WO2021082952A1 - 平衡车控制系统和平衡车 - Google Patents
平衡车控制系统和平衡车 Download PDFInfo
- Publication number
- WO2021082952A1 WO2021082952A1 PCT/CN2020/121510 CN2020121510W WO2021082952A1 WO 2021082952 A1 WO2021082952 A1 WO 2021082952A1 CN 2020121510 W CN2020121510 W CN 2020121510W WO 2021082952 A1 WO2021082952 A1 WO 2021082952A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- pin
- resistor
- series
- capacitor
- module
- Prior art date
Links
- 239000003990 capacitor Substances 0.000 claims description 242
- 238000001514 detection method Methods 0.000 claims description 57
- 238000004891 communication Methods 0.000 claims description 27
- 239000013078 crystal Substances 0.000 claims description 15
- 238000007667 floating Methods 0.000 claims description 13
- 238000005070 sampling Methods 0.000 claims description 11
- 101710187795 60S ribosomal protein L15 Proteins 0.000 claims description 7
- 230000005236 sound signal Effects 0.000 claims description 6
- 101710083129 50S ribosomal protein L10, chloroplastic Proteins 0.000 claims description 5
- 101710114762 50S ribosomal protein L11, chloroplastic Proteins 0.000 claims description 5
- 101710082414 50S ribosomal protein L12, chloroplastic Proteins 0.000 claims description 5
- 101710164994 50S ribosomal protein L13, chloroplastic Proteins 0.000 claims description 5
- 102100031854 60S ribosomal protein L14 Human genes 0.000 claims description 5
- 101000704267 Homo sapiens 60S ribosomal protein L14 Proteins 0.000 claims description 5
- 101100195396 Human cytomegalovirus (strain Merlin) RL11 gene Proteins 0.000 claims description 5
- 101100249083 Human cytomegalovirus (strain Merlin) RL12 gene Proteins 0.000 claims description 5
- 101100141719 Human cytomegalovirus (strain Merlin) RL13 gene Proteins 0.000 claims description 5
- 238000012545 processing Methods 0.000 claims description 5
- 101710177347 50S ribosomal protein L15, chloroplastic Proteins 0.000 claims description 4
- 101100143695 Ulva compressa RL36 gene Proteins 0.000 claims description 4
- 230000001052 transient effect Effects 0.000 claims description 4
- 230000010354 integration Effects 0.000 abstract description 4
- 230000009467 reduction Effects 0.000 abstract description 2
- 238000010586 diagram Methods 0.000 description 74
- 230000001133 acceleration Effects 0.000 description 5
- 101150080148 RR10 gene Proteins 0.000 description 3
- 230000009286 beneficial effect Effects 0.000 description 3
- 230000008901 benefit Effects 0.000 description 3
- 230000008859 change Effects 0.000 description 3
- 238000013461 design Methods 0.000 description 3
- 101000854908 Homo sapiens WD repeat-containing protein 11 Proteins 0.000 description 2
- 101100333170 Oryza sativa subsp. japonica EHD1 gene Proteins 0.000 description 2
- 101100135116 Oryza sativa subsp. japonica RR12 gene Proteins 0.000 description 2
- 101100135117 Oryza sativa subsp. japonica RR13 gene Proteins 0.000 description 2
- 101100350458 Oryza sativa subsp. japonica RR25 gene Proteins 0.000 description 2
- 101100350459 Oryza sativa subsp. japonica RR26 gene Proteins 0.000 description 2
- 101100350460 Oryza sativa subsp. japonica RR27 gene Proteins 0.000 description 2
- 101100350467 Oryza sativa subsp. japonica RR31 gene Proteins 0.000 description 2
- 101100350468 Oryza sativa subsp. japonica RR32 gene Proteins 0.000 description 2
- -1 RL20 Proteins 0.000 description 2
- 101150016011 RR11 gene Proteins 0.000 description 2
- 101150048609 RR21 gene Proteins 0.000 description 2
- 101150110620 RR22 gene Proteins 0.000 description 2
- 101150048251 RR23 gene Proteins 0.000 description 2
- 101150116266 RR24 gene Proteins 0.000 description 2
- 101150000658 RR28 gene Proteins 0.000 description 2
- 101150072233 RR29 gene Proteins 0.000 description 2
- 101150078855 RR33 gene Proteins 0.000 description 2
- 101000585507 Solanum tuberosum Cytochrome b-c1 complex subunit 7 Proteins 0.000 description 2
- 102100020705 WD repeat-containing protein 11 Human genes 0.000 description 2
- 230000015556 catabolic process Effects 0.000 description 2
- 230000009977 dual effect Effects 0.000 description 2
- 238000005516 engineering process Methods 0.000 description 2
- 238000000034 method Methods 0.000 description 2
- 230000002093 peripheral effect Effects 0.000 description 2
- 101710181148 50S ribosomal protein L9, chloroplastic Proteins 0.000 description 1
- 230000005540 biological transmission Effects 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 238000001914 filtration Methods 0.000 description 1
- OCUUDCWEKWOMFA-UHFFFAOYSA-N imidazol-1-yl-dimethyl-propan-2-ylsilane Chemical compound CC(C)[Si](C)(C)N1C=CN=C1 OCUUDCWEKWOMFA-UHFFFAOYSA-N 0.000 description 1
- 230000006698 induction Effects 0.000 description 1
- 230000003993 interaction Effects 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 238000013021 overheating Methods 0.000 description 1
- 230000002265 prevention Effects 0.000 description 1
- 230000008569 process Effects 0.000 description 1
- 238000011084 recovery Methods 0.000 description 1
- 229920006395 saturated elastomer Polymers 0.000 description 1
- 230000008054 signal transmission Effects 0.000 description 1
- 230000003238 somatosensory effect Effects 0.000 description 1
- 238000010626 work up procedure Methods 0.000 description 1
Classifications
-
- G—PHYSICS
- G05—CONTROLLING; REGULATING
- G05D—SYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
- G05D1/00—Control of position, course, altitude or attitude of land, water, air or space vehicles, e.g. using automatic pilots
- G05D1/08—Control of attitude, i.e. control of roll, pitch, or yaw
- G05D1/0891—Control of attitude, i.e. control of roll, pitch, or yaw specially adapted for land vehicles
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02P—CLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
- Y02P90/00—Enabling technologies with a potential contribution to greenhouse gas [GHG] emissions mitigation
- Y02P90/02—Total factory control, e.g. smart factories, flexible manufacturing systems [FMS] or integrated manufacturing systems [IMS]
Definitions
- the invention relates to the field of control, in particular to a balance car control system and a balance car.
- Balance cars also called somatosensory cars and thinking cars, include uni-wheel balance cars and two-wheel balance cars. Its operating principle is to use the attitude sensor (such as gyroscope, acceleration sensor, etc.) inside the car body to detect the change of the car body attitude, and use the control system to accurately drive the motor to make corresponding adjustments to achieve the corresponding functions.
- attitude sensor such as gyroscope, acceleration sensor, etc.
- the unicycle balance car relies on the angular momentum after the rotation of the unicycle to resist the external torque, so as to realize steering or maintain self-balance.
- the unicycle balance car uses a gyroscope to detect changes in the body's posture, so as to achieve acceleration, deceleration or braking. For example, when a person stands on a running unicycle, the body leans forward to make the manned platform of the unicycle lean forward.
- the gyroscope detects the forward tilt of the manned platform and uses the control system to drive the motor to accelerate.
- the horizontal forward force generated by the tilt is balanced with the inertial force of the acceleration of the wheel balancer, so that the human body will not fall, thus realizing the acceleration of the wheel balancer.
- the two-wheel balance car mostly uses the difference in the rotational speed of the hub motors built in the two wheels to control the steering.
- the acceleration or braking principle of the two-wheel balance car is basically the same as that of the uni-wheel balance car, and the steering control of the two-wheel balance car is different from that of the uni-wheel balance car:
- the two-wheeled balance car with joystick relies on hands or legs to control the deviation direction of the joystick.
- the Hall steering sensor detects the deviation direction of the joystick and converts it into a control signal.
- the main control chip controls the two wheels according to the control signal.
- the rotation speed difference of the built-in hub motor realizes the steering.
- a two-wheeled balance car with dual pedals and the pedals can rotate relative to the main shaft also known as an electric twist car, relies on a gyroscope set under each pedal to collect the posture of each pedal and generate a pair of control signals. After the chip determines the posture of each pedal based on the pair of control signals, it controls the speed difference of the built-in hub motors in the two wheels to achieve steering.
- the original balance car motherboard was only equipped with the circuits needed to ensure the normal operation of the balance car. With the gradual addition of new functions, there is no reserved space on the motherboard to place these new functions.
- the main control chip is due to processing speed or induction. The limitation of the number of pins is gradually not enough to support these functions. Therefore, more and more functions are configured on the secondary board. For example, the signals of classic Bluetooth and Bluetooth low energy are not compatible. In order to have Bluetooth communication and Bluetooth audio functions at the same time, the balance car control system needs to be equipped with Bluetooth low energy circuit for Bluetooth communication and classic Bluetooth for Bluetooth audio.
- the embodiments of the present invention provide a balance car control system and a balance car having the balance car control system, so as to at least solve the problem of the high degree of discretization of the balance car control system in the related art.
- a balance car control system including: a main board, and a main control module, a dual-mode Bluetooth module, an attitude sensor module, a first motor drive module, and a second 2.
- the attitude sensor module is connected to the main control module, and the attitude sensor module is used to generate a detection signal according to the attitude of the balance car;
- the dual-mode Bluetooth module is connected to the main control module, and the dual-mode Bluetooth module is used for receiving and sending communication signals, and receiving and processing audio signals;
- the main control module is used to control the first motor drive module and the second motor drive module according to the detection signal.
- the main control module is also used to control the dual-mode Bluetooth module and interface with the external External devices connected to the module;
- the first motor drive module is connected to the main control module, and is used to control the rotation speed and steering of the first motor;
- the second motor drive module is connected to the main control module and is used to control the rotation speed and steering of the second motor;
- the input end of the step-down module is connected to the battery, and the output end is respectively connected to the main control module, the dual-mode Bluetooth module, the attitude sensor module, the first motor drive module, and the second motor drive module And the external interface module is connected, and the step-down module is used to convert the output voltage of the battery into the main control module, the dual-mode Bluetooth module, the attitude sensor module, and the first motor drive module , The operating voltage required by the second motor drive module and the external interface module.
- a balance car including the balance car control system as described in the first aspect.
- the main control module, dual-mode Bluetooth module, attitude sensor module, first motor drive module, second motor drive module, step-down module, and external interface module are all configured On the main board, the problem of the high degree of discretization of the balance car control system in the related technology is solved, and the integration of the balance car control system is improved.
- Figure 1 is a structural block diagram of a balance car control system according to an embodiment of the present invention
- Figure 2 is a preferred structural block diagram of a balance car control system according to an embodiment of the present invention.
- Figure 3 is a schematic circuit diagram of a main control module according to a preferred embodiment of the present invention.
- Figure 4 is a schematic circuit diagram of a dual-mode Bluetooth module according to a preferred embodiment of the present invention.
- Fig. 5 is a circuit schematic diagram of a crystal oscillator unit according to a preferred embodiment of the present invention.
- Fig. 6 is a schematic circuit diagram of a power amplifier unit according to a preferred embodiment of the present invention.
- Fig. 7 is a schematic circuit diagram of a posture sensor module according to a preferred embodiment of the present invention.
- Fig. 8 is a schematic circuit diagram of a first PWM output unit according to a preferred embodiment of the present invention.
- Fig. 9 is a circuit schematic diagram of a first three-phase full bridge circuit according to a preferred embodiment of the present invention.
- Fig. 10 is a schematic circuit diagram of a first current detection unit according to a preferred embodiment of the present invention.
- Figure 11 is a schematic circuit diagram of a first brake detection unit according to a preferred embodiment of the present invention.
- Fig. 12 is a schematic circuit diagram of a first total current detection unit according to a preferred embodiment of the present invention.
- Fig. 13 is a schematic circuit diagram of a first current sampling unit according to a preferred embodiment of the present invention.
- Fig. 14 is a schematic circuit diagram of a second PWM output unit according to a preferred embodiment of the present invention.
- Fig. 15 is a circuit schematic diagram of a second three-phase full-bridge unit according to a preferred embodiment of the present invention.
- Fig. 16 is a circuit schematic diagram of a second current detection unit according to a preferred embodiment of the present invention.
- Figure 17 is a schematic circuit diagram of a second brake detection unit according to a preferred embodiment of the present invention.
- FIG. 18 is a schematic circuit diagram of a second total current detection unit according to a preferred embodiment of the present invention.
- Fig. 19 is a schematic circuit diagram of a second current sampling unit according to a preferred embodiment of the present invention.
- Fig. 20 is a circuit diagram of a power supply unit according to a preferred embodiment of the present invention.
- FIG. 21 is a schematic circuit diagram of a first step-down unit according to a preferred embodiment of the present invention.
- Fig. 22 is a schematic circuit diagram of a second step-down unit according to a preferred embodiment of the present invention.
- Figure 23 is a circuit schematic diagram of a third step-down unit according to a preferred embodiment of the present invention.
- FIG. 24 is a circuit schematic diagram of a first photoelectric switch interface unit according to a preferred embodiment of the present invention.
- FIG. 25 is a schematic circuit diagram of a second photoelectric switch interface unit according to a preferred embodiment of the present invention.
- Fig. 26 is a schematic circuit diagram of a steering sensor interface unit according to a preferred embodiment of the present invention.
- Fig. 27 is a circuit schematic diagram of a turn signal interface unit according to a preferred embodiment of the present invention.
- Fig. 28 is a circuit schematic diagram of a fault light interface unit according to a preferred embodiment of the present invention.
- Figure 29 is a schematic circuit diagram of a first slave communication interface unit according to a preferred embodiment of the present invention.
- Figure 30 is a schematic circuit diagram of a second slave board communication interface unit according to a preferred embodiment of the present invention.
- FIG. 31 is a schematic circuit diagram of a program burning device interface unit according to a preferred embodiment of the present invention.
- Fig. 32 is a schematic circuit diagram of a rotational speed detection interface unit according to a preferred embodiment of the present invention.
- Fig. 33 is a schematic circuit diagram of an RGB lamp interface unit according to a preferred embodiment of the present invention.
- Fig. 34 is a schematic circuit diagram of a charging interface unit according to a preferred embodiment of the present invention.
- Figure 35 is a schematic circuit diagram of a buzzer module according to a preferred embodiment of the present invention.
- Fig. 36 is a schematic circuit diagram of a Bluetooth power-on indication module according to a preferred embodiment of the present invention.
- Fig. 37 is a schematic diagram of a circuit layout according to a preferred embodiment of the present invention.
- a balance car control system is provided.
- Fig. 1 is a structural block diagram of a balance car control system according to an embodiment of the present invention, in which the thick solid line represents the power supply line, and the thin solid line represents the communication line.
- the balance car control system includes: a main board 100, and a main control module 101, a dual-mode Bluetooth module 102, an attitude sensor module 103, a first motor drive module 104, and a second motor drive set on the main board 100 Module 105, step-down module 106, external interface module 107; among them,
- the attitude sensor module 103 is connected to the main control module 101, and the attitude sensor module 103 is used to generate a detection signal according to the attitude of the balance car;
- the dual-mode Bluetooth module 102 is connected to the main control module 101, and the dual-mode Bluetooth module 102 is used for receiving and sending communication signals, as well as receiving and processing audio signals;
- the main control module 101 is used to control the first motor drive module 104 and the second motor drive module 105 according to the detection signal.
- the main control module 101 is also used to control the dual-mode Bluetooth module 102 and external devices connected to the external interface module 107;
- the first motor drive module 104 is connected to the main control module 101, and is used to control the rotation speed and steering direction of the first motor;
- the second motor drive module 105 is connected to the main control module 101, and is used to control the rotation speed and direction of the second motor;
- the input end of the step-down module 106 is connected to the battery, and the output end of the step-down module 106 is respectively connected to the main control module 101, the dual-mode Bluetooth module 102, the attitude sensor module 103, the first motor drive module 104, the second motor drive module 105, and The external interface module 107 is connected, and the step-down module 106 is used to convert the output voltage of the battery into the main control module 101, the dual-mode Bluetooth module 102, the attitude sensor module 103, the first motor drive module 104, the second motor drive module 105, and the external The operating voltage required by the interface module 107.
- the balance car control system uses the dual-mode Bluetooth module 102 to replace the Bluetooth data synchronization circuit and the Bluetooth audio circuit, and integrates the dual-mode Bluetooth module 102 on the main board 100 of the balance car control system , Not only improves the integration of the balance car control system, but also the main control module 101 is directly connected to the dual-mode Bluetooth module 102. It is no longer necessary to introduce an additional control chip to process the Bluetooth protocol stack of the dual-mode Bluetooth module 102, thereby reducing the power It is beneficial to improve the stability of the balance car control system.
- the dual Bluetooth module 102 is integrated into the main board 100 and communicates with the main control module 101 through the PCB board wiring. Compared with the communication using a jumper transmission line, it is also Reduce interference, making signal transmission more stable.
- the selection of the main control chip in the main control module 101 is preferably a single-chip microcomputer with a main frequency higher than 70MHz and an integer computing capability (DMIPS) higher than 60.
- DMIPS integer computing capability
- it can be determined according to the pins required by the peripheral circuit.
- the specific master chip For example, a single-chip microcomputer with 64 pins or more in the STM32F1 series of single-chip microcomputers can meet the demand and have certain expansion capabilities.
- the dual-mode Bluetooth module 102 includes: a dual-mode Bluetooth chip unit, an antenna, a crystal oscillator unit, and a power amplifier unit; wherein, the dual-mode Bluetooth chip unit is connected to the antenna, crystal oscillator unit, and power amplifier unit, respectively, And the main control module 101 is connected; the dual-mode Bluetooth chip and the power amplifier unit are respectively connected to the output end of the step-down module 106.
- the crystal oscillator unit is used to provide the clock frequency for the dual-mode Bluetooth chip unit, and the power amplifier is used to drive the speaker to sound after amplifying the audio signal.
- the selection of the Bluetooth chip in the dual-mode Bluetooth chip unit preferably adopts a dual-mode Bluetooth chip that supports Bluetooth 4.2 protocol and supports both classic Bluetooth (BR/EDR) and Bluetooth low energy (BLE), including but not Limited to: Qualcomm QCC5100 series chips, Jerry AC6900 series chips, Jianrong CW6691 series chips, Actions ATS2825 series chips, etc.
- BLE Bluetooth low energy
- the first motor drive module 104 and the second motor drive module 105 are substantially the same.
- the first motor drive module 104 includes: a first PWM output unit and a first three-phase full-bridge drive unit; wherein, the first PWM output unit is respectively connected to the first three-phase full-bridge drive unit, the main control module 101, and the lower The output end of the voltage module 106 is connected; the first three-phase full-bridge drive unit is respectively connected to the output end of the battery and the first motor.
