8,2-2-6,3-2-6,3-1-8…グランドビア、2-1-9,2-2-7,3-1-11,3-1-12,3-2-7…グランデッドコプレーナ線路、2-2,3-2…プリント基板、2-2-1…マイクロストリップ線路、3-1-9a,3-1-9b…ビア、3-1-10…DCブロックキャパシタ、3-1-13a,3-1-13b…疑似同軸線路構造。

Claims (5)

  1.  第1の基板と、
     前記第1の基板上に搭載された第2の基板とを備え、
     前記第1の基板は、第1の高周波線路を備え、
     前記第2の基板は、第2の高周波線路と、前記第1の高周波線路と前記第2の高周波線路とを電気的に接続する導体からなるリードピンとを備え、
     前記第1の高周波線路は、
     前記第1の基板の第1の主面に形成され、途中で2つに分断された箇所を有する第1のシグナル線路と、
     前記第1の基板の第1の主面に前記第1のシグナル線路に沿って形成され、延伸方向上の位置が前記第1のシグナル線路の分断箇所と同じ位置で2つに分断された第1のグランドとを備え、
     前記第2の高周波線路は、
     延伸方向が前記第1のシグナル線路の延伸方向と平行になるように、前記第2の基板の前記第1の基板と向かい合う第1の主面に形成された第2のシグナル線路と、
     延伸方向が前記第1のグランドの延伸方向と平行になるように、前記第2の基板の第1の主面に前記第2のシグナル線路に沿って形成された第2のグランドとを備え、
     前記リードピンは、
     前記第2のシグナル線路が前記第1のシグナル線路の分断箇所の上に位置し、前記第2のグランドが前記第1のグランドの分断箇所の上に位置するように前記第2の基板が前記第1の基板上に搭載された状態で、前記第1のシグナル線路の分断された一方の部分と他方の部分とそれぞれ当接するように前記第2のシグナル線路の両端に1本ずつ接続されたシグナルリードピンと、
     前記第2の基板が前記第1の基板上に搭載された状態で、前記第1のグランドの分断された一方の部分と他方の部分とそれぞれ当接するように前記第2のグランドの両端に1本ずつ接続されたグランドリードピンとからなり、
     前記シグナルリードピンと前記第1のシグナル線路との当接部、および前記グランドリードピンと前記第1のグランドとの当接部において、前記第1の基板の第1の主面からの前記グランドリードピンの高さが前記シグナルリードピンよりも高いことを特徴とする高周波線路接続構造。
  2.  請求項1記載の高周波線路接続構造において、
     前記第2の基板は、
     前記第2の基板の前記第1の主面と反対側の第2の主面に形成された第3の高周波線路と、
     前記第2の基板の第2の主面に搭載され、前記第3の高周波線路に直列に挿入された電子部品とをさらに備え、
     前記第3の高周波線路は、
     前記第2の基板の第2の主面に形成され、途中で2つに分断された箇所を有する第3のシグナル線路と、
     前記第2の基板の第2の主面に前記第3のシグナル線路の周りを囲むように形成された第3のグランドとを備え、
     前記電子部品の2つの電極は、前記第3のシグナル線路の分断された一方の部分と他方の部分にそれぞれ接続され、
     前記第2の高周波線路の第2のシグナル線路は、途中で2つに分断された箇所を有し、
     前記第2の高周波線路の第2のグランドは、前記第2のシグナル線路の周りを囲むように形成され、
     前記第3のシグナル線路の両端部は、前記第2の基板に形成されたビアを介して前記第2のシグナル線路の分断された一方の部分と他方の部分のそれぞれと接続されることを特徴とする高周波線路接続構造。
  3.  請求項1記載の高周波線路接続構造において、
     前記第1の高周波線路の複数の前記第1のシグナル線路が平行に配置され、
     前記第1の高周波線路の複数の前記第1のグランドが前記第1のシグナル線路に沿って両側に配置され、
     前記第2の高周波線路の複数の前記第2のシグナル線路が平行に配置され、
     前記第2の高周波線路の複数の前記第2のグランドが前記第2のシグナル線路に沿って両側に配置され、
     複数の前記シグナルリードピンが前記第1のシグナル線路と前記第2のシグナル線路の整列方向に沿って平行に配置され、
     複数の前記グランドリードピンが前記第1のグランドと前記第2のグランドの整列方向に沿って平行に配置されることを特徴とする高周波線路接続構造。
  4.  請求項2記載の高周波線路接続構造において、
     前記第1の高周波線路の複数の前記第1のシグナル線路が平行に配置され、
     前記第1の高周波線路の複数の前記第1のグランドが前記第1のシグナル線路に沿って両側に配置され、
     前記第2の高周波線路の複数の前記第2のシグナル線路が平行に配置され、
     前記第2の高周波線路の前記第2のグランドが複数の前記第2のシグナル線路の周りを囲むように配置され、
     前記第3の高周波線路の複数の前記第3のシグナル線路が平行に配置され、
     前記第3の高周波線路の前記第3のグランドが複数の前記第3のシグナル線路の周りを囲むように配置され、
     前記電子部品は、前記第3のシグナル線路のそれぞれに対して1つずつ設けられ、
     複数の前記シグナルリードピンが前記第1のシグナル線路と前記第2のシグナル線路と前記第3のシグナル線路の整列方向に沿って平行に配置され、
     複数の前記グランドリードピンが前記第1のグランドと前記第2のグランドの整列方向に沿って平行に配置されることを特徴とする高周波線路接続構造。
  5.  請求項2または4記載の高周波線路接続構造において、
     前記電子部品は、DCブロックキャパシタであることを特徴とする高周波線路接続構造。
PCT/JP2019/042293 2019-10-29 2019-10-29 高周波線路接続構造 WO2021084601A1 (ja)

