WO2021083432A1 - 用于冰箱的储物装置以及具有其的冰箱 - Google Patents

用于冰箱的储物装置以及具有其的冰箱 Download PDF

Info

Publication number
WO2021083432A1
WO2021083432A1 PCT/CN2020/141517 CN2020141517W WO2021083432A1 WO 2021083432 A1 WO2021083432 A1 WO 2021083432A1 CN 2020141517 W CN2020141517 W CN 2020141517W WO 2021083432 A1 WO2021083432 A1 WO 2021083432A1
Authority
WO
WIPO (PCT)
Prior art keywords
moisture
permeable
assembly
storage
storage device
Prior art date
Application number
PCT/CN2020/141517
Other languages
English (en)
French (fr)
Inventor
夏恩品
李康
张�浩
苗建林
王铭
Original Assignee
青岛海尔电冰箱有限公司
海尔智家股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 青岛海尔电冰箱有限公司, 海尔智家股份有限公司 filed Critical 青岛海尔电冰箱有限公司
Publication of WO2021083432A1 publication Critical patent/WO2021083432A1/zh

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25DREFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
    • F25D25/00Charging, supporting, and discharging the articles to be cooled
    • F25D25/02Charging, supporting, and discharging the articles to be cooled by shelves
    • F25D25/024Slidable shelves
    • F25D25/025Drawers
    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23LFOODS, FOODSTUFFS, OR NON-ALCOHOLIC BEVERAGES, NOT COVERED BY SUBCLASSES A21D OR A23B-A23J; THEIR PREPARATION OR TREATMENT, e.g. COOKING, MODIFICATION OF NUTRITIVE QUALITIES, PHYSICAL TREATMENT; PRESERVATION OF FOODS OR FOODSTUFFS, IN GENERAL
    • A23L3/00Preservation of foods or foodstuffs, in general, e.g. pasteurising, sterilising, specially adapted for foods or foodstuffs
    • A23L3/34Preservation of foods or foodstuffs, in general, e.g. pasteurising, sterilising, specially adapted for foods or foodstuffs by treatment with chemicals
    • A23L3/3409Preservation of foods or foodstuffs, in general, e.g. pasteurising, sterilising, specially adapted for foods or foodstuffs by treatment with chemicals in the form of gases, e.g. fumigation; Compositions or apparatus therefor
    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23LFOODS, FOODSTUFFS, OR NON-ALCOHOLIC BEVERAGES, NOT COVERED BY SUBCLASSES A21D OR A23B-A23J; THEIR PREPARATION OR TREATMENT, e.g. COOKING, MODIFICATION OF NUTRITIVE QUALITIES, PHYSICAL TREATMENT; PRESERVATION OF FOODS OR FOODSTUFFS, IN GENERAL
    • A23L3/00Preservation of foods or foodstuffs, in general, e.g. pasteurising, sterilising, specially adapted for foods or foodstuffs
    • A23L3/34Preservation of foods or foodstuffs, in general, e.g. pasteurising, sterilising, specially adapted for foods or foodstuffs by treatment with chemicals
    • A23L3/3454Preservation of foods or foodstuffs, in general, e.g. pasteurising, sterilising, specially adapted for foods or foodstuffs by treatment with chemicals in the form of liquids or solids
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25DREFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
    • F25D11/00Self-contained movable devices, e.g. domestic refrigerators
    • F25D11/02Self-contained movable devices, e.g. domestic refrigerators with cooling compartments at different temperatures
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25DREFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
    • F25D17/00Arrangements for circulating cooling fluids; Arrangements for circulating gas, e.g. air, within refrigerated spaces
    • F25D17/04Arrangements for circulating cooling fluids; Arrangements for circulating gas, e.g. air, within refrigerated spaces for circulating air, e.g. by convection
    • F25D17/042Air treating means within refrigerated spaces
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25DREFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
    • F25D23/00General constructional features
    • F25D23/02Doors; Covers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25DREFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
    • F25D23/00General constructional features
    • F25D23/10Arrangements for mounting in particular locations, e.g. for built-in type, for corner type
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25DREFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
    • F25D25/00Charging, supporting, and discharging the articles to be cooled
    • F25D25/02Charging, supporting, and discharging the articles to be cooled by shelves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25DREFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
    • F25D2317/00Details or arrangements for circulating cooling fluids; Details or arrangements for circulating gas, e.g. air, within refrigerated spaces, not provided for in other groups of this subclass
    • F25D2317/04Treating air flowing to refrigeration compartments
    • F25D2317/041Treating air flowing to refrigeration compartments by purification
    • F25D2317/0413Treating air flowing to refrigeration compartments by purification by humidification
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/36Hydrogen production from non-carbon containing sources, e.g. by water electrolysis