- the second motor drive module 105 includes: a second PWM output unit and a second three-phase full-bridge drive unit; wherein the second PWM output unit is respectively connected to the second three-phase full-bridge drive unit, the main control module 101, and the step-down module The output end of 106 is connected; the second three-phase full-bridge drive unit is respectively connected to the output end of the battery and the second motor.
- the selection of the chips in the first PWM output unit and the second PWM output unit can use three high-voltage drive chips integrated with a half-bridge drive to realize the forward and reverse rotation of a three-phase DC motor, for example IR2104 series chips; it is preferable to use a high-voltage driver chip that integrates three half-bridge drivers to save space on the motherboard.
- the FD6287 series chip integrates three independent half-bridge gate driver integrated circuit chips, which are designed for high-voltage , High-speed drive MOSFET and IGBT design, can work up to +250V voltage.
- the FD6287 series chips have built-in VCC/VBS undervoltage (UVLO) protection function to prevent the power tube from working under too low voltage.
- UVLO VCC/VBS undervoltage
- FD6287 has built-in shoot-through prevention and dead time to prevent the driven high- and low-side MOSFETs or IGBTs from shoot-through, effectively protecting power devices.
- FD6287 series chips also have built-in input signal filtering to prevent input noise interference.
- the first motor drive module 104 further includes but is not limited to at least one of the following circuits: a first current detection unit, a first brake detection unit, a first total current detection unit, and a first current sampling unit;
- the second motor drive module 105 also includes but is not limited to at least one of the following circuits: a second current detection unit, a second brake detection unit, a second total current detection unit, and a second current sampling unit.
- the step-down module 106 includes: a power supply unit, a first step-down unit, a second step-down unit, and a third step-down unit; wherein the voltage input terminal of the power supply unit is connected to the battery, and the voltage output of the power supply unit Terminal is connected to the voltage input terminal of the first step-down unit, the voltage output terminal of the first step-down unit is connected to the voltage input terminal of the second step-down unit, and the voltage output terminal of the second step-down unit is connected to the voltage input terminal of the third step-down unit. Voltage input terminal connection.
- a multi-level step-down module is used to achieve multiple voltage levels of output.
- a digital step-down chip is used for step-down.
- the digital step-down chip can reduce the space occupied by the components on the motherboard.
- Optional step-down chips include but are not limited to: LM2596 series chips, SC9003 series chips, LY3671 series chips, SY8120 series chips, AMS1117 series chips, etc.
- the external interface module 107 includes but is not limited to at least one of the following circuits: a first photoelectric switch interface unit, a second photoelectric switch interface unit, a steering sensor interface unit, a turn signal interface unit, a fault light interface unit, The first sub-board communication interface unit, the second sub-board communication interface unit, the program burning device interface unit, the speed detection interface unit, the RGB lamp interface unit, and the charging interface unit.
- the photoelectric switch interface unit is used to connect the photoelectric switch circuit, and the photoelectric switch circuit can be set under the pedal of the balance car to detect whether the balance car is carrying people.
- the steering sensor interface unit is used to connect to the steering sensor circuit, and the steering sensor circuit is preferably a Hall sensor, which is generally arranged on a two-wheeled balance vehicle with an operating rod to detect the deviation of the operating rod, so as to realize steering control.
- the steering sensor circuit is preferably a Hall sensor, which is generally arranged on a two-wheeled balance vehicle with an operating rod to detect the deviation of the operating rod, so as to realize steering control.
- the turn signal interface unit is used to connect the turn signal circuit, and the turn signal of the turn signal circuit is arranged on both sides of the balance car to realize the steering reminder.
- the fault light interface unit is used to connect the fault light, and the fault light is used to indicate whether the balance car has a fault.
- the sub-board communication interface unit is used to connect the sub-board communication circuit to support more function expansion on the sub-board, or to communicate with other sensors (such as gyroscopes) or displays set on the sub-board.
- the program burning device interface unit is used to connect the program burning device, and the program burning device is used to burn the program to the main control chip.
- the rotation speed detection interface unit is used to connect the rotation speed detection circuit, and the rotation speed detection circuit can be arranged inside the hub motor to detect the rotation speed and steering of the hub motor.
- the RGB light interface unit is used to connect the RGB light circuit, and the RGB light circuit is used to realize the function of the color light of the balance car to increase the user experience.
- the charging interface unit is used to connect the charging circuit, and the charging circuit is used to charge the battery of the balance car.
- the number and types of the external interface modules 107 can be deleted or added according to the type of the balance car and the additional functions that need to be implemented. For example, in an electric torque car, the steering sensor interface unit is unnecessary, and the steering sensor interface unit can be deleted from the main board, thereby reducing the cost of the main board or reducing the space occupied by the main board.
- the main board includes all the above-mentioned external interface modules, and some of the external interface modules can be left unused in some types of balance vehicles.
- the advantage of this design is that different types of balance cars can share the same set of motherboards, thereby saving the design cost of the motherboard.
- a variety of external interface modules are easy to realize the function expansion of various types of balance cars.
- the motherboard 100 is also provided with at least one of the following circuits: a buzzer module 108, a Bluetooth power-on indication module 109; wherein the buzzer module 108 is connected to the main control module 101; Bluetooth power-on indication The module 109 is connected to the dual-mode Bluetooth module 102.
- the buzzer module 108 can be used to send a buzzer to remind the user when the balance car fails or has a status change or when the power is insufficient.
- the Bluetooth power-on indication module 109 is used to indicate the working status of Bluetooth.
- Fig. 2 is a preferred structural block diagram of a balance car control system according to an embodiment of the present invention.
- the thick solid line represents the power supply line
- the thin solid line represents the communication line.
- an implementation scheme of a balance car control system is provided. It should be noted that this implementation scheme is used to describe the embodiments of the present invention, and the specific implementation of each part of the circuit is also exemplary.
- Fig. 3 is a schematic circuit diagram of the main control module according to a preferred embodiment of the present invention.
- the main control module 101 includes: a main control chip U6, a resistor R32, a resistor R33, and a resistor R42 , Capacitor C26, Capacitor C31, where the main control chip U6 includes pins 1 to 64, of which, pin 1, pin 13, pin 32, pin 19, pin 48, pin 64, and drop
- the third voltage output terminal of the step-down module of the voltage module 106 is connected; pin 12, pin 18, pin 31, pin 47, and pin 63 are connected to the common terminal GND; pin 7 is connected to the step-down module
- a resistor R42 is connected in series between the third voltage output terminal, and a capacitor C26 is connected in series with the common terminal GND; pin 16, a resistor R32 is connected in series with the dual-mode Bluetooth module 102; pin 17 is connected with the dual-mode Bluetooth module 102 There is a resistor R33 in series between;
- the resistor R32 and the resistor R33 can play the role of voltage division and current limiting, with the purpose of adapting the level between chips of different voltage levels and preventing overcurrent from damaging the chip; in this preferred embodiment, the two chips
- the effects of the resistors connected in series directly between the pins are generally the same.
- Fig. 4 is a schematic circuit diagram of a dual-mode Bluetooth module according to a preferred embodiment of the present invention.
- the dual-mode Bluetooth chip unit of the dual-mode Bluetooth module 102 includes: a dual-mode Bluetooth chip U3, a resistor R1, a resistor R2 Resistor R3, resistor R4, inductor L1, inductor L2, capacitor C1, capacitor C2, capacitor C3, capacitor C4, capacitor C5, and capacitor C6,
- the dual-mode Bluetooth chip U3 includes pins 1 to 24.
- pin 1 is connected in series with the power amplifier unit with a resistor R1, and pin 1 is used to enable the power amplifier;
- pin 2 is connected to the Bluetooth
- the electrical indicator module is connected to indicate the working status of Bluetooth;
- pin 3 is connected to pin 16 of the main control chip U6 to receive the communication signal of the main control chip U6;
- pin 4 is connected to the main control chip U6
- Pin 17 is connected to send communication signals to the main control chip U6;
- pin 5 is connected in series with pin 55 of the main control chip U6, and a resistor R2 is connected in series to receive the volume control signal sent by the main control chip U6; 6 floating;
- pin 8, connected in series with the common terminal GND, a capacitor C3;
- pin 10 is floating;
- pin 11 is connected to
- a capacitor C2 is connected in series with the common terminal GND; pin 20 is connected with the common terminal GND; pin 21 is connected in series with the common terminal GND with inductor L1, inductor L2, inductor L1 and inductor L2.
- a capacitor C1 is connected in series between the point and the antenna J1, and the pin 21 is used to send and receive data or audio through the antenna; the pin 22 is connected to the common terminal GND; the pin 23 is connected to the crystal oscillator unit; the pin 24 is connected to the crystal The oscillator unit is connected, and pins 23 and 24 are used to receive the clock frequency of the crystal oscillator.
- Fig. 5 is a circuit principle diagram of a crystal oscillator unit according to a preferred embodiment of the present invention.
- the crystal oscillator unit of the dual-mode Bluetooth module 102 includes a crystal oscillator Y1, a capacitor C7, and a capacitor C8, among which,
- the crystal oscillator Y1 includes pins 1 to 4, among which, pin 1 is connected to pin 23 of the dual-mode Bluetooth chip U3, and a capacitor C7 is connected in series with the common terminal GND; pin 2 is connected to the common terminal GND Connection; Pin 3 is connected to pin 24 of the dual-mode Bluetooth chip U3, and a capacitor C8 is connected in series with the common terminal GND; pin 4 is connected to the common terminal GND.
- Fig. 6 is a schematic circuit diagram of a power amplifier unit according to a preferred embodiment of the present invention.
- the power amplifier unit of the dual-mode Bluetooth module 102 includes: a power amplifier chip U4, a resistor R5, a resistor R6, a resistor R7, and a resistor R8, capacitor R9, capacitor C10, and capacitor C11, where the power amplifier chip U4 includes pins 1 to 8, where pin 1 is connected in series with the second voltage output terminal of the step-down module of the step-down module 106
- the power amplifier chip U4 includes pins 1 to 8, where pin 1 is connected in series with the second voltage output terminal of the step-down module of the step-down module 106
- Fig. 7 is a schematic circuit diagram of a posture sensor module according to a preferred embodiment of the present invention.
- the posture sensor module 103 includes: posture sensor chip U5, resistor R28, resistor R29, resistor R74, resistor R75, capacitor C18, Capacitor C19, Capacitor C20, Capacitor C21, where the attitude sensor chip U5 is preferably a gyroscope, including pins 1 to 13, where pin 1, and the third voltage output terminal of the step-down module of the step-down module 106 Connected, a capacitor C21 is connected in series with the common terminal GND; a resistor R74 is connected in series with the pin 61 of the main control chip U6, and a resistor R28 is connected in series with the third voltage output terminal of the step-down module; Pin 3, there is a resistor R75 in series with the pin 62 of the main control chip U6, and a resistor R29 in series with the third voltage output terminal of the step-down module; pins 2
- Fig. 8 is a circuit principle diagram of a first PWM output unit according to a preferred embodiment of the present invention
- Fig. 9 is a circuit principle diagram of a first three-phase full bridge circuit according to a preferred embodiment of the present invention.
- the first PWM output unit of the first motor drive module 104 includes: a first PWM output chip U8, a diode DL1, a diode DL2, a diode DL3, a capacitor CL6, a capacitor CL8, a capacitor CL14, a capacitor CL15, and a resistor RL17, resistor RL23, resistor RL24, resistor RL25, resistor RL26, resistor RL28, wherein, the first PWM output chip U8 includes pins 1 to 20, wherein, pin 1, and the main control chip U6 pin 43 There is a resistor RL17 in series between; pin 2, a resistor RL24 in series with pin 42 of the main control chip U6; pin 3, a resistor RL26 in series with pin 41 of
- pin 7 is connected to the first voltage output end of the step-down module of the step-down module 106, and a capacitor CL6 is connected in series with the common terminal GND, which is between pin 14 of the first PWM output chip U8
- a diode DL1 is connected in series with the pin 17 of the first PWM output chip U8, a diode DL2 is connected in series with the pin 20 of the first PWM output chip U8, and a diode DL3 is connected in series with the pin 20 of the first PWM output chip U8; pin 8 is connected to the common terminal GND Connection; Pin 9, Pin 10, Pin 11, Pin 12, Pin 13, Pin 15, Pin 16, Pin 18, Pin 19 are connected to the first three-phase full bridge circuit; Pin 14.
- a capacitor CL15 is connected in series with pin 12; a capacitor CL14 is connected in series between pin 17 and pin 15; and a capacitor CL8 is connected in series between pin 20 and pin 18.
- the first three-phase full bridge circuit of the first motor drive module 104 includes: power tube ML1, power tube ML2, power tube ML3, power tube ML4, power tube ML5, power tube ML6, diode DL4, diode DL5, diode DL6, diode DL7, diode DL8, diode DL9, resistor RL8, resistor RL9, resistor RL10, resistor RL11, resistor RL12, resistor RL13, resistor RL14, resistor RL15, resistor RL16, resistor RL18, resistor RL19, resistor RL20, resistor RL21, resistor RL22, Capacitor CL3, Capacitor CL4, Capacitor CL7, Capacitor CL8, Capacitor CL9, Capacitor CL10, Capacitor CL11, Capacitor CL12, Capacitor CL13, where the source of power tube ML1 is connected to the voltage output terminal of the battery's power supply unit,
- the source of the power tube ML4 is connected to the first phase line X1, a resistor RL16 is connected in series between the gate of the power tube ML4 and the pin 11 of the first PWM output chip U8, and the diode DL7 is connected in reverse parallel to the resistor RL16, A resistor RL20 and a capacitor CL11 are also connected in series between the gate and drain of the power tube ML4, and a resistor RL14 is also connected in series between the source and drain of the power tube ML4; the source of the power tube ML2 is connected to the power supply unit of the battery.
- the voltage output terminal is connected, the drain of the power tube ML2 is connected to the third phase line X3 of the first motor and the pin 15 of the first PWM output chip U8, and the gate of the power tube ML2 is connected to the pin of the first PWM output chip U8
- a resistor RL19 is connected in series between 16, and a diode DL5 is connected in reverse parallel to the resistor RL19.
- a resistor RL12 and a capacitor CL9 are also connected in series between the gate and drain of the power tube ML2; the source of the power tube ML5 is connected to the third phase. Line X3 is connected.
- a resistor RL18 is connected in series between the gate of the power tube ML5 and the pin 10 of the first PWM output chip U8, and the diode DL8 is connected in anti-parallel to the resistor RL18, between the gate and drain of the power tube ML5
- a resistor RL21 and a capacitor CL12 are also connected in series respectively, and a resistor RL15 is also connected in series between the source and drain of the power tube ML5; the source of the power tube ML3 is connected to the voltage output terminal of the power supply unit of the battery, and the power supply unit of the battery
- a capacitor CL4 is connected in series between the voltage output terminal and the common terminal GND_L.
- the drain of the power tube ML3 is connected to the second phase line X2 of the first motor and the pin 12 of the first PWM output chip U8.
- the gate of the power tube ML3 is connected to the pin 12 of the first PWM output chip U8.
- First PWM A resistor RL10 is connected in series between the pin 13 of the output chip U8, and the diode DL6 is connected in anti-parallel to the resistor RL10.
- a resistor RL13 and a capacitor CL10 are connected in series between the gate and drain of the power tube ML3;
- the source is connected to the second phase line X2
- a resistor RL19 is connected in series between the gate of the power tube ML6 and the pin 9 of the first PWM output chip U8, and the diode DL9 is connected in anti-parallel to the resistor RL19, and the gate of the power tube ML6
- a resistor RL22 and a capacitor CL13 are respectively connected in series between the electrode and the drain, and a resistor RL37 is also connected in series between the source and the drain of the power tube ML6.
- the first PWM output chip U8 is a high-voltage drive chip, which can independently drive three half-bridge MOSFETs.
- VB and VS are the high-voltage side power supply
- HO is the high-voltage side drive output
- COM is the low-voltage side drive power supply
- LO is the low-voltage side drive output
- VCC is the digital circuit power supply.
- the upper and lower bridge arms are turned on alternately. Taking the half bridge where ML1 and ML4 are located as an example, whenever the lower bridge arm is turned on, the potential of the VS pin when the upper bridge arm is turned off is that of the lower bridge arm power tube ML4.
- the saturated conduction voltage drop is basically close to the ground potential.
- VCC charges the bootstrap capacitor CL8 through the bootstrap diode DL3 to make it close to the VCC voltage.
- the voltage at the VS terminal will increase. Since the voltage across the capacitor cannot change suddenly, the level of the VB terminal is close to the sum of the voltages at the VS and VCC terminals, while the voltage between VB and VS is still close VCC voltage.
- the bootstrap capacitor CL8 acts as a floating voltage source to drive the low-side power tube ML4; the bootstrap diode DL3 will be replenished in the next cycle when the low-side power tube ML4 is turned on.
- This kind of bootstrap power supply is realized by using the level of VS end to swing continuously between high and low levels. Since the bootstrap circuit does not require a floating power supply, it is the cheapest. The bootstrap circuit charges a capacitor, and the voltage on the capacitor fluctuates based on the source voltage of the high-side output transistor. Among them, the bootstrap diode DL3 is an important bootstrap device. It should be able to block the high voltage on the DC mains.
- the current it bears is the product of the gate charge and the switching frequency.
- the reverse leakage current should be small
- the power supply for the high voltage part of the chip comes from the charge on the bootstrap capacitor CL8; in order to ensure that the high voltage part of the circuit has sufficient energy supply, the size of C2 should be selected appropriately.
- the resistors RL8, RL16, RL9, RL18, RL10, and RL19 connected in series with the gate of the power tube are all anti-parallel connected with diodes DL4, DL7, DL5, DL8, DL6, and DL9 for stability.
- diodes DL4, DL7, DL5, DL8, DL6, and DL9 for stability.
- EMI electromagnetic interference
- Freewheeling resistors RL14, RL15, and RL37 are connected between the source and drain of the power tube to avoid the reverse current breakdown of the power tube after the motor stops.
- the power tube or other power switching devices in this embodiment may be switching devices such as MOSFETs or IGBTs.
- FIG. 10 is a schematic circuit diagram of a first current detection unit according to a preferred embodiment of the present invention.
- the first current detection unit of the first motor drive module 104 includes: a first differential operation chip U1A, a diode DL10, The diode DL11, the resistor RL29, the resistor RL30, the resistor RL31, the resistor RL32, the resistor RL33, the resistor RL34, the resistor RL35, and the resistor RL36.
- the first differential arithmetic chip includes pins 1 to 8, among which, pin 1, and The pin 25 of the main control chip U6 is connected; pin 2, a resistor RL29 is connected in series with pin 1, and a resistor RL31 is connected in series with the common terminal GND_L; pin 3 is connected in series with the first phase line X1
- the resistor RL35 is connected in series with the third voltage output terminal of the step-down module, and the diode DL10 is connected in series between pin 3 and pin 2; pin 4 is connected to the common terminal GND; pin 5 is connected to the third voltage output terminal.
