WO2019105308A1 - 冷藏冷冻装置 - Google Patents

冷藏冷冻装置 Download PDF

Info

Publication number
WO2019105308A1
WO2019105308A1 PCT/CN2018/117318 CN2018117318W WO2019105308A1 WO 2019105308 A1 WO2019105308 A1 WO 2019105308A1 CN 2018117318 W CN2018117318 W CN 2018117318W WO 2019105308 A1 WO2019105308 A1 WO 2019105308A1
Authority
WO
WIPO (PCT)
Prior art keywords
refrigerating
oxygen
anode plate
storage space
electric
Prior art date
Application number
PCT/CN2018/117318
Other languages
English (en)
French (fr)
Inventor
刘浩泉
姜波
张�浩
赵剑
Original Assignee
青岛海尔股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 青岛海尔股份有限公司 filed Critical 青岛海尔股份有限公司
Publication of WO2019105308A1 publication Critical patent/WO2019105308A1/zh

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B9/00Cells or assemblies of cells; Constructional parts of cells; Assemblies of constructional parts, e.g. electrode-diaphragm assemblies; Process-related cell features
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25DREFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
    • F25D11/00Self-contained movable devices, e.g. domestic refrigerators
    • F25D11/02Self-contained movable devices, e.g. domestic refrigerators with cooling compartments at different temperatures
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25DREFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
    • F25D25/00Charging, supporting, and discharging the articles to be cooled
    • F25D25/02Charging, supporting, and discharging the articles to be cooled by shelves