Definitions

  • the present invention relates to a refrigerator, in particular to a storage device for the refrigerator and a refrigerator having the same.
  • Modified atmosphere preservation technology is a technology that prolongs the storage life of food by adjusting the ambient gas.
  • the electrochemical reaction consumes internal oxygen and creates a low-oxygen atmosphere, which can improve the freshness preservation effect.
  • the storage container used in the refrigerator in the prior art its relatively closed space can weaken the exchange of internal and external gas.
  • the deoxygenation component By setting an opening on the storage container and installing the deoxygenation component at the position of the opening, the inside of the storage container can be lowered.
  • the deoxygenation component also generates water while consuming internal oxygen.
  • the relatively closed storage container prevents water vapor from being discharged. The presence of excessive water vapor can easily cause condensation or dripping, which affects the preservation effect and reduces user experience.
  • the structure of setting an opening on the storage container and installing the deoxygenating component at the opening is complicated and difficult to assemble.
  • An object of the present invention is to provide a storage device for a refrigerator and a refrigerator that solve at least one of the above technical problems.
  • a further object of the present invention is to reduce or avoid condensation or dripping in storage devices for refrigerators equipped with deoxygenating components.
  • Another further object of the present invention is to reduce the difficulty of installing the oxygen-removing and moisture-permeable components of the storage device of the refrigerator.
  • a storage device for a refrigerator which includes: a storage container, the inside of which defines a storage space; a wall of the storage container is provided with an air-permeable area, and the air-permeable area includes :
  • the deaeration zone is located in the middle of the ventilation zone, and the deaeration zone is recessed into the storage space;
  • the water removal zone is located on both sides of the deaeration zone;
  • the deoxygenation and moisture-permeable components are arranged on the storage container, which includes :
  • the deaeration component is arranged in the first accommodating cavity and is configured to pass electrolysis under the action of electrolysis voltage
  • the reaction consumes oxygen in the storage space;
  • the moisture-permeable membrane group is arranged between the water removal zone and the pallet, and is configured to allow the water vapor in the storage space to permeate
  • the air-permeable area is located on the top wall of the storage container; the bottom wall of the first accommodating cavity is provided with an opening, the periphery of the opening extends to the side wall of the first accommodating cavity to form a pallet, and the pallet defines the deoxygenating assembly At the bottom of the first accommodating cavity.
  • the oxygen-removing and moisture-permeable assembly further includes: a fan assembly, which is arranged in the first accommodating cavity and located above the de-aeration assembly, and is configured to promote the formation of an air flow blowing toward the side of the de-aeration assembly facing away from the storage space. Provide water vapor to the deoxygenation component.
  • a fan assembly which is arranged in the first accommodating cavity and located above the de-aeration assembly, and is configured to promote the formation of an air flow blowing toward the side of the de-aeration assembly facing away from the storage space. Provide water vapor to the deoxygenation component.
  • a plurality of uprights are provided on the side of the dewatering zone facing away from the storage space, configured to support a moisture-permeable membrane group;
  • the moisture-permeable membrane group includes: a moisture-permeable membrane configured to allow water vapor in the storage space Permeable; the moisture-permeable bottom plate, which is arranged close to the bottom of the moisture-permeable membrane, and is located above a plurality of uprights.
  • a second accommodating cavity is formed on the part of the pallet facing above the dewatering area, and a plurality of limit claws are provided on the side wall of the second accommodating cavity, and the plurality of limit claws define the moisture-permeable membrane group In the second accommodating cavity.
  • the top wall surface of the storage container is further provided with: a plurality of screw hole posts located on the outer periphery of the air-permeable area; the positions of the supporting plate and the plurality of screw hole posts are respectively provided with screw holes, so as to be connected by screwing. Fix the pallet on the storage container.
  • the storage device for the refrigerator further includes: a cover plate to form the upper cover of the storage device to make the appearance neat.
  • the cover plate includes: a top cover part covering the top of the oxygen-removing and moisture-permeable component; a connecting part formed by extending the top cover part along the back of the storage container, and the connecting part is provided with a plurality of card slots, which are configured to The buckle on the back of the storage container is clamped to fix the cover.
  • the air-permeable area is provided with through holes arranged in an array; the position of the support plate above the dewatering area, the moisture-permeable bottom plate, and the cover plate are correspondingly provided with through holes arranged in an array, configured to allow storage space The gas inside is discharged.
  • a refrigerator including a box body in which a storage compartment is formed; the storage device for a refrigerator as in any one of the above, the storage device is arranged in the storage compartment .
  • the storage device for a refrigerator of the present invention and the refrigerator having the same are provided with a gas-permeable area on the wall of the storage container, and the oxygen-removing and moisture-permeable component is arranged on the gas-permeable area, wherein the oxygen-removing component is provided in the air-permeable area
  • One side of the middle part is configured to consume oxygen in the storage space through the electrolysis reaction under the action of electrolysis voltage, and the moisture-permeable membrane sets are arranged on both sides of the deoxygenating component to allow the water vapor in the storage space to permeate and discharge. Therefore, a low-oxygen atmosphere can be formed in the storage container, and condensation or dripping due to excessive water vapor can also be prevented, and the preservation effect of the storage container is improved.
  • the air-permeable area of the storage container is provided with a deoxygenation zone and a dewatering zone
  • the deoxygenation and moisture-permeable component is provided with a pallet, which will have
  • the deaeration component with deaeration effect is arranged in the first accommodating cavity of the pallet
  • the moisture-permeable membrane group with moisture permeability is arranged in the second accommodating cavity of the pallet, so that the deaeration component can be confined in the deaeration zone
  • the moisture-permeable membrane group is confined to the top of the dewatering area
  • the oxygen-removing module, moisture-permeable membrane group, and pallet are also integrated.
  • the oxygen-permeable and moisture-permeable module can be easily installed above the air-permeable area of the storage container. The installation difficulty of the deoxygenation and moisture-permeable components is reduced.
  • Fig. 1 is a schematic perspective view of a refrigerator according to an embodiment of the present invention
  • Fig. 2 is a schematic diagram of the storage device for a refrigerator shown in Fig. 1;
  • Fig. 3 is a schematic exploded view of the storage device for a refrigerator shown in Fig. 2;
  • FIG. 4 is a schematic diagram of the container body of the storage container of the storage device for the refrigerator shown in FIG. 3;
  • FIG. 5 is another schematic diagram of the container body of the storage container of the storage device for refrigerator shown in FIG. 3;
  • Fig. 6 is a schematic diagram of the oxygen-removing and moisture-permeable assembly of the storage device for the refrigerator shown in Fig. 3;
  • Fig. 7 is a schematic diagram of the pallet of the oxygen-removing and moisture-permeable assembly shown in Fig. 6;
  • Fig. 8 is another schematic diagram of the pallet of the oxygen-removing and moisture-permeable assembly shown in Fig. 6;
  • FIG. 9 is a schematic partial enlarged view of A shown in FIG. 8;
  • FIG. 10 is a schematic diagram of the fan assembly and the deoxygenating assembly of the oxygen-removing and moisture-permeable assembly shown in FIG. 6;
  • Fig. 11 is a schematic diagram of the deoxygenating assembly shown in Fig. 10;
  • Fig. 12 is a schematic exploded view of the oxygen removal assembly shown in Fig. 10;
  • Figure 13 is a schematic exploded view of the fan assembly shown in Figure 10;
  • Fig. 14 is a schematic exploded view of the moisture-permeable membrane group of the storage device for refrigerator shown in Fig. 3;
  • Fig. 15 is a schematic diagram of the cover plate of the storage device for the refrigerator shown in Fig. 3.
  • Fig. 1 is a schematic perspective view of a refrigerator 10 according to an embodiment of the present invention.
  • the refrigerator 10 may generally include a box body 100 and a storage device 200.
  • a storage compartment is formed inside the box 100; in this embodiment, there may be multiple storage compartments, including a refrigerating compartment 110 and a freezing compartment 120. In other optional embodiments, there may be one storage compartment, and it is the refrigerating compartment 110.
  • FIG. 2 is a schematic diagram of the storage device 200 for the refrigerator 10 shown in FIG. 1
  • FIG. 3 is a schematic exploded view of the storage device 200 for the refrigerator 10 shown in FIG. 2.
  • the storage device 200 is disposed at the bottom of the refrigerating compartment 110 and includes a storage container 210, an oxygen-removing and moisture-permeable assembly 300, and a cover 350.
  • the storage container 210 forms a storage space 213 inside, and the storage container 210 may be a drawer composed of a container body 211 and a drawing part 212.
  • the drawer is retractably disposed at the bottom of the refrigerating compartment 110 of the refrigerator 10 to open or close the storage space 213.
  • FIG. 4 is a schematic diagram of the container body 211 of the storage container 210 of the storage device 200 for the refrigerator 10 shown in FIG. 3
  • FIG. 5 is the storage container of the storage device 200 for the refrigerator 10 shown in FIG. 3
  • the wall surface of the storage container 210 is provided with an air-permeable area 221 and a non-air-permeable area 222.
  • the wall surface may be the top wall surface of the storage container 210, that is, the air-permeable area 221 is located on the top wall surface of the storage container.
  • the shape of the top wall surface of the storage container 210 may be rectangular, the shape of the air-permeable area 221 may also be rectangular, the air-permeable area 221 is set in the middle of the top wall, and the area between the air-permeable area 221 and the outer periphery of the top wall is a non-air-permeable area 222 .
  • the air-permeable area 221 is provided with through holes 410 arranged in an array, and the gas in the storage container 210 can escape from the through holes 410.
  • the air-permeable area 221 includes an oxygen removal area 420 and a water removal area 430.
  • the deoxygenation zone 420 is located in the middle of the air-permeable area 221, and the deoxygenation zone 420 is recessed into the storage space 213 to form a recessed part 421, and the recessed part 421 can accommodate external components.
  • the water removal area 430 is close to the oxygen removal area 420 and located on both sides of the oxygen removal area 420; a plurality of uprights 431 are provided on the side of the water removal area 430 facing away from the storage space 213.
  • the non-air-permeable area 222 has no through holes and is in a closed state.
  • the top wall surface of the storage container 210 is also provided with a plurality of stud holes 440.
  • the plurality of stud holes 440 are located on the outer periphery of the air-permeable area 221, that is, the part where the non-air-permeable area 222 and the air-permeable area 221 are connected to the outside. The components are connected and fixed.
  • FIG. 6 is a schematic diagram of the oxygen-removing and moisture-permeable assembly 300 of the storage device 200 for the refrigerator 10 shown in FIG. 3.
  • the oxygen-removing and moisture-permeable assembly 300 is arranged on the storage container 210. Preferably, it can be arranged above the top wall of the storage container 210. It includes a support plate 310, an oxygen-removing component 320, a fan assembly 330, and moisture-permeable components. ⁇ 340 ⁇ Film group 340.