- a resistor RL36 is connected in series between the three-phase line X3, a resistor RL34 is connected in series with the third voltage output terminal of the step-down module, and a diode DL11 is connected in series between pin 5 and pin 6; pin 6, and the common terminal GND_L
- a resistor RL32 is connected in series with pin 7 and a resistor RL30 is connected in series with pin 7; pin 7 is connected to pin 24 of the main control chip U6; pin 8 is connected to the third voltage output terminal of the step-down module.
- the circuit shown in FIG. 10 is used to detect the U-phase and V-phase currents of the motor, and send the detection results to the main control chip U6 for the main control chip U6 to protect the motor according to the U-phase and V-phase currents of the electrodes.
- FIG. 11 is a schematic circuit diagram of a first brake detection unit according to a preferred embodiment of the present invention.
- the first brake detection unit of the first motor drive module 104 includes: a transistor QL1, a resistor RL1, a resistor RL2, and a resistor RL5, capacitor CL1, wherein a resistor RL1 is connected in series between the collector of the transistor QL1 and the third voltage output terminal of the buck module, and a resistor RL2 is connected in series between the collector of the transistor QL1 and the pin 33 of the main control chip U6,
- the emitter of the transistor QL1 is connected to the common terminal GND, and a capacitor CL1 is connected in series between the emitter of the transistor QL1 and the pin 33 of the main control chip U6, and a resistor RL5 is connected in series between the base of the transistor QL1 and the common terminal GND_L.
- the above-mentioned first brake detection unit can be used to detect the current on the common terminal GND_L, and when the
- FIG. 12 is a schematic circuit diagram of the first total current detection unit according to a preferred embodiment of the present invention.
- the first total current detection unit of the first motor drive module 104 includes: a first differential arithmetic unit U7A, a resistor RL3, resistor RL4, resistor RL6, resistor RL7, capacitor CL2, wherein a resistor RL4 is connected in series between the negative input terminal of the first differential operator and the common terminal GND, and the negative input terminal of the first differential operator is connected to the first differential operator A resistor RL3 is connected in series between the negative input terminals of the first differential operator, a resistor RL6 is connected in series between the positive input terminal of the first differential operator and the third voltage output terminal of the buck module, and the positive input terminal of the first differential operator is connected to the common terminal.
- a resistor RL7 is connected in series between GND_L, a capacitor CL2 is connected in series between the positive input terminal of the first differential operator and the common terminal GND, the ground terminal of the first differential operator is connected to the common ground GND, and the power terminal of the first differential operator It is connected to the third voltage output terminal of the step-down module, and the output terminal of the first differential arithmetic unit is connected to the pin 9 of the main control chip U6.
- the above-mentioned total current detection unit is used to detect the total current output by the battery. When the total current exceeds a preset maximum value, the main control chip U6 performs power reduction processing to prevent the battery from overheating.
- Fig. 13 is a circuit schematic diagram of a first current sampling unit according to a preferred embodiment of the present invention.
- the first current sampling unit of the first motor drive module 104 includes a resistor RL27, which is connected to the common terminal GND_L and the common terminal GND_L. Between GND.
- the resistor RL27 is used to sample the current between the common terminal GND_L and the common terminal GND.
- the second motor drive module 105 and the first motor drive module 104 have the same circuit structure, and its functions and beneficial effects will not be described in detail.
- the second PWM output unit of the second motor drive module 105 includes: a second PWM output chip U9, diodes DR1, Diode DR2, diode DR3, capacitor CR6, capacitor CR8, capacitor CR14, capacitor CR15, resistor RR17, resistor RR23, resistor RR24, resistor RR25, resistor RR26, resistor RR27, wherein the second PWM output chip U9 includes pin 1 to lead Pin 20, of which, pin 1, and pin 39 of the main control chip U6 are connected in series with a resistor RR17; pin 2, and pin 38 of the main control chip U6 is connected in series with a resistor RR24; and pin 3 is connected in series with the pin 39 of the main control chip U6.
- resistor RR26 in series between pin 37 of the main control chip U6; a resistor RR23 is connected in series between pin 4 and pin 27 of the main control chip U6; pin 5, between pin 26 of the main control chip U6 Resistor RR25 is connected in series; pin 6, resistor RR27 is connected in series with pin 23 of the main control chip U6; pin 7 is connected to the second voltage output terminal of the step-down module of the step-down module 106, and is connected to the common terminal GND There is a capacitor CR6 in series between it, a diode DR1 in series with the pin 14 of the second PWM output chip U9, a diode DR2 in series with the pin 17 of the second PWM output chip U9, and the second PWM output chip U9 There is a diode DR3 in series between pins 20; pin 8 is connected to the common terminal GND; pin 9, pin 10, pin 11, pin 12, pin 13, pin 15, pin 16, pin Pin 18 and pin 19 are connected to the second three-phase full-bridge
- FIG. 15 is a circuit schematic diagram of a second three-phase full-bridge unit according to a preferred embodiment of the present invention.
- the second three-phase full-bridge unit of the second motor drive module 105 includes: a power tube MR1, a power tube MR2, power tube MR3, power tube MR4, power tube MR5, power tube MR6, diode DR4, diode DR5, diode DR6, diode DR7, diode DR8, diode DR9, resistor RR8, resistor RR9, resistor RR10, resistor RR11, resistor RR12 , Resistor RR13, resistor RR14, resistor RR15, resistor RR16, resistor RR18, resistor RR19, resistor RR20, resistor RR21, resistor RR22, capacitor CR3, capacitor CR5, capacitor CR7, capacitor CR8, capacitor CR9, capacitor CR10, capacitor CR11, capacitor CR12, capacitor CR13,
- a resistor RR8 and a diode DR4 are connected in series between the gate of the power tube MR1 and the pin 19 of the second PWM output chip U9. It is connected in anti-parallel to the resistor RR8, and a resistor RR11 and a capacitor CR7 are connected in series between the gate and drain of the power tube MR1; the source of the power tube MR4 is connected to the first phase line X4, and the gate of the power tube MR4 is connected to the first phase line X4.
- a resistor RR16 is connected in series between the pin 11 of the second PWM output chip U9, and the diode DR7 is connected in anti-parallel to the resistor RR16.
- the gate and drain of the power tube MR4 are also connected in series with a resistor RR20 and a capacitor CR11, respectively.
- a resistor RR14 is connected in series between the source and drain of the tube MR4; the source of the power tube MR2 is connected to the voltage output terminal of the battery's power supply unit, and the drain of the power tube MR2 is connected to the second phase line X6 of the second motor.
- the pin 15 of the second PWM output chip U9 is connected.
- a resistor RR19 is connected in series between the gate of the power tube MR2 and the pin 16 of the second PWM output chip U9, and the diode DR5 is connected in anti-parallel to the resistor RR19, and the power tube MR2
- a resistor RR12 and a capacitor CR9 are connected in series between the gate and drain respectively; the source of the power tube MR5 is connected to the second phase line X6, and the gate of the power tube MR5 is connected to the pin 10 of the second PWM output chip U9.
- a resistor RR18 is connected in series with the diode DR8 in reverse parallel connection with the resistor RR18.
- a resistor RR21 and a capacitor CR12 are connected in series between the gate and drain of the power tube MR5.
- the source and drain of the power tube MR5 are also connected in series.
- a resistor RR15 is connected in series; the source of the power tube MR3 is connected to the voltage output terminal of the battery power supply unit, and a capacitor CR4 is connected in series between the voltage output terminal of the battery power supply unit and the common terminal GND_R.
- the third phase line of the second motor X5 is connected to pin 12 of the second PWM output chip U9.
- a resistor RR10 is connected in series between the gate of the power tube MR3 and pin 13 of the second PWM output chip U9, and the diode DR6 is connected in anti-parallel to the resistor RR10.
- a resistor RR13 and a capacitor CR10 are connected in series between the gate and drain of the tube MR3; the source of the power tube MR6 is connected to the third phase line X5, and the gate of the power tube MR6 is connected to the pin of the second PWM output chip U9
- a resistor RR19 is connected in series between 9 and a diode DR9 is connected in anti-parallel to the resistor RR19.
- a resistor RR22 and a capacitor CR13 are connected in series between the gate and drain of the power tube MR6.
- the source and drain of the power tube MR6 are connected in series. There is also a resistor RR37 in series between.
- FIG. 16 is a circuit schematic diagram of the second current detection unit according to a preferred embodiment of the present invention.
- the second current detection unit of the second motor drive module 105 includes: a second differential operation chip, a diode DR10, and a diode DR11, resistor RR29, resistor RR30, resistor RR31, resistor RR32, resistor RR33, resistor RR34, resistor RR35, resistor RR36.
- the second differential operation chip includes pin 1 to pin 8.
- pin 1 and the main The pin 14 of the control chip U6 is connected; pin 2, a resistor RR29 is connected in series with pin 1, and a resistor RR31 is connected in series with the common terminal GND_R; pin 3, a resistor is connected in series with the first phase line X4 RR35, a resistor RR33 is connected in series with the third voltage output terminal of the step-down module, and a diode DR10 is connected in series between pin 3 and pin 2; pin 4 is connected to the common terminal GND; pin 5 is connected to the second A resistor RR36 is connected in series between the phase line X6, and a resistor RR34 is connected in series with the third voltage output terminal of the step-down module.
- a diode DR11 is connected in series between pins 5 and 6; There is a resistor RR32 in series with pin 7 and a resistor RR30 in series with pin 7; pin 7 is connected to pin 11 of the main control chip U6; pin 8 is connected to the third voltage output terminal of the step-down module.
- FIG. 17 is a schematic circuit diagram of the second brake detection unit according to a preferred embodiment of the present invention.
- the second brake detection unit of the second motor drive module 105 includes: a transistor QR1, a resistor RR1, a resistor RR2, and a resistor RR5. Capacitor CR1.
- a resistor RR1 is connected in series between the collector of the transistor QR1 and the third voltage output terminal of the buck module.
- a resistor RR2 is connected in series between the collector of the transistor QR1 and the pin 22 of the main control chip U6.
- the emitter of the transistor QR1 is connected to the common terminal GND, and a capacitor CR1 is connected in series between the emitter of the transistor QR1 and the pin 22 of the main control chip U6, and a resistor RR5 is connected in series between the base of the transistor QR1 and the common terminal GND_R.
- FIG. 18 is a schematic circuit diagram of the second total current detection unit according to a preferred embodiment of the present invention.
- the second total current detection unit of the second motor drive module 105 includes: a second differential arithmetic unit, a resistor RR3 , Resistor RR4, resistor RR6, resistor RR7, capacitor CR2, wherein a resistor RR4 is connected in series between the negative input terminal of the second differential operator and the common terminal GND, and the negative input terminal of the second differential operator is connected to the second differential operator A resistor RR3 is connected in series between the negative input terminals of the second differential operator, a resistor RR6 is connected in series between the positive input terminal of the second differential operator and the third voltage output terminal of the buck module, and the positive input terminal of the second differential operator is connected to the common terminal GND_R A resistor RR7 is connected in series between the positive input terminal of the second differential operator and the common terminal GND is connected in series with a capacitor CR2, the ground terminal of the second
- FIG. 19 is a circuit schematic diagram of the second current sampling unit according to a preferred embodiment of the present invention.
- the second current sampling unit of the second motor drive module 105 includes a resistor RR28, which is connected to the common terminal GND_R and the common terminal GND_R. Between the terminals GND, the resistor RR28 is a zero-ohm resistor.
- the power supply unit of the step-down module 106 includes: socket P17, socket P18, capacitor C37, capacitor C38, capacitor C39, capacitor C40, Among them, the capacitor C37, the capacitor C38, the capacitor C39, and the capacitor C40 are respectively connected in series between the socket P17 and the socket P18, and the socket P18 is connected to the common terminal GND;
- FIG. 21 is a schematic circuit diagram of a first step-down unit according to a preferred embodiment of the present invention.
- the first step-down unit of the step-down module 106 includes: a power MOSFET chip U10, a first step-down chip U11, Resistor R66, resistor R68, resistor R71, resistor R73, resistor R60, resistor R63, resistor R57, resistor R56, resistor R54, resistor R53, resistor R52, resistor R55, resistor R58, resistor R59, resistor R62, capacitor C54, capacitor C46 , Capacitor C36, Capacitor C41, Capacitor C42, Capacitor C43, Capacitor C45, Capacitor C44, Inductor L3, Transient Diode DZ1, Diode D6, Diode D7, Diode D4, Diode D3, Diode D5, Transistor Q9, Power Tube Q8, Switch Interface P19, where,
- the power MOSFET chip U10 includes pin 1, pin 2 and pin 3.
- pin 1 is connected in series with the voltage output terminal of the battery's power supply unit, and there is a resistor R56 in series with the collector of the transistor Q9.
- R57 the emitter of the transistor Q9 is connected to the common terminal GND
- a resistor R63 and a capacitor R46 are respectively connected in series between the base and the emitter of the transistor Q9
- a resistor R53 and a resistor are connected in series between the pin 2
- a capacitor C41 is connected in series with the common terminal GND
- the connection node of the resistor R53 and the resistor R54 is connected to the pin 10 of the main control chip U6, and the connection node of the resistor R53 and the resistor R54 is connected in series with the common terminal GND
- capacitor C36 pin 3 is connected to the voltage output terminal of the battery's power supply unit, and a diode D4 is connected in series with the charging terminal B
- the switch interface P19 includes pin 1 and pin 2. Among them, a diode D6 and a resistor R60 are connected in series between the pin 1 and the base of the transistor Q9, and a resistor R71 and a capacitor C54 are connected in series with the common terminal GND. And the connection node of the resistor R71 and the capacitor C54 is connected to the pin 40 of the main control chip U6, a resistor R68 is connected in series with the common terminal GND, and a transient diode DZ1, a diode D6 and a resistor R60 are connected in parallel on the resistor R68. A diode D7 and a resistor R73 are connected in series between the connection node and the common terminal GND. The connection node of the diode D7 and the resistor R73 is connected to the pin 28 of the main control chip U6; pin 2 is the voltage output of the battery power supply unit A resistor R66 is connected in series between the terminals.
- an automatic reset switch is connected to the switch interface P19.
- the transistor Q9 is turned on, the power MOSFET chip U10 starts to work, the pin 3 and the pin 2 are turned on, the 54V voltage is output to the first step-down chip, and the step-down module 106 is powered on.
- a high-level signal is generated at the PC9 to notify the main control chip U6 that the automatic reset switch is pressed.
- the main control chip U6 Since the automatic reset switch is about to reset after a short period of time after being pressed, in order to keep the step-down module 106 working, the main control chip U6 outputs a high-level signal from the PB2 pin to keep the transistor Q9 turned on, thereby maintaining the drop The pressure module 106 continues to work.
- a detection circuit is connected to pin 2 of the power MOSFET chip U10 to detect the power-on condition of the step-down module 106 and report it to the main control chip U6.
- the first step-down chip U11 includes pins 1 to 8, wherein a resistor R52 is connected in series between the pin 1 and the power tube Q8, and is connected in series with the first voltage output terminal of the step-down module of the step-down module 106 There is a diode D3, a capacitor C42 and an inductor L3 are connected in series with the first voltage output terminal of the step-down module; pin 2, a resistor R55 is connected in series with the first voltage output terminal of the step-down module, and a capacitor C42 and A capacitor C43 and a resistor R58 are connected in series between the connection nodes of the inductor L3; pin 3 is suspended; pin 4, a resistor R59 is connected in series with the connection node of the capacitor C42 and the inductor L3, and the source of the power tube Q8 Connection; Pin 5, connected to the gate of the power tube Q8; Pin 6, Pin 7 floating; Pin 8, connected to the connection node of the capacitor C42 and the inductor L3; The connection node of the capacitor C42 and
- FIG. 22 is a schematic circuit diagram of a second step-down unit according to a preferred embodiment of the present invention.
- the second step-down unit 106 of the step-down module 106 includes: a second step-down chip U12, a resistor R65, and a resistor R69, resistor R67, resistor R70, resistor R64, capacitor C50, capacitor C51, capacitor C47, capacitor C53, capacitor C48, capacitor C49, inductor L7, where the second step-down chip U12 includes pins 1 to 6, where , Pin 1, and the second voltage output terminal of the step-down module are connected in series with a capacitor C47, an inductor L4; Pin 2, connected with the common terminal GND; Pin 3, with a resistor R70 connected in series with the common terminal GND A resistor R67 and a capacitor C48 are connected in series with the second voltage output terminal of the buck module; a resistor R65 is connected in series with the first voltage output terminal of the buck module, and a resistor R
- a resistor R69 and a capacitor C53 are connected in series; pin 5 is connected to the first voltage output terminal of the step-down module, and a capacitor C50 and a capacitor C51 are connected in series with the common terminal GND; pin 6 is connected to the capacitor C47 and the inductor L4 The connection node is connected; a capacitor C49 is also connected in series between the second voltage output terminal and the common terminal of the step-down module, and a resistor R64 is also connected in series with the second voltage output terminal of the step-down module, and the resistor R64 is a zero-ohm resistance;
- FIG. 23 is a circuit schematic diagram of a third step-down unit according to a preferred embodiment of the present invention.
- the third step-down unit of the step-down module 106 includes: a third step-down chip U13, a resistor R72, and a capacitor C55 , Capacitors C56, C57 and C58, of which,
- the third step-down chip U13 includes pins 1 to 4, wherein pin 1 is connected to the common terminal GND; pin 2 is connected to the third voltage output terminal of the step-down module; pin 3 is connected to the step-down module The second voltage output terminal of the module is connected; a capacitor C55 is connected in series between pin 3 and the common terminal GND, and capacitors C56, C57, and C58 are connected in series between the third voltage output terminal of the step-down module and the common terminal GND, respectively.
- a resistor R72 is connected in series between the third voltage output terminal and the fourth voltage output terminal of the voltage module.
- FIG. 24 is a schematic circuit diagram of a first photoelectric switch interface unit according to a preferred embodiment of the present invention.
- the first photoelectric switch interface unit of the external interface module 107 includes: a first photoelectric switch interface P3, a resistor R12, Capacitor C12,
- the first photoelectric switch interface P3 includes pin 1, pin 2, and pin 3.
- pin 1 is connected to the third voltage output terminal of the step-down module;
- pin 2 is connected to the common terminal GND;
- Pin 3 is connected to pin 58 of the main control chip U6, and a resistor R12 and a capacitor C12 are respectively connected in series with the common terminal GND;
- FIG. 25 is a schematic circuit diagram of a second photoelectric switch interface unit according to a preferred embodiment of the present invention.
- the second photoelectric switch interface unit of the external interface module 107 includes: a second photoelectric switch interface P7, a resistor R15, Capacitor C15,
- the second photoelectric switch interface P7 includes pin 1, pin 2, and pin 3.
- pin 1 is connected to the third voltage output terminal of the step-down module;
- pin 2 is connected to the common terminal GND;
- Pin 3 is connected to pin 54 of the main control chip U6, and a resistor R15 and a capacitor C15 are respectively connected in series with the common terminal GND.