Priority Applications (6)

Application Number Priority Date Filing Date Title
US17/772,446 US20220384928A1 (en) 2019-10-29 2019-10-29 High-Frequency Line Connecting Structure
JP2021553918A JP7255702B2 (ja) 2019-10-29 2019-10-29 高周波線路接続構造
CA3158938A CA3158938C (en) 2019-10-29 2019-10-29 High-frequency line connecting structure
PCT/JP2019/042293 WO2021084601A1 (ja) 2019-10-29 2019-10-29 高周波線路接続構造
CN201980101823.4A CN114631226B (zh) 2019-10-29 2019-10-29 高频线路连接结构
EP19950886.2A EP4053992B1 (en) 2019-10-29 2019-10-29 High-frequency line connection structure

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2019/042293 WO2021084601A1 (ja) 2019-10-29 2019-10-29 高周波線路接続構造

Publications (1)

Publication Number Publication Date
WO2021084601A1 true WO2021084601A1 (ja) 2021-05-06

Family

ID=75715879

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/042293 WO2021084601A1 (ja) 2019-10-29 2019-10-29 高周波線路接続構造

Country Status (6)

Country Link
US (1) US20220384928A1 (ja)
EP (1) EP4053992B1 (ja)
JP (1) JP7255702B2 (ja)
CN (1) CN114631226B (ja)
CA (1) CA3158938C (ja)
WO (1) WO2021084601A1 (ja)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61259467A (ja) * 1985-05-13 1986-11-17 富士通株式会社 ジヤンパ−チツプ
JPS6337082U (ja) * 1986-08-27 1988-03-10
JPH02165510A (ja) * 1988-12-19 1990-06-26 Mitsubishi Electric Corp マイクロ波集積回路装置

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5270673A (en) * 1992-07-24 1993-12-14 Hewlett-Packard Company Surface mount microcircuit hybrid
JP3241139B2 (ja) * 1993-02-04 2001-12-25 三菱電機株式会社 フィルムキャリア信号伝送線路
NO20011677L (no) * 2000-04-04 2001-10-05 Tokin Corp Elektronisk komponent for demping av höy frekvens og forbindelsesledning for komponenten
CN100336218C (zh) * 2003-08-25 2007-09-05 威盛电子股份有限公司 一种高频集成电路多排线打线结构及方法
CN1332445C (zh) * 2003-10-09 2007-08-15 威盛电子股份有限公司 一种高频集成电路多排线打线结构
TWI360912B (en) * 2008-04-25 2012-03-21 Univ Nat Chiao Tung Vertical transition structure
CN102196657B (zh) * 2010-03-09 2012-12-05 凌阳科技股份有限公司 线路基板
JP2012151365A (ja) * 2011-01-20 2012-08-09 Three M Innovative Properties Co 基板及びそれを含む電子部品
JP2013012967A (ja) * 2011-06-30 2013-01-17 Hitachi Ltd プリント基板伝送系
US9013891B2 (en) * 2012-03-09 2015-04-21 Finisar Corporation 3-D integrated package
US9627736B1 (en) * 2013-10-23 2017-04-18 Mark W. Ingalls Multi-layer microwave crossover connected by vertical vias having partial arc shapes
US9300092B1 (en) * 2014-09-30 2016-03-29 Optical Cable Corporation High frequency RJ45 plug with non-continuous ground planes for cross talk control
US9437558B2 (en) * 2014-12-30 2016-09-06 Analog Devices, Inc. High frequency integrated circuit and packaging for same
CN109417054B (zh) * 2016-06-27 2022-11-15 Ngk电子器件株式会社 高频用陶瓷基板及高频用半导体元件收纳封装体