  • the pallet 310 covers the air-permeable area 221 to form the skeleton of the oxygen-removing and moisture-permeable assembly 300, and has a containing cavity for accommodating the oxygen-removing assembly 320, the fan assembly 330, and the moisture-permeable membrane group 340.
  • the oxygen-removing assembly 320, the fan assembly 330 and the moisture-permeable membrane group 340 can be respectively installed in the accommodating cavity so as to be integrated with the support plate 310.
  • the integrated oxygen-removing and moisture-permeable assembly 300 includes not only the oxygen-removing assembly 320 and the fan assembly 330 with the function of blowing air, but also the moisture-permeable membrane group 340 with the effect of moisture permeability, which has both deoxidizing and permeable functions. Wet function; the integrated oxygen-removing and moisture-permeable assembly 300 can be installed above the air-permeable area 221 at one time, which avoids step-by-step installation, simplifies the installation steps, is easy to operate, and has low installation difficulty.
  • FIG. 7 is a schematic diagram of the pallet 310 of the oxygen-removing and moisture-permeable assembly 300 shown in FIG. 6, and FIG. 8 is another schematic diagram of the pallet 310 of the oxygen-removing and moisture-permeable assembly 300 shown in FIG.
  • the schematic partial enlarged view at A is shown.
  • the supporting plate 310 forms a first accommodating cavity 311 above the side facing away from the deoxidizing zone 420.
  • the supporting plate 310 may form a first accommodating cavity 311 above the back facing the deoxidizing zone 420.
  • the bottom wall of the first accommodating cavity 311 is provided with an opening 511.
  • the periphery of the opening 511 extends to the side wall of the first accommodating cavity 311 to form a pallet 512, which limits the deoxygenation assembly 320 to the bottom of the first accommodating cavity 311 .
  • the part of the pallet 310 above the deaeration zone 420 is recessed toward the deaeration zone 420 to form the first accommodating cavity 311, and the shape of the first accommodating cavity 311 is adapted to the shape of the aforementioned recessed part 421 to make the first accommodating cavity 311
  • the accommodating cavity 311 can be inserted into the recessed part 421; the bottom of the first accommodating cavity 311 includes an opening 511 and a pallet 512.
  • the opening 511 is configured to allow the gas escaped from the deoxygenation zone 420 to pass through, and the pallet 512 is configured to accept
  • the oxygen component 320 is provided with a pallet screw hole 513 on the pallet 512, and the oxygen removal component 320 can be fixed on the pallet 512 by screwing.
  • a second accommodating cavity 312 is formed on the pallet 310 facing the top of the dewatering area 430.
  • a plurality of limit claws 514 are provided on the side wall of the second accommodating cavity 312, and the plurality of limit claws 514 will permeate moisture.
  • the group 340 is defined in the second receiving cavity 312.
  • the moisture-permeable membrane group 340 is disposed between the dewatering area 430 and the support plate 310, and the plurality of limit claws 514 clamp the moisture-permeable membrane group 340 in the second accommodating cavity 312.
  • the bottom wall of the second accommodating cavity 312 is also correspondingly provided with through holes 530 arranged in an array, configured to allow the water vapor permeated and discharged through the moisture-permeable membrane group 340 to be discharged from the through holes 530.
  • the supporting plate 310 is provided with a first accommodating cavity 311 for accommodating the oxygen removal assembly 320 and the fan assembly 330, and a second accommodating cavity 312 for accommodating the moisture-permeable membrane assembly 340.
  • the position and shape of the first accommodating cavity 311 correspond to the position and shape of the deoxidizing zone 420
  • the position and shape of the second accommodating cavity 312 correspond to the position and shape of the dewatering zone 430
  • the pallet 310 can be directly covered Above the top wall surface of the storage container 210 for quick installation.
  • the second accommodating cavity 312 of the pallet 310 is adjacent to the first accommodating cavity 311, so that the moisture-permeable membrane assembly 340 is adjacent to the oxygen removal assembly 320, and the water vapor generated by the deoxygenation assembly 320 through the electrolysis reaction can be quickly discharged through the moisture-permeable membrane assembly 340 Therefore, it is possible to prevent excessive water vapor from staying in the storage device 200, which is beneficial to promote the humidity in the storage device 200 to be maintained within a proper range.
  • FIG. 10 is a schematic diagram of the fan assembly 330 and the deaeration assembly 320 of the oxygen-removing and moisture-permeable assembly 300 shown in FIG. 6,
  • FIG. 11 is a schematic view of the deaeration assembly 320 shown in FIG. 10,
  • FIG. 12 is the deaerator shown in FIG.
  • the oxygen removal component 320 is disposed at the bottom of the first containing cavity 311 and is configured to consume oxygen in the storage space 213 through an electrolysis reaction under the action of an electrolysis voltage. That is, the oxygen removing assembly 320 is disposed inside the recessed portion 421 described above.
  • the deaeration zone 420 is set to be recessed into the storage space 213, which can promote the deaeration assembly 320 and the storage space.
  • the oxygen in the object space 213 is fully in contact with each other to increase the rate of the electrochemical reaction.
  • the oxygen removal assembly 320 includes a mother plate 321, an anode plate 322, a cathode plate 323, and a proton exchange membrane 324 sandwiched between the cathode plate 323 and the anode plate 322.
  • the mother board 321 forms the base of the deaerator assembly 320.
  • a notch 521 is provided in the middle part of the notch 521.
  • the notch 521 may be rectangular; the periphery of the notch 521 is provided with internal connection screw holes 522 for screwing with other parts of the deaerator assembly 320.
  • the edge of the mother board 321 is also provided with an external screw hole 523 for fixing with the pallet 512 of the first receiving cavity 311 by screw connection.
  • the side of the cathode plate 323 facing away from the proton exchange membrane 324 is exposed above the oxygen removal zone 420 and faces the interior of the storage space 213, and communicates with the storage space 213 through the through hole 410 of the oxygen removal zone 420 and the gap 521 of the mother board 321 , Configured to use hydrogen ions and oxygen to react to generate water, consuming oxygen in the storage space 213; the anode plate 322 facing away from the proton exchange membrane 324 and facing the inside of the storage space 213 is configured to electrolyze the water outside the storage space 213 The vapor generates hydrogen ions and oxygen; the proton exchange membrane 324 is configured to transport hydrogen ions from the anode plate 322 side to the cathode plate 323 side.
  • the oxygen removal assembly 320 has at least a 4-layer structure, from the outside to the inside, there are the anode plate 322, the proton exchange membrane 324, the cathode plate 323 and the mother plate 321 in order.
  • the cathode plate 323 consumes oxygen in the storage space 213, and on the other hand, the water vapor generated by the cathode plate 323 can increase the humidity in the storage space 213, thereby improving the freshness preservation effect of the storage device 200.
  • the chemical reaction formulas of the anode plate 322 and the cathode plate 323 are:
  • the above-mentioned deoxygenating assembly 320 may further include: two elastic plates 325 arranged on the outside of the above-mentioned anode plate 322, each elastic plate 325 is a rectangular thin plate, the middle part of which is hollowed out, and the hollow part is hollowed out.
  • the position and shape are adapted to the position and shape of the notch 521 of the mother board 321 to allow gas to pass through.
  • a fan screw hole 524 is provided next to the apex of the hollow part, which is used to fix the fan assembly 330 of the oxygen-removing and moisture-permeable assembly 300 above the oxygen-removing assembly 320 by screwing, and the edge of the elastic plate 325 is also provided with a motherboard screw hole 525
  • the position and number of the screw holes 525 of the motherboard are adapted to the position and number of the internal screw holes 522 of the motherboard 321, so as to fix the multilayer structure of the deoxidizer assembly 320 on the motherboard 321 by screwing.
  • the oxygen scavenging component 320 further includes: a diffusion layer and at least one gasket 326.
  • the diffusion layer is located between the anode plate 322 and the proton exchange membrane 324 and between the cathode plate 323 and the proton exchange membrane 324.
  • the material of the diffusion layer is a platinum-plated titanium mesh, which functions to facilitate conduction and allow water vapor to diffuse.
  • the gasket 326 is located between the above-mentioned mother board 321 and the cathode plate 323.
  • Each gasket 326 is a thin rectangular ring, and the size of the outer ring is the same as the size of the cathode plate 323 and the anode plate 322.
  • Each gasket 326 is made of an elastic material to cushion the pressing force between adjacent layers.
  • FIG. 13 is a schematic exploded view of the fan assembly 330 shown in FIG. 10.
  • the fan assembly 330 is arranged in the first accommodating cavity 311, above the deoxidizing assembly 320, that is, on the side of the anode plate 322 facing away from the proton exchange membrane 324, and is configured to promote the formation of blowing toward the deoxidizing assembly 320 facing away from the storage
  • the air flow on one side of the space 213 provides water vapor to the deoxygenating assembly 320.
  • the fan assembly 330 includes a fan 331 and a fan frame 332.
  • the fan 331 may be a miniature axial flow fan, the rotating shaft of which is perpendicular to the anode plate 322 and is used to blow water vapor outside the storage space 213 toward the anode plate 322. Since the reactant of the anode plate 322 is water vapor, the anode plate 322 needs to be continuously replenished with water so that the electrolysis reaction can continue.
  • the control circuit supplies power to the cathode plate 323 and the anode plate 322 respectively, and the fan 331 is turned on. The fan 331 blows air to the anode plate 322 while simultaneously blowing water vapor in the air to the anode plate 322.
  • the fan 331 can prompt the air in the storage room to provide sufficient reactants for the anode plate 322, and there is no need to separately provide a water source or a water delivery device for the deoxygenation component 320.
  • the fan 331 and the deaeration assembly 320 are jointly arranged in the first accommodating cavity 311, which shortens the distance between the fan 331 and the deaeration assembly 320, and improves the air supply efficiency of the fan 331.
  • the fan 331 can quickly deoxidize after being turned on.
  • the component 320 provides water vapor required for the electrolysis reaction, which is beneficial to improve the electrolysis efficiency of the oxygen removal component 320 and achieve rapid oxygen reduction.
  • the fan frame 332 is used to fix and support the fan 331.
  • the air frame 332 is arranged on the side of the fan 331 facing the anode plate 322, for example, it may be arranged between the fan 331 and the elastic plate 325 of the deaerator assembly 320.
  • the fan 331 can be fixed on the fan frame 332 by screw connection.
  • the air supply area of the fan 331 faces the circular opening 531 in the middle of the fan frame 332, and can blow the air flow into the inside of the deaerator assembly 320 and blow it to the anode plate. 322.
  • the fan frame 332 can fixedly support the fan 331 to prevent the fan 331 from shaking during operation, and can also form a certain distance between the fan 331 and the elastic plate 325 to facilitate gas circulation.
  • the air frame 332 is also provided with air frame screw holes 532, and the position and number of the air frame screw holes 532 are adapted to the position and number of the fan screw holes 524, so that the air frame 332 can be installed and fixed by screwing. Above the deaerator assembly 320.
  • the side of the air frame 332 facing away from the deaeration assembly 320 is used to fix the fan 331, and the side facing the deaeration assembly 320 is screwed and fixed to the deaeration assembly 320.
  • the air frame 332 not only has the function of fixing and supporting the fan 331, but also has the function of fixing and supporting the fan 331.
  • the function of connecting the deaeration assembly 320, its dual fixing function integrates the deaeration assembly 320 and the fan 331, and makes the fan 331 close to the deaeration assembly 320, providing a structural basis for shortening the distance between the fan 331 and the deaeration assembly 320.
  • FIG. 14 is a schematic exploded view of the moisture-permeable membrane group 340 of the storage device 200 for the refrigerator 10 shown in FIG. 3.