- Fig. 26 is a schematic circuit diagram of a steering sensor interface unit according to a preferred embodiment of the present invention.
- the steering sensor interface unit includes: steering sensor interface P10, resistor R23, capacitor C16, and capacitor C17, wherein the steering sensor interface P10 includes pin 1, pin 2, and pin 3.
- pin 1 is connected to the third voltage output terminal of the step-down module, and a capacitor C16 is connected in series with the common terminal GND; pin 2, and the common terminal GND connection; a resistor R23 is connected in series between pin 3 and pin 15 of the main control chip U6, and a capacitor C17 is connected in series with the common terminal GND.
- Figure 27 is a circuit schematic diagram of a turn signal interface unit according to a preferred embodiment of the present invention.
- the turn signal interface unit includes: a first turn signal interface P5, a second turn signal interface P8, a resistor R16, and a resistor R17 , Resistor R26, Resistor R27, Resistor R21, LED DS2, Transistor Q1, Transistor Q2, among them,
- the first turn signal interface P5 includes pin 1, pin 2, and pin 3. Among them, pin 1 is connected to the collector of diode Q2 with a resistor R17 in series; pin 2 is connected to pin 1; 3. Connect with the first voltage output terminal of the step-down module;
- the second turn signal interface P8 includes pin 1, pin 2, and pin 3. Among them, pin 1 is connected to the collector of diode Q1 with resistor R16 in series; pin 2 is connected to pin 1; 3. Connect to the first voltage output terminal of the step-down module; the emitter of the transistor Q1 is connected to the common terminal GND, the base of the transistor Q1 and the pin 50 of the main control chip U6 are connected in series with a resistor R26, and the transistor Q2 emits The pole is connected to the common terminal GND.
- a resistor R27, a resistor R21, and a light-emitting diode DS2 are connected in series between the base of the transistor Q2 and the common terminal GND.
- the connection node of the resistor R27 and the resistor R21 is connected to the pin 44 of the main control chip U6. .
- Fig. 28 is a schematic circuit diagram of a fault light interface unit according to a preferred embodiment of the present invention.
- the fault light interface unit includes: a fault light interface P9, a resistor R19, a resistor R20, a resistor R24, a resistor R25, and a transistor Q4 , Transistor Q5, where the fault light interface P9 includes pin 1, pin 2, pin 3, and pin 4.
- resistor R20 in series between pin 1, and the collector of transistor Q5; pin 2, A resistor R19 is connected in series with the collector of the transistor Q4; pin 3 is suspended; pin 4 is connected to the first voltage output terminal of the step-down module; the emitter of the transistor Q4 is connected to the common terminal GND, and the base of the transistor Q4 A resistor R24 is connected in series with the pin 5 of the main control chip U6, the emitter of the transistor Q5 is connected to the common terminal GND, and a resistor R25 is connected in series between the base of the transistor Q5 and the pin 6 of the main control chip U6.
- Figure 29 is a schematic circuit diagram of the first secondary board communication interface unit according to a preferred embodiment of the present invention.
- the first secondary board communication interface unit includes: a first secondary board communication interface P4, a resistor R10, and a resistor R11 , Resistor R13, Resistor R14, Capacitor C13, Capacitor C14, wherein the first sub-board communication interface P4 includes pins 1 to 7, wherein pin 1 is connected to the first voltage output terminal of the step-down module; lead Pin 2, a resistor R10 is connected in series with pin 29 of the main control chip U6; pin 3, a resistor R11 is connected in series with pin 30 of the main control chip U6; pin 4, connected to the common terminal GND; lead Pin 5 is connected in series with the common terminal GND with resistor R13, capacitor C14, the connection node of resistor R13 and capacitor C14 is connected to pin 21 of the main control chip U6; pin 6 is connected in series with the common terminal GND There is a resistor R14,
- FIG. 30 is a schematic circuit diagram of a second slave board communication interface unit according to a preferred embodiment of the present invention.
- the second slave board communication interface unit includes: a second slave board communication interface P20, a resistor R61, and a resistor R76 , Resistor R77, where the second sub-board communication interface P20 includes pins 1 to 5.
- a resistor R61 is connected in series between pin 1 and pin 53 of the main control chip U6; pin 2 is connected to the common Terminal GND connection; pin 3, there is a resistor R76 in series with the pin 62 of the main control chip U6; pin 4, there is a resistor R77 in series with the pin 61 of the main control chip U6; pin 5, with a drop
- the second voltage output terminal of the voltage module is connected.
- FIG. 31 is a schematic circuit diagram of a program burning device interface unit according to a preferred embodiment of the present invention.
- the program burning device interface unit includes: a program burning device interface P11, wherein the program burning device interface P11 It includes pin 1, pin 2, pin 3 and pin 4. Among them, pin 1 is connected to the third voltage output terminal of the step-down module; pin 2 is connected to pin 49 of the main control chip U6; Pin 3 is connected to the common terminal GND; pin 4 is connected to pin 46 of the main control chip U6.
- Fig. 32 is a circuit principle diagram of a rotation speed detection interface unit according to a preferred embodiment of the present invention.
- the rotation speed detection interface unit includes: a first rotation speed detection interface P13, a second rotation speed detection interface P16, a diode D2, and a resistor R35 , Resistor R36, resistor R37, resistor R39, resistor R40, resistor R41, resistor R46, resistor R47, resistor R48, resistor R49, resistor R50, resistor R51, capacitor C23, capacitor C24, capacitor C25, capacitor C28, capacitor C29, capacitor C30, where
- the first rotational speed detection interface P13 includes pins 1 to 5, wherein a diode D2 is connected in series between pin 1 and the second voltage output terminal of the step-down module; pin 2 is connected to the third voltage of the step-down module A resistor R35 is connected in series between the output terminals, and a resistor R39 and a capacitor C25 are connected in series with the common terminal GND. The connection node of the resistor R39 and the capacitor C25 is connected to the pin 4 of the main control chip U6; A resistor R36 is connected in series between the third voltage output terminal of the voltage module, and a resistor R40 and a capacitor C24 are sequentially connected in series with the common terminal GND.
- connection node of the resistor R40 and the capacitor C24 is connected to the pin 3 of the main control chip U6; Pin 4, a resistor R37 is connected in series with the third voltage output terminal of the step-down module, and a resistor R41 and a capacitor C23 are connected in series with the common terminal GND.
- the connection node of the resistor R41 and the capacitor C23 is connected to the main control chip U6. ⁇ PIN 2 connection;
- the second speed detection interface P16 includes pins 1 to 5, among which, pin 1 is connected in series with the second voltage output terminal of the step-down module with a diode D2; pin 2 is connected to the third voltage of the step-down module A resistor R46 is connected in series between the output terminals, and a resistor R49 and a capacitor C30 are connected in series with the common terminal GND. The connection node of the resistor R49 and the capacitor C30 is connected to the pin 53 of the main control chip U6; A resistor R47 is connected in series between the third voltage output terminal of the voltage module, and a resistor R50 and a capacitor C29 are sequentially connected in series with the common terminal GND.
- connection node of the resistor R50 and the capacitor C29 is connected to the pin 52 of the main control chip U6; Pin 4, a resistor R48 is connected in series with the third voltage output terminal of the step-down module, and a resistor R51 and a capacitor C28 are connected in series with the common terminal GND.
- the connection node of the resistor R51 and the capacitor C28 is connected to the main control chip U6.
- the pin 51 is connected.
- the above-mentioned speed detection interface can be used to connect a Hall encoding unit or a photoelectric encoding unit to realize the detection of the speed.
- Fig. 33 is a circuit schematic diagram of an RGB lamp interface unit according to a preferred embodiment of the present invention.
- the RGB lamp interface unit includes: a first RBG lamp interface P12, a second RGB lamp interface P14, a resistor R34, and a resistor R38 , Capacitor C22, among them,
- the first RGB light interface P12 includes pin 1, pin 2, and pin 3. Among them, pin 1 is connected to the second voltage output terminal of the step-down module, and a capacitor C22 is connected in series with the common terminal GND; 2. A resistor R34 is connected in series with pin 1, and a resistor R38 is connected in series with pin 57 of the main control chip U6; pin 3 is connected to the common terminal GND;
- the second RGB light interface P14 includes pin 1, pin 2, and pin 3. Among them, pin 1 is connected to pin 1 of the first RGB light interface P14; pin 2 is connected to the first RGB light interface P14. Pin 2 is connected; pin 3 is connected to the common terminal GND.