Definitions

  • the invention relates to the field of refrigeration and freezing, and in particular to a refrigerating and freezing device.
  • the modified atmosphere preservation technology generally refers to a technique for prolonging the storage life of a food by adjusting the gas atmosphere (gas composition ratio or gas pressure) of the enclosed space in which the storage is located, and the basic principle is: in a certain closed space.
  • a gas atmosphere different from the normal air component is obtained by various adjustment methods to suppress physiological and biochemical processes and microbial activities leading to spoilage of the stored matter (usually the foodstuff).
  • the modified atmosphere preservation will be specifically directed to a modified atmosphere preservation technique that adjusts the proportion of gas components.
  • normal air components include (by volume percent, hereinafter the same): about 78% nitrogen, about 21% oxygen, about 0.939% rare gas 0.031% carbon dioxide, and 0.03% other gases. And impurities (for example, ozone, nitrogen monoxide, nitrogen dioxide, water vapor, etc..
  • impurities for example, ozone, nitrogen monoxide, nitrogen dioxide, water vapor, etc.
  • a nitrogen-enriched gas refers to a gas having a nitrogen content exceeding the nitrogen content of the above-mentioned normal air, for example, the nitrogen content thereof may be 95% to 99% or even higher; and the nitrogen-rich oxygen is rich.
  • the fresh gas atmosphere refers to a gas atmosphere in which the nitrogen content exceeds the above-mentioned normal air nitrogen content and the oxygen content is lower than the oxygen content in the above-mentioned normal air.
  • modified atmosphere preservation technology dates back to 1821 when German biologists discovered that fruits and vegetables could reduce metabolism at low oxygen levels. But until now, due to the large size and high cost of nitrogen-making equipment traditionally used for gas-conditioning preservation, the technology is basically limited to use in various large-scale professional storage (the storage capacity is generally at least 30 tons). . It can be said that the appropriate gas regulation technology and corresponding equipment can economically reduce and quiet the air-conditioning system, making it suitable for home or individual users. It is a constant desire of technicians in the field of atmosphere preservation and preservation. A technical problem that can be successfully solved.
  • the present invention has been made in order to provide a refrigerating and freezing apparatus that overcomes the above problems or at least partially solves the above problems.
  • Another object of the present invention is to improve the efficiency of operation of the electrical de-oxygen module.
  • Another object of the present invention is to facilitate the installation and removal of the electrical de-oxygen assembly.
  • the present invention provides a refrigerating and freezing apparatus comprising: a casing in which a storage compartment of a refrigerating and freezing apparatus is formed, an opening is provided on one side of the casing; and a storage container is disposed inside the storage compartment The inside of which forms a storage space; the electric de-energizing component is detachably disposed at the opening, and the electric de-energizing component communicates with the storage space through the communication pipe, and is configured to consume oxygen inside the storage space by the electrolytic reaction.
  • the communication tube comprises: a tubular body; and a rectangular receiving chamber disposed at one port of the tubular body, the receiving chamber being configured to receive the electrical de-oxygen assembly.
  • the opening is disposed at a rear surface of the casing, and the tubular body extends in a front-rear direction of the refrigerating and freezing device.
  • the storage container is a drawer, comprising: a cylinder body, the inside of which forms a storage space; and a drawing portion that can be pushed into the interior of the cylinder body or extracted from the inside of the cylinder body to open or close the storage space;
  • the inner side of the cylinder and the drawing portion is provided with an opening for allowing the tubular body to penetrate.
  • the refrigerating and freezing device further includes: a liner disposed on the inner side of the box; a duct formed by the refrigerating and freezing device between the box and the inner tank, the connecting tube penetrating through the air passage to communicate the storage space.
  • the electric de-oxygenation module further comprises: an anode plate configured to electrolyze water vapor to generate hydrogen ions and oxygen; a cathode plate configured to react with hydrogen ions and oxygen to generate water; and clamped to the cathode plate and the anode plate
  • the proton exchange membrane is configured to transport hydrogen ions from one side of the anode plate to the side of the cathode plate; wherein the side of the cathode plate facing away from the proton exchange membrane faces the storage container, and the side of the anode plate facing away from the proton exchange membrane faces the tank Outside.
  • the electric de-oxygen assembly further comprises: a fan disposed on a side of the anode plate facing away from the proton exchange membrane to blow water vapor outside the storage container toward the anode plate.
  • the electrical de-oxygenation assembly further comprises: two diffusion layers disposed between the anode plate and the proton exchange membrane and between the cathode plate and the proton exchange membrane for conducting and allowing water vapor to diffuse.
  • the diffusion layer is a titanium-plated titanium mesh.
  • the edge of the anode plate also has an anode plate terminal for connecting the anode of the external battery; the edge of the cathode plate also has a cathode plate terminal for connecting the cathode of the external battery.
  • the present invention provides a refrigerating and freezing apparatus comprising: a tank, a storage container, and an electric deaeration module.
  • the electric de-oxygen module is used to consume oxygen in the air in the storage space, thereby obtaining a gas atmosphere rich in nitrogen and oxygen in the space to facilitate food preservation.
  • the gas atmosphere reduces the oxygen content of the food (especially fruits and vegetables) by reducing the oxygen content in the storage space, while ensuring the basic respiration and preventing the food from performing anaerobic respiration, thereby achieving the purpose of long-term preservation of the food.
  • the electric de-oxidizing component is disposed on the rear side of the refrigerating and freezing device casing, and the user can directly install or disassemble the electric de-oxygen component without opening the door of the refrigerating and freezing device, which is convenient for the user to use.
  • the surface of the box is in contact with the outside world, and the temperature thereof is high. The installation of the electric de-energizing component on the surface of the box is advantageous for accelerating the electrolysis reaction and improving the working efficiency of the electric de-oxygen module.
  • the electric de-oxygen module further includes a fan for blowing water vapor to the anode plate.
  • the reactant of the anode plate of the electric deoxidizing module in the present invention is water, and the anode plate needs to continuously replenish moisture so that the electrolysis reaction can be continued.
  • the electric de-energizing component When the electric de-energizing component is turned on, the battery supplies power to the cathode plate and the anode plate respectively, and at the same time, the fan is turned on, and the fan blows air to the anode plate, and simultaneously blows the water vapor in the air to the anode plate to provide a reaction to the anode plate. Things.
  • the air outside the refrigerating and freezing device can supply sufficient reactants to the anode plate, and it is not necessary to separately provide a water source or a water delivery device for the electric de-oxygen module, thereby simplifying the structure of the electric de-oxygen module.
