WO2021082849A1 - 一种传感器检测装置和传感器检测控制方法 - Google Patents

一种传感器检测装置和传感器检测控制方法 Download PDF

Info

Publication number
WO2021082849A1
WO2021082849A1 PCT/CN2020/118549 CN2020118549W WO2021082849A1 WO 2021082849 A1 WO2021082849 A1 WO 2021082849A1 CN 2020118549 W CN2020118549 W CN 2020118549W WO 2021082849 A1 WO2021082849 A1 WO 2021082849A1
Authority
WO
WIPO (PCT)
Prior art keywords
sensor
data
sensor detection
interface
detection device
Prior art date
Application number
PCT/CN2020/118549
Other languages
English (en)
French (fr)
Inventor
刘大刚
Original Assignee
中兴通讯股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中兴通讯股份有限公司 filed Critical 中兴通讯股份有限公司
Publication of WO2021082849A1 publication Critical patent/WO2021082849A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W4/00Services specially adapted for wireless communication networks; Facilities therefor
    • H04W4/30Services specially adapted for particular environments, situations or purposes
    • H04W4/38Services specially adapted for particular environments, situations or purposes for collecting sensor information
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L67/00Network arrangements or protocols for supporting network services or applications
    • H04L67/01Protocols
    • H04L67/12Protocols specially adapted for proprietary or special-purpose networking environments, e.g. medical networks, sensor networks, networks in vehicles or remote metering networks
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W28/00Network traffic management; Network resource management
    • H04W28/02Traffic management, e.g. flow control or congestion control
    • H04W28/06Optimizing the usage of the radio link, e.g. header compression, information sizing, discarding information
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W28/00Network traffic management; Network resource management
    • H04W28/02Traffic management, e.g. flow control or congestion control
    • H04W28/06Optimizing the usage of the radio link, e.g. header compression, information sizing, discarding information
    • H04W28/065Optimizing the usage of the radio link, e.g. header compression, information sizing, discarding information using assembly or disassembly of packets
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L2212/00Encapsulation of packets
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L69/00Network arrangements, protocols or services independent of the application payload and not provided for in the other groups of this subclass
    • H04L69/16Implementation or adaptation of Internet protocol [IP], of transmission control protocol [TCP] or of user datagram protocol [UDP]