- Fig. 34 is a circuit schematic diagram of a charging interface unit according to a preferred embodiment of the present invention.
- the charging interface unit includes: a charging interface P15, a resistor R43, a resistor R44, a resistor R45, a transistor Q7, and a capacitor C27.
- the charging interface P15 includes pin 1, pin 2, pin 3, and pin 4. Among them, pin 1, a resistor R45 is connected in series with the common terminal GND, and a resistor R43 and a resistor are connected in series with the common terminal GND.
- the transistor Q7 connected to the charging terminal BAT_Charge; pin 2, connected to pin 1; pin 3, pin 4, connected to the common terminal GND; the connection node of the resistor R43 and the resistor R44 is connected to the base of the transistor Q7, the transistor The collector of Q7 is connected to the pin 45 of the main control chip U6, the emitter of the transistor Q7 is connected to the common terminal GND, and a capacitor C27 is connected in series between the collector of the transistor Q7 and the emitter of the transistor Q7. Among them, the transistor Q7 is used to detect the charging state, and feedback the charging state to the main control chip U6.
- Fig. 35 is a circuit schematic diagram of a buzzer module according to a preferred embodiment of the present invention.
- the buzzer module includes: a buzzer, a diode D1, a transistor Q6, a resistor R31, and a resistor R30.
- One end of the buzzer is connected to the first voltage output terminal of the step-down module, the other end of the buzzer is connected to the collector of the transistor Q6, a diode D1 and the emitter of the transistor Q6 are connected in series between one end and the other end of the buzzer Connected to the common terminal GND, a resistor R31 is connected in series between the base of the transistor Q6 and the common terminal GND, and a resistor R30 is connected in series between the base of the transistor Q6 and the pin 59 of the main control chip U6.
- FIG. 36 is a schematic circuit diagram of a Bluetooth power-on indicator module according to a preferred embodiment of the present invention.
- the Bluetooth power-on indicator module includes: a light-emitting diode DS1 and a resistor R9, wherein the anode of the light-emitting diode DS1 is connected to the voltage drop The fourth voltage output terminal of the module is connected, and a resistor R9 is connected in series between the cathode of the light-emitting diode DS1 and the pin 2 of the dual-mode Bluetooth chip U3.
- Fig. 37 is a schematic diagram of a circuit layout according to a preferred embodiment of the present invention.
- a balance car which includes the aforementioned balance car control system.
Landscapes
- Engineering & Computer Science (AREA)
- Aviation & Aerospace Engineering (AREA)
- Radar, Positioning & Navigation (AREA)
- Remote Sensing (AREA)
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Automation & Control Theory (AREA)
- Electric Propulsion And Braking For Vehicles (AREA)
Abstract
一种平衡车控制系统和平衡车。其中,平衡车控制系统将主控模块(101)、双模蓝牙模块(102)、姿态传感器模块(103)、第一电机驱动模块(104)、第二电机驱动模块(105)、降压模块(106)、外部接口模块(107)均配置在主板上(100)。通过本发明,解决了相关技术中的平衡车控制系统的离散化程度高的问题,提高了平衡车控制系统的集成度。
Description
本发明涉及控制领域,特别是涉及一种平衡车控制系统和平衡车。
平衡车,又叫体感车、思维车,包括独轮平衡车和双轮平衡车。其运作原理是利用车体内部的姿态传感器(例如陀螺仪、加速度传感器等)来检测车体姿态的变化,并利用控制系统精确地驱动电机进行相应的调整,以实现相应的功能。
以独轮平衡车为例,独轮平衡车依靠独轮转动后的角动量抵御外力矩,从而实现转向或者保持自平衡。独轮平衡车采用陀螺仪来检测车体姿态的变化,从而实现加速、减速或者制动。例如,当人站立在运行的独轮平衡车上后,身体往前倾使得独轮平衡车的载人平台前倾,陀螺仪检测到载人平台前倾则利用控制系统驱动电机加速,人体前倾产生的水平向前的力与独轮平衡车加速的惯性力保持平衡,人体不至于倾倒,从而实现了独轮平衡车加速。独轮平衡车的制动原理亦是如此。
再以双轮平衡车为例,双轮平衡车多采用两个轮子中内置的轮毂电机的转速差来控制转向。双轮平衡车的加速或者制动原理与独轮平衡车基本相同,而双轮平衡车的转向控制不同于独轮平衡车:
具有操纵杆的双轮平衡车依靠手或者双腿控制操作杆的偏移方向,霍尔转向传感器检测到操作杆的偏移方向后转换为控制信号,主控芯片根据控制信号控制两个轮子中内置的轮毂电机的转速差实现转向。
具有双踏板且踏板可以绕主轴相对转动的双轮平衡车,又称为电动扭扭车,则依靠每个踏板下设置的陀螺仪来采集每个踏板的姿态并生成一对控制信号,主控芯片根据这对控制信号判断出每个踏板的姿态后,控制两个轮子中内置的轮毂电机的转速差实现转向。
为了实现上述的功能,在狭小的平衡车内部空间内,需要设置电池、搭载有各种控制器件的主板,有的平衡车为了在车体两个踏板下都设置姿态传感器则还需要额外配置副板。
最初的平衡车主板上仅配置了保证平衡车正常运转所需的电路,随着新的功能的逐渐加入,在主板上没有预留空间来安置这些新增功能,主控芯片因处理速度或者引脚数量的限制也逐渐不足以实现对这些功能的支持,因此,越来越多的功能被配置在副板上。例如,经典蓝牙和低功耗蓝牙的信号不兼容,为了同时具备蓝牙通讯和蓝牙音频功能,在平衡车控制系统中需要配置用于蓝牙通讯的低功耗蓝牙电路和用于蓝牙音频的经典蓝牙电路;又由于主板空间限制,这两个蓝牙电路被分别设置在两个副板上;如果采用双模蓝牙模块,由于现有的双模蓝牙解决方案都需要使用外部处理器才足以实现蓝牙协议栈,因此,除了在副板上设置双模蓝牙模块之外,副板上还需要额外配置控制芯片来支持双模蓝牙功能。这种离散化的电路结构,不仅导致了平衡车控制系统的集成度愈加下降、多个控制芯片之间的交互愈加复杂,离散化的电路结构还降低了平衡车的稳定性,还增加了平衡车控制系统的功耗。
基于此,本发明实施例提供了一种平衡车控制系统及具有该平衡车控制系统的平衡车,以至少解决相关技术中的平衡车控制系统的离散化程度高的问题。
根据本发明实施例的一个方面,提供了一种平衡车控制系统,包括:主板,以及设置在所述主板上的主控模块、双模蓝牙模块、姿态传感器模块、第一电机驱动模块、第二电机驱动模块、降压模块、外部接口模块;其中,
所述姿态传感器模块与所述主控模块连接,所述姿态传感器模块用于根据平衡车的姿态生成检测信号;
所述双模蓝牙模块与所述主控模块连接,所述双模蓝牙模块用于接收和发送通讯信号,以及接收和处理音频信号;
所述主控模块,用于根据所述检测信号控制所述第一电机驱动模块和所述第二电机驱动模块,主控模块还用于控制所述双模蓝牙模块,以及与所述外部接口模块连接的外部器件;
所述第一电机驱动模块与所述主控模块连接,用于控制第一电机的转速和转向;
所述第二电机驱动模块与所述主控模块连接,用于控制第二电机的转速和转向;
所述降压模块的输入端与电池连接,输出端分别与所述主控模块、所述双模蓝牙模块、所述姿态传感器模块、所述第一电机驱动模块、所述第二电机驱动模块以及所述外部接口模块连接,所述降压模块用于将所述电池的输出电压转换为所述主控模块、所述双模蓝牙模块、所述姿态传感器模块、所述第一电机驱动模块、所述第二电机驱动模块以及外部接口模块所需的工作电压。
根据本发明实施例的另一个方面,还提供了一种平衡车,包括如第一方面所述的平衡车控制系统。
通过本发明实施例提供的平衡车控制系统及平衡车,将主控模块、双模蓝牙模块、姿态传感器模块、第一电机驱动模块、第二电机驱动模块、降压模块、外部接口模块均配置在主板上,解决了相关技术中的平衡车控制系统的离散化程度高的问题,提高了平衡车控制系统的集成度。
图1是根据本发明实施例的平衡车控制系统的结构框图;
图2是根据本发明实施例的平衡车控制系统的优选结构框图;
图3是根据本发明优选实施例的主控模块的电路原理图;
图4是根据本发明优选实施例的双模蓝牙模块的电路原理图;
图5是根据本发明优选实施例的晶体振荡器单元的电路原理图;
图6是根据本发明优选实施例的功率放大器单元的电路原理图;
图7是根据本发明优选实施例的姿态传感器模块的电路原理图;
图8是根据本发明优选实施例的第一PWM输出单元的电路原理图;
图9是根据本发明优选实施例的第一三相全桥电路的电路原理图;
图10是根据本发明优选实施例的第一电流检测单元的电路原理图;
图11是根据本发明优选实施例的第一刹车检测单元的电路原理图;
图12是根据本发明优选实施例的第一总电流检测单元的电路原理图;
图13是根据本发明优选实施例的第一电流采样单元的电路原理图;
图14是根据本发明优选实施例的第二PWM输出单元的电路原理图;
图15是根据本发明优选实施例的第二三相全桥单元的电路原理图;
图16是根据本发明优选实施例的第二电流检测单元的电路原理图;
图17是根据本发明优选实施例的第二刹车检测单元的电路原理图;
图18是根据本发明优选实施例的第二总电流检测单元的电路原理图;
图19是根据本发明优选实施例的第二电流采样单元的电路原理图;
图20是根据本发明优选实施例的供电单元的电路原理图;
图21是根据本发明优选实施例的第一降压单元的电路原理图;
图22是根据本发明优选实施例的第二降压单元的电路原理图;
图23是根据本发明优选实施例的第三降压单元的电路原理图;
图24是根据本发明优选实施例的第一光电开关接口单元的电路原理图;
图25是根据本发明优选实施例的第二光电开关接口单元的电路原理图;
图26是根据本发明优选实施例的转向传感器接口单元的电路原理图;
图27是根据本发明优选实施例的转向灯接口单元的电路原理图;
图28是根据本发明优选实施例的故障灯接口单元的电路原理图;
图29是根据本发明优选实施例的第一副板通讯接口单元的电路原理图;
图30是根据本发明优选实施例的第二副板通讯接口单元的电路原理图;
图31是根据本发明优选实施例的程序烧录设备接口单元的电路原理图;
图32是根据本发明优选实施例的转速检测接口单元的电路原理图;
图33是根据本发明优选实施例的RGB灯接口单元的电路原理图;
图34是根据本发明优选实施例的充电接口单元的电路原理图;
图35是根据本发明优选实施例的蜂鸣器模块的电路原理图;
图36是根据本发明优选实施例的蓝牙上电指示模块的电路原理图;
图37是根据本发明优选实施例的电路布局示意图。
为了使本申请的目的、技术方案及优点更加清楚明白,以下结合附图及实施例,对本申请进行进一步详细说明。应当理解,此处描述的具体实施例仅仅用以解释本申请,并不用于限定本申请。
在本实施例中提供了一种平衡车控制系统。图1是根据本发明实施例的平衡车控制系统的结构框图,其中,粗实线表示供电线路,细实线表示通讯线路。
如图1所示,该平衡车控制系统包括:主板100,以及设置在主板100上的主控模块101、双模蓝牙模块102、姿态传感器模块103、第一电机驱动模块104、第二电机驱动模块105、降压模块106、外部接口模块107;其中,
姿态传感器模块103与主控模块101连接,姿态传感器模块103用于根据平衡车的姿态生成检测信号;
双模蓝牙模块102与主控模块101连接,双模蓝牙模块102用于接收和发送通讯信号,以及接收和处理音频信号;
主控模块101,用于根据检测信号控制第一电机驱动模块104和第二电机驱动模块105,主控模块101还用于控制双模蓝牙模块102,以及与外部接口模块107连接的外部器件;
第一电机驱动模块104与主控模块101连接,用于控制第一电机转速和转向;
第二电机驱动模块105与主控模块101连接,用于控制第二电机转速和转向;
降压模块106的输入端与电池连接,降压模块106的输出端分别与主控模块101、双模蓝牙模块102、姿态传感器模块103、第一电机驱动模块104、第二电机驱动模块105以及外部接口模块107连接,降压模块106用于将电池的输出电压转换为主控模块101、双模蓝牙模块102、姿态传感器模块103、第一电机驱动模块104、第二电机驱动模块105以及外部接口模块107所需的工作电压。
相对于相关技术而言,本实施例提供的平衡车控制系统,使用双模蓝牙模块102替代蓝牙数据同步电路和蓝牙音频电路,并且将双模蓝牙模块102集成到平衡车控制系统的主板100上,不仅提高了平衡车控制系统的集成度,而且主控模块101与双模蓝牙模块102直接连接,不再需要引入额外的控制芯片来处理双模蓝牙模块102的蓝牙协议栈,从而降低了功耗,有利于提高平衡车控制系统的稳定性,此外,将双蓝牙模块102集成到主板100上,通过PCB板走线与主控模块101通信,相对于使用跨接的传输线通信而言,还减少了干扰,使得信号传输更稳定。
在本实施例中,主控模块101中主控芯片的选型优选采用主频高于70MHz、整数计算能力(DMIPS)高于60的单片机,此外还可以根据外围电路所需的引脚来确定具体的主控芯片。例如,STM32F1系列单片机中具有64个引脚或者更多引脚的单片机就可以满足需求,并具备一定的扩展能力。
在一些实施例中,双模蓝牙模块102包括:双模蓝牙芯片单元、天线、晶体振荡器单元和功率放大器单元;其中,双模蓝牙芯片单元分别与天线、晶体振荡器单元、功率放大器单元,以及主控模块101连接;双模蓝牙芯片和功率放大器单元分别与降压模块106的输出端连接。
其中,晶体振荡器单元用于为双模蓝牙芯片单元提供时钟频率,功率放大器用于为音频信号放大后驱动扬声器发声。
在本实施例中,双模蓝牙芯片单元中蓝牙芯片的选型优选采用支持蓝牙4.2协议、同时支持经典蓝牙(BR/EDR)和低功耗蓝牙(BLE)的双模蓝牙芯片,包括但不限于:高通QCC5100系列芯片、杰理AC6900系列芯片、建荣CW6691系列芯片、炬力ATS2825系列芯片等。
在一些实施例中,第一电机驱动模块104和第二电机驱动模块105是基本相同的。其中,第一电机驱动模块104包括:第一PWM输出单元和第一三相全桥驱动单元;其中,第一PWM输出单元分别与第一三相全桥驱动单元、主控模块101,以及降压模块106的输出端连接;第一三相全桥驱动单元分别与电池的输出端,以及第一电机连接。第二电机驱动模块105包括:第二PWM输出单元和第二三相全桥驱动单元;其中,第二PWM输出单元分别与第二三相全桥驱动单元、主控模块101,以及降压模块106的输出端连接;第二三相全桥驱动单元分别与电池的输出端,以及第二电机连接。
在本实施例中,第一PWM输出单元和第二PWM输出单元中芯片的选型可以采用三个分别集成了一个半桥驱动的高压驱动芯片实现三相直流电机的正转和反转,例如IR2104系列芯片;优选采用的是集成了三个半桥驱动的高压驱动芯片,以节省占用主板的空间,例如,FD6287系列芯片集成了三个独立的半桥栅极驱动集成电路芯片,专为高压、高速驱动MOSFET和IGBT设计,可在高达+250V电压下工作。此外,FD6287系列芯片内置VCC/VBS欠压(UVLO)保护功能,防止功率管在过低的电压下工作。FD6287内置直通防止和死区时间,防止被驱动的高低侧MOSFET或IGBT直通,有效保护功率器件。FD6287系列芯片还内置输入信号滤波,防止输入噪声干扰。
在一些实施例中,第一电机驱动模块104还包括但不限于以下至少之一的电路:第一电流检测单元、第一刹车检测单元、第一总电流检测单元和第一电流采样单元;第二电机驱动模块105还包括但不限于以下至少之一的电路:第二电流检测单元、第二刹车检测单元、第二总电流检测单元和第二电流采样单元。
在一些实施例中,降压模块106包括:供电单元、第一降压单元、第二降压单元和第三降压单元;其中,供电单元的电压输入端与电池连接,供电单元的电压输出端与第一降压单元的电压输入端连接,第一降压单元的电压输出端与第二降压单元的电压输入端连接,第二降压单元的电压输出端与第三降压单元的电压输入端连接。
在平衡车控制系统中,主控芯片、各种外围芯片以及外部接口模块需要的工作电压可能存在差别。常见的芯片的工作电压为12V、5V以及3.3V。为了将电池电压等级降低到各个芯片或者外部接口模块所需的工作电压,在本实施例中,采用多级降压模块,实现了多种电压等级的输出。
优选地,在本实施例中采用数字降压芯片来进行降压,相对于采用模拟电路降压的方案而言,数字降压芯片能够减少元器件对主板空间的占用。可选的降压芯片包括但不限于:LM2596系列芯片、SC9003系列芯片、LY3671系列芯片、SY8120系列芯片、AMS1117系列芯片等。
为了提升用户的使用体验或者保障平衡车的运行安全,在平衡车上还会设置各种附加功能的电路或者保护电路,例如:转向灯、RGB彩灯、显示面板等。这些功能可以通过外部接口模块107来扩展。在本实施例中,外部接口模块107包括但不限于以下至少之一的电路:第一光电开关接口单元、第二光电开关接口单元、转向传感器接口单元、转向灯接口单元、故障灯接口单元、第一副板通讯接口单元、第二副板通讯接口单元、程序烧录设备接口单元、转速检测接口单元、RGB灯接口单元,以及充电接口单元。
其中,光电开关接口单元用于连接光电开关电路,光电开关电路可以设置在平衡车踏板下,用于检测平衡车是否载人。
其中,转向传感器接口单元用于连接转向传感器电路,转向传感器电路优选为霍尔传感器,一般设置在具有操作杆的双轮平衡车上用于检测操作杆的偏移,从而实现转向控制。
其中,转向灯接口单元用于连接转向灯电路,转向灯电路的转向灯设置在平衡车两侧,用于实现转向提醒。
其中,故障灯接口单元用于连接故障灯,故障灯用于指示平衡车是否发生故障。
其中,副板通讯接口单元用于连接副板通讯电路,以支持在副板上进行更多的功能拓展,或者与副板上设置的其他的传感器(例如陀螺仪)或者显示器的通讯。
其中,程序烧录设备接口单元用于连接程序烧录设备,程序烧录设备用于将程序烧录至主控芯片。
其中,转速检测接口单元用于连接转速检测电路,转速检测电路可以设置在轮毂电机内部,以检测轮毂电机的转速和转向。
其中,RGB灯接口单元用于连接RGB灯电路,RGB灯电路用于实现平衡车彩灯功能,以增加用户体验。
其中,充电接口单元用于连接充电电路,充电电路用于为平衡车的电池充电。
需要说明的是,上述的外部接口模块107的数量和类型在一些实施例中可以根据平衡车的类型以及所需实现的附加功能进行删减或者增加。例如,在电动扭扭车中,转向传感器接口单元是非必要的,可以将转向传感器接口单元从主板上删减掉,从而降低主板的成本或者减小主板占用的空间。