  • the storage container is a drawer which is composed of a cylindrical body and a drawer.
  • the tubular body and the rear side of the drawer are each provided with an opening for allowing the tubular body to penetrate, and the tubular body sequentially enters the storage space through the cylinder and the drawing portion.
  • the cylinder is fixedly disposed inside the refrigerating compartment, and when the user opens the drawer, the drawer is pulled forward. Since the tubular body extends in the front-rear direction of the air-cooled refrigerator, the connecting pipe does not affect the user pulling out the drawing portion. This makes it easy for users to use the drawer.
  • FIG. 1 is a schematic view of a refrigerating and freezing apparatus according to an embodiment of the present invention
  • Figure 2 is a side cross-sectional view of a refrigerating and freezing apparatus in accordance with one embodiment of the present invention
  • Figure 3a is a schematic rear view of a refrigerating and freezing apparatus according to an embodiment of the present invention.
  • Figure 3b is a schematic rear view of a refrigerating and freezing apparatus according to another embodiment of the present invention.
  • FIG. 4 is a schematic view of a communication pipe of a refrigerating and freezing apparatus according to an embodiment of the present invention
  • Figure 5 is a schematic illustration of a storage container of a refrigerating and freezing apparatus in accordance with one embodiment of the present invention
  • Figure 6 is a schematic illustration of a storage container of a refrigerating and freezing apparatus in accordance with one embodiment of the present invention
  • Figure 7 is an exploded perspective view of an electric deaeration module of a refrigerating and freezing apparatus in accordance with one embodiment of the present invention.
  • the embodiment of the present invention provides a refrigerating and freezing device, as shown in FIGS. 1 to 3b, which includes a case 420, a liner 410, a storage container 100, and an electric de-oxygen module 200.
  • the inside of the casing 420 forms a storage compartment of the refrigerating and freezing apparatus.
  • the storage container 100 is disposed inside the storage compartment.
  • the refrigerating and freezing device may be a refrigerator, a freezer, or the like.
  • it is an air-cooled refrigerator, and the interior of the air-cooled refrigerator uses an air flow cycle to cool the storage compartment.
  • the inner tank 410 is disposed inside the casing 420, and the air duct 430 of the air-cooled refrigerator is formed between the casing 420 and the inner tank 410.
  • the refrigerator evaporator is disposed inside the air duct 430, and conveys cold air to each compartment of the refrigerator through the air duct 430.
  • the air duct 430 is formed at the rear of the air-cooled refrigerator.
  • the storage compartment of the refrigerator includes: a refrigerating compartment and a freezing compartment below the refrigerating compartment (only the upper half of the refrigerator, that is, the portion of the refrigerating compartment) is shown in FIGS. 1 to 3.
  • the storage container 100 is disposed at the bottom of the refrigerating compartment, and a storage space is formed inside thereof.
  • An opening 200a is provided on one of the sides of the case 420.
  • the electric de-oxygen assembly is detachably disposed at the opening, and the electric de-oxidation assembly is in communication with the storage space through the communication tube 500, and is configured to consume oxygen inside the storage space by the electrolytic reaction.
  • the electric de-energizing component is disposed on the surface of the casing 420 to facilitate installation and disassembly by the user.
  • the temperature of the surface of the tank 420 is relatively high, which is advantageous for accelerating the electrolysis reaction of the electric de-oxygen module and improving the working efficiency of the electric de-oxygen module.
  • the above-described communication tube 500 includes a tubular body 510 and a rectangular receiving chamber 520.
  • the rectangular receiving chamber 520 is disposed at one end of the tubular body 510, and the tubular body 510 communicates with the inner space of the rectangular receiving chamber 520, and the rectangular opening of the rectangular receiving chamber 520 coincides with the opening on the case 420.
  • the other end of the tubular body 510 leads to the interior of the storage space.
  • the opening and the electric de-oxygen module 200 are both rectangular, and the size of the electric de-oxygen assembly 200 is matched with the opening size so that it can completely close the opening and prevent gas exchange between the interior of the storage space and the outside.
  • a fan may be disposed at one end of the tubular body 510 leading to the interior of the storage space, and when the electric deactivating oxygen assembly 200 is turned on, the fan is simultaneously turned on. The fan is used to blow a nitrogen-enriched gas after electrolysis of the oxygen-removing oxygen module into the interior of the storage space.
  • the opening is disposed on the back surface of the casing 420, and the tubular body 510 extends in the front-rear direction of the refrigerating and freezing device and penetrates the air passage 430. Since the oxygen-removing oxygen component consumes oxygen through the electrolysis reaction, a certain amount of heat is generated, which if conducted into the interior of the storage space may affect the preservation of food inside the storage space.
  • the communication tube 500 is partially located in the air duct 430 of the air-cooled refrigerator, so that the heat generated by the electric de-energized component can be cooled in time to prevent excess heat from entering the interior of the storage space.
  • the opening may be provided on the left side or the right side of the refrigerating and freezing apparatus, and accordingly, the tubular body 510 is disposed to extend in the left-right direction of the refrigerating and freezing apparatus.
  • the storage container 100 may be a drawer, as shown in FIGS. 5 and 6, the drawer is composed of a cylinder 111 and a drawing portion 112.
  • the drawer is detachably disposed at the bottom of the refrigerating compartment of the refrigerator, and a plurality of pairs of ribs are disposed on both sides of the interior of the refrigerating compartment chamber 410, wherein a pair of ribs located at the bottom of the refrigerating compartment are used to define the installation of the drawer position.
  • the rear side of the tubular body 111 and the drawing portion 112 are respectively provided with an opening 113 for allowing the tubular body 510 to penetrate.
  • the opening 113 may be a circular hole having a size matching the cross section of the tubular body 510, and the tubular body 510.
  • One end passes through the cylindrical body 111 and the rear side of the drawing portion 112 in order to enter the storage space.
  • the cylinder 111 is fixedly disposed inside the refrigerating compartment. When the user opens the drawer, the drawer 112 is pulled forward. Since the tubular body 510 extends in the front-rear direction of the air-cooled refrigerator, the connecting tube 500 does not affect the user. The pusher 112 is pushed or pushed.
  • the electric de-oxygen module 200 includes a battery 2323, an anode plate 220, a cathode plate 230, and a proton exchange membrane 210 sandwiched between the cathode plate 230 and the anode plate 220.
  • the battery can be placed in the foam layer of the refrigerator cabinet.
  • the side of the cathode plate 230 facing away from the proton exchange membrane 210 faces the storage container 100, and the cathode plate 230 is in contact with the air inside the storage space through the communication pipe 500.
  • the side of the anode plate 220 facing away from the proton exchange membrane 210 faces the outside of the tank 420, and the anode plate 220 is in contact with the air of the external environment of the refrigerating and freezing apparatus.
  • the electric de-oxygen module 200 has at least three layers of structure, which in turn is an anode plate 220, a proton exchange membrane 210, and a cathode plate 230.