  • the moisture-permeable membrane group 340 is arranged between the water removal zone 430 and the pallet 310, and is located in the second accommodating cavity 312 of the pallet 310, and is configured to allow the water vapor in the storage space 213 to permeate and discharge, including moisture permeability
  • the moisture-permeable membrane 341 is configured to allow the water vapor in the storage space 213 to slowly permeate and discharge to the outside of the storage space 213, so that the humidity in the storage space 213 is always kept within a proper range, and prevents excessive moisture generation in the space. Condensation or dripping water.
  • the moisture-permeable membrane 341 may be a pervaporation membrane, which has a hydrophilic layer and a hydrophobic layer. The side of the hydrophilic layer facing away from the hydrophobic layer is exposed above the dewatering zone 430, that is, facing the dewatering zone 430.
  • the side of the layer facing away from the hydrophilic layer faces the dewatering area 430, and the water vapor in the storage space 213 can be permeated and discharged to the outside of the storage space 213 through the moisture-permeable membrane 341. While the moisture-permeable membrane 341 transmits water vapor, it can also prevent other gases from passing through, preventing gas exchange inside and outside the storage space 213.
  • the shape of the moisture-permeable membrane 341 matches the shape of the bottom wall of the second accommodating cavity 312, and can just close the second accommodating cavity 312.
  • the closed space formed by the moisture-permeable membrane 341 and the support plate 310 can block the dewatering area 430 and Gas exchange occurs outside the enclosed space. Therefore, placing the moisture-permeable membrane 341 between the water removal zone 430 and the pallet 310 can promote the storage device 200 to maintain a relatively closed state, which is conducive to maintaining a good fresh-keeping atmosphere and improving the fresh-keeping effect .
  • the moisture-permeable bottom plate 342 is attached to the bottom of the moisture-permeable membrane 341 and is located above the plurality of uprights 431. That is, the plurality of columns 431 support the moisture-permeable bottom plate 342, and the moisture-permeable bottom plate 342 supports the moisture-permeable membrane 341.
  • the dual support structure formed by the plurality of columns 431 and the moisture-permeable bottom plate 342 can prevent the moisture-permeable membrane 341 from being deformed by gravity.
  • the moisture permeable bottom plate 342 is also correspondingly provided with through holes 540 arranged in an array.
  • the position and size of the through holes 540 are adapted to the position and size of the through holes 530 on the bottom wall of the second receiving cavity 312, and are configured to allow The gas escaping from the water removal zone 430 passes through.
  • a breathable area 221 is provided on the top wall of the storage container 210, and the oxygen-removing and moisture-permeable assembly 300 is arranged on the breathable area 221, wherein the oxygen-removing assembly 320 is arranged on the side of the middle part of the breathable area 221, and is arranged at the electrolytic voltage
  • the oxygen in the storage space 213 is consumed by the electrolysis reaction.
  • the moisture-permeable membrane group 340 is arranged on both sides of the oxygen removal assembly 320 and is configured to allow the water vapor in the storage space 213 to permeate and discharge, thereby enabling the storage container
  • the formation of a low-oxygen atmosphere in 210 can also prevent condensation or dripping caused by excessive water vapor, which improves the freshness preservation effect of the storage container 210.
  • An oxygen removal zone 420 and a water removal zone 430 are provided on the air-permeable area 221 of the storage container 210, a support plate 310 is provided in the oxygen-removing and moisture-permeable assembly 300, and the oxygen-removing assembly 320 with a deoxidizing effect is set on the support plate 310.
  • a moisture-permeable membrane group 340 with moisture-permeable effect is arranged in the second accommodating cavity 312 of the pallet 310, so that the oxygen removal assembly 320 can be confined above the oxygen removal zone 420, and the moisture-permeable membrane
  • the group 340 is limited above the dewatering area 430, and at the same time, the deoxygenation component 320, the moisture-permeable membrane group 340, and the pallet 310 are integrated.
  • the oxygen- and moisture-permeable component 300 can be easily installed in the air-permeable area 221 of the storage container 210. Therefore, the installation difficulty of the oxygen-removing and moisture-permeable assembly 300 is reduced.
  • FIG. 15 is a schematic diagram of the cover 350 of the storage device 200 for the refrigerator 10 shown in FIG. 3.
  • the cover 350 forms the upper cover of the storage device 200, and is configured to cover the upper part of the oxygen-removing and moisture-permeable assembly 300 to make the appearance neat.
  • the cover 350 includes a top cover portion 351 and a connecting portion 352.
  • the top cover portion 351 covers the top wall surface of the storage container 210, and the top cover portion 351 extends along the back of the storage container 210 to form a connection portion 352, which is connected to The part 352 is used for connecting and fixing with the storage container 210.
  • the top cover 351 is also provided with through holes 550 arranged in an array, wherein the through holes 410 located above the water removal area 430 are configured to allow passage through the water removal area 430, the moisture-permeable bottom plate 342, the moisture-permeable membrane 341, and the second
  • the water vapor escaping from the bottom wall of the accommodating cavity 312 is discharged to the outside of the storage device 200, and the through hole 410 located above the deoxygenation zone 420 is configured to allow the gas outside the storage device 200 to enter the storage device 200 under the action of the fan 331.
  • Blowing to the anode plate 322 provides water vapor for the anode plate 322 and at the same time provides an escape channel for the oxygen generated on the anode plate 322.
  • the connecting portion 352 is provided with a plurality of clamping slots 551 configured to be clamped with the buckle 450 on the back of the storage container 210 to fix the cover 350.
  • the oxygen-removing and moisture-permeable assembly 300 also includes multiple sets of fastening screws to realize the fixing and clamping of the multilayer components.
  • the first set of fastening screws successively penetrates the screw holes at the same positions of the two elastic plates 325, the anode plate 322, the diffusion layer, the proton exchange membrane 324, the diffusion layer, the cathode plate 323, the washer 326, and the mother plate 321 to promote
  • the deaerator assembly 320 forms a multi-layer structure;
  • the second set of fastening screws sequentially penetrate through the air frame screw holes 532 and the fan screw holes 524 of the elastic plate 325 of the deaeration assembly 320, and are used to fix the air frame 332 on the deaerator On the assembly 320;
  • the third set of fastening screws successively penetrates the external screw hole 523 of the motherboard 321 of the deaerator assembly 320, the pallet screw hole 513 of the pallet 512, and is used to fix the deaerator assembly 320 on the pallet
  • An oxygen removal zone 420 and a water removal zone 430 are provided on the top wall surface of the storage container 210, so that the first containing cavity 311 of the pallet 310 is inserted into the recessed part 421 where the oxygen removal zone 420 is located, and is installed in the first containing cavity 311
  • the deaeration assembly 320 and the fan 331 are installed in the second accommodating cavity 312 of the pallet 310 above the dewatering area 430, and the moisture-permeable membrane 341 and the moisture-permeable bottom plate 342 can be avoided.
  • the object space 213 improves the use efficiency of the storage device 200.
  • the anode plate 322 and the cathode plate 323 of the deoxygenating assembly 320 can be connected to the control circuit through wires, and the control circuit of the refrigerator 10 provides electrolysis voltage for them.
  • the electrolysis voltage of the deoxygenating component 320 may also be provided by the battery, and the anode plate 322 and the cathode plate 323 are respectively connected with the anode and the cathode of the battery, and the deoxygenating component 320 enters the electrolytic working state. If the user does not need to use the oxygen removal function, the oxygen removal and moisture-permeable assembly 300 can be taken out as a whole.
  • the deaeration assembly 320 and the fan assembly 330 can be integrated, and then fixed in the first accommodating cavity 311 by screws, and the moisture-permeable membrane 341 and the moisture-permeable bottom plate 342 are clamped in sequence in the first accommodating cavity 311.
  • the assembled oxygen-removing and moisture-permeable assembly 300 is placed above the top wall of the storage container 210, so that the first receiving cavity 311 of the pallet 310 is inserted into the recess on the top wall of the storage container 210
  • the cathode plate 323 faces the interior of the storage space 213
  • the anode plate 322 faces the exterior of the storage space 213.
  • the support plate 310 of the deoxygenation and moisture-permeable assembly 300 can be fixed on the top wall surface of the storage container 210 in any manner according to actual needs, for example, it can also be fixed by screw connection.
  • a plurality of screw hole posts 440 are provided on the outer periphery of the air-permeable area 221, and screw holes 313 are respectively provided at positions corresponding to the plurality of screw hole posts 440 to fix the pallet 310 to the storage container 210 by screwing.
  • the support plate 310 is tightly attached to the top wall surface of the storage container 210 to enhance the sealing effect.
  • a closed space is formed by the support plate 310 and the deaeration assembly 320.
  • a closed space is formed by the support plate 310 and the moisture-permeable membrane assembly 340, so that the inside of the storage device 200 is relatively closed.
  • the structure can maintain a suitable fresh-keeping atmosphere while reducing oxygen and moisture permeability, and improve the fresh-keeping effect.
  • the cover 350 of the storage device 200 can also be installed on the top wall surface of the storage container 210 in any manner according to actual needs.
  • the card slot 551 can be clamped and fixed with the buckle 450.
  • a plurality of buckles 450 are provided on the back panel of the storage container 210 near the top wall surface and the non-air-permeable area 222 on the top wall surface, and a plurality of buckles 551 are correspondingly provided on the connecting portion 352 of the cover plate 350.
  • the buckle 450 of the storage container 210 is inserted into the slot 551 of the cover 350, and can be clamped and fixed to the cover 350, thereby forming a storage device 200 with both deoxygenation and moisture permeability functions.
  • the top wall surface of the storage container 210 is provided with a gas-permeable area 221, and the oxygen-removing and moisture-permeable component 300 is integrated above the gas-permeable area 221, wherein,
  • the oxygen removal assembly 320 is arranged above the middle part of the gas-permeable area 221, and is configured to consume oxygen in the storage space 213 through an electrolysis reaction under the action of electrolysis voltage.
  • the moisture-permeable membrane group 340 is arranged on both sides of the oxygen removal assembly 320.
  • the structure allows the water vapor in the storage space 213 to permeate and discharge, so that a low-oxygen atmosphere can be formed in the storage container 210, and it can also prevent condensation or dripping due to excessive water vapor, which improves the fresh-keeping effect of the storage container 210;
  • the gas-permeable area 221 of the container 210 is provided with a deoxygenation zone 420 and a dewatering zone 430.
  • the oxygen-removing and moisture-permeable assembly 300 is provided with a pallet 310, and the oxygen-removing component 320 with a deoxidizing effect is arranged on the second part of the pallet 310.
  • a moisture-permeable membrane group 340 with moisture-permeable effect is arranged in the second accommodating cavity 312 of the pallet 310, so that the oxygen removal assembly 320 can be confined above the oxygen removal zone 420, and the moisture-permeable membrane group 340 is limited above the dewatering zone 430, and at the same time, the deoxygenating component 320, the moisture-permeable membrane group 340, and the supporting plate 310 are integrated, so that the oxygen-removing and moisture-permeable component 300 can be easily and quickly installed in the air-permeable area 221 of the storage container 210 Above, the installation difficulty of the oxygen-removing and moisture-permeable assembly 300 is reduced.

