WO2019105310A1 - 冷藏冷冻装置及其储物容器 - Google Patents

冷藏冷冻装置及其储物容器 Download PDF

Info

Publication number
WO2019105310A1
WO2019105310A1 PCT/CN2018/117320 CN2018117320W WO2019105310A1 WO 2019105310 A1 WO2019105310 A1 WO 2019105310A1 CN 2018117320 W CN2018117320 W CN 2018117320W WO 2019105310 A1 WO2019105310 A1 WO 2019105310A1
Authority
WO
WIPO (PCT)
Prior art keywords
storage container
anode plate
oxygen
plate
proton exchange
Prior art date
Application number
PCT/CN2018/117320
Other languages
English (en)
French (fr)
Inventor
朱小兵
刘浩泉
姜波
张�浩
Original Assignee
青岛海尔股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 青岛海尔股份有限公司 filed Critical 青岛海尔股份有限公司
Publication of WO2019105310A1 publication Critical patent/WO2019105310A1/zh

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65DCONTAINERS FOR STORAGE OR TRANSPORT OF ARTICLES OR MATERIALS, e.g. BAGS, BARRELS, BOTTLES, BOXES, CANS, CARTONS, CRATES, DRUMS, JARS, TANKS, HOPPERS, FORWARDING CONTAINERS; ACCESSORIES, CLOSURES, OR FITTINGS THEREFOR; PACKAGING ELEMENTS; PACKAGES
    • B65D81/00Containers, packaging elements, or packages, for contents presenting particular transport or storage problems, or adapted to be used for non-packaging purposes after removal of contents
    • B65D81/18Containers, packaging elements, or packages, for contents presenting particular transport or storage problems, or adapted to be used for non-packaging purposes after removal of contents providing specific environment for contents, e.g. temperature above or below ambient
    • B65D81/20Containers, packaging elements, or packages, for contents presenting particular transport or storage problems, or adapted to be used for non-packaging purposes after removal of contents providing specific environment for contents, e.g. temperature above or below ambient under vacuum or superatmospheric pressure, or in a special atmosphere, e.g. of inert gas
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25DREFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
    • F25D11/00Self-contained movable devices, e.g. domestic refrigerators
    • F25D11/02Self-contained movable devices, e.g. domestic refrigerators with cooling compartments at different temperatures