在另一些实施例中,主板包括了上述全部的外部接口模块,在一些类型的平衡车中可以将其中一些外部接口模块闲置不用。这样设计的优势在于对于不同类型的平衡车均可以共用同一套主板,从而节约主板的设计成本,同时多种外部接口模块又易于实现各种型号平衡车的功能扩展。
在一些实施例中,主板100上还设置有以下至少之一的电路:蜂鸣器模块108、蓝牙上电指示模块109;其中,蜂鸣器模块108与主控模块101连接;蓝牙上电指示模块109与双模蓝牙模块102连接。
其中,蜂鸣器模块108可以用于在平衡车故障或者发生状态改变或者电量不足时发出蜂鸣,以提示用户。
其中,蓝牙上电指示模块109用于指示蓝牙的工作状态。
图2是根据本发明实施例的平衡车控制系统的优选结构框图。其中,粗实线表示供电线路,细实线表示通讯线路。
下面将结合附图和优选实施例对本发明实施例进行描述和说明。
在本优选实施例中提供了一种平衡车控制系统的实现方案。需要说明的是,该实现方案用于对本发明实施例进行说明,其中各部分电路的具体实现也都是示例性的。
图3是根据本发明优选实施例的主控模块的电路原理图,如图3所示,在本优选实施例中,主控模块101包括:主控芯片U6、电阻R32、电阻R33、电阻R42、电容C26、电容C31,其中,主控芯片U6包括引脚1至引脚64,其中,引脚1、引脚13、引脚32、引脚19、引脚48、引脚64,与降压模块106的降压模块的第三电压输出端连接;引脚12、引脚18、引脚31、引脚47、引脚63,与公共端GND连接;引脚7,与降压模块的第三电压输出端之间串联有电阻R42,与公共端GND之间串联有电容C26;引脚16,与双模蓝牙模块102之间串联有电阻R32;引脚17,与双模蓝牙模块102之间串联有电阻R33;引脚41、引脚42、引脚43、引脚33、引脚34、引脚35、引脚36、引脚9、引脚24、引脚25,与第一电机驱动模块104连接;引脚14、引脚22、引脚23、引脚26、引脚27、引脚8、引脚11、引脚37、引脚38、引脚39,与第二电机驱动模块105连接;引脚61、引脚62,与姿态传感器模块103连接;引脚28、引脚10、引脚40,与降压模块106连接;引脚55、引脚56,与双模蓝牙芯片单元连接;引脚59,与蜂鸣器模块连接;引脚15、引脚44、引脚50、引脚20、引脚21、引脚29、引脚30、引脚5、引脚6、引脚54、引脚58、引脚2、引脚3、引脚4、引脚51、引脚52、引脚53、引脚57、引脚46、引脚49、引脚45,与外部接口模块107连接。
在图3中,电阻R32和电阻R33可以起分压和限流的作用,目的是适配不同电压等级的芯片之间的电平并防止过流损坏芯片;在本优选实施例中两个芯片引脚间直接串联的电阻的作用均大体如此。
图4是根据本发明优选实施例的双模蓝牙模块的电路原理图,如图4所示,双模蓝牙模块102的双模蓝牙芯片单元包括:双模蓝牙芯片U3、电阻R1、电阻R2、电阻R3、电阻R4、电感L1、电感L2、电容C1、电容C2、电容C3、电容C4、电容C5和电容C6,
其中,双模蓝牙芯片U3包括引脚1至引脚24,其中,引脚1,与功率放大器单元之间串联有电阻R1,引脚1用于使能功率放大器;引脚2,与蓝牙上电指示模块连接,用于指示蓝牙的工作状态;引脚3,与主控芯片U6的引脚16连接,用于接收主控芯片U6的通讯信号;引脚4,与主控芯片U6的引脚17连接,用于发送通讯信号给主控芯片U6;引脚5,与主控芯片U6的引脚55之间串联有电阻R2,用于接收主控芯片U6发送的音量控制信号;引脚6悬空;引脚7,与功率放大器单元连接,用于将音频信号发送给功率放大器单元;引脚8,与公共端GND之间串联有电容C3;引脚9,与公共端GND之间串联有电容C4;引脚10悬空;引脚11,与公共端GND连接;引脚12,与公共端GND之间串联有电容C6;引脚8、引脚9、引脚10、引脚12为参考电压引脚;引脚13悬空;引脚14悬空;引脚15,与主控芯片U6的引脚56之间串联有电阻R4;引脚16,与降压模块106的降压模块的第四电压输出端之间串联有电阻R3;引脚17,与公共端GND连接;引脚18,与降压模块的第四电压输出端连接,与公共端GND之间串联有电容C5;引脚19,与公共端GND之间串联有电容C2;引脚20,与公共端GND连接;引脚21,与公共端GND之间依次串联有电感L1、电感L2,电感L1和电感L2的连接结点与天线J1之间串联有电容C1,引脚21用于通过天线收发数据或音频;引脚22,与公共端GND连接;引脚23,与晶体振荡器单元连接;引脚24,与晶体振荡器单元连接,引脚23和引脚24用于接收晶体振荡器的时钟频率。
图5是根据本发明优选实施例的晶体振荡器单元的电路原理图,如图5所示,双模蓝牙模块102的晶体振荡器单元包括:晶体振荡器Y1、电容C7和电容C8,其中,晶体振荡器Y1包括引脚1至引脚4,其中,引脚1,与双模蓝牙芯片U3的引脚23连接,与公共端GND之间串联有电容C7;引脚2,与公共端GND连接;引脚3,与双模蓝牙芯片U3的引脚24连接,与公共端GND之间串联有电容C8;引脚4,与公共端GND连接。
图6是根据本发明优选实施例的功率放大器单元的电路原理图,如图6所示,双模蓝牙模块102的功率放大器单元包括:功率放大器芯片U4、电阻R5、电阻R6、电阻R7、电阻R8、电容R9、电容C10、电容C11,其中,功率放大器芯片U4包括引脚1至引脚8,其中,引脚1,与降压模块106的降压模块的第二电压输出端之间串联有电阻R7,与公共端GND之间串联有电阻R7,与双模蓝牙芯片U3的引脚1之间串联有电阻R1;引脚2,与公共端GND之间串联有电容C11;引脚3,与降压模块的第二电压输出端之间串联有电阻R5;引脚4,与双模蓝牙芯片U3的引脚7之间依次串联有电阻R8、电容C9,引脚4用于接收音频信号;引脚5,与扬声器接口P1的引脚2连接;引脚6,与降压模块的第二电压输出端连接,与公共端GND之间串联有电容C10;引脚7,与公共端GND连接;引脚8,与扬声器接口P1的引脚1连接,引脚5和引脚8用于驱动扬声器发声。
图7是根据本发明优选实施例的姿态传感器模块的电路原理图,如图7所示,姿态传感器模块103包括:姿态传感器芯片U5、电阻R28、电阻R29、电阻R74、电阻R75、电容C18、电容C19、电容C20、电容C21,其中,姿态传感器芯片U5优选为陀螺仪,包括引脚1至引脚13,其中,引脚1,与降压模块106的降压模块的第三电压输出端连接,与公共端GND之间串联有电容C21;引脚2,与主控芯片U6的引脚61之间串联有电阻R74,与降压模块的第三电压输出端之间串联有电阻R28;引脚3,与主控芯片U6的引脚62之间串联有电阻R75,与降压模块的第三电压输出端之间串联有电阻R29;引脚2和引脚3用于将检测到的平衡车姿态信息发送给主控芯片U6;引脚4,与公共端GND连接;引脚5,与降压模块的第三电压输出端连接;引脚6悬空;引脚7悬空;引脚8、引脚9、引脚10、引脚11、引脚12、引脚13,与公共端GND连接。
图8是根据本发明优选实施例的第一PWM输出单元的电路原理图,图9是根据本发明优选实施例的第一三相全桥电路的电路原理图。参考图8和图9,第一电机驱动模块104的第一PWM输出单元包括:第一PWM输出芯片U8、二极管DL1、二极管DL2、二极管DL3、电容CL6、电容CL8、电容CL14、电容CL15、电阻RL17、电阻RL23、电阻RL24、电阻RL25、电阻RL26、电阻RL28,其中,第一PWM输出芯片U8包括引脚1至引脚20,其中,引脚1,与主控芯片U6的引脚43之间串联有电阻RL17;引脚2,与主控芯片U6的引脚42之间串联有电阻RL24;引脚3,与主控芯片U6的引脚41之间串联有电阻RL26;引脚4,与主控芯片U6的引脚36之间串联有电阻RL23;引脚5,与主控芯片U6的引脚35之间串联有电阻RL25;引脚6,与主控芯片U6的引脚34之间串联有电阻RL28;引脚7,与降压模块106的降压模块的第一电压输出端连接,与公共端GND之间串联有电容CL6,与第一PWM输出芯片U8的引脚14之间串联有二极管DL1,与第一PWM输出芯片U8的引脚17之间串联有二极管DL2,与第一PWM输出芯片U8的引脚20之间串联有二极管DL3;引脚8,与公共端GND连接;引脚9、引脚10、引脚11、引脚12、引脚13、引脚15、引脚16、引脚18、引脚19,与第一三相全桥电路连接;引脚14,与引脚12之间串联有电容CL15;引脚17,与引脚15之间串联有电容CL14;引脚20,与引脚18之间串联有电容CL8。
第一电机驱动模块104的第一三相全桥电路包括:功率管ML1、功率管ML2、功率管ML3、功率管ML4、功率管ML5、功率管ML6、二极管DL4、二极管DL5、二极管DL6、二极管DL7、二极管DL8、二极管DL9、电阻RL8、电阻RL9、电阻RL10、电阻RL11、电阻RL12、电阻RL13、电阻RL14、电阻RL15、电阻RL16、电阻RL18、电阻RL19、电阻RL20、电阻RL21、电阻RL22、电容CL3、电容CL4、电容CL7、电容CL8、电容CL9、电容CL10、电容CL11、电容CL12、电容CL13,其中,功率管ML1的源极与电池的供电单元的电压输出端连接,且电池的供电单元的电压输出端与公共端GND_L之间串联有电容CL3,功率管ML1的漏极与第一电机的第一相线X1和第一PWM输出芯片U8的引脚18连接,功率管ML1的栅极与第一PWM输出芯片U8的引脚19之间串联有电阻RL8,且二极管DL4反向并联在电阻RL8上,功率管ML1的栅极和漏极之间还分别串联有电阻RL11和电容CL7;功率管ML4的源极与第一相线X1连接,功率管ML4的栅极与第一PWM输出芯片U8的引脚11之间串联有电阻RL16,且二极管DL7反向并联在电阻RL16上,功率管ML4的栅极和漏极之间还分别串联有电阻RL20和电容CL11,功率管ML4的源极和漏极之间还串联有电阻RL14;功率管ML2的源极与电池的供电单元的电压输出端连接,功率管ML2的漏极与第一电机的第三相线X3和第一PWM输出芯片U8的引脚15连接,功率管ML2的栅极与第一PWM输出芯片U8的引脚16之间串联有电阻RL19,且二极管DL5反向并联在电阻RL19上,功率管ML2的栅极和漏极之间还分别串联有电阻RL12和电容CL9;功率管ML5的源极与第三相线X3连接,功率管ML5的栅极与第一PWM输出芯片U8的引脚10之间串联有电阻RL18,且二极管DL8反向并联在电阻RL18上,功率管ML5的栅极和漏极之间还分别串联有电阻RL21和电容CL12,功率管ML5的源极和漏极之间还串联有电阻RL15;功率管ML3的源极与电池的供电单元的电压输出端连接,且电池的供电单元的电压输出端与公共端GND_L之间串联有电容CL4,功率管ML3的漏极与第一电机的第二相线X2和第一PWM输出芯片U8的引脚12连接,功率管ML3的栅极与第一PWM输出芯片U8的引脚13之间串联有电阻RL10,且二极管DL6反向并联在电阻RL10上,功率管ML3的栅极和漏极之间还分别串联有电阻RL13和电容CL10;功率管ML6的源极与第二相线X2连接,功率管ML6的栅极与第一PWM输出芯片U8的引脚9之间串联有电阻RL19,且二极管DL9反向并联在电阻RL19上,功率管ML6的栅极和漏极之间还分别串联有电阻RL22和电容CL13,功率管ML6的源极和漏极之间还串联有电阻RL37。
在上述的第一电机驱动模块104中,第一PWM输出芯片U8是一个高压驱动芯片,可以独立驱动3个半桥MOSFET。其中,VB、VS为高压端供电;HO为高压端驱动输出;COM为低压端驱动供电,LO为低压端驱动输出;VCC为数字电路供电。在每个半桥电路中上下桥臂是交替导通的,以ML1和ML4所在半桥为例,每当下桥臂开通,上桥臂关断时VS脚的电位为下桥臂功率管ML4的饱和导通压降,基本上接近地电位,此时VCC通过自举二极管DL3对自举电容CL8充电使其接近VCC电压。当下桥臂功率管ML4关断时VS端的电压就会升高,由于电容两端的电压不能突变,因此VB端的电平接近于VS和VCC端电压之和,而VB和VS之间的电压还是接近VCC电压。当下桥臂功率管ML4开通时,自举电容CL8作为一个浮动的电压源驱动下桥臂功率管ML4;而自举二极管DL3在下桥臂功率管ML4开通其间损失的电荷在下一个周期又会得到补充,这种自举供电方式就是利用VS端的电平在高低电平之间不停地摆动来实现的。由于自举电路无需浮动电源,因此是最便宜的,自举电路给一只电容器充电,电容器上的电压基于高端输出晶体管源极电压上下浮动。其中自举二极管DL3是一个重要的自举器件,应能阻断直流干线上的高压,其承受的电流是栅极电荷与开关频率之积,为了减少电荷损失,应选择反向漏电流小的快恢复二极管,芯片内高压部分的供电都来自自举电容CL8上的电荷;为保证高压部分电路有足够的能量供给,应适当选取C2的大小。
此外,在每个半桥驱动电路中,功率管的栅极串联的电阻RL8、RL16、RL9、RL18、RL10、RL19均反向并联有二极管DL4、DL7、DL5、DL8、DL6、DL9用于稳压,以保护功率管的栅极不被击穿。在功率管的栅极和漏极之间串联有电阻RL11、RL20、RL12、RL21、RL13、RL22、和电容CL7、CL11、CL9、CL12、CL10、CL13以降低电磁干扰(EMI),这些电容还可以起到减缓脉冲沿速度、保护功率管的作用。在功率管的源极和漏极之间连接有续流电阻RL14、RL15、RL37,以避免电机停转后反向电流击穿功率管。
需要说明的是,在本实施例中的功率管或者其他的功率开关器件均可以为MOSFET或IGBT等开关器件。
图10是根据本发明优选实施例的第一电流检测单元的电路原理图,如图10所示,第一电机驱动模块104的第一电流检测单元包括:第一差分运算芯片U1A、二极管DL10、二极管DL11、电阻RL29、电阻RL30、电阻RL31、电阻RL32、电阻RL33、电阻RL34、电阻RL35、电阻RL36,其中,第一差分运算芯片包括引脚1至引脚8,其中,引脚1,与主控芯片U6的引脚25连接;引脚2,与引脚1之间串联有电阻RL29,与公共端GND_L之间串联有电阻RL31;引脚3,与第一相线X1之间串联有电阻RL35,与降压模块的第三电压输出端之间串联有电阻RL33,引脚3和引脚2之间串联有二极管DL10;引脚4,与公共端GND连接;引脚5,与第三相线X3之间串联有电阻RL36,与降压模块的第三电压输出端之间串联有电阻RL34,引脚5和引脚6之间串联有二极管DL11;引脚6,与公共端GND_L之间串联有电阻RL32,与引脚7之间串联有电阻RL30;引脚7,与主控芯片U6的引脚24连接;引脚8,与降压模块的第三电压输出端连接。
图10所示的电路用于检测电机的U相和V相电流,并将检测结果发送给主控芯片U6,以供主控芯片U6根据电极的U相和V相电流对电机进行保护。
图11是根据本发明优选实施例的第一刹车检测单元的电路原理图,如图11所示,第一电机驱动模块104的第一刹车检测单元包括:三极管QL1、电阻RL1、电阻RL2、电阻RL5、电容CL1,其中,三极管QL1的集电极与降压模块的第三电压输出端之间串联有电阻RL1,三极管QL1的集电极与主控芯片U6的引脚33之间串联有电阻RL2,三极管QL1的发射极与公共端GND连接,且三极管QL1的发射极与主控芯片U6的引脚33之间串联有电容CL1,三极管QL1的基极与公共端GND_L之间串联有电阻RL5。上述的第一刹车检测单元可以用于检测公共端GND_L上的电流,当电流超过一定范围时,使主控芯片U6停止输出PWM控制信号而实现刹车功能。
图12是根据本发明优选实施例的第一总电流检测单元的电路原理图,如图12所示,第一电机驱动模块104的第一总电流检测单元包括:第一差分运算器U7A、电阻RL3、电阻RL4、电阻RL6、电阻RL7、电容CL2,其中,第一差分运算器的负极输入端与公共端GND之间串联有电阻RL4,第一差分运算器的负极输入端与第一差分运算器的负极输入端之间串联有电阻RL3,第一差分运算器的正极输入端与降压模块的第三电压输出端之间串联有电阻RL6,第一差分运算器的正极输入端与公共端GND_L之间串联有电阻RL7,第一差分运算器的正极输入端与公共端GND之间串联有电容CL2,第一差分运算器的接地端与公共地段GND连接,第一差分运算器的电源端与降压模块的第三电压输出端连接,第一差分运算器的输出端与主控芯片U6的引脚9连接。上述的总电流检测单元用于检测电池输出的总电流,当总电流超过预设最大值时,主控芯片U6进行降功率处理,以防止电池过热。
图13是根据本发明优选实施例的第一电流采样单元的电路原理图,如图13所示,第一电机驱动模块104的第一电流采样单元包括:电阻RL27,连接在公共端GND_L与公共端GND之间。电阻RL27用于采样公共端GND_L与公共端GND之间的电流。
第二电机驱动模块105与第一电机驱动模块104是相同的电路结构,其功能和有益效果将不再赘述。
图14是根据本发明优选实施例的第二PWM输出单元的电路原理图,如图14所示,第二电机驱动模块105的第二PWM输出单元包括:第二PWM输出芯片U9、二极管DR1、二极管DR2、二极管DR3、电容CR6、电容CR8、电容CR14、电容CR15、电阻RR17、电阻RR23、电阻RR24、电阻RR25、电阻RR26、电阻RR27,其中,第二PWM输出芯片U9包括引脚1至引脚20,其中,引脚1,与主控芯片U6的引脚39之间串联有电阻RR17;引脚2,与主控芯片U6的引脚38之间串联有电阻RR24;引脚3,与主控芯片U6的引脚37之间串联有电阻RR26;引脚4,与主控芯片U6的引脚27之间串联有电阻RR23;引脚5,与主控芯片U6的引脚26之间串联有电阻RR25;引脚6,与主控芯片U6的引脚23之间串联有电阻RR27;引脚7,与降压模块106的降压模块的第二电压输出端连接,与公共端GND之间串联有电容CR6,与第二PWM输出芯片U9的引脚14之间串联有二极管DR1,与第二PWM输出芯片U9的引脚17之间串联有二极管DR2,与第二PWM输出芯片U9的引脚20之间串联有二极管DR3;引脚8,与公共端GND连接;引脚9、引脚10、引脚11、引脚12、引脚13、引脚15、引脚16、引脚18、引脚19,与第二三相全桥单元连接;引脚14,与引脚12之间串联有电容CR15;引脚17,与引脚15之间串联有电容CR14;引脚20,与引脚18之间串联有电容CR8。
图15是根据本发明优选实施例的第二三相全桥单元的电路原理图,如图15所示,第二电机驱动模块105的第二三相全桥单元包括:功率管MR1、功率管MR2、功率管MR3、功率管MR4、功率管MR5、功率管MR6、二极管DR4、二极管DR5、二极管DR6、二极管DR7、二极管DR8、二极管DR9、电阻RR8、电阻RR9、电阻RR10、电阻RR11、电阻RR12、电阻RR13、电阻RR14、电阻RR15、电阻RR16、电阻RR18、电阻RR19、电阻RR20、电阻RR21、电阻RR22、电容CR3、电容CR5、电容CR7、电容CR8、电容CR9、电容CR10、电容CR11、电容CR12、电容CR13,其中,功率管MR1的源极与电池的供电单元的电压输出端连接,且电池的供电单元的电压输出端与公共端GND_R之间串联有电容CR3,功率管MR1的漏极与第二电机的第一相线X4和第二PWM输出芯片U9的引脚18连接,功率管MR1的栅极与第二PWM输出芯片U9的引脚19之间串联有电阻RR8,且二极管DR4反向并联在电阻RR8上,功率管MR1的栅极和漏极之间还分别串联有电阻RR11和电容CR7;功率管MR4的源极与第一相线X4连接,功率管MR4的栅极与第二PWM输出芯片U9的引脚11之间串联有电阻RR16,且二极管DR7反向并联在电阻RR16上,功率管MR4的栅极和漏极之间还分别串联有电阻RR20和电容CR11,功率管MR4的源极和漏极之间还串联有电阻RR14;功率管MR2的源极与电池的供电单元的电压输出端连接,功率管MR2的漏极与第二电机的第二相线X6和第二PWM输出芯片U9的引脚15连接,功率管MR2的栅极与第二PWM输出芯片U9的引脚16之间串联有电阻RR19,且二极管DR5反向并联在电阻RR19上,功率管MR2的栅极和漏极之间还分别串联有电阻RR12和电容CR9;功率管MR5的源极与第二相线X6连接,功率管MR5的栅极与第二PWM输出芯片U9的引脚10之间串联有电阻RR18,且二极管DR8反向并联在电阻RR18上,功率管MR5的栅极和漏极之间还分别串联有电阻RR21和电容CR12,功率管MR5的源极和漏极之间还串联有电阻RR15;功率管MR3的源极与电池的供电单元的电压输出端连接,且电池的供电单元的电压输出端与公共端GND_R之间串联有电容CR4,功率管MR3的漏极与第二电机的第三相线X5和第二PWM输出芯片U9的引脚12连接,功率管MR3的栅极与第二PWM输出芯片U9的引脚13之间串联有电阻RR10,且二极管DR6反向并联在电阻RR10上,功率管MR3的栅极和漏极之间还分别串联有电阻RR13和电容CR10;功率管MR6的源极与第三相线X5连接,功率管MR6的栅极与第二PWM输出芯片U9的引脚9之间串联有电阻RR19,且二极管DR9反向并联在电阻RR19上,功率管MR6的栅极和漏极之间还分别串联有电阻RR22和电容CR13,功率管MR6的源极和漏极之间还串联有电阻RR37。
图16是根据本发明优选实施例的第二电流检测单元的电路原理图,如图16所示,第二电机驱动模块105的第二电流检测单元包括:第二差分运算芯片、二极管DR10、二极管DR11、电阻RR29、电阻RR30、电阻RR31、电阻RR32、电阻RR33、电阻RR34、电阻RR35、电阻RR36,其中,第二差分运算芯片包括引脚1至引脚8,其中,引脚1,与主控芯片U6的引脚14连接;引脚2,与引脚1之间串联有电阻RR29,与公共端GND_R之间串联有电阻RR31;引脚3,与第一相线X4之间串联有电阻RR35,与降压模块的第三电压输出端之间串联有电阻RR33,引脚3和引脚2之间串联有二极管DR10;引脚4,与公共端GND连接;引脚5,与第二相线X6之间串联有电阻RR36,与降压模块的第三电压输出端之间串联有电阻RR34,引脚5和引脚6之间串联有二极管DR11;引脚6,与公共端GND_R之间串联有电阻RR32,与引脚7之间串联有电阻RR30;引脚7,与主控芯片U6的引脚11连接;引脚8,与降压模块的第三电压输出端连接。