Abstract

一种用于冰箱(10)的储物装置(200)以及具有其的冰箱(10),用于冰箱(10)的储物装置(200)包括:储物容器(210),其内部限定有储物空间(213);储物容器(210)的壁面上设置有透气区域(221),透气区域(221)包括:除氧区(420),位于透气区域(221)的中间部位,并且除氧区(420)向储物空间(213)内部凹陷;除水区(430),位于除氧区(420)的两侧;除氧透湿组件(300),集成于储物容器(210)顶壁面的上方,其包括:托板(310),覆盖在透气区域(221)上,托板(310)在背朝除氧区(420)的一侧形成有第一容纳腔(311);除氧组件(320),设置在第一容纳腔(311)内,配置成在电解电压的作用下通过电解反应消耗储物空间(213)内部的氧气;透湿膜组(340),设置在除水区(430)与托板(310)之间,配置成允许储物空间(213)内的水蒸气渗透排出。集成后的除氧透湿组件(300)兼具有除氧和透湿的功能,易于安装。

Description

用于冰箱的储物装置以及具有其的冰箱 技术领域
本发明涉及冰箱,特别是涉及一种用于冰箱的储物装置以及具有其的冰箱。
背景技术
气调保鲜技术是通过调整环境气体来延长食品贮藏寿命的技术。在冰箱领域,通过设置除氧组件,利用其电化学反应消耗内部氧气,营造低氧气氛,可以提高保鲜效果。现有技术中的用于冰箱的储物容器,其相对封闭的空间可以减弱内外气体交换,通过在储物容器上设置开口,并将除氧组件安装在开口的位置,可以降低储物容器内的氧气含量。然而,除氧组件在消耗内部氧气的同时还生成有水,相对封闭的储物容器使得水蒸气无法排出,过多水蒸汽的存在很容易导致凝露或滴水,影响保鲜效果,降低用户体验。另外,在储物容器上设置开口并在开口处安装除氧组件结构复杂,不易装配。
发明内容
本发明的一个目的是要提供一种至少解决上述技术问题中一方面的一种用于冰箱的储物装置以及冰箱。
本发明一个进一步的目的是要减少或避免安装有除氧组件的用于冰箱的储物装置内产生凝露或滴水现象。
本发明另一个进一步的目的是要降低用于冰箱的储物装置的除氧透湿组件的安装难度。
特别地,根据本发明的一个方面,提供了一种用于冰箱的储物装置,其包括:储物容器,其内部限定有储物空间;储物容器壁面上设置有透气区域,透气区域包括:除氧区,位于透气区域的中间部位,并且除氧区向储物空间内部凹陷;除水区,位于除氧区的两侧;除氧透湿组件,设置于储物容器上,其包括:托板,覆盖在透气区域上,托板在背朝除氧区的一侧形成有第一容纳腔;除氧组件,设置在第一容纳腔内,配置成在电解电压的作用下通过电解反应消耗储物空间内部的氧气;透湿膜组,设置在除水区与托板之间,配置成允许储物空间内的水蒸气渗透排出。
可选地,透气区域位于储物容器的顶壁面上;第一容纳腔的底壁设置有开口,开口的周缘向第一容纳腔的侧壁延伸形成有托台,托台将除氧组件限定于第一容纳腔的底部。
可选地,除氧透湿组件还包括:风机组件,设置在第一容纳腔内,并位于除氧组件的上方,配置成促使形成吹向除氧组件背朝储物空间一面的气流,以向除氧组件提供水蒸气。
可选地,除水区的背朝储物空间的一面上设置有多个立柱,配置成支撑透湿膜组;透湿膜组包括:透湿膜,配置成允许储物空间内的水蒸气透过;透湿底板,贴靠设置于透湿膜的底部,并位于多个立柱的上方。
可选地,托板面朝除水区上方的部位形成有第二容纳腔,第二容纳腔的侧壁上设置有多个限位卡爪,多个限位卡爪将透湿膜组限定于第二容纳腔内。
可选地,储物容器的顶壁面上还设置有:多个螺孔柱,位于透气区域的外周;托板与多个螺孔柱对应的位置上分别设置有螺孔,以通过螺接方式将托板固定于储物容器上。
可选地,用于冰箱的储物装置,还包括:盖板,形成储物装置的上盖,以使外形齐整。
可选地,盖板包括:顶盖部,覆盖在除氧透湿组件的上方;连接部,由顶盖部沿储物容器的背面延伸形成,连接部设置有多个卡槽,配置成与储物容器背面的卡扣卡接,以固定盖板。
可选地,透气区域开设有阵列排布的通孔;托板位于除水区上方的部位、透湿底板、以及盖板上均相应设置有阵列排布的通孔,配置成允许储物空间内的气体排出。
根据本发明的另一方面,还提供了一种冰箱,包括箱体,其内部形成储物间室;如上文任一项的用于冰箱的储物装置,储物装置设置于储物间室内。
本发明的用于冰箱的储物装置以及具有其的冰箱,在储物容器的壁面上设置有透气区域,将除氧透湿组件设置于透气区域上,其中,除氧组件设置在透气区域的中间部位的一侧,配置成在电解电压的作用下通过电解反应消耗储物空间内部的氧气,透湿膜组设置在除氧组件的两侧,配置成允许储物空间内的水蒸气渗透排出,从而可使储物容器内形成低氧气氛,也能防止水汽过多产生凝露或滴水,提高了储物容器的保鲜效果。
进一步地,本发明的用于冰箱的储物装置以及具有其的冰箱,其储物容器的透气区域设置有除氧区和除水区,其除氧透湿组件中设置有托板,将具有除氧作用的除氧组件设置在托板的第一容纳腔内,将具有透湿作用的透湿膜组设置在托板的第二容纳腔内,从而可将除氧组件限定在除氧区上方,将透湿膜组限定在除水区上方,同时也将除氧组件、透湿膜组、托板集成一体,可以将除氧透湿组件简便地安装在储物容器的透气区域上方,降低了除氧透湿组件的安装难度。
根据下文结合附图对本发明具体实施例的详细描述,本领域技术人员将会更加明了本发明的上述以及其他目的、优点和特征。
附图说明
后文将参照附图以示例性而非限制性的方式详细描述本发明的一些具体实施例。附图中相同的附图标记标示了相同或类似的部件或部分。本领域技术人员应该理解,这些附图未必是按比例绘制的。附图中:
图1是根据本发明一个实施例的冰箱的示意性透视图;
图2是图1所示的用于冰箱的储物装置的示意图;
图3是图2所示的用于冰箱的储物装置的示意性分解图;
图4是图3所示的用于冰箱的储物装置的储物容器的容器本体的示意图;
图5是图3所示的用于冰箱的储物装置的储物容器的容器本体的另一示意图;
图6是图3所示的用于冰箱的储物装置的除氧透湿组件的示意图;
图7是图6所示的除氧透湿组件的托板的示意图;
图8是图6所示的除氧透湿组件的托板的另一示意图;
图9是图8所示的A处的示意性局部放大图;
图10是图6所示的除氧透湿组件的风机组件和除氧组件的示意图;
图11是图10所示的除氧组件的示意图;
图12是图10所示的除氧组件的示意性分解图;
图13是图10所示的风机组件的示意性分解图;
图14是图3所示的用于冰箱的储物装置的透湿膜组的示意性分解图;
图15是图3所示的用于冰箱的储物装置的盖板的示意图。
具体实施方式
图1是根据本发明一个实施例的冰箱10的示意性透视图。冰箱10一般性地可包括箱体100和储物装置200。箱体100内部形成储物间室;在本实施例中,储物间室可以为多个,并且包括冷藏间室110和冷冻间室120。在另一些可选的实施例中,储物间室可以为一个,并且为冷藏间室110。
图2是图1所示的用于冰箱10的储物装置200的示意图,图3是图2所示的用于冰箱10的储物装置200的示意性分解图。储物装置200设置于冷藏间室110底部,其包括储物容器210、除氧透湿组件300、盖板350。
储物容器210的内部形成储物空间213,储物容器210可以为抽屉,该抽屉由容器本体211和抽拉部212组成。该抽屉可抽拉地设置于冰箱10的冷藏间室110的底部以打开或封闭储物空间213。
图4是图3所示的用于冰箱10的储物装置200的储物容器210的容器本体211的示意图,图5是图3所示的用于冰箱10的储物装置200的储物容器210的容器本体211的另一示意图。储物容器210的壁面上设置有透气区域221和非透气区域222。优选地,该壁面可以为储物容器210的顶壁面,即,透气区域221位于储物容器的顶壁面上。储物容器210的顶壁面外形可以为长方形,透气区域221的外形也可以为长方形,透气区域221设置在顶壁面的中间位置,透气区域221与顶壁面的外周之间的区域为非透气区域222。透气区域221上开设有阵列排布的通孔410,储物容器210内的气体能够从通孔410逸出。透气区域221包括除氧区420和除水区430。除氧区420,位于透气区域221的中间部位,并且除氧区420向储物空间213内部凹陷形成凹陷部位421,凹陷部位421可以容置外接的组件。除水区430,靠近除氧区420,并位于除氧区420的两侧;除水区430的背朝储物空间213的一面上设置有多个立柱431。非透气区域222未开设通孔,为封闭状态。储物容器210的顶壁面上还设置有多个螺孔柱440,多个螺孔柱440位于透气区域221的外周,即非透气区域222与透气区域221相接的部位,用于与外接的组件连接固定。