Definitions

  • the invention relates to the field of refrigeration and freezing, and in particular to a refrigerating and freezing device and a storage container thereof.
  • the modified atmosphere preservation technology generally refers to a technique for prolonging the storage life of a food by adjusting the gas atmosphere (gas composition ratio or gas pressure) of the enclosed space in which the storage is located, and the basic principle is: in a certain closed space.
  • a gas atmosphere different from the normal air component is obtained by various adjustment methods to suppress physiological and biochemical processes and microbial activities leading to spoilage of the stored matter (usually the foodstuff).
  • the modified atmosphere preservation will be specifically directed to a modified atmosphere preservation technique that adjusts the proportion of gas components.
  • normal air components include (by volume percent, hereinafter the same): about 78% nitrogen, about 21% oxygen, about 0.939% rare gas 0.031% carbon dioxide, and 0.03% other gases. And impurities (for example, ozone, nitrogen monoxide, nitrogen dioxide, water vapor, etc..
  • impurities for example, ozone, nitrogen monoxide, nitrogen dioxide, water vapor, etc.
  • a nitrogen-enriched gas refers to a gas having a nitrogen content exceeding the nitrogen content of the above-mentioned normal air, for example, the nitrogen content thereof may be 95% to 99% or even higher; and the nitrogen-rich oxygen is rich.
  • the fresh gas atmosphere refers to a gas atmosphere in which the nitrogen content exceeds the above-mentioned normal air nitrogen content and the oxygen content is lower than the oxygen content in the above-mentioned normal air.
  • modified atmosphere preservation technology dates back to 1821 when German biologists discovered that fruits and vegetables could reduce metabolism at low oxygen levels. But until now, due to the large size and high cost of nitrogen-making equipment traditionally used for gas-conditioning preservation, the technology is basically limited to use in various large-scale professional storage (the storage capacity is generally at least 30 tons). . It can be said that the appropriate gas regulation technology and corresponding equipment can economically reduce and quiet the air-conditioning system, making it suitable for home or individual users. It is a constant desire of technicians in the field of atmosphere preservation and preservation. A technical problem that can be successfully solved.
  • the present invention has been made in order to provide a refrigerating and freezing apparatus and a storage container thereof which overcome the above problems or at least partially solve the above problems.
  • Another object of the present invention is to improve the operational stability and service life of the electrical de-oxygen module.
  • Another object of the present invention is to facilitate the installation and removal of the electrical de-oxygen assembly.
  • the present invention provides a storage container for a refrigerating and freezing apparatus, comprising: a casing having a storage space defined therein, one side of the casing is provided with an opening; and the electric deactivating component is detachably disposed At the opening, configured to consume oxygen in the atmosphere of the fresh air conditioning space by electrolysis; wherein the electric desulfurization component comprises: an anode plate configured to electrolyze water vapor to generate hydrogen ions and oxygen; and a cathode plate configured to utilize hydrogen ions and oxygen The reaction generates water; and a proton exchange membrane sandwiched between the cathode plate and the anode plate, configured to transport hydrogen ions from one side of the anode plate to one side of the cathode plate; and two elastic plates respectively disposed on the anode plate and the cathode plate The outer side is for clamping the anode plate, the proton exchange membrane and the cathode plate, wherein one side of the cathode plate facing away from the proton exchange membrane
  • the two elastic plates are evenly distributed with a plurality of elastic protrusions on the two sides of the cathode plate and the anode plate, and the elastic protrusions on the two elastic plates are opposite in position.
  • the two elastic plates are each provided with a plurality of air holes to allow gas to pass through, and each of the air holes is disposed at a position to avoid the elastic protrusions.
  • the elastic plate is made of rubber.
  • a fan is disposed on a side of the anode plate facing away from the proton exchange membrane to blow water vapor outside the storage container toward the anode plate.
  • two diffusion layers are disposed between the anode plate and the proton exchange membrane and between the cathode plate and the proton exchange membrane for conducting electricity and allowing water vapor to diffuse.
  • the electric de-oxygen assembly further comprises: a receiving box for integrating and accommodating the respective components in the electric de-oxygen assembly, comprising: a bottom box having an interior formed therein for accommodating the respective components of the electric de-oxygen assembly a cavity, the outer surface of the side wall is provided with a plurality of strip-shaped protrusions; the cover has a plurality of strips disposed on one side of the bottom box, and each of the strips cooperates with the corresponding strip-shaped protrusions to realize the bottom box The snap-fit assembly with the lid.
  • a receiving box for integrating and accommodating the respective components in the electric de-oxygen assembly comprising: a bottom box having an interior formed therein for accommodating the respective components of the electric de-oxygen assembly a cavity, the outer surface of the side wall is provided with a plurality of strip-shaped protrusions; the cover has a plurality of strips disposed on one side of the bottom box, and each of the strips cooperates with the corresponding strip-shaped protrusions to realize the bottom box The snap
  • one of the side walls of the bottom box is also provided with two notches to allow the anode plate terminal and the cathode plate terminal to extend.
  • the storage container is a drawer, comprising: a cylinder body, the inside of which forms a storage space; and a drawing portion that can be pushed into the interior of the cylinder body or extracted from the inside of the cylinder body to open or close the storage space;
  • the electric de-oxidizing component is disposed on the top surface of the cylinder.
  • the present invention also provides a refrigerating and freezing apparatus, comprising a casing, the inside of which forms a storage compartment of the refrigerating and freezing apparatus, the storage compartment comprising a refrigerating compartment and a freezing compartment; and the storage container described above, The container is placed at the bottom of the refrigerating compartment.
  • the present invention provides a storage container for a refrigerating and freezing apparatus, comprising: an electric deaeration module.
  • the electric de-oxygen module is used to consume oxygen in the air in the storage space, thereby obtaining a gas atmosphere rich in nitrogen and oxygen in the space to facilitate food preservation.
  • the gas atmosphere reduces the oxygen content of the food (especially fruits and vegetables) by reducing the oxygen content in the storage space, while ensuring the basic respiration and preventing the food from performing anaerobic respiration, thereby achieving the purpose of long-term preservation of the food.
  • the electric de-oxidizing component is disposed on the top surface of the casing to facilitate power supply from the casing to the electric de-oxygen component. It is convenient for users to install and disassemble the electric desulfurization components.
  • the electric de-oxygen module is disposed at the top of the storage container to be in full contact with the air in the refrigerating compartment. After the water vapor near the electric de-energizing component is consumed, the water vapor at other locations can be quickly replenished, and the reaction is quickly maintained. Therefore, such an arrangement can also improve the working efficiency of the electric de-oxygen module.
  • the electric de-oxygen assembly further includes: two elastic plates. Two elastic plates are respectively disposed outside the anode plate and the cathode plate for clamping the anode plate, the proton exchange membrane and the cathode plate. A plurality of elastic protrusions are evenly distributed on the sides of the two elastic plates facing the cathode plate and the anode plate, and the positions of the elastic protrusions on the two elastic plates are corresponding, that is, each elastic protrusion can be combined with another piece A resilient projection on the plate cooperates with the extruded anode and cathode plates for further clamping of the proton exchange membrane.
  • the elastic plate conducts pressure through the elastic protrusions uniformly distributed on the surface, so that the surfaces of the anode plate, the cathode plate and the proton exchange membrane are uniformly stressed, thereby ensuring the working performance and stability of the electric deoxidation module.
  • the components of the electric de-oxygen module are integrated into the accommodating case.
  • the accommodating case is inserted into the predetermined opening of the box, the battery power is turned on, and the oxygen is removed.
  • the assembly begins to electrify oxygen. If the user does not need the oxygen removal function, the entire housing can be removed.
  • the storage container of the present invention is more convenient to disassemble and install the electric de-oxygen component, thereby improving the user experience.
  • Figure 1 is a schematic illustration of a storage container in accordance with one embodiment of the present invention.