图17是根据本发明优选实施例的第二刹车检测单元的电路原理图,如图17所示,第二电机驱动模块105的第二刹车检测单元包括:三极管QR1、电阻RR1、电阻RR2、电阻RR5、电容CR1,其中,三极管QR1的集电极与降压模块的第三电压输出端之间串联有电阻RR1,三极管QR1的集电极与主控芯片U6的引脚22之间串联有电阻RR2,三极管QR1的发射极与公共端GND连接,且三极管QR1的发射极与主控芯片U6的引脚22之间串联有电容CR1,三极管QR1的基极与公共端GND_R之间串联有电阻RR5。
图18是根据本发明优选实施例的第二总电流检测单元的电路原理图,如图18所示,第二电机驱动模块105的第二总电流检测单元包括:第二差分运算器、电阻RR3、电阻RR4、电阻RR6、电阻RR7、电容CR2,其中,第二差分运算器的负极输入端与公共端GND之间串联有电阻RR4,第二差分运算器的负极输入端与第二差分运算器的负极输入端之间串联有电阻RR3,第二差分运算器的正极输入端与降压模块的第三电压输出端之间串联有电阻RR6,第二差分运算器的正极输入端与公共端GND_R之间串联有电阻RR7,第二差分运算器的正极输入端与公共端GND之间串联有电容CR2,第二差分运算器的接地端与公共地段GND连接,第二差分运算器的电源端与降压模块的第三电压输出端连接,第二差分运算器的输出端与主控芯片U6的引脚8连接。
图19是根据本发明优选实施例的第二电流采样单元的电路原理图,如图19所示,第二电机驱动模块105的第二电流采样单元包括:电阻RR28,连接在公共端GND_R与公共端GND之间,电阻RR28为零欧电阻。
图20是根据本发明优选实施例的供电单元的电路原理图,如图20所示,降压模块106的供电单元包括:插座P17、插座P18、电容C37、电容C38、电容C39、电容C40,其中,电容C37、电容C38、电容C39、电容C40分别串联在插座P17和插座P18之间,插座P18与公共端GND连接;
图21是根据本发明优选实施例的第一降压单元的电路原理图,如图21所示,降压模块106的第一降压单元包括:功率MOSFET芯片U10、第一降压芯片U11、电阻R66、电阻R68、电阻R71、电阻R73、电阻R60、电阻R63、电阻R57、电阻R56、电阻R54、电阻R53、电阻R52、电阻R55、电阻R58、电阻R59、电阻R62、电容C54、电容C46、电容C36、电容C41、电容C42、电容C43、电容C45、电容C44、电感L3、瞬态二极管DZ1、二极管D6、二极管D7、二极管D4、二极管D3、二极管D5、三极管Q9、功率管Q8、开关接口P19,其中,
功率MOSFET芯片U10包括引脚1、引脚2和引脚3,其中,引脚1,与电池的供电单元的电压输出端之间串联有电阻R56,与三极管Q9的集电极之间串联有电阻R57,三极管Q9的发射极与公共端GND连接,三极管Q9的基极和发射极之间还分别串联有电阻R63和电容R46;引脚2,与公共端GND之间依次串联有电阻R53和电阻R54,与公共端GND之间串联有电容C41,电阻R53和电阻R54的连接结点与主控芯片U6的引脚10连接,且电阻R53和电阻R54的连接结点与公共端GND之间串联有电容C36;引脚3,与电池的供电单元的电压输出端连接,与充电端BAT_Charge之间串联有二极管D4;
开关接口P19包括引脚1和引脚2,其中,引脚1,与三极管Q9的基极之间依次串联有二极管D6和电阻R60,与公共端GND之间依次串联有电阻R71和电容C54,且电阻R71和电容C54的连接结点与主控芯片U6的引脚40连接,与公共端GND之间串联有电阻R68,且在电阻R68上并联有瞬态二极管DZ1,二极管D6和电阻R60的连接结点与公共端GND之间依次串联有二极管D7和电阻R73,二极管D7和电阻R73的连接结点与主控芯片U6的引脚28连接;引脚2,与电池的供电单元的电压输出端之间串联有电阻R66。
在上述电路结构中,开关接口P19上连接有自动复位型开关。当自动复位型开关被按下时,三极管Q9导通,功率MOSFET芯片U10开始工作,引脚3和引脚2导通,54V电压输出到第一降压芯片,降压模块106上电。同时,在PC9处产生高电平信号通知主控芯片U6自动复位型开关被按下。由于自动复位型开关在被按下后经过一个短暂时间即将复位,为了保持降压模块106的工作,主控芯片U6从PB2管脚处输出高电平信号,维持三极管Q9导通,从而保持降压模块106继续工作。此外,在功率MOSFET芯片U10的引脚2上连接有检测电路,用于检测降压模块106的上电情况并上报主控芯片U6。上述电路结构的优点在于,降压模块106由主控芯片U6维持工作,主控芯片U6可以根据情况控制降压模块106的工作状态。
第一降压芯片U11包括引脚1至引脚8,其中,引脚1,与功率管Q8之间串联有电阻R52,与降压模块106的降压模块的第一电压输出端之间串联有二极管D3,与降压模块的第一电压输出端之间依次串联有电容C42、电感L3;引脚2,与降压模块的第一电压输出端之间串联有电阻R55,与电容C42和电感L3的连接结点之间分别串联有电容C43、电阻R58;引脚3悬空;引脚4,与电容C42和电感L3的连接结点之间串联有电阻R59,与功率管Q8的源极连接;引脚5,与功率管Q8的栅极连接;引脚6、引脚7悬空;引脚8,与电容C42和电感L3的连接结点连接;电容C42和电感L3的连接结点与公共端GND之间还串联有二极管D5,降压模块的第一电压输出端与公共端GND之间还分别串联有电容C45、电容C44和电阻R62;
图22是根据本发明优选实施例的第二降压单元的电路原理图,如图22所示,降压模块106的第二降压单元106包括:第二降压芯片U12,电阻R65、电阻R69、电阻R67、电阻R70、电阻R64、电容C50、电容C51、电容C47、电容C53、电容C48、电容C49、电感L7,其中,第二降压芯片U12包括引脚1至引脚6,其中,引脚1,与降压模块的第二电压输出端之间依次串联有电容C47、电感L4;引脚2,与公共端GND连接;引脚3,与公共端GND之间串联有电阻R70,与降压模块的第二电压输出端之间分别串联有电阻R67和电容C48;引脚4,与降压模块的第一电压输出端之间串联有电阻R65,与公共端GND之间分别串联有电阻R69和电容C53;引脚5,与降压模块的第一电压输出端连接,与公共端GND之间分别串联有电容C50和电容C51;引脚6,与电容C47和电感L4的连接结点连接;降压模块的第二电压输出端和公共端之间还串联有电容C49,降压模块的第二电压输出端上还串联有电阻R64,电阻R64为零欧电阻;
图23是根据本发明优选实施例的第三降压单元的电路原理图,如图23所示,降压模块106的第三降压单元包括:第三降压芯片U13、电阻R72、电容C55、电容C56、C57和C58,其中,
第三降压芯片U13包括引脚1至引脚4,其中,引脚1,与公共端GND连接;引脚2,与降压模块的第三电压输出端连接;引脚3,与降压模块的第二电压输出端连接;引脚3与公共端GND之间还串联有电容C55,降压模块的第三电压输出端与公共端GND之间分别串联有电容C56、C57和C58,降压模块的第三电压输出端与第四电压输出端之间串联有电阻R72。
图24是根据本发明优选实施例的第一光电开关接口单元的电路原理图,如图24所示,外部接口模块107的第一光电开关接口单元包括:第一光电开关接口P3、电阻R12、电容C12,
其中,第一光电开关接口P3包括引脚1、引脚2和引脚3,其中,引脚1,与降压模块的第三电压输出端连接;引脚2,与公共端GND连接;引脚3,与主控芯片U6的引脚58连接,与公共端GND之间分别串联有电阻R12、电容C12;
图25是根据本发明优选实施例的第二光电开关接口单元的电路原理图,如图25所示,外部接口模块107的第二光电开关接口单元包括:第二光电开关接口P7、电阻R15、电容C15,
其中,第二光电开关接口P7包括引脚1、引脚2和引脚3,其中,引脚1,与降压模块的第三电压输出端连接;引脚2,与公共端GND连接;引脚3,与主控芯片U6的引脚54连接,与公共端GND之间分别串联有电阻R15、电容C15。
图26是根据本发明优选实施例的转向传感器接口单元的电路原理图,如图26所示,转向传感器接口单元包括:转向传感器接口P10、电阻R23、电容C16、电容C17,其中,转向传感器接口P10包括引脚1、引脚2和引脚3,其中,引脚1,与降压模块的第三电压输出端连接,与公共端GND之间串联有电容C16;引脚2,与公共端GND连接;引脚3,与主控芯片U6的引脚15之间串联有电阻R23,与公共端GND之间串联有电容C17。
图27是根据本发明优选实施例的转向灯接口单元的电路原理图,如图27所示,转向灯接口单元包括:第一转向灯接口P5、第二转向灯接口P8、电阻R16、电阻R17、电阻R26、电阻R27、电阻R21、发光二极管DS2、三极管Q1、三极管Q2,其中,
第一转向灯接口P5包括引脚1、引脚2和引脚3,其中,引脚1,与二极管Q2的集电极之间串联有电阻R17;引脚2,与引脚1连接;引脚3,与降压模块的第一电压输出端连接;
第二转向灯接口P8包括引脚1、引脚2和引脚3,其中,引脚1,与二极管Q1的集电极之间串联有电阻R16;引脚2,与引脚1连接;引脚3,与降压模块的第一电压输出端连接;三极管Q1的发射极与公共端GND连接,三极管Q1的基极与主控芯片U6的引脚50之间串联有电阻R26,三极管Q2的发射极与公共端GND连接,三极管Q2的基极与公共端GND之间依次串联有电阻R27、电阻R21、发光二极管DS2,电阻R27和电阻R21的连接结点与主控芯片U6的引脚44连接。
图28是根据本发明优选实施例的故障灯接口单元的电路原理图,如图28所示,故障灯接口单元包括:故障灯接口P9、电阻R19、电阻R20、电阻R24、电阻R25、三极管Q4、三极管Q5,其中,故障灯接口P9包括引脚1、引脚2、引脚3和引脚4,其中,引脚1,与三极管Q5的集电极之间串联有电阻R20;引脚2,与三极管Q4的集电极之间串联有电阻R19;引脚3悬空;引脚4,与降压模块的第一电压输出端连接;三极管Q4的发射极与公共端GND连接,三极管Q4的基极与主控芯片U6的引脚5之间串联有电阻R24,三极管Q5的发射极与公共端GND连接,三极管Q5的基极与主控芯片U6的引脚6之间串联有电阻R25。
图29是根据本发明优选实施例的第一副板通讯接口单元的电路原理图,如图29所示,第一副板通讯接口单元包括:第一副板通讯接口P4、电阻R10、电阻R11、电阻R13、电阻R14、电容C13、电容C14,其中,第一副板通讯接口P4包括引脚1至引脚7,其中,引脚1,与降压模块的第一电压输出端连接;引脚2,与主控芯片U6的引脚29之间串联有电阻R10;引脚3,与主控芯片U6的引脚30之间串联有电阻R11;引脚4,与公共端GND连接;引脚5,与公共端GND之间依次串联有电阻R13、电容C14,电阻R13和电容C14的连接结点与主控芯片U6的引脚21连接;引脚6,与公共端GND之间依次串联有电阻R14、电容C13,电阻R14和电容C13的连接结点与主控芯片U6的引脚20连接;引脚7,与降压模块的第二电压输出端连接。第一副板通讯接口单元可以用于连接显示板。
图30是根据本发明优选实施例的第二副板通讯接口单元的电路原理图,如图30所示,第二副板通讯接口单元包括:第二副板通讯接口P20、电阻R61、电阻R76、电阻R77,其中,第二副板通讯接口P20包括引脚1至引脚5,其中,引脚1,与主控芯片U6的引脚53之间串联有电阻R61;引脚2,与公共端GND连接;引脚3,与主控芯片U6的引脚62之间串联有电阻R76;引脚4,与主控芯片U6的引脚61之间串联有电阻R77;引脚5,与降压模块的第二电压输出端连接。
图31是根据本发明优选实施例的程序烧录设备接口单元的电路原理图,如图31所示,程序烧录设备接口单元包括:程序烧录设备接口P11,其中,程序烧录设备接口P11包括引脚1、引脚2、引脚3和引脚4,其中,引脚1,与降压模块的第三电压输出端连接;引脚2,与主控芯片U6的引脚49连接;引脚3,与公共端GND连接;引脚4,与主控芯片U6的引脚46连接。
图32是根据本发明优选实施例的转速检测接口单元的电路原理图,如图32所示,转速检测接口单元包括:第一转速检测接口P13、第二转速检测接口P16、二极管D2、电阻R35、电阻R36、电阻R37、电阻R39、电阻R40、电阻R41、电阻R46、电阻R47、电阻R48、电阻R49、电阻R50、电阻R51、电容C23、电容C24、电容C25、电容C28、电容C29、电容C30,其中,
第一转速检测接口P13包括引脚1至引脚5,其中,引脚1,与降压模块的第二电压输出端之间串联有二极管D2;引脚2,与降压模块的第三电压输出端之间串联有电阻R35,与公共端GND之间依次串联有电阻R39、电容C25,电阻R39和电容C25的连接结点与主控芯片U6的引脚4连接;引脚3,与降压模块的第三电压输出端之间串联有电阻R36,与公共端GND之间依次串联有电阻R40、电容C24,电阻R40和电容C24的连接结点与主控芯片U6的引脚3连接;引脚4,与降压模块的第三电压输出端之间串联有电阻R37,与公共端GND之间依次串联有电阻R41、电容C23,电阻R41和电容C23的连接结点与主控芯片U6的引脚2连接;
第二转速检测接口P16包括引脚1至引脚5,其中,引脚1,与降压模块的第二电压输出端之间串联有二极管D2;引脚2,与降压模块的第三电压输出端之间串联有电阻R46,与公共端GND之间依次串联有电阻R49、电容C30,电阻R49和电容C30的连接结点与主控芯片U6的引脚53连接;引脚3,与降压模块的第三电压输出端之间串联有电阻R47,与公共端GND之间依次串联有电阻R50、电容C29,电阻R50和电容C29的连接结点与主控芯片U6的引脚52连接;引脚4,与降压模块的第三电压输出端之间串联有电阻R48,与公共端GND之间依次串联有电阻R51、电容C28,电阻R51和电容C28的连接结点与主控芯片U6的引脚51连接。
上述的转速检测接口可以用于连接霍尔编码单元或者光电编码单元,以实现转速的检测。
图33是根据本发明优选实施例的RGB灯接口单元的电路原理图,如图33所示,RGB灯接口单元包括:第一RBG灯接口P12、第二RGB灯接口P14,电阻R34、电阻R38、电容C22,其中,
第一RGB灯接口P12包括引脚1、引脚2和引脚3,其中,引脚1,与降压模块的第二电压输出端连接,与公共端GND之间串联有电容C22;引脚2,与引脚1之间串联有电阻R34,与主控芯片U6的引脚57之间串联有电阻R38;引脚3,与公共端GND连接;
第二RGB灯接口P14包括引脚1、引脚2和引脚3,其中,引脚1,与第一RGB灯接口P14的引脚1连接;引脚2,与第一RGB灯接口P14的引脚2连接;引脚3,与公共端GND连接。
图34是根据本发明优选实施例的充电接口单元的电路原理图,如图34所示,充电接口单元包括:充电接口P15、电阻R43、电阻R44、电阻R45、三极管Q7、电容C27,其中,充电接口P15包括引脚1、引脚2、引脚3和引脚4,其中,引脚1,与公共端GND之间串联有电阻R45,与公共端GND之间依次串联有电阻R43、电阻R44,与充电端BAT_Charge连接;引脚2,与引脚1连接;引脚3、引脚4,与公共端GND连接;电阻R43和电阻R44的连接结点与三极管Q7的基极连接,三极管Q7的集电极与主控芯片U6的引脚45连接,三极管Q7的发射极与公共端GND连接,三极管Q7的集电极与三极管Q7的发射极之间串联有电容C27。其中,三极管Q7用于检测充电状态,并将充电状态反馈给主控芯片U6。
图35是根据本发明优选实施例的蜂鸣器模块的电路原理图,如图35所示,蜂鸣器模块包括:蜂鸣器、二极管D1、三极管Q6、电阻R31、电阻R30,其中,蜂鸣器的一端与降压模块的第一电压输出端连接,蜂鸣器的另一端与三极管Q6的集电极连接,蜂鸣器的一端和另一端之间串联有二极管D1,三极管Q6的发射极与公共端GND连接,三极管Q6的基极与公共端GND之间串联有电阻R31,三极管Q6的基极与主控芯片U6的引脚59之间串联有电阻R30。
图36是根据本发明优选实施例的蓝牙上电指示模块的电路原理图,如图36所示,蓝牙上电指示模块包括:发光二极管DS1、电阻R9,其中,发光二极管DS1的正极与降压模块的第四电压输出端连接,发光二极管DS1的负极与双模蓝牙芯片U3的引脚2之间串联有电阻R9。
图37是根据本发明优选实施例的电路布局示意图。
在本实施例中还提供了一种平衡车,该平衡车包括上述的平衡车控制系统。
以上实施例的各技术特征可以进行任意的组合,为使描述简洁,未对上述实施例中的各个技术特征所有可能的组合都进行描述,然而,只要这些技术特征的组合不存在矛盾,都应当认为是本说明书记载的范围。
以上所述实施例仅表达了本申请的几种实施方式,其描述较为具体和详细,但并不能因此而理解为对发明专利范围的限制。应当指出的是,对于本领域的普通技术人员来说,在不脱离本申请构思的前提下,还可以做出若干变形和改进,这些都属于本申请的保护范围。因此,本申请专利的保护范围应以所附权利要求为准。
Claims (17)
- 一种平衡车控制系统,其特征在于包括:主板,以及设置在所述主板上的主控模块、双模蓝牙模块、姿态传感器模块、第一电机驱动模块、第二电机驱动模块、降压模块、外部接口模块;其中,所述姿态传感器模块与所述主控模块连接,所述姿态传感器模块用于根据平衡车的姿态生成检测信号;所述双模蓝牙模块与所述主控模块连接,所述双模蓝牙模块用于接收和发送通讯信号,以及接收和处理音频信号;所述主控模块,用于根据所述检测信号控制所述第一电机驱动模块和所述第二电机驱动模块;所述第一电机驱动模块与所述主控模块连接,用于控制第一电机的转速和转向;所述第二电机驱动模块与所述主控模块连接,用于控制第二电机的转速和转向;所述降压模块的输入端与电池连接,输出端分别与所述主控模块、所述双模蓝牙模块、所述姿态传感器模块、所述第一电机驱动模块、所述第二电机驱动模块以及所述外部接口模块连接,所述降压模块用于将所述电池的输出电压转换为所述主控模块、所述双模蓝牙模块、所述姿态传感器模块、所述第一电机驱动模块、所述第二电机驱动模块以及外部接口模块所需的工作电压。
- 根据权利要求1所述的平衡车控制系统,其特征在于,所述双模蓝牙模块包括:双模蓝牙芯片单元、天线、晶体振荡器单元和功率放大器单元;其中,所述双模蓝牙芯片单元分别与所述天线、所述晶体振荡器单元、所述功率放大器单元,以及所述主控模块连接;所述双模蓝牙芯片单元和所述功率放大器单元分别与所述降压模块的输出端连接。
- 根据权利要求1所述的平衡车控制系统,其特征在于,所述第一电机驱动模块包括:第一PWM输出单元和第一三相全桥驱动单元;其中,所述第一PWM输出单元分别与所述第一三相全桥驱动单元、所述主控模块,以及所述降压模块的输出端连接;所述第一三相全桥驱动单元分别与所述电池的输出端,以及所述第一电机连接;所述第二电机驱动模块包括:第二PWM输出单元和第二三相全桥驱动单元;其中,所述第二PWM输出单元分别与所述第二三相全桥驱动单元、所述主控模块,以及所述降压模块的输出端连接;所述第二三相全桥驱动单元分别与所述电池的输出端,以及所述第二电机连接。
- 根据权利要求3所述的平衡车控制系统,其特征在于,所述第一电机驱动模块还包括以下至少之一:第一电流检测单元、第一刹车检测单元、第一总电流检测单元和第一电流采样单元;所述第二电机驱动模块还包括以下至少之一:第二电流检测单元、第二刹车检测单元、第二总电流检测单元和第二电流采样单元。
- 根据权利要求1所述的平衡车控制系统,其特征在于,所述降压模块包括:供电单元、第一降压单元、第二降压单元和第三降压单元;其中,所述供电单元的电压输入端与所述电池连接,所述供电单元的电压输出端与所述第一降压单元的电压输入端连接,所述第一降压单元的电压输出端与所述第二降压单元的电压输入端连接,所述第二降压单元的电压输出端与所述第三降压单元的电压输入端连接。
- 根据权利要求1所述的平衡车控制系统,其特征在于,所述外部接口模块包括以下至少之一:第一光电开关接口单元、第二光电开关接口单元、转向传感器接口单元、转向灯接口单元、故障灯接口单元、第一副板通讯接口单元、第二副板通讯接口单元、程序烧录设备接口单元、转速检测接口单元、RGB灯接口单元,以及充电接口单元。
- 根据权利要求1所述的平衡车控制系统,其特征在于,所述主板上还设置有以下至少之一的电路:蜂鸣器模块、蓝牙上电指示模块;其中,所述蜂鸣器模块与所述主控模块连接;所述蓝牙上电指示模块与所述双模蓝牙模块连接。
- 根据权利要求1至7中任一项所述的平衡车控制系统,其特征在于,所述主控模块包括:主控芯片U6、电阻R32、电阻R33、电阻R42、电容C26、电容C31,其中,所述主控芯片U6包括引脚1至引脚64,其中,引脚1、引脚13、引脚32、引脚19、引脚48、引脚64,与所述降压模块的第三电压输出端连接;引脚12、引脚18、引脚31、引脚47、引脚63,与公共端GND连接;引脚7,与所述降压模块的第三电压输出端之间串联有电阻R42,与公共端GND之间串联有电容C26;引脚16,与所述双模蓝牙模块之间串联有电阻R32;引脚17,与所述双模蓝牙模块之间串联有电阻R33;引脚41、引脚42、引脚43、引脚33、引脚34、引脚35、引脚36、引脚9、引脚24、引脚25,与所述第一电机驱动模块连接;引脚14、引脚22、引脚23、引脚26、引脚27、引脚8、引脚11、引脚37、引脚38、引脚39,与所述第二电机驱动模块连接;引脚61、引脚62,与所述姿态传感器模块连接;引脚28、引脚10、引脚40,与所述降压模块连接;引脚55、引脚56,与所述双模蓝牙芯片单元连接;引脚59,与蜂鸣器模块连接;引脚15、引脚44、引脚50、引脚20、引脚21、引脚29、引脚30、引脚5、引脚6、引脚54、引脚58、引脚2、引脚3、引脚4、引脚51、引脚52、引脚53、引脚57、引脚46、引脚49、引脚45,与所述外部接口模块连接。
- 根据权利要求8所述的平衡车控制系统,其特征在于,所述双模蓝牙模块的双模蓝牙芯片单元包括:双模蓝牙芯片U3、电阻R1、电阻R2、电阻R3、电阻R4、电感L1、电感L2、电容C1、电容C2、电容C3、电容C4和电容C5,其中,所述双模蓝牙芯片U3包括引脚1至引脚24,其中,引脚1,与功率放大器单元之间串联有电阻R1;引脚2,与蓝牙上电指示模块连接;引脚3,与所述主控芯片U6的引脚16连接;引脚4,与所述主控芯片U6的引脚17连接;引脚5,与所述主控芯片U6的引脚55之间串联有电阻R2;引脚6悬空;引脚7,与所述功率放大器单元连接;引脚8,与公共端GND之间串联有电容C3;引脚9,与公共端GND之间串联有电容C4;引脚10悬空;引脚11,与公共端GND连接;引脚12,与公共端GND之间串联有电容C6;引脚13悬空;引脚14悬空;引脚15,与所述主控芯片U6的引脚56之间串联有电阻R4;引脚16,与所述降压模块的第四电压输出端之间串联有电阻R3;引脚17,与公共端GND连接;引脚18,与所述降压模块的第四电压输出端连接,与公共端GND之间串联有电容C5;引脚19,与公共端GND之间串联有电容C2;引脚20,与公共端GND连接;引脚21,与公共端GND之间依次串联有电感L1、电感L2,电感L1和电感L2的连接结点与天线J1之间串联有电容C1;引脚22,与公共端GND连接;引脚23,与晶体振荡器单元连接;引脚24,与晶体振荡器单元连接。