  • Each layer structure is parallel to the plane of the opening, and each layer has the same size as the opening.
  • the cathode plate 230 and the anode plate 220 are carbon electrode plates or platinum electrode plates, and a carbon electrode having a platinum plating layer on the surface is generally used.
  • the edges of the anode plate 220 and the cathode plate 230 are each provided with a terminal, an anode plate terminal 221 and a cathode plate terminal 231, for respectively connecting the anode and the cathode of the battery.
  • the battery supplies electrons to the cathode plate 230 while the anode plate 220 provides electrons to the battery anode.
  • the anode plate 220 is configured to electrolyze water vapor to produce protons and oxygen.
  • the proton exchange membrane 210 is configured to transport protons from one side of the anode plate 220 to the side of the cathode plate 230.
  • the cathode plate 230 is configured to react with oxygen to generate water.
  • the chemical reaction formulas of the anode plate and the cathode plate are respectively:
  • the anode of the battery is charged to the anode plate 220, and the side of the anode plate 220 electrolyzes the water vapor outside the refrigerating device to generate hydrogen ions and oxygen, and the oxygen is discharged to the outside of the refrigerating and freezing device, and the hydrogen ions enter the proton exchange membrane 210.
  • the cathode of the battery charges the cathode plate 230 to supply electrons to the cathode plate 230, and the hydrogen ions supplied from the proton exchange membrane 210 react with the oxygen inside the storage space to generate water, thereby consuming oxygen inside the storage space.
  • the proton exchange membrane 210 includes a proton conductive polymer, a porous membrane, and at least one active ingredient. At least one active ingredient is dispersed in the proton conductive polymer, and the proton conductive polymer is taken in and filled in the pores of the porous membrane.
  • the proton exchange membrane 210 functions to allow hydrogen ions to pass therethrough to transport the hydrogen ions generated by the reaction of the anode plate 220 to the cathode plate 230 for use by the cathode plate 230 for reaction.
  • the proton conducting polymer is polystyrenesulfonic acid (PSSA) or carboxymethyl cellulose (CMC).
  • the porous membrane is polytetrafluoroethylene (PTFE) or fluorinated ethylene propylene (FEP) or polyolefin film or polyperfluoroethylene propylene or glass fiber or ceramic fiber or polymer fiber;
  • the active ingredient is silica gel suitable for electroosmotic flow, The concentration of dispersed silica gel does not exceed 5% of the mass of the proton exchange membrane.
  • the electric de-oxygen module 200 further includes: two elastic plates 240 disposed on the outer sides of the anode plate 220 and the cathode plate 230 for tightening the anode plate 220, the proton exchange membrane 210, and the cathode plate. 230.
  • the electric de-oxygen assembly 200 further includes a plurality of fastening screws.
  • the positions of the two elastic plates 240, the anode plate 220, the proton exchange membrane 210 and the cathode plate 230 near the edge are respectively provided with a plurality of screw holes 201, each fastening screw
  • the screw holes 201 in the same position of the plurality of components are sequentially passed through to fix and hold the multilayer components.
  • the two elastic plates 240 have a plurality of elastic protrusions 241 on the sides facing the cathode plate 230 and the anode plate 220, and the positions of the elastic protrusions 241 on the two elastic plates 240 correspond to each other, that is, each elastic protrusion
  • Each of the 241 can be coupled with an elastic projection 241 on the other plate to press the anode plate 220 and the cathode plate 230 together for further tightening the proton exchange membrane 210.
  • the middle portion of each of the elastic plates 240 is hollowed out or a plurality of air holes are uniformly formed to allow gas to pass therethrough.
  • the electric de-oxygen assembly 200 may further include: a diffusion layer 270, an activated carbon filter screen, and one or more gaskets 260.
  • the diffusion layer 270 is located between the anode plate 220 and the proton exchange membrane 210 and between the cathode plate 230 and the proton exchange membrane 210.
  • the diffusion layer 270 is made of a platinum-plated titanium mesh, which functions to facilitate conduction and allow water vapor to diffuse.
  • An activated carbon filter screen is disposed on the side of the anode facing away from the proton exchange membrane 210 for purifying the gas entering the anode plate 220.
  • At least one washer 260 may be located between the above-mentioned multilayer structures, and each of the washers 260 is an oblong thin ring having the same outer ring size as the cathode plate 230 and the anode plate 220. Each of the washers 260 is made of an elastic material to cushion the pressing force between adjacent layers.
  • the electric de-oxygen assembly 200 further includes a fan 250.
  • the fan 250 described above may be a micro axial fan 250.
  • the fan 250 is disposed on a side of the anode plate 220 facing away from the proton exchange membrane 210, and its rotating shaft is perpendicular to the anode plate 220 for blowing water vapor outside the refrigerating and freezing device toward the anode.
  • the reactant of the anode plate of the electric deoxidizing module 200 of the present embodiment is water vapor. Therefore, the anode plate needs to continuously replenish moisture so that the electrolysis reaction can be continued.
  • the electric deactivating oxygen module 200 is turned on, the battery supplies power to the cathode plate 230 and the anode plate 220, respectively, and the fan 250 is turned on.
  • the fan 250 blows air to the anode plate 220
  • the water vapor in the air is blown together to the anode plate 220.
  • reactants to the anode plate 220. Since the outside air can provide sufficient reactants to the anode plate 220, there is no need to separately provide a water source or water delivery device for the electrical deaeration module 200.
  • components such as the cathode plate 230, the anode plate 220, the proton exchange membrane 210, the gasket 260, the elastic plate 240, and the diffusion layer 270 are arranged in accordance with the above-described positional relationship, and a multilayer structure is formed.
  • the multilayer structure is then placed entirely inside the rectangular containing chamber 520.
  • the layer arrangement direction of the multilayer structure coincides with the front-rear direction of the rectangular accommodation chamber 520.
  • the multilayer structure in the rectangular accommodating chamber 520 is followed by a fan 250, an elastic plate 240, a gasket 260, an anode plate 220, a gasket 260, a diffusion layer 270, a proton exchange membrane 210, and diffusion.
  • Layer 270, washer 260, cathode plate 230, washer 260, and spring plate 240 When the electric de-oxygen module 200 is mounted, the assembled electric de-oxygen module 200 is inserted into the opening of the casing 420 as a whole, and is fixed in the accommodating chamber 520.
  • the connection between the battery and the cathode plate 230 and the anode plate 220 is turned on, that is, the electrolysis operation can be started.
  • the entire multilayer structure may be taken out.
  • the electric de-oxygen module 200 is disposed on the rear surface of the casing 420, and the user can install and disassemble the electric de-oxygen module 200 without opening the refrigerating and freezing device, which is more convenient for the user.
  • the storage container 100 of the present embodiment includes an electric de-oxygen module 200.
  • the electro-desulfurization module 200 is for consuming oxygen in the air in the storage space to obtain a nitrogen-rich oxygen-depleted gas atmosphere in the space to facilitate food preservation.
  • the gas atmosphere reduces the oxygen content of the food (especially fruits and vegetables) by reducing the oxygen content in the storage space, while ensuring the basic respiration and preventing the food from performing anaerobic respiration, thereby achieving the purpose of long-term preservation of the food.