图6是图3所示的用于冰箱10的储物装置200的除氧透湿组件300的示意图。除氧透湿组件300,设置于所述储物容器210上,优选地,可以设置于储物容器210的顶壁面的上方,其包括托板310、除氧组件320、风机组件330、透湿膜组340。
托板310,覆盖在透气区域221上,形成除氧透湿组件300的骨架,具有容置除氧组件320、风机组件330、以及透湿膜组340的容纳腔,除氧组件320、风机组件330、以及透湿膜组340可以分别安装在容纳腔内从而与托板310集成一体。
集成后的除氧透湿组件300既包括具有除氧作用的除氧组件320和具有送风功能的风机组件330,又包括具有透湿作用的透湿膜组340,兼具有除氧和透湿的功能;集成后的除氧透湿组件300可以一次性地安装在透气区域221上方,避免了分步安装,简化了安装步骤,操作简便,安装难度低。
图7是图6所示的除氧透湿组件300的托板310的示意图,图8是图6所示的除氧透湿组件300的托板310的另一示意图,图9是图8所示的A处的示意性局部放大图。托板310在背朝除氧区420的一侧上方形成第一容纳腔311,在本实施例中,托板310可以在背朝除氧区420的上方形成第一容纳腔311。第一容纳腔311的底壁设置有开口511,开口511的周缘向第一容纳腔311的侧壁延伸形成有托台512,托台512将除氧组件320限定于第一容纳腔311的底部。也就是说,托板310位于除氧区420上方的部位向除氧区420凹陷形成第一容纳腔311,并且第一容纳腔311的外形与上述凹陷部位421的外形相适配以使第一容纳腔311能恰好插入凹陷部位421的内部;第一容纳腔311的底部包括开口511和托台512,开口511配置成允许从除氧区420逸出的气体通过,托台512配置成承接除氧组件320,并且托台512上设置有托台螺孔513,除氧组件320可以通过螺接固定在托台512上。
托板310面朝除水区430上方的部位形成有第二容纳腔312,第二容纳腔312的侧壁上设置有多个限位卡爪514,多个限位卡爪514将透湿膜组340限定于第二容纳腔312内。也就是说,透湿膜组340设置在除水区430与托板310之间,多个限位卡爪514将透湿膜组340卡装在第二容纳腔312内。第二容纳腔312的底壁上也相应开设有阵列排布的通孔530,配置成允许经由透湿膜组340渗透排出的水蒸气从通孔530排出。
托板310上设置有容纳除氧组件320、风机组件330的第一容纳腔311,以及容纳透湿膜组340的第二容纳腔312。第一容纳腔311的位置和外形与除氧区420的位置和外形相对应,第二容纳腔312的位置和外形与除水区430的位置和外形相对应,可以将托板310直接覆盖在储物容器210的顶壁面上方以实现快速安装。托板310的第二容纳腔312紧邻第一容纳腔311,能 使透湿膜组340紧邻除氧组件320,可以使除氧组件320通过电解反应产生的水蒸气通过透湿膜组340快速排出,能够避免过多水蒸气滞留在储物装置200内,有利于促使储物装置200内的湿度保持在合适的范围内。
图10是图6所示的除氧透湿组件300的风机组件330和除氧组件320的示意图,图11是图10所示的除氧组件320的示意图,图12是图12所示的除氧组件320的示意性分解图。除氧组件320,设置在第一容纳腔311的底部,配置成在电解电压的作用下通过电解反应消耗储物空间213内部的氧气。也即,除氧组件320设置在上述凹陷部位421内部。
由于氧气密度比较大,集中分布于储物容器210的底部,远离底部位置处的氧气浓度相对较小,将除氧区420设置为向储物空间213内部凹陷,可以促使除氧组件320与储物空间213内的氧气充分接触,提高电化学反应的速率。
除氧组件320包括:母板321、阳极板322、阴极板323、以及夹持于阴极板323和阳极板322之间的质子交换膜324。
母板321,形成除氧组件320的底座,其中间部位设置有缺口521,缺口521可以为长方形;缺口521的四周设置有内接螺孔522,用于与除氧组件320的其他部件通过螺接固定,母板321的边缘还设置有外接螺孔523,用于与第一容纳腔311的托台512通过螺接固定。阴极板323背朝质子交换膜324的一面暴露于除氧区420上方,面朝储物空间213内部,并通过除氧区420的通孔410、母板321的缺口521与储物空间213连通,配置成利用氢离子和氧气反应生成水,消耗储物空间213内部的氧气;阳极板322背朝质子交换膜324的一面背朝储物空间213内部,配置成电解储物空间213外部的水蒸气,产生氢离子和氧气;质子交换膜324,配置成将氢离子由阳极板322一侧运输到阴极板323一侧。也就是说,除氧组件320具有至少4层结构,由外至内依次为阳极板322、质子交换膜324、阴极板323和母板321。在电解过程中,阴极板323一方面消耗储物空间213内的氧气,另一方面其生成的水蒸气还能增加储物空间213内的湿度,提高了储物装置200的保鲜效果。
其中,阳极板322和阴极板323的化学反应式分别为:
阳极板:2H 2O→O 2+4H ++4e -
阴极板:O 2+4H ++4e -→2H 2O
在本实施例中,上述除氧组件320还可以进一步地包括:两块弹性板325,设置在上述阳极板322的外侧,每块弹性板325为矩形的薄板,其中间部位镂空,镂空部位的位置和形状与母板321的缺口521的位置和形状相适配,以允许气体通过。镂空部位的顶点旁边设置有风机螺孔524,用于将除氧透湿组件300的风机组件330通过螺接固定在除氧组件320上方,弹性板325的边缘部位也设置有母板螺孔525,母板螺孔525的位置和数量与母板321的内接螺孔522的位置和数量相适配,以通过螺接将除氧组件320的多层结构固定在母板321上。
在一些可选的实施例中,除氧组件320还包括:扩散层和至少一个垫圈326。扩散层位于阳极板322和质子交换膜324之间以及阴极板323和质子交换膜324之间,扩散层的材质为表面镀铂的钛网,其作用为便于导电以及允许水蒸气扩散。垫圈326,位于上述母板321与阴极板323之间,每个垫圈326为矩形的薄圈,其外圈大小与阴极板323、阳极板322的大小相同。每个垫圈326由弹性材料制成,以缓冲相邻层之间的挤压力。
图13是图10所示的风机组件330的示意性分解图。风机组件330,设置在第一容纳腔311内,位于除氧组件320的上方,即位于阳极板322背朝质子交换膜324的一侧,配置成促使形成吹向除氧组件320背朝储物空间213一面的气流,以向除氧组件320提供水蒸气。风机组件330包括风机331和风机架332。在本实施例中,风机331可以为微型轴流风机,其转轴与阳极板322垂直,用于将储物空间213外部的水蒸气朝向阳极板322吹送。由于阳极板322的反应物为水蒸气,因此,阳极板322需要不断地补充水分,以使得电解反应能够持续进行。当除氧组件320开启工作时,控制电路分别向阴极板323和阳极板322供电,同时风机331开启,风机331向阳极板322吹送空气的同时,将空气中的水蒸气一同吹送至阳极板322,以向阳极板322提供反应物。由于冰箱10内部温度一般较低,储物间室具有比较潮湿的气体氛围,其空气中包含大量的水蒸气。因此,风机331能够促使储物间室内的空气为阳极板322提供足够的反应物,无需为除氧组件320单独设置水源或输水装置。
将风机331与除氧组件320共同设置在第一容纳腔311内,缩短了风机331与除氧组件320之间的距离,提高了风机331的送风效率,风机331开启后能够快速为除氧组件320提供电解反应所需的水蒸气,有利于提高除氧 组件320的电解效率,实现快速降氧。
风机架332,用于固定支撑风机331。风机架332设置于风机331朝向阳极板322的一侧,例如,可以设置于风机331和除氧组件320的弹性板325之间。风机331可以通过螺接安装固定在风机架332上,风机331的送风区域正对风机架332中间的圆形开口531,并能够将气流吹向除氧组件320内部,吹送至阳极板322。风机架332能够固定支撑风机331,防止风机331在运行时晃动,同时还能使得风机331和弹性板325之间形成一定的间距,以利于气体流通。风机架332上还设置有风机架螺孔532,风机架螺孔532的位置和数量与风机螺孔524的位置和数量相适配,以使风机架332可以通过螺接安装固定在除氧组件320上方。
风机架332背朝除氧组件320的一面用于固定风机331,面朝除氧组件320的一面与除氧组件320螺接固定,风机架332既具有固定支撑风机331的作用,又具有连接除氧组件320的作用,其双重固定作用将除氧组件320、风机331集成一体,并使风机331靠近除氧组件320,为缩短风机331与除氧组件320之间的距离提供结构基础。