  • FIG. 2 is a schematic illustration of an electrical de-oxygenation assembly of a storage container in accordance with one embodiment of the present invention
  • FIG. 3 is an exploded perspective view of an electrical de-oxygenation assembly of a storage container in accordance with one embodiment of the present invention
  • FIG. 4 is a schematic view of an elastic plate of an electric deaeration module of a storage container in accordance with one embodiment of the present invention
  • Figure 5 is a schematic illustration of a bottom case of an electrical de-oxygenation assembly of a storage container in accordance with one embodiment of the present invention
  • Figure 6 is a schematic illustration of a lid of an electrical de-oxygenation assembly of a storage container in accordance with one embodiment of the present invention
  • Figure 7 is a schematic illustration of an electrical de-oxygenation assembly of a storage container in accordance with another embodiment of the present invention.
  • Figure 8 is an exploded perspective view of an electrical de-oxygenation assembly of a storage container in accordance with another embodiment of the present invention.
  • Figure 9 is an exploded perspective view of a storage container in accordance with one embodiment of the present invention.
  • Figure 10 is a schematic illustration of the surface of a casing of a storage container in accordance with one embodiment of the present invention.
  • Figure 11 is a schematic illustration of the interior of a refrigerated freezer in accordance with one embodiment of the present invention.
  • an embodiment of the present invention first provides a storage container 100 for a refrigerating and freezing device, comprising: a casing 110 and an electric de-oxygen module 200.
  • a storage space is defined in the casing 110, and a top surface of the casing 110 is provided with an opening 200a.
  • the electric deoxidizing oxygen module 200 is formed at the opening, and is configured to consume oxygen inside the atmosphere of the fresh air conditioning space by the electrolytic reaction.
  • the opening is a rectangular opening for mounting the electrical de-oxygen module 200.
  • the size of the electrical de-energizing assembly 200 is adapted to the size of the opening so that it can completely close the opening, preventing gas exchange with the outside of the interior of the storage space.
  • the electric de-oxygen module 200 includes a battery, an anode plate 220, a cathode plate 230, and a proton exchange membrane 210 sandwiched between the cathode plate 230 and the anode plate 220.
  • the battery can be placed on the storage container or outside the storage container.
  • One side of the cathode plate 230 facing away from the proton exchange membrane 210 is at least partially exposed to the interior of the storage space
  • one side of the anode plate 220 facing away from the proton exchange membrane 210 is at least partially exposed to the exterior of the storage space.
  • the electric de-oxygen module 200 has at least three layers of structure, from top to bottom, the anode plate 220, the proton exchange membrane 210 and the cathode plate 230, the anode plate 220 faces the outside of the storage space, and the cathode plate 220 faces the storage space. internal.
  • Each layer structure is parallel to the plane of the opening, and each layer has the same size as the opening.
  • the cathode plate 230 and the anode plate 220 are carbon electrode plates or platinum electrode plates, and a carbon electrode having a platinum plating layer on the surface is generally used.
  • the edges of the anode plate 220 and the cathode plate 230 are each provided with a terminal, which is an anode plate terminal 221 and a cathode plate terminal 231, respectively, for connecting the anode and the cathode of the battery, respectively.
  • the battery supplies electrons to the cathode plate 230 while the anode plate 220 provides electrons to the battery anode.
  • the anode plate 220 is configured to electrolyze water vapor to produce protons and oxygen.
  • the proton exchange membrane 210 is configured to transport protons from one side of the anode plate 220 to the side of the cathode plate 230.
  • the cathode plate 230 is configured to react with oxygen to generate water.
  • the chemical reaction formulas of the anode plate and the cathode plate are respectively:
  • the anode of the battery is charged to the anode plate 220, and the side of the anode plate 220 electrolyzes water vapor outside the storage container 100 to generate hydrogen ions and oxygen, and the oxygen is discharged to the outside of the storage space, and the hydrogen ions enter the proton exchange membrane 210.
  • the cathode of the battery charges the cathode plate 230 to supply electrons to the cathode plate 230, and the hydrogen ions supplied from the proton exchange membrane 210 react with the oxygen inside the storage space to generate water, thereby consuming oxygen inside the storage space.
  • the proton exchange membrane 210 includes a proton conductive polymer, a porous membrane, and at least one active ingredient. At least one active ingredient is dispersed in the proton conductive polymer, and the proton conductive polymer is taken in and filled in the pores of the porous membrane.
  • the proton exchange membrane 210 functions to allow hydrogen ions to pass therethrough to transport the hydrogen ions generated by the reaction of the anode plate 220 to the cathode plate 230 for use by the cathode plate 230 for reaction.
  • the proton conducting polymer is polystyrenesulfonic acid (PSSA) or carboxymethyl cellulose (CMC).
  • the porous membrane is polytetrafluoroethylene (PTFE) or fluorinated ethylene propylene (FEP) or polyolefin film or polyperfluoroethylene propylene or glass fiber or ceramic fiber or polymer fiber;
  • the active ingredient is silica gel suitable for electroosmotic flow, The concentration of dispersed silica gel does not exceed 5% of the mass of the proton exchange membrane.
  • the electric de-oxygen assembly 200 further includes: two elastic plates 240 disposed outside the anode plate 220 and the cathode plate 230 for clamping the anode plate 220, the proton exchange membrane 210, and the cathode. Board 230.
  • a plurality of elastic protrusions 284 are evenly distributed on the sides of the two elastic plates 240 facing the cathode plate 230 and the anode plate 220, and the positions of the elastic protrusions 284 on the two elastic plates 240 correspond to each other, that is, each elastic convex
  • the 284 can be combined with a resilient projection 284 on the other plate to join the extruded anode plate 220 and the cathode plate 230 for further clamping of the proton exchange membrane 210.
  • the material of the elastic plate 240 may be silicone rubber or other rubber
  • the elastic protrusion 284 may be a circular protrusion.
  • the elastic plate 240 conducts pressure through the elastic protrusions 241 uniformly distributed on the surface thereof, so that the surfaces of the anode plate 220, the cathode plate 230 and the proton exchange film 210 are uniformly stressed, and the working performance and stability of the electric deoxidation module 200 are ensured.
  • Each of the elastic plates 240 uniformly defines a plurality of air holes 242, the air holes 242 are disposed at positions to avoid the position of the elastic protrusions 241, and the air holes 242 are used to allow gas to pass therethrough.
  • the electric de-oxygen assembly may further include: two fixing plates 290.
  • Two fixing plates 290 are disposed outside the two elastic plates 240 for integrating the fixed elastic plate 240, the anode plate 220, the proton exchange film 210, and the cathode plate 230.
  • the intermediate portion of each of the fixed plates 290 is hollowed out to allow gas to pass.
  • the hollow portion is also provided with a cross-shaped bracket for improving the stability of the fixing plate 290.
  • the electric de-oxygen assembly 200 may further include: a diffusion layer 270, an activated carbon filter screen, and one or more gaskets 260.
  • the diffusion layer 270 is located between the anode plate 220 and the proton exchange membrane 210 and between the cathode plate 230 and the proton exchange membrane 210.
  • the diffusion layer 270 is made of a platinum-plated titanium mesh, which functions to facilitate conduction and allow water vapor to diffuse.
  • An activated carbon filter screen is disposed on the side of the anode facing away from the proton exchange membrane 210 for purifying the gas entering the anode plate 220.
  • At least one washer 260 may be located between the above-mentioned multilayer structures, and each of the washers 260 is an oblong thin ring having the same outer ring size as the cathode plate 230 and the anode plate 220. Each of the washers 260 is made of an elastic material to cushion the pressing force between adjacent layers.
  • the electric de-oxygen assembly 200 further includes a fan 250.
  • the fan 250 described above may be a micro axial fan 250.
  • the fan 250 is disposed on a side of the anode plate 220 facing away from the proton exchange membrane 210, and its rotating shaft is perpendicular to the anode plate 220 for blowing water vapor outside the storage container 100 toward the anode.
  • the reactant of the anode plate of the electric deoxidizing module 200 of the present embodiment is water vapor. Therefore, the anode plate needs to continuously replenish moisture so that the electrolysis reaction can be continued.
  • the electric deactivating oxygen module 200 is turned on, the battery supplies power to the cathode plate 230 and the anode plate 220, respectively, and the fan 250 is turned on.
  • the fan 250 blows air to the anode plate 220
  • the water vapor in the air is blown together to the anode plate 220.