Abstract

一种用于冷藏冷冻装置,包括:箱体(420)、储物容器(100)和电解除氧组件(200)。电解除氧组件(200)用于消耗储物空间内空气中的氧气,从而在该空间内获得富氮贫氧以利于食物保鲜的气体氛围,通过降低储物空间内氧气的含量降低食物,特别是果蔬的有氧呼吸的强度,同时保证基础的呼吸作用,防止食物进行无氧呼吸,从而达到食物长期保鲜的目的。电解除氧组件(200)设置于冷藏冷冻装置箱体(420)的后侧面,用户无需打开冷藏冷冻装置的门体就能够直接安装或拆卸电解除氧组件(200),便于用户使用。另外,箱体(420)表面与外界接触,其温度较高,将电解除氧组件(200)设置于箱体表面有利于加快电解反应,提高了电解除氧组件(200)的工作效率。

Description

冷藏冷冻装置 技术领域
本发明涉及冷藏冷冻领域,特别涉及一种冷藏冷冻装置。
背景技术
气调保鲜技术一般性地是指通过调节储存物所处封闭空间的气体氛围(气体成分比例或气体压力)的方式来来延长食品贮藏寿命的技术,其基本原理为:在一定的封闭空间内,通过各种调节方式得到不同于正常空气成分的气体氛围,以抑制导致储存物(通常为食材)腐败变质的生理生化过程及微生物的活动。特别地,在本申请中,所讨论的气调保鲜将专门针对于对气体成分比例进行调节的气调保鲜技术。
本领域技术人员均知晓,正常空气成分包括(按体积百分比计,下文同):约78%的氮气,约21%的氧气,约0.939%的稀有气体0.031%的二氧化碳,以及0.03%的其他气体和杂质(例如,臭氧、一氧化氮、二氧化氮、水蒸气等。在气调保鲜领域,通常采用向封闭空间充入富氮气体来降低氧气含量的方式来获得富氮贫氧的保鲜气体氛围。这里,本领域技术人员均知晓,富氮气体是指氮气含量超过上述正常空气中氮气含量的气体,例如其中的氮气含量可为95%~99%,甚至更高;而富氮贫氧的保鲜气体氛围是指氮气含量超过上述正常空气中氮气含量、氧气含量低于上述正常空气中氧气含量的气体氛围。
气调保鲜技术的历史虽然可追溯到1821年德国生物学家发现水果蔬菜在低氧水平时能减少代谢作用开始。但直到目前为止,由于传统上用于气调保鲜的制氮设备体积庞大、成本高昂,导致该技术基本上还是局限于使用在各种大型的专业贮藏库上(储藏容量一般至少30吨以上)。可以说,采用何种适当的气体调节技术和相应装置才可能经济地将气调系统小型化、静音化,使其适用于家庭或个人用户,是气调保鲜领域技术人员一直渴望解决但始终未能成功解决的技术难题。
发明内容
鉴于上述问题,提出了本发明以便提供一种克服上述问题或者至少部分 地解决上述问题的冷藏冷冻装置。
本发明的一个目的是为了提供富氮贫氧以利于食物保鲜的气体氛围。
本发明的另一个目的是为了提高电解除氧组件的工作效率。
本发明的另一个目的是为了便于电解除氧组件的安装和拆卸。
一方面,本发明提供了一种冷藏冷冻装置,包括:箱体,其内部形成冷藏冷冻装置的储藏间室,箱体的其中一个侧面上设置有开口;储物容器,设置于储藏间室内部,其内部形成储物空间;电解除氧组件,可拆卸地设置于开口处,且电解除氧组件通过连通管与储物空间连通,配置成通过电解反应消耗储物空间内部的氧气。
可选地,连通管包括:管状本体;和设置于管状本体一个端口的矩形容纳腔室,容纳腔室用于安装容纳电解除氧组件。
可选地,开口设置于箱体的背面,管状本体沿冷藏冷冻装置的前后方向延伸。
可选地,储物容器为抽屉,其包括:筒体,其内部形成储物空间;和抽拉部,可被推入筒体内部或由筒体内部抽出,以打开或封闭储物空间;其中筒体以及抽拉部的后侧面开设有用于允许管状本体穿入的开孔。
可选地,上述冷藏冷冻装置还包括:内胆,设置于箱体内侧;箱体和内胆之间形成冷藏冷冻装置的风道,连通管贯穿风道,以连通储物空间。
可选地,电解除氧组件还包括:阳极板,配置成电解水蒸气,产生氢离子和氧气;阴极板,配置成利用氢离子和氧气反应生成水;和夹持于阴极板和阳极板之间的质子交换膜,配置成将氢离子由阳极板一侧运输到阴极板一侧;其中阴极板背朝质子交换膜的一面朝向储物容器,阳极板背朝质子交换膜的一面朝向箱体外侧。
可选地,电解除氧组件还包括:风机,设置于阳极板背朝质子交换膜的一侧,以将储物容器外部的水蒸气朝向阳极板吹送。
可选地,电解除氧组件还包括:两层扩散层,分别设置于阳极板和质子交换膜之间以及阴极板和质子交换膜之间,用于导电以及允许水蒸气扩散。
可选地,扩散层为表面镀铂的钛网。
可选地,阳极板的边缘还具有用于连接外界电池阳极的阳极板接线端;阴极板的边缘还具有用于连接外界电池阴极的阴极板接线端。
本发明提供了一种用于冷藏冷冻装置,包括:箱体、储物容器和电解除 氧组件。电解除氧组件用于消耗储物空间内空气中的氧气,从而在该空间内获得富氮贫氧以利于食物保鲜的气体氛围。该气体氛围通过降低储物空间内氧气的含量,降低食物(特别是果蔬)的有氧呼吸的强度,同时保证基础的呼吸作用,防止食物进行无氧呼吸,从而达到食物长期保鲜的目的。电解除氧组件设置于冷藏冷冻装置箱体的后侧面,用户无需打开冷藏冷冻装置的门体就能够直接安装或拆卸电解除氧组件,便于用户使用。另外,箱体表面与外界接触,其温度较高,将电解除氧组件设置于箱体表面有利于加快电解反应,提高了电解除氧组件的工作效率。
进一步地,电解除氧组件还包括风机,用于向阳极板吹送水蒸气。本发明中的电解除氧组件阳极板的反应物为水,阳极板需要不断地补充水分,以使得电解反应能够持续进行。当电解除氧组件开启工作时,电池分别向阴极板和阳极板供电,同时风机开启,风机向阳极板吹送空气的同时,将空气中的水蒸气一同吹送至阳极板,以向阳极板提供反应物。因此,冷藏冷冻装置外界的空气能够向阳极板提供足够的反应物,无需为电解除氧组件单独设置水源或输水装置,从而简化了电解除氧组件的结构。