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61259467A (ja) * 1985-05-13 1986-11-17 富士通株式会社 ジヤンパ−チツプ
JPS6337082U (ja) * 1986-08-27 1988-03-10
JPH02165510A (ja) * 1988-12-19 1990-06-26 Mitsubishi Electric Corp マイクロ波集積回路装置

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
QINGHUA BILL CHENJIANMIN ZHANGKELVIN QIUDARJA PADILLAZHIPING YANGANTONIO C. SCOGNAJUN FAN: "Enabling Terabit Per Second Switch Linecard Design Through Chip/Package/PCB Co-design", PROCEEDINGS OF IEEE INTERNATIONAL SYMPOSIUM ON ELECTROMAGNETIC COMPATIBILITY, July 2010 (2010-07-01)
TAKAHIRO YAGIKIYOSHI KOIKEHIROSHI IINAGA: "Development of High-speed Transmission Printed Circuit Board", OKI TECHNICAL REVIEW, vol. 82, no. 225, May 2015 (2015-05-01), pages 36 - 39

Also Published As

Publication number Publication date
CN114631226A (zh) 2022-06-14
CA3158938A1 (en) 2021-05-06
JP7255702B2 (ja) 2023-04-11
JPWO2021084601A1 (ja) 2021-05-06
CN114631226B (zh) 2024-01-16
CA3158938C (en) 2023-08-29
EP4053992A4 (en) 2023-08-02
US20220384928A1 (en) 2022-12-01
EP4053992A1 (en) 2022-09-07
EP4053992B1 (en) 2024-10-09

Similar Documents

Publication Publication Date Title
US8058956B2 (en) High frequency and wide band impedance matching via
US4821007A (en) Strip line circuit component and method of manufacture
JP5310239B2 (ja) 接続端子および伝送線路
CN102696145B (zh) 微带线和矩形波导间的微波转换设备
EP1327283B1 (en) Waveguide to stripline transition
US5625169A (en) Electronic parts with an electrode pattern between two dielectric substrates
US7011556B2 (en) Contact module, connector and method of producing said contact module
WO2011056842A1 (en) Surface mount footprint with in-line capacitance
JP2008262932A (ja) 電気コネクタのためのクロストーク低減
US20040051173A1 (en) High frequency interconnect system using micromachined plugs and sockets
US8692128B2 (en) Printed circuit board with good performance on impedance
WO2021084601A1 (ja) 高周波線路接続構造
US6876085B1 (en) Signal layer interconnect using tapered traces
EP2463961B1 (en) System for forming electrical connections to conductive areas on a printed wiring board and method for forming such connections
CN113678574B (zh) 一种共模抑制的封装装置和印制电路板
US6734764B2 (en) Shield for dielectric filter and dielectric filter equipped with the same
JP4041226B2 (ja) 光半導体装置
WO2024177147A1 (ja) 高周波接続線路
KR100493090B1 (ko) 배선접속장치 및 그 제조방법
JP2000286614A (ja) マイクロストリップ線路の接続構造
CN114698236A (zh) 柔性电路板及光模块
CN118215195A (zh) 一种互联走线中的匹配结构
JPH03110768A (ja) 配線パターン接続用チップ
KR100634214B1 (ko) 초고주파 통신회로에서의 와이어 본딩 방법

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19950886

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2021553918

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 3158938

Country of ref document: CA

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2019950886

Country of ref document: EP

Effective date: 20220530