图14是图3所示的用于冰箱10的储物装置200的透湿膜组340的示意性分解图。透湿膜组340,设置在除水区430与托板310之间,并且位于托板310的第二容纳腔312内,配置成允许储物空间213内的水蒸气渗透排出,其包括透湿膜341和透湿底板342。
透湿膜341配置成允许储物空间213内的水蒸气缓慢地透过并排出到储物空间213外部,使得储物空间213内的湿度始终保持在合适范围内,防止空间内部水分过多产生凝露或滴水。在本实施例中透湿膜341可以为渗透汽化膜,具有亲水层和疏水层,亲水层背朝疏水层的一面暴露于除水区430的上方,即面朝除水区430,疏水层背朝亲水层的一面背朝除水区430,储物空间213内的水蒸气能够经由透湿膜341渗透排出到储物空间213外部。透湿膜341在透过水蒸气的同时,也能阻碍其他气体透过,防止储物空间213内外发生气体交换。
透湿膜341的外形与第二容纳腔312的底壁的外形相适配,可以恰好封闭第二容纳腔312,透湿膜341与托板310形成的封闭空间可以阻断除水区430与封闭空间外部发生气体交换,因此,将透湿膜341设置在除水区430与托板310之间,能够促使储物装置200保持相对封闭的状态,有利于维持 良好的保鲜气氛,提高保鲜效果。
透湿底板342贴靠设置于透湿膜341的底部,并位于多个立柱431的上方。即,多个立柱431支撑透湿底板342,透湿底板342支撑透湿膜341,多个立柱431和透湿底板342形成的双重支撑结构能够防止透湿膜341受重力影响产生形变。若透湿膜341发生形变,其与第二容纳腔312的侧壁之间会出现缝隙,导致透湿膜341与托板310无法形成封闭空间,储物装置200的保鲜效果降低。透湿底板342上也相应开设有阵列排布的通孔540,其通孔540的位置和大小与第二容纳腔312的底壁的通孔530的位置和大小相适配,配置成允许从除水区430逸出的气体通过。
在储物容器210的顶壁面设置有透气区域221,将除氧透湿组件300设置于透气区域221上,其中,除氧组件320设置在透气区域221的中间部位一侧,配置成在电解电压的作用下通过电解反应消耗储物空间213内部的氧气,透湿膜组340设置在除氧组件320的两侧,配置成允许储物空间213内的水蒸气渗透排出,从而可使储物容器210内形成低氧气氛,也能防止水汽过多产生凝露或滴水,提高了储物容器210的保鲜效果。
在储物容器210的透气区域221上设置除氧区420和除水区430,在除氧透湿组件300中设置托板310,将具有除氧作用的除氧组件320设置在托板310的第一容纳腔311内,将具有透湿作用的透湿膜组340设置在托板310的第二容纳腔312内,从而可将除氧组件320限定在除氧区420上方,将透湿膜组340限定在除水区430上方,同时也将除氧组件320、透湿膜组340、托板310集成一体,可以将除氧透湿组件300简便地安装在储物容器210的透气区域221上,降低了除氧透湿组件300的安装难度。
图15是图3所示的用于冰箱10的储物装置200的盖板350的示意图。盖板350,形成储物装置200的上盖,配置成覆盖在除氧透湿组件300的上方以使外形齐整。盖板350包括顶盖部351和连接部352,其中,顶盖部351,覆盖在储物容器210的顶壁面上方,并且顶盖部351沿储物容器210的背面延伸形成连接部352,连接部352用于与储物容器210连接固定。顶盖部351上也开设有阵列排布的通孔550,其中,位于除水区430上方的通孔410配置成允许经由除水区430、透湿底板342、透湿膜341、以及第二容纳腔312底壁逸出的水蒸气排至储物装置200外部,位于除氧区420上方的通孔410配置成允许储物装置200外部的气体在风机331的作用下进入储物装置200 并吹向阳极板322,为阳极板322提供水蒸气,同时也为在阳极板322上产生的氧气提供逸出通道。连接部352,设置有多个卡槽551,配置成与储物容器210背面的卡扣450卡接,以固定盖板350。
除氧透湿组件300还包括多套紧固螺丝,以实现多层部件的固定和夹持。其中第一套紧固螺丝依次贯穿两块弹性板325、阳极板322、扩散层、质子交换膜324、扩散层、阴极板323、垫圈326、母板321的相同位置的螺孔,用于促使除氧组件320形成多层结构;第二套紧固螺丝依次贯穿于风机架螺孔532、除氧组件320的弹性板325的风机螺孔524,用于将风机架332固定在除氧组件320上;第三套紧固螺丝依次贯穿除氧组件320的母板321的外接螺孔523、托台512的托台螺孔513,用于将除氧组件320固定在托台512上。
在储物容器210的顶壁面上设置除氧区420和除水区430,使托板310的第一容纳腔311插入除氧区420所在的凹陷部位421,并在第一容纳腔311内安装除氧组件320和风机331,在位于除水区430上方的托板310的第二容纳腔312内安装透湿膜341和透湿底板342,可以避免除氧透湿组件300占用过多的储物空间213,提高了储物装置200的使用效率。
在本实施例中,可以将除氧组件320的阳极板322、阴极板323通过导线连接至控制电路,由冰箱10的控制电路为其提供电解电压。在另一些可选的实施例中,除氧组件320的电解电压也可以由电池提供,将阳极板322和阴极板323分别与电池的阳极和阴极连通,除氧组件320进入电解工作状态。若用户不需要使用除氧功能,则将除氧透湿组件300整体取出即可。
在组装除氧透湿组件300时,可以将除氧组件320、风机组件330集成一体,然后通过螺丝固定在第一容纳腔311内,将透湿膜341和透湿底板342依次卡装在第二容纳腔312内。
在安装除氧透湿组件300时,将组装好的除氧透湿组件300放置在储物容器210的顶壁面上方,使托板310的第一容纳腔311插入储物容器210顶壁面的凹陷部位421内,阴极板323朝向储物空间213内部,阳极板322朝向储物空间213外部。除氧透湿组件300的托板310可以根据实际需求选择任一方式固定在储物容器210的顶壁面上,例如,也可以通过螺丝连接固定。在透气区域221的外周设置多个螺孔柱440,托板310与多个螺孔柱440对应的位置上分别设置有螺孔313,以通过螺接方式将托板310固定于储物容 器210上,使托板310与储物容器210的顶壁面贴紧,加强密封效果。
在除氧区420上方,由托板310和除氧组件320形成封闭空间,在除水区430上方由托板310和透湿膜组340形成封闭空间,从而使储物装置200内部形成相对封闭的结构,在降氧、透湿的同时能维持适宜的保鲜气氛,提高保鲜效果。
储物装置200的盖板350也可以根据实际需求选择任一方式安装于储物容器210的顶壁面上,例如,可以利用卡槽551与卡扣450卡接固定。在储物容器210的背板上靠近顶壁面的部位、以及顶壁面上的非透气区域222设置有多个卡扣450,在盖板350的连接部352上相应设置多个卡槽551,将储物容器210的卡扣450插入盖板350的卡槽551内,可以卡接固定盖板350,从而形成兼具除氧和透湿功能的储物装置200。
本实施例的用于冰箱10的储物装置200以及具有其的冰箱10,在储物容器210的顶壁面设置有透气区域221,将除氧透湿组件300集成于透气区域221上方,其中,除氧组件320设置在透气区域221的中间部位上方,配置成在电解电压的作用下通过电解反应消耗储物空间213内部的氧气,透湿膜组340设置在除氧组件320的两侧,配置成允许储物空间213内的水蒸气渗透排出,从而可使储物容器210内形成低氧气氛,也能防止水汽过多产生凝露或滴水,提高了储物容器210的保鲜效果;其储物容器210的透气区域221设置有除氧区420和除水区430,其除氧透湿组件300中设置有托板310,将具有除氧作用的除氧组件320设置在托板310的第一容纳腔311内,将具有透湿作用的透湿膜组340设置在托板310的第二容纳腔312内,从而可将除氧组件320限定在除氧区420上方,将透湿膜组340限定在除水区430上方,同时也将除氧组件320、透湿膜组340、托板310集成一体,可以将除氧透湿组件300简便快速地安装在储物容器210的透气区域221上方,降低了除氧透湿组件300的安装难度。
本领域技术人员应理解,在没有特别说明的情况下,本发明实施例中所称的“上”、“下”“内”“外”等用于表示方位或位置关系的用语是以冰箱的实际使用状态为基准而言的,这些用语仅是为了便于描述和理解本发明的技术方案,而不是指示或暗示所指的装置或部件必须具有特定的方位,因此不能理解为对本发明的限制。
至此,本领域技术人员应认识到,虽然本文已详尽示出和描述了本发明 的多个示例性实施例,但是,在不脱离本发明精神和范围的情况下,仍可根据本发明公开的内容直接确定或推导出符合本发明原理的许多其他变型或修改。因此,本发明的范围应被理解和认定为覆盖了所有这些其他变型或修改。