  • the storage compartment in the refrigerating and freezing apparatus has a relatively humid gas atmosphere, and the air contains a large amount of water vapor. Therefore, the indoor air in the storage compartment can supply sufficient reactants to the anode plate 220 without separately providing a water source or water delivery device for the electrical de-oxygen assembly 200.
  • the electric de-oxygen assembly 200 may further include: a fan bracket 280.
  • the fan bracket 280 is disposed on a side of the fan 250 facing the anode plate 220. In this embodiment, it may be disposed between the fan 250 and the fixing plate 290 on the same side as the anode plate 220, and is used to support the fan 250.
  • the fan bracket 280 includes an annular bracket body and a plurality of fixing claws 281. A plurality of fixing claws 281 are fixedly disposed on the bracket body, and each fixing claw 281 extends outward in the radial direction of the bracket body.
  • each fixing claw 281 is provided with a screw hole for screwing and fixing the fan bracket 280 to the fixing plate 290. on.
  • the number of the fixing claws 281 is four, which are disposed at intervals in the circumferential direction of the holder main body.
  • the fan 250 is mounted on the fan bracket 280.
  • the four corners of the fan casing are provided with screws to fix the fan to the fan bracket 280.
  • the air supply area of the fan 250 is opposite to the circular opening in the middle of the bracket body, and can be The air stream is blown toward the interior of the oxygen-removing oxygen module and blown to the anode plate 220.
  • the fan bracket 280 can fixedly support the fan 250 to prevent the fan 250 from shaking during operation, and at the same time, a certain distance between the fan 250 and the fixed plate 290 can be formed to facilitate gas circulation.
  • the multi-layer structure of the cathode plate 230, the anode plate 220 and the proton exchange film 210 is integrated into a receiving box to facilitate the overall installation or disassembly of the electric deoxidizing module 200.
  • the accommodating case described above may be completely embedded in the wall of the storage container 100 or partially embedded.
  • the accommodating case includes a case cover 293 and a bottom case 294 for covering the bottom case 294, and the cover 293 has an area slightly larger than the opening area of the bottom case 294.
  • the bottom case 294 is internally formed with a receiving cavity for accommodating various components in the electric de-oxygen assembly 200, and the outer surface of the side wall is provided with a plurality of strip-shaped projections 295, specifically, the outer surface of each side wall of the bottom case 294 is adjacent.
  • a position of the bottom box opening is provided with a strip-shaped projection 295.
  • a side of the cover 293 facing the bottom box 294 is correspondingly provided with a plurality of strips 295, and each of the strips 295 is engaged with a strip-shaped protrusion 295 to achieve the snap-fit assembly of the bottom box 294 and the lid 293.
  • One of the side walls of the bottom case 294 is also provided with two side by side notches to allow the anode plate terminal 221 and the cathode plate terminal 231 to extend.
  • the surfaces of the cover 293 and the bottom case 294 are each provided with a plurality of air holes to facilitate the passage of gas.
  • the cathode plate 230, the anode plate 220, the proton exchange membrane 210, the gasket 260, the elastic plate 240, the diffusion layer 270, and the like are arranged in accordance with the above-described positional relationship to form a multilayer structure.
  • the multilayer structure is then placed entirely inside the receiving chamber of the bottom case 294.
  • the layer arrangement direction of the multilayer structure coincides with the height direction of the bottom case 294, and finally the lid 293 is capped and pressed to complete the assembly of the electric deoxidizing oxygen module 200.
  • the multilayer structure in the accommodating case 280 is, in order from top to bottom, an elastic plate 240, an anode plate 220, a gasket 260, a diffusion layer 270, a proton exchange film 210, a diffusion layer 270, a gasket 260, and a cathode plate. 230, and an elastic plate 240.
  • the electric de-oxygen module 200 is mounted, the assembled electric de-oxygen module 200 is inserted into the opening of the casing, the battery is turned on the anode plate 220 and the cathode plate 230, and the oxygen-removing module 200 is electrically deactivated. If the user does not need the oxygen scavenging function of the storage container 100, the accommodating case 280 can be taken out as a whole.
  • the electric de-oxygen module 200 can also be assembled using screws.
  • the electric de-oxygen assembly 200 further includes a plurality of fastening screws 291 and a plurality of nuts 292, two fixing plates 290, two elastic plates 240, an anode plate 220, a proton exchange film 210, and a cathode plate 230 near the edge.
  • Each of the fastening screws 291 is provided with a plurality of screw holes 201, and each of the fastening screws 291 is sequentially threaded through the screw holes 201 of the plurality of components at the same position to realize the fixing and clamping of the multi-layer components.
  • the fastening screw 291 is fixed to the outside of the other fixing plate 290.
  • the number of fastening screws 291 is eight, and two screw holes are provided at intervals of each member near each edge, that is, each component has eight screw holes.
  • the fixing plate 290, the cathode plate 230, the anode plate 220, the proton exchange membrane 210, the gasket 260, the elastic plate 240, the diffusion layer 270, and the like are arranged in accordance with the above-described positional relationship, and The multilayer structure is formed, and the above-mentioned multilayer structure is fixedly integrated using a plurality of fastening screws 291.
  • the fan bracket 280 is mounted on the fixing plate 290 on the same side as the anode plate, and the fan bracket 280 is fixed by screws. Finally, the fan is mounted on the fan bracket 280 by screws to complete the assembly of the electric desulfurization assembly.
  • the arrangement order of the multilayer structure of the electric de-oxygen module 200 is: fan 250, fan bracket 280, fixing plate 290, elastic plate 240, anode plate 220, gasket 260, diffusion layer 270, proton exchange membrane. 210, a diffusion layer 270, a gasket 260, a cathode plate 230, an elastic plate 240, and a fixing plate 290.
  • the electric deaeration module 200 When the electric deaeration module 200 is installed, the assembled electric de-oxygen module 200 is integrally inserted into the opening of the casing, the cathode plate faces the inside of the storage container, and the anode plate faces the outside of the storage container.
  • the anode plate 220 and the cathode plate 230 are respectively connected to the anode and the cathode of the battery, and the oxygen-removing module 200 is electrically deactivated. If the user does not need the oxygen scavenging function of the storage container, the entire oxygen-removing oxygen module 200 can be taken out.
  • the storage container 100 of the present embodiment includes an electric de-oxygen module 200.
  • the electric de-oxygen module 200 is used to consume oxygen in the air in the storage space, thereby obtaining a gas atmosphere rich in nitrogen and oxygen in the space to facilitate food preservation.
  • the gas atmosphere reduces the oxygen content of the food (especially fruits and vegetables) by reducing the oxygen content in the storage space, while ensuring the basic respiration and preventing the food from performing anaerobic respiration, thereby achieving the purpose of long-term preservation of the food.
  • the embodiment of the invention further provides a refrigerating and freezing device, comprising: a box body and the above storage container 100.
  • a storage compartment of the refrigerating and freezing device is formed inside the casing.
  • the storage container 100 is disposed inside the storage compartment.
  • the refrigerating and freezing device may be a refrigerator, which in this embodiment is an air-cooled refrigerator, and the interior of the air-cooled refrigerator uses an air flow cycle to cool the storage compartment.
  • the storage compartment of the refrigerator includes a refrigerating compartment and a freezing compartment below the refrigerating compartment.
  • the storage container 100 may be a drawer. As shown in FIG. 6 and FIG. 7, the drawer is composed of a cylinder 111 and a drawing portion 112, and the electric de-energizing assembly 200 is disposed on the top surface of the cylinder 111.
  • the drawer is detachably disposed at the bottom of the refrigerating compartment of the refrigerator, and a plurality of pairs of ribs are disposed on both sides of the interior of the refrigerating compartment chamber 410, wherein a pair of ribs located at the bottom of the refrigerating compartment are used to define the installation of the drawer position.
  • the electric de-oxygen module 200 is placed in the upper part of the drawer, and the battery for supplying power to the anode plate 220 and the cathode plate 230 can be disposed in the foam layer of the casing, thereby facilitating power supply from the casing to the electric de-oxygen module 200, and facilitating installation by the user. Disassembled. Since the drawer is disposed at the bottom of the refrigerating compartment, the electric de-oxygen module 200 is disposed at the top of the drawer to be in full contact with the air in the refrigerating compartment, and the air circulation of the air-cooled refrigerator is faster after the water vapor in the vicinity of the electric de-energizing component is consumed. Water vapor in other locations can be quickly replenished to keep the reaction fast. Therefore, providing the electric de-oxygen module 200 on the top of the drawer can improve the working efficiency of the electric de-oxygen module 200.