- 根据权利要求8所述的平衡车控制系统,其特征在于,所述第一电机驱动模块的第一PWM输出单元包括:第一PWM输出芯片U8、二极管DL1、二极管DL2、二极管DL3、电容CL6、电容CL8、电容CL14、电容CL15、电阻RL17、电阻RL23、电阻RL24、电阻RL25、电阻RL26、电阻RL27,其中,所述第一PWM输出芯片U8包括引脚1至引脚20,其中,引脚1,与所述主控芯片U6的引脚43之间串联有电阻RL17;引脚2,与所述主控芯片U6的引脚42之间串联有电阻RL24;引脚3,与所述主控芯片U6的引脚41之间串联有电阻RL26;引脚4,与所述主控芯片U6的引脚36之间串联有电阻RL23;引脚5,与所述主控芯片U6的引脚35之间串联有电阻RL25;引脚6,与所述主控芯片U6的引脚34之间串联有电阻RL28;引脚7,与所述降压模块的第一电压输出端连接,与公共端GND之间串联有电容CL6,与所述第一PWM输出芯片U8的引脚14之间串联有二极管DL1,与所述第一PWM输出芯片U8的引脚17之间串联有二极管DL2,与所述第一PWM输出芯片U8的引脚20之间串联有二极管DL3;引脚8,与公共端GND连接;引脚9、引脚10、引脚11、引脚12、引脚13、引脚15、引脚16、引脚18、引脚19,与所述第一三相全桥电路连接;引脚14,与引脚12之间串联有电容CL15;引脚17,与引脚15之间串联有电容CL14;引脚20,与引脚18之间串联有电容CL8。
- 根据权利要求10所述的平衡车控制系统,其特征在于,所述第一电机驱动模块的第一三相全桥电路包括:功率管ML1、功率管ML2、功率管ML3、功率管ML4、功率管ML5、功率管ML6、二极管DL4、二极管DL5、二极管DL6、二极管DL7、二极管DL8、二极管DL9、电阻RL8、电阻RL9、电阻RL10、电阻RL11、电阻RL12、电阻RL13、电阻RL14、电阻RL15、电阻RL16、电阻RL18、电阻RL19、电阻RL20、电阻RL21、电阻RL22、电容CL3、电容CL4、电容CL7、电容CL8、电容CL9、电容CL10、电容CL11、电容CL12、电容CL13,其中,功率管ML1的源极与所述电池的供电单元的电压输出端连接,且所述电池的供电单元的电压输出端与公共端GND_L之间串联有电容CL3,功率管ML1的漏极与所述第一电机的第一相线X1和所述第一PWM输出芯片U8的引脚18连接,功率管ML1的栅极与所述第一PWM输出芯片U8的引脚19之间串联有电阻RL8,且二极管DL4反向并联在电阻RL8上,功率管ML1的栅极和漏极之间还分别串联有电阻RL11和电容CL7;功率管ML4的源极与所述第一相线X1连接,功率管ML4的栅极与所述第一PWM输出芯片U8的引脚11之间串联有电阻RL16,且二极管DL7反向并联在电阻RL16上,功率管ML4的栅极和漏极之间还分别串联有电阻RL20和电容CL11,功率管ML4的源极和漏极之间还串联有电阻RL14;功率管ML2的源极与所述电池的供电单元的电压输出端连接,功率管ML2的漏极与所述第一电机的第三相线X3和所述第一PWM输出芯片U8的引脚15连接,功率管ML2的栅极与所述第一PWM输出芯片U8的引脚16之间串联有电阻RL19,且二极管DL5反向并联在电阻RL19上,功率管ML2的栅极和漏极之间还分别串联有电阻RL12和电容CL9;功率管ML5的源极与所述第三相线X3连接,功率管ML5的栅极与所述第一PWM输出芯片U8的引脚10之间串联有电阻RL18,且二极管DL8反向并联在电阻RL18上,功率管ML5的栅极和漏极之间还分别串联有电阻RL21和电容CL12,功率管ML5的源极和漏极之间还串联有电阻RL15;功率管ML3的源极与所述电池的供电单元的电压输出端连接,且所述电池的供电单元的电压输出端与公共端GND_L之间串联有电容CL4,功率管ML3的漏极与所述第一电机的第二相线X2和所述第一PWM输出芯片U8的引脚12连接,功率管ML3的栅极与所述第一PWM输出芯片U8的引脚13之间串联有电阻RL10,且二极管DL6反向并联在电阻RL10上,功率管ML3的栅极和漏极之间还分别串联有电阻RL13和电容CL10;功率管ML6的源极与所述第二相线X2连接,功率管ML6的栅极与所述第一PWM输出芯片U8的引脚9之间串联有电阻RL19,且二极管DL9反向并联在电阻RL19上,功率管ML6的栅极和漏极之间还分别串联有电阻RL22和电容CL13,功率管ML6的源极和漏极之间还串联有电阻RL37。
- 根据权利要求11所述的平衡车控制系统,其特征在于,所述第一电机驱动模块的第一电流检测单元包括:第一差分运算芯片U1A、二极管DL10、二极管DL11、电阻RL29、电阻RL30、电阻RL31、电阻RL32、电阻RL33、电阻RL34、电阻RL35、电阻RL36,其中,所述第一差分运算芯片包括引脚1至引脚8,其中,引脚1,与所述主控芯片U6的引脚25连接;引脚2,与引脚1之间串联有电阻RL29,与公共端GND_L之间串联有电阻RL31;引脚3,与第一相线X1之间串联有电阻RL35,与降压模块的第三电压输出端之间串联有电阻RL33,引脚3和引脚2之间串联有二极管DL10;引脚4,与公共端GND连接;引脚5,与第三相线X3之间串联有电阻RL36,与降压模块的第三电压输出端之间串联有电阻RL34,引脚5和引脚6之间串联有二极管DL11;引脚6,与公共端GND_L之间串联有电阻RL32,与引脚7之间串联有电阻RL30;引脚7,与所述主控芯片U6的引脚24连接;引脚8,与降压模块的第三电压输出端连接。
- 根据权利要求11所述的平衡车控制系统,其特征在于,所述第一电机驱动模块的第一刹车检测单元包括:三极管QL1、电阻RL1、电阻RL2、电阻RL5、电容CL1,其中,三极管QL1的集电极与降压模块的第三电压输出端之间串联有电阻RL1,三极管QL1的集电极与所述主控芯片U6的引脚33之间串联有电阻RL2,三极管QL1的发射极与公共端GND连接,且三极管QL1的发射极与所述主控芯片U6的引脚33之间串联有电容CL1,三极管QL1的基极与公共端GND_L之间串联有电阻RL5。
- 根据权利要求11所述的平衡车控制系统,其特征在于,所述第一电机驱动模块的第一总电流检测单元包括:第一差分运算器U7A、电阻RL3、电阻RL4、电阻RL6、电阻RL7、电容CL2,其中,所述第一差分运算器的负极输入端与公共端GND之间串联有电阻RL4,所述第一差分运算器的负极输入端与所述第一差分运算器的负极输入端之间串联有电阻RL3,所述第一差分运算器的正极输入端与降压模块的第三电压输出端之间串联有电阻RL6,所述第一差分运算器的正极输入端与公共端GND_L之间串联有电阻RL7,所述第一差分运算器的正极输入端与公共端GND之间串联有电容CL2,所述第一差分运算器的接地端与公共地段GND连接,所述第一差分运算器的电源端与降压模块的第三电压输出端连接,所述第一差分运算器的输出端与所述主控芯片U6的引脚9连接。
- 根据权利要求11所述的平衡车控制系统,其特征在于,所述第一电机驱动模块的第一电流采样单元包括:电阻RL27,连接在公共端GND_L与公共端GND之间。
- 根据权利要求8所述的平衡车控制系统,其特征在于,所述降压模块的供电单元包括:插座P17、插座P18、电容C37、电容C38、电容C39、电容C40,其中,电容C37、电容C38、电容C39、电容C40分别串联在插座P17和插座P18之间,插座P18与公共端GND连接;所述降压模块的第一降压单元包括:功率MOSFET芯片U10、第一降压芯片U11、电阻R66、电阻R68、电阻R71、电阻R73、电阻R60、电阻R63、电阻R57、电阻R56、电阻R54、电阻R53、电阻R52、电阻R55、电阻R58、电阻R59、电阻R62、电容C54、电容C46、电容C36、电容C41、电容C42、电容C43、电容C45、电容C44、电感L3、瞬态二极管DZ1、二极管D6、二极管D7、二极管D4、二极管D3、二极管D5、三极管Q9、功率管Q8、开关接口P19,其中,所述功率MOSFET芯片U10包括引脚1、引脚2和引脚3,其中,引脚1,与所述电池的供电单元的电压输出端之间串联有电阻R56,与三极管Q9的集电极之间串联有电阻R57,三极管Q9的发射极与公共端GND连接,三极管Q9的基极和发射极之间还分别串联有电阻R63和电容R46;引脚2,与公共端GND之间依次串联有电阻R53和电阻R54,与公共端GND之间串联有电容C41,电阻R53和电阻R54的连接结点与所述主控芯片U6的引脚10连接,且电阻R53和电阻R54的连接结点与公共端GND之间串联有电容C36;引脚3,与所述电池的供电单元的电压输出端连接,与充电端BAT_Charge之间串联有二极管D4;所述开关接口P19包括引脚1和引脚2,其中,引脚1,与三极管Q9的基极之间依次串联有二极管D6和电阻R60,与公共端GND之间依次串联有电阻R71和电容C54,且电阻R71和电容C54的连接结点与所述主控芯片U6的引脚40连接,与公共端GND之间串联有电阻R68,且在电阻R68上并联有瞬态二极管DZ1,二极管D6和电阻R60的连接结点与公共端GND之间依次串联有二极管D7和电阻R73,二极管D7和电阻R73的连接结点与所述主控芯片U6的引脚28连接;引脚2,与所述电池的供电单元的电压输出端之间串联有电阻R66。
- 一种平衡车,其特征在于,包括如权利要求1至16中任一项所述的平衡车控制系统。
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201911059577.9A CN110764480B (zh) | 2019-11-01 | 2019-11-01 | 平衡车控制系统和平衡车 |
CN201911059577.9 | 2019-11-01 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2021082952A1 true WO2021082952A1 (zh) | 2021-05-06 |
Family
ID=69335285
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/CN2020/121510 WO2021082952A1 (zh) | 2019-11-01 | 2020-10-16 | 平衡车控制系统和平衡车 |
Country Status (2)
Country | Link |
---|---|
CN (3) | CN113848966A (zh) |
WO (1) | WO2021082952A1 (zh) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN113978589A (zh) * | 2021-12-15 | 2022-01-28 | 山东陀螺电子科技股份有限公司 | 一种自平衡无人单车 |
CN114260905A (zh) * | 2022-01-28 | 2022-04-01 | 天津华宁电子有限公司 | 矿用工作面监测机器人控制系统 |
Families Citing this family (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN113848966A (zh) * | 2019-11-01 | 2021-12-28 | 浙江阿尔郎科技有限公司 | 平衡车控制系统和平衡车 |
CN114594711A (zh) * | 2022-03-07 | 2022-06-07 | 南京理工大学 | 复合功能多电机驱控一体的专用集成电路、测试车 |
CN117970968B (zh) * | 2024-03-27 | 2024-06-07 | 广东工业大学 | 一种基于动量轮与摆式阻尼器的不倒杆的控制方法 |
Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN206254825U (zh) * | 2016-10-20 | 2017-06-16 | 张锦迪 | 一种两轮电动平衡车的驱动控制系统 |
WO2017214966A1 (zh) * | 2016-06-17 | 2017-12-21 | 尚艳燕 | 一种电动平衡车的控制方法及控制系统 |
CN206797560U (zh) * | 2017-05-24 | 2017-12-26 | 厦门理工学院 | 一种平衡车 |
CN107985487A (zh) * | 2017-12-22 | 2018-05-04 | 许昌学院 | 自动平衡车控制系统 |
CN208737283U (zh) * | 2018-11-06 | 2019-04-12 | 华北电力大学(保定) | 一种平衡车行进及避障控制系统 |
CN110764480A (zh) * | 2019-11-01 | 2020-02-07 | 浙江阿尔郎科技有限公司 | 平衡车控制系统和平衡车 |
CN210377162U (zh) * | 2019-11-01 | 2020-04-21 | 浙江阿尔郎科技有限公司 | 平衡车控制系统及平衡车 |
Family Cites Families (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6324908B1 (en) * | 1996-01-31 | 2001-12-04 | Hunter Engineering Company | Wheel balancer and control circuit therefor |
US6272025B1 (en) * | 1999-10-01 | 2001-08-07 | Online Power Supply, Inc. | Individual for distributed non-saturated magnetic element(s) (referenced herein as NSME) power converters |
CN104485822A (zh) * | 2014-12-09 | 2015-04-01 | 中国电子科技集团公司第三十八研究所 | 一种多级降压收集极行波管的串联供电电源 |
CN205327268U (zh) * | 2015-12-31 | 2016-06-22 | 杭州速控软件有限公司 | 电动平衡扭扭车高集成度电路结构 |
CN205365896U (zh) * | 2016-01-18 | 2016-07-06 | 常州涛涛智能科技有限公司 | 双轮平衡车的控制系统 |
CN106080942A (zh) * | 2016-08-10 | 2016-11-09 | 奎泽范(天津)科技发展有限公司 | 一种自平衡电动自行车驱动系统 |
CN206848849U (zh) * | 2017-06-22 | 2018-01-05 | 厦门芯普力电子有限公司 | 一种高输入电压的稳压电源 |
CN207718226U (zh) * | 2017-09-27 | 2018-08-10 | 北京联合大学 | 一种两轮自平衡小车自动跟随系统 |
CN208264448U (zh) * | 2017-12-27 | 2018-12-21 | 广州乐比计算机有限公司 | 一种智能平衡车 |
CN208461720U (zh) * | 2018-06-29 | 2019-02-01 | 广州市吉特科技有限公司 | 一种物流机器人的动力无刷电机驱动器控制板 |
-
2019
- 2019-11-01 CN CN202111196044.2A patent/CN113848966A/zh active Pending
- 2019-11-01 CN CN202111196042.3A patent/CN113917940A/zh active Pending
- 2019-11-01 CN CN201911059577.9A patent/CN110764480B/zh active Active
-
2020
- 2020-10-16 WO PCT/CN2020/121510 patent/WO2021082952A1/zh active Application Filing
Patent Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2017214966A1 (zh) * | 2016-06-17 | 2017-12-21 | 尚艳燕 | 一种电动平衡车的控制方法及控制系统 |
CN206254825U (zh) * | 2016-10-20 | 2017-06-16 | 张锦迪 | 一种两轮电动平衡车的驱动控制系统 |
CN206797560U (zh) * | 2017-05-24 | 2017-12-26 | 厦门理工学院 | 一种平衡车 |
CN107985487A (zh) * | 2017-12-22 | 2018-05-04 | 许昌学院 | 自动平衡车控制系统 |
CN208737283U (zh) * | 2018-11-06 | 2019-04-12 | 华北电力大学(保定) | 一种平衡车行进及避障控制系统 |
CN110764480A (zh) * | 2019-11-01 | 2020-02-07 | 浙江阿尔郎科技有限公司 | 平衡车控制系统和平衡车 |
CN210377162U (zh) * | 2019-11-01 | 2020-04-21 | 浙江阿尔郎科技有限公司 | 平衡车控制系统及平衡车 |
Non-Patent Citations (1)
Title |
---|
ZHU ZHICHENG: "The Design and Development of the Vehicle-mounted OBD Terminal Based on Bluetooth Low Energy", DOCTORAL DISSERTATION, no. 2, 15 February 2018 (2018-02-15), pages 1 - 90, XP009527933, ISSN: 1674-0246 * |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN113978589A (zh) * | 2021-12-15 | 2022-01-28 | 山东陀螺电子科技股份有限公司 | 一种自平衡无人单车 |
CN114260905A (zh) * | 2022-01-28 | 2022-04-01 | 天津华宁电子有限公司 | 矿用工作面监测机器人控制系统 |
CN114260905B (zh) * | 2022-01-28 | 2023-11-28 | 天津华宁电子有限公司 | 矿用工作面监测机器人控制系统 |
Also Published As
Publication number | Publication date |
---|---|
CN113848966A (zh) | 2021-12-28 |
CN110764480A (zh) | 2020-02-07 |
CN110764480B (zh) | 2021-11-09 |
CN113917940A (zh) | 2022-01-11 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2021082952A1 (zh) | 平衡车控制系统和平衡车 | |
CN210377162U (zh) | 平衡车控制系统及平衡车 | |
CN2858417Y (zh) | 一种用于混合动力系统的整车控制器 | |
CN210515036U (zh) | 平衡车控制系统及平衡车 | |
CN106887975A (zh) | 一种直流电机驱动电路 | |
WO2021082955A1 (zh) | 平衡车控制系统及平衡车 | |
JP6002120B2 (ja) | 電動機付自転車 | |
CN205453563U (zh) | 一种平衡车的电机控制装置 | |
CN204452766U (zh) | 一种双模双动力电动车 | |
CN205931050U (zh) | 一种电动平衡独轮滑板车 | |
CN206789041U (zh) | 智能获取红绿灯数据的导盲系统 | |
CN206186823U (zh) | 一种电动独轮车及其控制系统 | |
CN212950155U (zh) | 一种平衡车用副控板、平衡车控制系统及平衡车 | |
JP6026111B2 (ja) | 電動車両の電源システムおよび電動車両 | |
CN103956087B (zh) | 一种城轨交通运营安全模拟沙盘的车头解码控制器 | |
CN203119827U (zh) | 基于mcu的无刷直流电机控制器 | |
CN106004732B (zh) | 基于无线通信的整车控制器 | |
CN210867214U (zh) | 一种车载无线充电装置 | |
CN212219964U (zh) | 一种用于新能源汽车的动力集成控制系统 | |
JP2017135785A (ja) | 駆動装置及び電動アシスト装置 | |
CN205826007U (zh) | 一种电动自行车控制器 | |
CN208112538U (zh) | 一种电机驱动电路及机器人 | |
CN104648593A (zh) | 一种双模双动力电动车 | |
JP2004032913A5 (zh) | ||
CN205469478U (zh) | 一种新型智能平衡车 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 20880410 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 20880410 Country of ref document: EP Kind code of ref document: A1 |