更进一步地,在本发明中,储物容器为抽屉,该抽屉由筒体和抽拉部组成。筒体以及抽拉部的后侧面均开设有用于允许管状本体穿入的开孔,管状本体依次通过筒体和抽拉部进入储物空间。筒体固定设置于冷藏间室内部,用户在打开抽屉时,向前拉出抽拉部,由于管状本体是沿风冷冰箱前后方向延伸的,因此连通管并不会影响用户拉出抽拉部,从而便于用户使用抽屉。
根据下文结合附图对本发明具体实施例的详细描述,本领域技术人员将会更加明了本发明的上述以及其他目的、优点和特征。
附图说明
后文将参照附图以示例性而非限制性的方式详细描述本发明的一些具体实施例。附图中相同的附图标记标示了相同或类似的部件或部分。本领域技术人员应该理解,这些附图未必是按比例绘制的。附图中:
图1是根据本发明一个实施例的冷藏冷冻装置的示意图;
图2是根据本发明一个实施例的冷藏冷冻装置的侧面剖视图;
图3a是根据本发明一个实施例的冷藏冷冻装置的背面示意图;
图3b是根据本发明另一个实施例的冷藏冷冻装置的背面示意图;
图4是根据本发明一个实施例的冷藏冷冻装置的连通管的示意图;
图5是根据本发明一个实施例的冷藏冷冻装置的储物容器的示意图;
图6是根据本发明一个实施例的冷藏冷冻装置的储物容器的示意图;
图7是根据本发明一个实施例的冷藏冷冻装置的电解除氧组件的分解示意图。
具体实施方式
本发明实施例提供了一种冷藏冷冻装置,如图1至3b所示,其包括:箱体420、内胆410、储物容器100和电解除氧组件200。箱体420内部形成冷藏冷冻装置的储藏间室。储物容器100设置于储藏间室内部。
在本实施例中,冷藏冷冻装置可以为冰箱、冰柜等,在本实施例中为风冷冰箱,风冷冰箱内部利用空气流动循环对储藏间室进行制冷。内胆410设置于箱体420内侧,箱体420和内胆410之间形成风冷冰箱的风道430。冰箱蒸发器设置于风道430内部,并通过风道430将冷空气输送至冰箱的各个间室内。在本实施例中,风道430形成于风冷冰箱的后部。该冰箱的储藏间室包括:冷藏间室和位于冷藏间室下方的冷冻间室(在图1至图3中仅示出了冰箱上半部分,即冷藏间室的部分)。储物容器100设置于冷藏间室底部,其内部形成储物空间。
箱体420的其中一个侧面上设置有开口200a。电解除氧组件可拆卸地设置于开口处,且电解除氧组件通过连通管500与储物空间连通,配置成通过电解反应消耗储物空间内部的氧气。本实施例中,电解除氧组件设置于箱体420表面,以便于用户安装和拆卸。同时,箱体420表面的温度较高,有利于加快电解除氧组件进行电解反应,提高了电解除氧组件的工作效率。
如图4所示,上述连通管500包括:管状本体510和矩形容纳腔室520。矩形容纳腔室520设置于管状本体510一端,且管状本体510连通矩形容纳腔室520内部空间,矩形容纳腔室520的矩形开口与箱体420上的开口重合。管状本体510的另一端通往储物空间内部。当电解除氧组件200安装到箱体420的开口上时,也就是安装在矩形容纳腔室520内时,电解除氧组件200会与储物空间内部连通,并消耗储物空间内部的氧气。在本实施例中,上述开口和电解除氧组件200均为矩形,电解除氧组件200的大小和开口大小相适配,以使得其能够完全封闭开口,防止储物空间内部与外界发生气体交换。 在另外一些实施例中,还可以在管状本体510通往储物空间内部的一端设置风机,当电解除氧组件200开启工作时,上述风机同时开启。上述风机用于将电解除氧组件电解后的富氮气体吹入储物空间内部。
在本实施例中,开口设置于箱体420的背面,管状本体510沿冷藏冷冻装置的前后方向延伸,且贯穿风道430。由于电解除氧组件通过电解反应消耗氧气,因此会产生一定热量,这些热量若传导入储物空间内部,可能会影响储物空间内部的食物保存。在本实施例中,连通管500部分位于风冷冰箱的风道430内,因此电解除氧组件产生的热量能够及时得到冷却,防止多余热量进入储物空间内部。在本发明另外一些实施例中,上述开口还可以设置于冷藏冷冻装置的左侧面或右侧面,那么相应地,管状本体510设置为沿冷藏冷冻装置的左右方向延伸。
在本实施例中,储物容器100可以为抽屉,如图5、图6所示,该抽屉由筒体111和抽拉部112组成。该抽屉可拆卸地设置于冰箱的冷藏间室的底部,在冷藏间室内胆410的内部两侧设置有多对凸肋,其中位于冷藏间室底部的一对凸肋用于限定抽屉的安装位置。筒体111以及抽拉部112的后侧面均开设有用于允许管状本体510穿入的开孔113,上述开孔113可以为圆孔,其大小与管状本体510的截面相适配,管状本体510的一端依次通过筒体111和抽拉部112的后侧面进入储物空间。筒体111固定设置于冷藏间室内部,用户在打开抽屉时,向前拉出抽拉部112,由于管状本体510是沿风冷冰箱前后方向延伸的,因此连通管500并不会影响用户拉出或推入抽拉部112。
如图7所示,电解除氧组件200包括:电池2323、阳极板220、阴极板230和夹持于阴极板230和阳极板220之间的质子交换膜210。电池可以设置在冰箱箱体的发泡层内。阴极板230背朝质子交换膜210的一面朝向储物容器100,阴极板230通过连通管500与储物空间内部的空气接触。阳极板220背朝质子交换膜210的一面朝向箱体420外侧,阳极板220与冷藏冷冻装置外界环境的空气相接触。也就是说,电解除氧组件200具有至少3层结构,依次为阳极板220、质子交换膜210和阴极板230。每一层结构均与开口所在平面平行,且每一层面积的大小均与开口大小相同。
优选地,阴极板230和、阳极板220为碳电极板或铂电极板,一般使用表面有铂镀层的碳电极。阳极板220和阴极板230的边缘均设置有一个接线端,分别为阳极板接线端221和阴极板接线端231,用于分别连接电池的阳 极和阴极。电池向阴极板230提供电子,同时阳极板220向电池阳极提供电子。阳极板220配置成电解水蒸气,产生质子和氧气。质子交换膜210配置成将质子由阳极板220一侧运输到阴极板230一侧。阴极板230配置成利用质子和氧气反应生成水。其中,阳极板和阴极板的化学反应式分别为:
阳极板:2H 2O→O 2+4H ++4e -
阴极板:O 2+4H ++4e -→2H 2O
具体的,电池的阳极向阳极板220充电,阳极板220一侧电解冷藏冷冻装置外部的水蒸气,产生氢离子和氧气,氧气排出至冷藏冷冻装置外部,氢离子进入质子交换膜210内。电池的阴极向阴极板230充电,向阴极板230提供电子,阴极板230一侧利用质子交换膜210提供的氢离子和储物空间内部的氧气反应生成水,以此消耗储物空间内部的氧气。
质子交换膜210包括:质子导电聚合物、多孔膜以及至少一种活性成分。至少一种活性成分分散在质子导电聚合物中,且质子导电聚合物被吸入并填充在多孔膜的孔中。质子交换膜210的作用为供氢离子穿过,以将阳极板220反应生成的氢离子运输到阴极板230,供阴极板230反应使用。
优选地,质子导电聚合物为聚苯乙烯磺酸(PSSA)或羧甲基纤维素(CMC)。多孔膜为聚四氟乙烯(PTFE)或氟化乙烯丙烯(FEP)或聚烯烃薄膜或聚全氟乙丙烯或玻璃纤维或陶瓷纤维或聚合物纤维;活性成分为适用于电渗流动的硅胶,分散的硅胶浓度不超过质子交换膜质量的5%。
在本实施例中,上述电解除氧组件200还可以进一步包括:两块弹性板240,分别设置在阳极板220和阴极板230的外侧,用于加紧阳极板220、质子交换膜210和阴极板230。电解除氧组件200还包括多个紧固螺钉,两块弹性板240、阳极板220、质子交换膜210和阴极板230的靠近边缘的位置均设置有多个螺孔201,每个紧固螺钉依次贯穿上述多个部件相同位置的螺孔201,以实现多层部件的固定和夹持。两块弹性板240面向阴极板230和阳极板220的侧面上均具有多个弹性凸起241,且两块弹性板240上的弹性凸起241的位置相对应,也就是说每个弹性凸起241均能和另一块板上的一个弹性凸起241相配共同合挤压阳极板220、阴极板230,以用于进一步加紧质子交换膜210。每块弹性板240的中间部分镂空,或均匀开设多个气孔,以允许气体通过。
在本实施例中,电解除氧组件200还可以进一步地包括:扩散层270、 活性炭过滤筛和一个或多个垫圈260。扩散层270位于阳极板220和质子交换膜210之间以及阴极板230和质子交换膜210之间,扩散层270的材质为表面镀铂的钛网,其作用为便于导电以及允许水蒸气扩散。活性炭过滤筛设置于阳极背朝质子交换膜210的一侧,用于净化进入阳极板220的气体。至少一个垫圈260可以位于上述多层结构之间,每个垫圈260为矩圆形的薄圈,其外圈大小与阴极板230、阳极板220的大小相同。每个垫圈260由弹性材料制成,以缓冲相邻层之间的挤压力。
电解除氧组件200还包括:风机250。上述风机250可以为微型轴流风机250。风机250设置于阳极板220背朝质子交换膜210的一侧,其转轴与阳极板220垂直,用于将冷藏冷冻装置外部的水蒸气朝向阳极吹送。本实施例的电解除氧组件200阳极板的反应物为水蒸气,因此,阳极板需要不断地补充水分,以使得电解反应能够持续进行。当电解除氧组件200开启工作时,电池分别向阴极板230和阳极板220供电,同时风机250开启,风机250向阳极板220吹送空气的同时,将空气中的水蒸气一同吹送至阳极板220,以向阳极板220提供反应物。由于外界空气能够向阳极板220提供足够的反应物,因此无需为电解除氧组件200单独设置水源或输水装置。
在对电解除氧组件200进行组装时,先将阴极板230、阳极板220、质子交换膜210、垫圈260、弹性板240、扩散层270等部件按照前述位置关系排列好,并组成多层结构,然后再将该多层结构整体放置到矩形容纳腔室520内部。该多层结构的层排列方向与矩形容纳腔室520的前后方向一致。在本实施例中,矩形容纳腔室520内的多层结构由后向前依次为:风机250、弹性板240、垫圈260、阳极板220、垫圈260、扩散层270、质子交换膜210、扩散层270、垫圈260、阴极板230、垫圈260和弹性板240。在安装电解除氧组件200时,将组装好的电解除氧组件200整体插入箱体420的开口内,并固定在容纳腔室520内。接通电池与阴极板230和阳极板220的连接线,即可以开始电解工作。若用户不需要储物容器100的除氧功能,则将上述多层结构整体取出即可。本实施例的冷藏冷冻装置,其电解除氧组件200设置于箱体420后侧表面,用户无需打开冷藏冷冻装置就能够实现电解除氧组件200的安装和拆卸,用户使用更加方便。
本实施例的储物容器100包括:电解除氧组件200。电解除氧组件200用于消耗储物空间内空气中的氧气,从而在该空间内获得富氮贫氧以利于食 物保鲜的气体氛围。该气体氛围通过降低储物空间内氧气的含量,降低食物(特别是果蔬)的有氧呼吸的强度,同时保证基础的呼吸作用,防止食物进行无氧呼吸,从而达到食物长期保鲜的目的。
本领域技术人员应理解,在没有特别说明的情况下,本发明实施例中所称的“上”、“下”、“左”、“右”、“前”、“后”等用于表示方位或位置关系的用语是以冷藏冷冻装置的实际使用状态为基准而言的,这些用语仅是为了便于描述和理解本发明的技术方案,而不是指示或暗示所指的装置或部件必须具有特定的方位,因此不能理解为对本发明的限制。
至此,本领域技术人员应认识到,虽然本文已详尽示出和描述了本发明的多个示例性实施例,但是,在不脱离本发明精神和范围的情况下,仍可根据本发明公开的内容直接确定或推导出符合本发明原理的许多其他变型或修改。因此,本发明的范围应被理解和认定为覆盖了所有这些其他变型或修改。