Abstract

一种冷藏冷冻装置及其储物容器(100)。其中,储物容器(100)包括:电解除氧组件(200)。电解除氧组件(200)包括:两块弹性板(240)。两块弹性板(240)分别设置在阳极板(220)和阴极板(230)的外侧,用于夹紧阳极板(220)、质子交换膜(210)和阴极板(230)。两块弹性板(240)分别面向阴极板(230)和阳极板(220)的两个侧面上均匀分布着多个弹性凸起(284)。弹性板(240)通过其表面均匀分布的弹性凸起(284)传导压力,使得阳极板(220)、阴极板(230)以及质子交换膜(210)表面受力均匀,保证了电解除氧组件(200)的工作性能和稳定性。

Description

冷藏冷冻装置及其储物容器 技术领域
本发明涉及冷藏冷冻领域,特别涉及一种冷藏冷冻装置及其储物容器。
背景技术
气调保鲜技术一般性地是指通过调节储存物所处封闭空间的气体氛围(气体成分比例或气体压力)的方式来来延长食品贮藏寿命的技术,其基本原理为:在一定的封闭空间内,通过各种调节方式得到不同于正常空气成分的气体氛围,以抑制导致储存物(通常为食材)腐败变质的生理生化过程及微生物的活动。特别地,在本申请中,所讨论的气调保鲜将专门针对于对气体成分比例进行调节的气调保鲜技术。
本领域技术人员均知晓,正常空气成分包括(按体积百分比计,下文同):约78%的氮气,约21%的氧气,约0.939%的稀有气体0.031%的二氧化碳,以及0.03%的其他气体和杂质(例如,臭氧、一氧化氮、二氧化氮、水蒸气等。在气调保鲜领域,通常采用向封闭空间充入富氮气体来降低氧气含量的方式来获得富氮贫氧的保鲜气体氛围。这里,本领域技术人员均知晓,富氮气体是指氮气含量超过上述正常空气中氮气含量的气体,例如其中的氮气含量可为95%~99%,甚至更高;而富氮贫氧的保鲜气体氛围是指氮气含量超过上述正常空气中氮气含量、氧气含量低于上述正常空气中氧气含量的气体氛围。
气调保鲜技术的历史虽然可追溯到1821年德国生物学家发现水果蔬菜在低氧水平时能减少代谢作用开始。但直到目前为止,由于传统上用于气调保鲜的制氮设备体积庞大、成本高昂,导致该技术基本上还是局限于使用在各种大型的专业贮藏库上(储藏容量一般至少30吨以上)。可以说,采用何种适当的气体调节技术和相应装置才可能经济地将气调系统小型化、静音化,使其适用于家庭或个人用户,是气调保鲜领域技术人员一直渴望解决但始终未能成功解决的技术难题。
发明内容
鉴于上述问题,提出了本发明以便提供一种克服上述问题或者至少部分 地解决上述问题的冷藏冷冻装置及其储物容器。
本发明的一个目的是为了提供富氮贫氧以利于食物保鲜的气体氛围。
本发明的另一个目的是为了提高电解除氧组件的工作稳定性和使用寿命。
本发明的另一个目的是为了便于电解除氧组件的安装和拆卸。
一方面,本发明提供了一种用于冷藏冷冻装置的储物容器,包括:盒体,盒体内限定有储物空间,盒体的一个侧面设置有开口;电解除氧组件,可拆卸地设置于开口处,配置成通过电解反应消耗气调保鲜空间内部的氧气;其中电解除氧组件包括:阳极板,配置成电解水蒸气,产生氢离子和氧气;阴极板,配置成利用氢离子和氧气反应生成水;和夹持于阴极板和阳极板之间的质子交换膜,配置成将氢离子由阳极板一侧运输到阴极板一侧;两块弹性板,分别设置在阳极板和阴极板的外侧,用于夹紧阳极板、质子交换膜和阴极板,其中阴极板背朝质子交换膜的一面至少部分暴露于储物空间内部,阳极板背朝质子交换膜的一面至少部分暴露于储物空间外部。
可选地,两块弹性板分别面向阴极板和阳极板的两个侧面上均匀分布有多个弹性凸起,且两块弹性板上的弹性凸起的位置相对。
可选地,两块弹性板均开设有多个气孔,以允许气体通过,且每个气孔的设置位置避让弹性凸起。
可选地,弹性板的制作材料为橡胶。
可选地,风机,设置于阳极板背朝质子交换膜的一侧,以将储物容器外部的水蒸气朝向阳极板吹送。
可选地,两层扩散层,分别设置于阳极板和质子交换膜之间以及阴极板和质子交换膜之间,用于导电以及允许水蒸气扩散。
可选地,电解除氧组件还包括:容纳盒,用于整合并容纳电解除氧组件中的各个部件,其包括:底盒,其内部形成用于容纳电解除氧组件中的各个部件的容纳腔,其侧壁的外表面设置有多个条形凸起;盒盖,朝向底盒的一面设置有多个卡条,每个卡条与对应的条形凸起相配合,以实现底盒和盒盖的卡接装配。
可选地,底盒的其中一个侧壁还设置有两个缺口,以允许阳极板接线端和阴极板接线端伸出。
可选地,储物容器为抽屉,其包括:筒体,其内部形成储物空间;和抽 拉部,可被推入筒体内部或由筒体内部抽出,以打开或封闭储物空间;其中电解除氧组件设置于筒体的顶面上。
另一方面,本发明还提供了一种冷藏冷冻装置,包括箱体,其内部形成冷藏冷冻装置的储藏间室,储藏间室包括冷藏间室和冷冻间室;和上述的储物容器,储物容器设置于冷藏间室底部。
本发明提供了一种用于冷藏冷冻装置的储物容器,包括:电解除氧组件。电解除氧组件用于消耗储物空间内空气中的氧气,从而在该空间内获得富氮贫氧以利于食物保鲜的气体氛围。该气体氛围通过降低储物空间内氧气的含量,降低食物(特别是果蔬)的有氧呼吸的强度,同时保证基础的呼吸作用,防止食物进行无氧呼吸,从而达到食物长期保鲜的目的。由于向阳极板和阴极板供电的电池可以设置于冷藏冷冻装置的箱体发泡层内,将电解除氧组件设置在盒体顶面,便于从箱体对电解除氧组件进行供电,同时还便于用户安装和拆卸电解除氧组件。电解除氧组件设置在储物容器顶部能够与冷藏间室内的空气充分接触,在电解除氧组件附近的水气被消耗后,其他位置的水气能够快速进行补充,维持反应快速进行。因此,这样设置还能够提高电解除氧组件的工作效率。
进一步地,上述电解除氧组件还进一步包括:两块弹性板。两块弹性板分别设置在阳极板和阴极板的外侧,用于夹紧阳极板、质子交换膜和阴极板。两块弹性板面向阴极板和阳极板的侧面上均匀分布着多个弹性凸起,且两块弹性板上的弹性凸起的位置相对应,也就是说每个弹性凸起均能和另一块板上的一个弹性凸起相配共同合挤压阳极板、阴极板,以用于进一步夹紧质子交换膜。根据实验数据表明,两块弹性板之间需要施加350kg以上的强大压力,才能保证阴极板、阳极板和质子交换膜紧密贴合,从而保证电解除氧组件正常运行。若上述压力分布不均,容易导致两块极板或质子交换膜发生形变,从而影响电解除氧组件的使用寿命。在本发明中,在对两块弹性板施加压力后,其表面的弹性凸起将会发生形变。弹性板通过其表面均匀分布的弹性凸起传导压力,使得阳极板、阴极板以及质子交换膜表面受力均匀,保证了电解除氧组件的工作性能和稳定性。
更进一步地,电解除氧组件的各个部件整合于容纳盒内,在用户需要使用储物容器的除氧功能时,将容纳盒插入盒体预设的开口内,接通电池电源,电解除氧组件开始进行电解除氧。若用户不需要除氧功能,将容纳盒整体拔 出即可。本发明的储物容器,电解除氧组件的拆卸和安装更加方便,提高了用户使用体验。
根据下文结合附图对本发明具体实施例的详细描述,本领域技术人员将会更加明了本发明的上述以及其他目的、优点和特征。
附图说明
后文将参照附图以示例性而非限制性的方式详细描述本发明的一些具体实施例。附图中相同的附图标记标示了相同或类似的部件或部分。本领域技术人员应该理解,这些附图未必是按比例绘制的。附图中:
图1是根据本发明一个实施例的储物容器的示意图;
图2是根据本发明一个实施例的储物容器的电解除氧组件的示意图;
图3是根据本发明一个实施例的储物容器的电解除氧组件的分解示意图;
图4是根据本发明一个实施例的储物容器的电解除氧组件的弹性板的示意图;
图5是根据本发明一个实施例的储物容器的电解除氧组件的底盒的示意图;
图6是根据本发明一个实施例的储物容器的电解除氧组件的盒盖的示意图;
图7是根据本发明另一个实施例的储物容器的电解除氧组件的示意图;
图8是根据本发明另一个实施例的储物容器的电解除氧组件的分解示意图;
图9是根据本发明一个实施例的储物容器的分解示意图;
图10是根据本发明一个实施例的储物容器的盒体表面的示意图;
图11是根据本发明一个实施例的冷藏冷冻装置的内部示意图。
具体实施方式
如图1、图2所示,本发明实施例首先提供了一种用于冷藏冷冻装置的储物容器100,包括:盒体110、电解除氧组件200。盒体110内限定有储物空间,盒体110的顶面设置有开口200a。电解除氧组件200形成于上述开口处,配置成通过电解反应消耗气调保鲜空间内部的氧气。
在本实施例中,开口为矩形开口,用于安装电解除氧组件200。电解除 氧组件200的大小和开口大小相适配,以使得其能够完全封闭开口,防止储物空间内部与外界发生气体交换。
如图3所示,电解除氧组件200包括:电池、阳极板220、阴极板230和夹持于阴极板230和阳极板220之间的质子交换膜210。电池可以设置在储物容器上,也可以设置在储物容器外部。阴极板230背朝质子交换膜210的一面至少部分暴露于储物空间内部,阳极板220背朝质子交换膜210的一面至少部分暴露于储物空间外部。也就是说,电解除氧组件200具有至少3层结构,由上至下依次为阳极板220、质子交换膜210和阴极板230,阳极板220朝向储物空间外部,阴极板220朝向储物空间内部。每一层结构均与开口所在平面平行,且每一层面积的大小均与开口大小相同。
优选地,阴极板230和、阳极板220为碳电极板或铂电极板,一般使用表面有铂镀层的碳电极。阳极板220和阴极板230的边缘均设置有一个接线端,分别为阳极板接线端221和阴极板接线端231,用于分别连接电池的阳极和阴极。电池向阴极板230提供电子,同时阳极板220向电池阳极提供电子。阳极板220配置成电解水蒸气,产生质子和氧气。质子交换膜210配置成将质子由阳极板220一侧运输到阴极板230一侧。阴极板230配置成利用质子和氧气反应生成水。其中,阳极板和阴极板的化学反应式分别为:
阳极板:2H 2O→O 2+4H ++4e -
阴极板:O 2+4H ++4e -→2H 2O
具体的,电池的阳极向阳极板220充电,阳极板220一侧电解储物容器100外部的水蒸气,产生氢离子和氧气,氧气排出至储物空间外部,氢离子进入质子交换膜210内。电池的阴极向阴极板230充电,向阴极板230提供电子,阴极板230一侧利用质子交换膜210提供的氢离子和储物空间内部的氧气反应生成水,以此消耗储物空间内部的氧气。