Claims (10)

  1. 一种用于冰箱的储物装置,包括:
    储物容器,其内部限定有储物空间;所述储物容器的壁面上设置有透气区域,所述透气区域包括:
    除氧区,位于所述透气区域的中间部位,并且所述除氧区向所述储物空间内部凹陷;
    除水区,位于所述除氧区的两侧;
    除氧透湿组件,设置于所述储物容器上,其包括:
    托板,覆盖在所述透气区域上,所述托板在背朝所述除氧区的一侧形成有第一容纳腔;
    除氧组件,设置在所述第一容纳腔内,配置成在电解电压的作用下通过电解反应消耗所述储物空间内部的氧气;
    透湿膜组,设置在所述除水区与所述托板之间,配置成允许所述储物空间内的水蒸气渗透排出。
  2. 根据权利要求1所述的用于冰箱的储物装置,其中
    所述透气区域位于所述储物容器的顶壁面上;
    所述第一容纳腔的底壁设置有开口,所述开口的周缘向所述第一容纳腔的侧壁延伸形成有托台,所述托台将所述除氧组件限定于所述第一容纳腔的底部。
  3. 根据权利要求2所述的用于冰箱的储物装置,其中,所述除氧透湿组件还包括:
    风机组件,设置在所述第一容纳腔内,并位于所述除氧组件的上方,配置成促使形成吹向所述除氧组件背朝所述储物空间一面的气流,以向所述除氧组件提供水蒸气。
  4. 根据权利要求1所述的用于冰箱的储物装置,其中,
    所述除水区的背朝所述储物空间的一面上设置有多个立柱,配置成支撑所述透湿膜组;所述透湿膜组包括:
    透湿膜,配置成允许所述储物空间内的水蒸气透过;
    透湿底板,贴靠设置于所述透湿膜的底部,并位于多个所述立柱的上方。
  5. 根据权利要求4所述的用于冰箱的储物装置,其中,
    所述托板面朝所述除水区上方的部位形成有第二容纳腔,所述第二容纳腔的侧壁上设置有多个限位卡爪,多个所述限位卡爪将所述透湿膜组限定于所述第二容纳腔内。
  6. 根据权利要求1所述的用于冰箱的储物装置,其中
    所述储物容器的顶壁面上还设置有:
    多个螺孔柱,位于所述透气区域的外周;
    所述托板与多个所述螺孔柱对应的位置上分别设置有螺孔,以通过螺接方式将所述托板固定于所述储物容器上。
  7. 根据权利要求1所述的用于冰箱的储物装置,还包括:
    盖板,形成所述储物装置的上盖,以使外形齐整。
  8. 根据权利要求7所述的用于冰箱的储物装置,其中,所述盖板包括:
    顶盖部,覆盖在所述除氧透湿组件上方;
    连接部,由所述顶盖部沿所述储物容器的背面延伸形成,所述连接部设置有多个卡槽,配置成与所述储物容器背面的卡扣卡接,以固定所述盖板。
  9. 根据权利要求8所述的用于冰箱的储物装置,其中
    所述透气区域开设有阵列排布的通孔;
    所述托板位于所述除水区上方的部位、所述透湿底板、以及所述盖板上均相应设置有阵列排布的通孔,配置成允许所述储物空间内的气体排出。
  10. 一种冰箱,包括
    箱体,其内部形成储物间室;
    如权利要求1至9中任一项所述的用于冰箱的储物装置,所述储物装置设置于所述储物间室内。
PCT/CN2020/141517 2019-10-31 2020-12-30 用于冰箱的储物装置以及具有其的冰箱 WO2021083432A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201911055688.2A CN112747551B (zh) 2019-10-31 2019-10-31 用于冰箱的储物装置以及具有其的冰箱
CN201911055688.2 2019-10-31

Publications (1)

Publication Number Publication Date
WO2021083432A1 true WO2021083432A1 (zh) 2021-05-06

Family

ID=75644774

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/141517 WO2021083432A1 (zh) 2019-10-31 2020-12-30 用于冰箱的储物装置以及具有其的冰箱

Country Status (2)

Country Link
CN (2) CN116379694A (zh)
WO (1) WO2021083432A1 (zh)

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006266539A (ja) * 2005-03-22 2006-10-05 Mitsubishi Electric Corp 冷蔵庫
KR20100062113A (ko) * 2008-12-01 2010-06-10 삼성전자주식회사 저장고 및 그 제어방법
CN205300101U (zh) * 2015-12-21 2016-06-08 青岛海尔股份有限公司 储物装置及冰箱
CN107062744A (zh) * 2016-12-09 2017-08-18 青岛海尔股份有限公司 冰箱
JP2017184631A (ja) * 2016-04-01 2017-10-12 東芝ライフスタイル株式会社 食品保存庫
CN108168181A (zh) * 2017-12-22 2018-06-15 青岛海尔股份有限公司 冰箱
CN108332480A (zh) * 2017-12-22 2018-07-27 青岛海尔股份有限公司 冷藏冷冻装置及其储物容器
CN109855377A (zh) * 2017-11-30 2019-06-07 青岛海尔股份有限公司 冷藏冷冻装置及其储物容器

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3683431B2 (ja) * 1999-03-08 2005-08-17 ホシザキ電機株式会社 冷凍機構を有する装置の蒸発皿
CN105180581B (zh) * 2015-09-29 2019-03-12 青岛海尔股份有限公司 储物装置及具有该储物装置的冰箱
US9962014B2 (en) * 2016-04-01 2018-05-08 Zero Zone, Inc. Holder for a refrigerated case
CN208312867U (zh) * 2018-06-11 2019-01-01 广州美的华凌冰箱有限公司 储物装置和冰箱

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006266539A (ja) * 2005-03-22 2006-10-05 Mitsubishi Electric Corp 冷蔵庫
KR20100062113A (ko) * 2008-12-01 2010-06-10 삼성전자주식회사 저장고 및 그 제어방법
CN205300101U (zh) * 2015-12-21 2016-06-08 青岛海尔股份有限公司 储物装置及冰箱
JP2017184631A (ja) * 2016-04-01 2017-10-12 東芝ライフスタイル株式会社 食品保存庫
CN107062744A (zh) * 2016-12-09 2017-08-18 青岛海尔股份有限公司 冰箱
CN109855377A (zh) * 2017-11-30 2019-06-07 青岛海尔股份有限公司 冷藏冷冻装置及其储物容器
CN108168181A (zh) * 2017-12-22 2018-06-15 青岛海尔股份有限公司 冰箱
CN108332480A (zh) * 2017-12-22 2018-07-27 青岛海尔股份有限公司 冷藏冷冻装置及其储物容器

Also Published As

Publication number Publication date
CN116379694A (zh) 2023-07-04
CN112747551A (zh) 2021-05-04
CN112747551B (zh) 2023-04-14

Similar Documents

Publication Publication Date Title
CN109855377B (zh) 冷藏冷冻装置及其储物容器
WO2021083433A1 (zh) 冰箱
CN108332479B (zh) 冰箱
WO2019105311A1 (zh) 冷藏冷冻装置及其储物容器
CN108278823B (zh) 冰箱
CN109855376B (zh) 冷藏冷冻装置及其除氧控制方法
WO2021083431A1 (zh) 用于冰箱的储物装置以及具有其的冰箱
CN108168181A (zh) 冰箱
CN109855348B (zh) 冷藏冷冻装置
CN108514066B (zh) 冷藏冷冻装置
CN112747526A (zh) 冰箱
WO2021083430A1 (zh) 用于冰箱的储物装置以及具有其的冰箱
CN112747527B (zh) 冰箱
CN108302861B (zh) 冰箱
CN111059829B (zh) 冰箱
WO2019105310A1 (zh) 冷藏冷冻装置及其储物容器
WO2021083432A1 (zh) 用于冰箱的储物装置以及具有其的冰箱
CN109855340B (zh) 冷藏冷冻装置及其储物容器
CN112747524A (zh) 冰箱
CN112747529A (zh) 冰箱
WO2019105307A1 (zh) 冷藏冷冻装置及其储物容器
CN112747538B (zh) 冰箱
WO2021083434A1 (zh) 用于冰箱的储物装置以及具有其的冰箱
CN112747530B (zh) 冰箱
CN109855349B (zh) 冷藏冷冻装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20881841

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20881841

Country of ref document: EP

Kind code of ref document: A1