Claims (10)

  1. 一种冷藏冷冻装置,包括:
    箱体,其内部形成所述冷藏冷冻装置的储藏间室,所述箱体的其中一个侧面上设置有开口;
    储物容器,设置于所述储藏间室内部,其内部形成储物空间;
    电解除氧组件,可拆卸地设置于所述开口处,且所述电解除氧组件通过连通管与所述储物空间连通,配置成通过电解反应消耗所述储物空间内部的氧气。
  2. 根据权利要求1所述的冷藏冷冻装置,其中所述连通管包括:
    管状本体;和
    设置于所述管状本体一个端口的矩形容纳腔室,所述容纳腔室用于安装容纳所述电解除氧组件。
  3. 根据权利要求2所述的冷藏冷冻装置,其中
    所述开口设置于所述箱体的背面,所述管状本体沿所述冷藏冷冻装置的前后方向延伸。
  4. 根据权利要求3所述的冷藏冷冻装置,其中
    所述储物容器为抽屉,其包括:
    筒体,其内部形成储物空间;和
    抽拉部,可被推入所述筒体内部或由所述筒体内部抽出,以打开或封闭所述储物空间;其中
    所述筒体以及所述抽拉部的后侧面均开设有用于允许所述管状本体穿入的开孔。
  5. 根据权利要求4所述的冷藏冷冻装置,还包括:
    内胆,设置于所述箱体内侧;
    所述箱体和所述内胆之间形成所述冷藏冷冻装置的风道,所述连通管贯穿所述风道以连通所述储物空间。
  6. 根据权利要求1至5中任一项所述的冷藏冷冻装置,其中所述电解除氧组件还包括:
    阳极板,配置成电解水蒸气,产生氢离子和氧气;
    阴极板,配置成利用氢离子和氧气反应生成水;和
    夹持于所述阴极板和阳极板之间的质子交换膜,配置成将氢离子由所述 阳极板一侧运输到所述阴极板一侧;其中
    所述阴极板背朝所述质子交换膜的一面朝向所述储物容器,所述阳极板背朝所述质子交换膜的一面朝向所述箱体外侧。
  7. 根据权利要求6所述的冷藏冷冻装置,其中所述电解除氧组件还包括:
    风机,设置于所述阳极板背朝所述质子交换膜的一侧,以将所述储物容器外部的水蒸气朝向所述阳极板吹送。
  8. 根据权利要求7所述的冷藏冷冻装置,其中所述电解除氧组件还包括:
    两层扩散层,分别设置于所述阳极板和所述质子交换膜之间以及所述阴极板和所述质子交换膜之间,用于导电以及允许水蒸气扩散。
  9. 根据权利要求8所述的冷藏冷冻装置,其中
    所述扩散层为表面镀铂的钛网。
  10. 根据权利要求9所述的冷藏冷冻装置,其中
    所述阳极板的边缘还具有用于连接外界电池阳极的阳极板接线端;
    所述阴极板的边缘还具有用于连接外界电池阴极的阴极板接线端。
PCT/CN2018/117318 2017-11-30 2018-11-23 冷藏冷冻装置 WO2019105308A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201711244542.3A CN109855349B (zh) 2017-11-30 2017-11-30 冷藏冷冻装置
CN201711244542.3 2017-11-30

Publications (1)

Publication Number Publication Date
WO2019105308A1 true WO2019105308A1 (zh) 2019-06-06

Family

ID=66664342

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/117318 WO2019105308A1 (zh) 2017-11-30 2018-11-23 冷藏冷冻装置

Country Status (2)

Country Link
CN (1) CN109855349B (zh)
WO (1) WO2019105308A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115371321A (zh) * 2021-05-20 2022-11-22 青岛海尔电冰箱有限公司 冰箱

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1532495A (zh) * 2003-03-25 2004-09-29 株式会社东芝 冰箱
JP2008134054A (ja) * 2008-02-18 2008-06-12 Mitsubishi Electric Corp 冷蔵庫
CN101388463A (zh) * 2008-10-23 2009-03-18 上海交通大学 质子交换膜水电解电池膜电极及其制备方法
CN102269502A (zh) * 2011-07-06 2011-12-07 合肥美的荣事达电冰箱有限公司 保鲜冰箱
CN205332651U (zh) * 2016-01-22 2016-06-22 魏笑予 真空保鲜冰箱
CN106766553A (zh) * 2016-12-09 2017-05-31 青岛海尔股份有限公司 冰箱及用于冰箱的储物容器组件
CN107270624A (zh) * 2017-06-30 2017-10-20 青岛海尔股份有限公司 冷藏冷冻装置

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115143677A (zh) * 2016-12-02 2022-10-04 海尔智家股份有限公司 储物装置
CN107062744A (zh) * 2016-12-09 2017-08-18 青岛海尔股份有限公司 冰箱
CN107289722A (zh) * 2017-06-12 2017-10-24 青岛海尔股份有限公司 一种储藏盒及具有其的冰箱

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1532495A (zh) * 2003-03-25 2004-09-29 株式会社东芝 冰箱
JP2008134054A (ja) * 2008-02-18 2008-06-12 Mitsubishi Electric Corp 冷蔵庫
CN101388463A (zh) * 2008-10-23 2009-03-18 上海交通大学 质子交换膜水电解电池膜电极及其制备方法
CN102269502A (zh) * 2011-07-06 2011-12-07 合肥美的荣事达电冰箱有限公司 保鲜冰箱
CN205332651U (zh) * 2016-01-22 2016-06-22 魏笑予 真空保鲜冰箱
CN106766553A (zh) * 2016-12-09 2017-05-31 青岛海尔股份有限公司 冰箱及用于冰箱的储物容器组件
CN107270624A (zh) * 2017-06-30 2017-10-20 青岛海尔股份有限公司 冷藏冷冻装置

Also Published As

Publication number Publication date
CN109855349B (zh) 2020-09-29
CN109855349A (zh) 2019-06-07

Similar Documents

Publication Publication Date Title
WO2019105311A1 (zh) 冷藏冷冻装置及其储物容器
WO2019105429A1 (zh) 冷藏冷冻装置及其储物容器
CN108332479B (zh) 冰箱
CN108278823B (zh) 冰箱
CN109855348B (zh) 冷藏冷冻装置
WO2019105427A1 (zh) 冷藏冷冻装置及其除氧控制方法
CN108168181A (zh) 冰箱
CN108514066B (zh) 冷藏冷冻装置
CN108332480A (zh) 冷藏冷冻装置及其储物容器
CN110715500B (zh) 冷藏冷冻装置及其控制方法
WO2019105310A1 (zh) 冷藏冷冻装置及其储物容器
WO2021083433A1 (zh) 冰箱
CN108302861B (zh) 冰箱
CN108302889A (zh) 冷藏冷冻装置及其储物容器
WO2019105307A1 (zh) 冷藏冷冻装置及其储物容器
WO2019105309A1 (zh) 冷藏冷冻装置及其储物容器
WO2019105308A1 (zh) 冷藏冷冻装置
WO2019105428A1 (zh) 冷藏冷冻装置及其除氧控制方法
WO2018099450A1 (zh) 抽气泵组件和冷藏冷冻装置
CN112747527B (zh) 冰箱
CN112747549A (zh) 用于冰箱的储物装置以及具有其的冰箱
JP2014037958A (ja) 減酸素装置
WO2019105312A1 (zh) 冷藏冷冻装置及其储物容器
CN110715492A (zh) 冷藏冷冻装置及其储物容器
CN110715491A (zh) 冷藏冷冻装置及其储物容器

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18882432

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18882432

Country of ref document: EP

Kind code of ref document: A1