质子交换膜210包括:质子导电聚合物、多孔膜以及至少一种活性成分。至少一种活性成分分散在质子导电聚合物中,且质子导电聚合物被吸入并填充在多孔膜的孔中。质子交换膜210的作用为供氢离子穿过,以将阳极板220反应生成的氢离子运输到阴极板230,供阴极板230反应使用。
优选地,质子导电聚合物为聚苯乙烯磺酸(PSSA)或羧甲基纤维素(CMC)。多孔膜为聚四氟乙烯(PTFE)或氟化乙烯丙烯(FEP)或聚烯烃薄膜或聚全氟乙丙烯或玻璃纤维或陶瓷纤维或聚合物纤维;活性成分为适用 于电渗流动的硅胶,分散的硅胶浓度不超过质子交换膜质量的5%。
在本实施例中,上述电解除氧组件200还可以进一步包括:两块弹性板240,分别设置在阳极板220和阴极板230的外侧,用于夹紧阳极板220、质子交换膜210和阴极板230。两块弹性板240面向阴极板230和阳极板220的侧面上均匀分布着多个弹性凸起284,且两块弹性板240上的弹性凸起284的位置相对应,也就是说每个弹性凸起284均能和另一块板上的一个弹性凸起284相配共同合挤压阳极板220、阴极板230,以用于进一步夹紧质子交换膜210。在本实施例中,弹性板240的制作材料可以为硅橡胶或者其他橡胶,弹性凸起284可以为圆形凸起。
根据实验数据表明,两块弹性板240之间需要施加350kg以上的强大压力,才能保证阴极板230、阳极板220和质子交换膜210紧密贴合,从而保证电解除氧组件200正常运行。若上述压力分布不均,容易导致两块极板或质子交换膜发生形变,从而影响电解除氧组件200的使用寿命。在本实施例中,在对两块弹性板240施加压力后,其表面的弹性凸起241将会发生形变,并将压力传导至阳极板220和阴极板230。弹性板240通过其表面均匀分布的弹性凸起241传导压力,使得阳极板220、阴极板230以及质子交换膜210表面受力均匀,保证了电解除氧组件200的工作性能和稳定性。每块弹性板240均匀开设多个气孔242,气孔242的设置位置避让弹性凸起241的位置,气孔242用于允许气体通过。
在本发明另一个实施例中,电解除氧组件还可以包括:两块固定板290。两块固定板290设置在两块弹性板240的外侧,用于整合固定弹性板240、阳极板220、质子交换膜210和阴极板230。如图5所示,每个固定板290的中间部分镂空,以允许气体通过。镂空部分还设置有一个十字形支架,用于提高固定板290的稳定性。
在本实施例中,电解除氧组件200还可以进一步地包括:扩散层270、活性炭过滤筛和一个或多个垫圈260。扩散层270位于阳极板220和质子交换膜210之间以及阴极板230和质子交换膜210之间,扩散层270的材质为表面镀铂的钛网,其作用为便于导电以及允许水蒸气扩散。活性炭过滤筛设置于阳极背朝质子交换膜210的一侧,用于净化进入阳极板220的气体。至少一个垫圈260可以位于上述多层结构之间,每个垫圈260为矩圆形的薄圈,其外圈大小与阴极板230、阳极板220的大小相同。每个垫圈260由弹性材 料制成,以缓冲相邻层之间的挤压力。
电解除氧组件200还包括:风机250。上述风机250可以为微型轴流风机250。风机250设置于阳极板220背朝质子交换膜210的一侧,其转轴与阳极板220垂直,用于将储物容器100外部的水蒸气朝向阳极吹送。本实施例的电解除氧组件200阳极板的反应物为水蒸气,因此,阳极板需要不断地补充水分,以使得电解反应能够持续进行。当电解除氧组件200开启工作时,电池分别向阴极板230和阳极板220供电,同时风机250开启,风机250向阳极板220吹送空气的同时,将空气中的水蒸气一同吹送至阳极板220,以向阳极板220提供反应物。由于冷藏冷冻装置内部温度一般较低,冷藏冷冻装置内的储藏间室具有比较潮湿的气体氛围,其空气中包含大量的水蒸气。因此,储藏间室内空气能够向阳极板220提供足够的反应物,无需为电解除氧组件200单独设置水源或输水装置。
在本发明另一个实施例中,电解除氧组件200还可以包括:风机支架280。风机支架280设置于风机250朝向阳极板220的一侧,在本实施例中,可以设置于风机250和与阳极板220同侧的固定板290之间,并用于支撑风机250。如图6所示,风机支架280包括:环形的支架本体和多条固定爪281。多条固定设置于支架本体上,每条固定爪281沿支架本体的径向向外延伸,每条固定爪281的末端设置有螺孔,以用于将风机支架280螺纹连接固定于固定板290上。在本实施例中,固定爪281的数量为4根,沿支架主体的周向间隔设置。风机250安装在风机支架280上,风机外壳的四个角的位置设置有螺钉,以将风机固定于风机支架280上,风机250的送风区域正对支架本体中间的圆形开口,并能够将气流吹向电解除氧组件内部,吹送至阳极板220。风机支架280能够固定支撑风机250,防止风机250在运行时晃动,同时还能使得风机250和固定板290之间形成一定的间距,以利于气体流通。
在本实施例中,如图2、图3所示,上述阴极板230、阳极板220和质子交换膜210等多层结构整合到一容纳盒内,以便于整体安装或拆卸电解除氧组件200。上述容纳盒可以完全嵌入储物容器100的盒壁内,也可以部分嵌入。
如图5、图6所示。该容纳盒包括:盒盖293和底盒294,盒盖293用于盖在底盒294上,盒盖293的面积略大于底盒294的开口面积。底盒294内部形成用于容纳电解除氧组件200中的各个部件的容纳腔,其侧壁的外表 面设置有多个条形凸起295,具体地,底盒294每个侧壁外表面靠近底盒开口的位置均设置有一个条形凸起295。盒盖293朝向底盒294的一面对应设置有多个卡条295,每个卡条295与一个条形凸起295相配合卡接,以实现底盒294和盒盖293的卡接装配。底盒294的其中一个侧壁还设置有两个并排的缺口,以允许阳极板接线端221和阴极板接线端231伸出。另外,盒盖293和底盒294的表面均设置有多个气孔,以便于气体通过。
在对电解除氧组件200进行组装时,先将阴极板230、阳极板220、质子交换膜210、垫圈260、弹性板240、扩散层270等部件按照前述位置关系排列好,组成多层结构,然后再将该多层结构整体放置到底盒294的容纳腔内部。该多层结构的层排列方向与底盒294的高度方向一致,最后将盒盖293盖上并压紧,完成对电解除氧组件200的组装。在本实施例中,容纳盒280内的多层结构由上到下依次为:弹性板240、阳极板220、垫圈260、扩散层270、质子交换膜210、扩散层270、垫圈260、阴极板230、和弹性板240。在安装电解除氧组件200时,将组装好的电解除氧组件200整体插入盒体的开口内,将电池接通阳极板220和阴极板230,电解除氧组件200就能够开始工作。若用户不需要储物容器100的除氧功能,则将容纳盒280整体取出即可。
在本发明另一个实施例中,如图7、图8所示,电解除氧组件200还可以使用螺钉进行组装。具体地,电解除氧组件200还包括多个紧固螺钉291和多个螺母292,两块固定板290、两块弹性板240、阳极板220、质子交换膜210和阴极板230的靠近边缘的位置均设置有多个螺孔201,每个紧固螺钉291由一块固定板290开始依次贯穿上述多个部件相同位置的螺孔201,以实现多层部件的固定和夹持,多个螺母292在另一块固定板290的外侧对紧固螺钉291进行固定。在本实施例中,紧固螺钉291的数量为8个,每个部件靠近每条边缘的位置均间隔设置两个螺孔,也就是说每个部件都有8个螺孔。
在对电解除氧组件200进行组装时,先将固定板290、阴极板230、阳极板220、质子交换膜210、垫圈260、弹性板240、扩散层270等部件按照前述位置关系排列好,并组成多层结构,再使用多根紧固螺钉291将上述多层结构固定整合。将风机支架280安装于与阳极板同侧的固定板290上,并使用螺钉对风机支架280进行固定。最后通过螺钉将风机安装在风机支架 280上,完成对电解除氧组件的组装。在该实施例中,电解除氧组件200的多层结构的排列顺序依次为:风机250、风机支架280、固定板290、弹性板240、阳极板220、垫圈260、扩散层270、质子交换膜210、扩散层270、垫圈260、阴极板230、弹性板240和固定板290。在安装电解除氧组件200时,将组装好的电解除氧组件200整体插入盒体的开口内,阴极板朝向储物容器内部,阳极板朝向储物容器外部。将阳极板220和阴极板230分别与电池的阳极和阴极连通,电解除氧组件200进入电解工作状态。若用户不需要储物容器的除氧功能,则将电解除氧组件200整体取出即可。
本实施例的储物容器100包括:电解除氧组件200。电解除氧组件200用于消耗储物空间内空气中的氧气,从而在该空间内获得富氮贫氧以利于食物保鲜的气体氛围。该气体氛围通过降低储物空间内氧气的含量,降低食物(特别是果蔬)的有氧呼吸的强度,同时保证基础的呼吸作用,防止食物进行无氧呼吸,从而达到食物长期保鲜的目的。
本发明实施例还提供了一种冷藏冷冻装置,包括:箱体和上述储物容器100。箱体内部形成冷藏冷冻装置的储藏间室。储物容器100设置于储藏间室内部。
在本实施例中,冷藏冷冻装置可以为冰箱,在本实施例中为风冷冰箱,风冷冰箱内部利用空气流动循环对储藏间室进行制冷。该冰箱的储藏间室包括:冷藏间室和位于冷藏间室下方的冷冻间室。储物容器100可以为抽屉,如图6、图7所示,该抽屉由筒体111和抽拉部112组成,电解除氧组件200设置于筒体111的顶面上。该抽屉可拆卸地设置于冰箱的冷藏间室的底部,在冷藏间室内胆410的内部两侧设置有多对凸肋,其中位于冷藏间室底部的一对凸肋用于限定抽屉的安装位置。
电解除氧组件200放在抽屉上部,向阳极板220和阴极板230供电的电池可以设置于箱体发泡层内,从而方便从箱体对电解除氧组件200进行供电,同时便于用户进行安装拆卸。由于抽屉设置于冷藏间室底部,电解除氧组件200设置在抽屉顶部能够与冷藏间室内的空气充分接触,在电解除氧组件附近的水气被消耗后,风冷冰箱的空气循环较快,其他位置的水气能够快速进行补充,维持反应快速进行。因此,将电解除氧组件200设置于抽屉顶部能够提高电解除氧组件200的工作效率。
至此,本领域技术人员应认识到,虽然本文已详尽示出和描述了本发明 的多个示例性实施例,但是,在不脱离本发明精神和范围的情况下,仍可根据本发明公开的内容直接确定或推导出符合本发明原理的许多其他变型或修改。因此,本发明的范围应被理解和认定为覆盖了所有这些其他变型或修改。

Claims (11)

  1. 一种用于冷藏冷冻装置的储物容器,包括:
    盒体,所述盒体内限定有储物空间,所述盒体的一个侧面设置有开口;
    电解除氧组件,可拆卸地设置于所述开口处,配置成通过电解反应消耗所述气调保鲜空间内部的氧气;其中所述电解除氧组件包括:
    阳极板,配置成电解水蒸气,产生氢离子和氧气;
    阴极板,配置成利用氢离子和氧气反应生成水;
    夹持于所述阴极板和阳极板之间的质子交换膜,配置成将氢离子由所述阳极板一侧运输到所述阴极板一侧;和
    两块弹性板,分别设置在所述阳极板和所述阴极板的外侧,用于夹紧所述阳极板、质子交换膜和阴极板,其中
    所述阴极板背朝所述质子交换膜的一面至少部分暴露于所述储物空间内部,所述阳极板背朝所述质子交换膜的一面至少部分暴露于所述储物空间外部。
  2. 根据权利要求1所述的储物容器,其中
    两块所述弹性板分别面向所述阴极板和所述阳极板的两个侧面上均匀分布有多个弹性凸起,且两块所述弹性板上的所述弹性凸起的位置相对。
  3. 根据权利要求2所述的储物容器,其中
    两块所述弹性板均开设有多个气孔,以允许气体通过,且每个所述气孔的设置位置避让所述弹性凸起。
  4. 根据权利要求3所述的储物容器,其中
    所述弹性板的制作材料为橡胶。
  5. 根据权利要求4所述的储物容器,所述电解除氧组件还包括:
    风机,设置于所述阳极板背朝所述质子交换膜的一侧,以将所述储物容器外部的水蒸气朝向所述阳极板吹送。
  6. 根据权利要求4所述的储物容器,所述电解除氧组件还包括:
    两层扩散层,分别设置于所述阳极板和所述质子交换膜之间以及所述阴极板和所述质子交换膜之间,用于导电以及允许水蒸气扩散。
  7. 根据权利要求6所述的储物容器,其中所述电解除氧组件还包括:
    容纳盒,用于整合并容纳所述电解除氧组件中的各个部件,其包括:
    底盒,其内部形成用于容纳所述电解除氧组件中的各个部件的容纳 腔,其侧壁的外表面设置有多个条形凸起;和
    盒盖,朝向所述底盒的一面设置有多个卡条,每个所述卡条与对应的所述条形凸起相配合,以实现所述底盒和所述盒盖的卡接装配。
  8. 根据权利要求7所述的储物容器,其中
    所述底盒的其中一个侧壁还设置有两个缺口,以允许阳极板接线端和阴极板接线端伸出。
  9. 根据权利要求6所述的储物容器,其中所述电解除氧组件还包括:
    多个紧固螺钉;其中
    所述两块弹性板、阳极板、质子交换膜和阴极板的靠近边缘的位置均设置有多个螺孔,每个紧固螺钉依次贯穿多层部件相同位置的螺孔,以实现多层部件的固定和组装。
  10. 根据权利要求1至9中任一项所述的储物容器,其中
    所述储物容器为抽屉,其包括:
    筒体,其内部形成储物空间;和
    抽拉部,可被推入所述筒体内部或由所述筒体内部抽出,以打开或封闭所述储物空间;其中
    所述电解除氧组件设置于所述筒体的顶面上。
  11. 一种冷藏冷冻装置,包括
    箱体,其内部形成所述冷藏冷冻装置的储藏间室,所述储藏间室包括冷藏间室和冷冻间室;
    如权利要求1至10中任一项所述的储物容器,所述储物容器设置于所述冷藏间室底部。
PCT/CN2018/117320 2017-11-30 2018-11-23 冷藏冷冻装置及其储物容器 WO2019105310A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201711258876.6 2017-11-30
CN201711258876.6A CN109850386A (zh) 2017-11-30 2017-11-30 冷藏冷冻装置及其储物容器

Publications (1)

Publication Number Publication Date
WO2019105310A1 true WO2019105310A1 (zh) 2019-06-06

Family

ID=66664320

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/117320 WO2019105310A1 (zh) 2017-11-30 2018-11-23 冷藏冷冻装置及其储物容器

Country Status (2)

Country Link
CN (1) CN109850386A (zh)
WO (1) WO2019105310A1 (zh)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116222116A (zh) * 2021-12-03 2023-06-06 青岛海尔电冰箱有限公司 氧气处理装置和具有其的冰箱
CN116558204A (zh) * 2022-01-29 2023-08-08 青岛海尔电冰箱有限公司 电解除氧装置和冰箱
CN117450723A (zh) * 2022-07-18 2024-01-26 青岛海尔电冰箱有限公司 极板组件、氧气处理装置以及冰箱

Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101457367A (zh) * 2007-12-14 2009-06-17 中国电子科技集团公司第十八研究所 固体聚合物电解质膜水电解槽
CN103806014A (zh) * 2014-01-24 2014-05-21 北京科技大学 一种质子交换膜水电解装置
JP2017184631A (ja) * 2016-04-01 2017-10-12 東芝ライフスタイル株式会社 食品保存庫
CN107270624A (zh) * 2017-06-30 2017-10-20 青岛海尔股份有限公司 冷藏冷冻装置
CN107289722A (zh) * 2017-06-12 2017-10-24 青岛海尔股份有限公司 一种储藏盒及具有其的冰箱
CN108168181A (zh) * 2017-12-22 2018-06-15 青岛海尔股份有限公司 冰箱
CN108278823A (zh) * 2017-12-22 2018-07-13 青岛海尔股份有限公司 冰箱
CN108302861A (zh) * 2017-12-22 2018-07-20 青岛海尔股份有限公司 冰箱
CN108302889A (zh) * 2017-12-22 2018-07-20 青岛海尔股份有限公司 冷藏冷冻装置及其储物容器
CN108332480A (zh) * 2017-12-22 2018-07-27 青岛海尔股份有限公司 冷藏冷冻装置及其储物容器
CN108332479A (zh) * 2017-12-22 2018-07-27 青岛海尔股份有限公司 冰箱
CN108514066A (zh) * 2018-02-24 2018-09-11 青岛海尔股份有限公司 冷藏冷冻装置

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0919621A (ja) * 1995-07-06 1997-01-21 Matsushita Electric Ind Co Ltd 脱酸素装置
JP2004293827A (ja) * 2003-03-25 2004-10-21 Toshiba Corp 冷蔵庫
CN101765753B (zh) * 2007-07-27 2011-12-28 三菱电机株式会社 热交换器以及其制造方法
JP6116863B2 (ja) * 2012-11-12 2017-04-19 東芝ライフスタイル株式会社 食品保存庫

Patent Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101457367A (zh) * 2007-12-14 2009-06-17 中国电子科技集团公司第十八研究所 固体聚合物电解质膜水电解槽
CN103806014A (zh) * 2014-01-24 2014-05-21 北京科技大学 一种质子交换膜水电解装置
JP2017184631A (ja) * 2016-04-01 2017-10-12 東芝ライフスタイル株式会社 食品保存庫
CN107289722A (zh) * 2017-06-12 2017-10-24 青岛海尔股份有限公司 一种储藏盒及具有其的冰箱
CN107270624A (zh) * 2017-06-30 2017-10-20 青岛海尔股份有限公司 冷藏冷冻装置
CN108168181A (zh) * 2017-12-22 2018-06-15 青岛海尔股份有限公司 冰箱
CN108278823A (zh) * 2017-12-22 2018-07-13 青岛海尔股份有限公司 冰箱
CN108302861A (zh) * 2017-12-22 2018-07-20 青岛海尔股份有限公司 冰箱
CN108302889A (zh) * 2017-12-22 2018-07-20 青岛海尔股份有限公司 冷藏冷冻装置及其储物容器
CN108332480A (zh) * 2017-12-22 2018-07-27 青岛海尔股份有限公司 冷藏冷冻装置及其储物容器
CN108332479A (zh) * 2017-12-22 2018-07-27 青岛海尔股份有限公司 冰箱
CN108514066A (zh) * 2018-02-24 2018-09-11 青岛海尔股份有限公司 冷藏冷冻装置

Also Published As

Publication number Publication date
CN109850386A (zh) 2019-06-07

Similar Documents

Publication Publication Date Title
WO2019105429A1 (zh) 冷藏冷冻装置及其储物容器
WO2019105311A1 (zh) 冷藏冷冻装置及其储物容器
CN108332479B (zh) 冰箱
WO2019105427A1 (zh) 冷藏冷冻装置及其除氧控制方法
CN108278823B (zh) 冰箱
CN109855348B (zh) 冷藏冷冻装置
WO2019105310A1 (zh) 冷藏冷冻装置及其储物容器
WO2019161732A1 (zh) 冷藏冷冻装置
CN110715500B (zh) 冷藏冷冻装置及其控制方法
CN108168181A (zh) 冰箱
CN108332480A (zh) 冷藏冷冻装置及其储物容器
WO2021083433A1 (zh) 冰箱
CN108302861B (zh) 冰箱
WO2019105307A1 (zh) 冷藏冷冻装置及其储物容器
CN108302889A (zh) 冷藏冷冻装置及其储物容器
WO2019105309A1 (zh) 冷藏冷冻装置及其储物容器
WO2019105428A1 (zh) 冷藏冷冻装置及其除氧控制方法
WO2021083430A1 (zh) 用于冰箱的储物装置以及具有其的冰箱
CN110715492A (zh) 冷藏冷冻装置及其储物容器
WO2019105308A1 (zh) 冷藏冷冻装置
WO2019105312A1 (zh) 冷藏冷冻装置及其储物容器
CN112747524A (zh) 冰箱
CN110715491A (zh) 冷藏冷冻装置及其储物容器
CN110715493A (zh) 冷藏冷冻装置及其储物容器
CN112747551B (zh) 用于冰箱的储物装置以及具有其的冰箱

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18884553

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18884553

Country of ref document: EP

Kind code of ref document: A1