Definitions

  • the embodiments of the present application relate to but are not limited to the application field of sensor monitoring and control, and specifically relate to but not limited to a sensor detection device and a sensor detection control method.
  • the current industry-recognized development difficulty is that the Internet of Things is in a period of development and lacks a complete technical standard system.
  • the current sensors have many kinds of interfaces, the standards are not uniform, and the versatility is poor.
  • the transmission distance of the sensor can only cover the area network, which is not suitable for large-scale networking, long-distance data transmission and control, or seamless interconnection with existing services on the internet.
  • An embodiment of the present application provides a sensor detection device and a sensor detection control method.
  • An embodiment of the application provides a sensor detection device, which includes: a sensor interface module for connecting with a sensor; a data processing module for acquiring sensor data in the sensor and encapsulating the sensor data; a communication module , Used to send the packaged sensor data to the server through the network, and/or receive information from the server.
  • An embodiment of the present application also provides a sensor detection control method, including: establishing a connection with the sensor; when the sensor data in the sensor is acquired, encapsulating the sensor data; and transferring the processed transmission The sensory data is sent to the server via the network.
  • the sensor detection control method further includes: when receiving the information sent by the server, processing the acquired information; and sending the processed information to the sensor or other devices.
  • FIG. 1 is a schematic diagram of the structure of the sensor detection device in the first embodiment of the application
  • FIG. 2 is a schematic diagram of the format of TLV encapsulation in Embodiment 1 of this application;
  • FIG. 3 is a flowchart of a sensor detection control method in the second embodiment of the application.
  • FIG. 5 is a flowchart of a sensor detection control method in the process of automatically guiding a vehicle to an empty parking space in an underground parking lot in the third embodiment of the application;
  • FIG. 6 is a flowchart of a sensor detection control method in the process of driving away from an underground parking lot in the fourth embodiment of the application;
  • FIG. 7 is a flowchart of a sensor detection and control method in the process of monitoring the pollution discharge of multiple enterprises in the fifth embodiment of the application;
  • FIG. 8 is a schematic diagram of the connection of an optional sensor detection device in each embodiment of the application.
  • FIG. 9 is a schematic diagram of a terminal structure in Embodiment 6 of this application.
  • this embodiment provides a sensor detection device, as shown in FIG. 1, including a sensor interface module 11, a data processing module 12, and a communication module 13. .
  • the sensor interface module 11 is used to connect with the sensor.
  • the sensor interface module has at least one sensor interface for connecting sensors.
  • the type of sensor interface can be set according to the actual needs of connecting the sensor, and it is physically compatible with wired transmission type sensors and/or wireless transmission type sensors.
  • the sensor interface module 11 can be provided with different wireless transmission interfaces, including but not limited to communication protocols such as zigbee, ZWave (short-range wireless communication technology led by the Danish company Zensys), WiFi, LoRA (Long Range Radio, long-distance radio), etc. At least one of the interfaces, in addition, the sensor interface module can also be equipped with different wired transmission interfaces, including but not limited to RS-232, RS485, RS422 and other wired communication interfaces. In actual operation, according to various factors such as the distance of sensor data transmission, the cost of data transmission, and the anti-interference of data transmission, the appropriate port can be selected to connect with the corresponding sensor.
  • communication protocols such as zigbee, ZWave (short-range wireless communication technology led by the Danish company Zensys), WiFi, LoRA (Long Range Radio, long-distance radio), etc.
  • the sensor interface module can also be equipped with different wired transmission interfaces, including but not limited to RS-232, RS485,
  • the data processing module 12 is used to obtain the sensing data in the sensor and encapsulate the sensing data.
  • the data processing module 12 interacts with the sensor through the sensor interface module 11 to obtain sensor data from the sensor.
  • the data processing module 12 acquires the sensor data from the sensor, it can acquire the sensor data in real time as needed, and can also set certain acquisition conditions, including but not limited to setting a predetermined acquisition time and so on.
  • the sensor detection device can establish a real-time connection with the sensor to obtain the sensor data in the sensor in real time; in some cases, real-time sensor data is not required.
  • a fixed acquisition time such as once every half an hour, to acquire the sensor data from the sensor.
  • the sensor data can be sent to the data processing module 12 through a transmission interface connected to the sensor under certain conditions.
  • the transmission conditions include but are not limited to setting a preset time and a certain value in the sensor data reaches an early warning. Value and so on.
  • a preset time can be set in the sensor, and the sensor data is sent to the sensor detection device through the transmission interface at every preset time. For example, when performing weather monitoring, it is usually not necessary to monitor the current temperature, humidity and other parameters in real time. You can set the sensor to perform detection every half an hour and send the sensor data to the sensor detection device.
  • an early warning value can also be set.
  • the sensor When the data detected by the sensor reaches or exceeds the early warning value, the sensor sends the sensor data to the sensor detection device through the transmission interface. For example, when performing fire warning in a building, when the smoke sensor detects that the current smoke concentration is greater than the warning value, the sensor data is sent to the sensor detection device.
  • the data processing module 12 encapsulates the acquired sensor data into a TCP/IP-based message, and converts the sensor data into a regular TCP/IP message.
  • the converted TCP/IP message can be used on a regular network device like a network Data is also transmitted without loss.
  • Network equipment includes but not limited to Ethernet cable, WiFi, optical fiber, NBIoT (Narrow Band Internet of Things, Narrow Band Internet of Things), etc.
  • the data processing module 12 After the data processing module 12 obtains the sensor data, it encapsulates the sensor data in a TLV format, and the encapsulation format is as shown in FIG. 2.
  • TLV is a variable format.
  • the Tag field is information about the tag and encoding format
  • the Length field defines the length of the value
  • the Value field represents the actual value.
  • TLV encoding means to encode the Tag first, then encode the Length, and finally encode the Value.
  • AID application identifier
  • 9F0607A0000000031010 is the value of the AID itself.
  • the data processing module 12 converts the acquired sensing data into TCP/IP, and then sends the data to the communication module 13.
  • the data processing module 12 may run an embedded system capable of executing concurrent tasks, including but not limited to a Linux system.
  • the data processing module 12 can perform operations such as data acquisition, data encapsulation, and data transmission through the embedded system.
  • the communication module 13 is used to send the packaged sensor data to the server via the network.
  • the communication module contains at least one network interface through which the TCP/IP message is sent to the server.
  • the network interface includes but is not limited to at least one of an Ethernet line interface, a WIFI interface, an optical fiber interface, and an NBIoT interface.
  • the communication module 13 is also used to receive information from the server, including but not limited to configuration information, control instructions, and so on.
  • the configuration information can be used to configure the sensor detection device and the sensor, such as upgrading the software version of the sensor detection device; the control instruction can be used to control the sensor detection device, and then control the sensor connected to the sensor detection device, for example, control the working state of the sensor.
  • the sensor detection apparatus further includes a device interface module 14 which includes at least one device interface for connecting with other devices other than the sensor.
  • the device interface module 14 can be connected to devices such as lamps and speakers, and the data processing module 12 can control the connected devices through the device interface module 14.
  • This embodiment provides a sensor detection device, which includes a sensor interface module, a data processing module, and a communication module.
  • the sensor interface module is used to connect the sensor, the data processing module, and the sensor data is acquired through the sensor interface module.
  • the acquired sensor data is encapsulated into a TCP/IP-based message, and then the TCP/IP-based message is sent to the server through the communication module, which solves the problem that the sensors in related technologies have multiple interfaces, the standards are not uniform, and the versatility is poor , And the problem that the sensor's data transmission distance is relatively short, which can only cover the area network, realizes the adaptation of standard sensors, improves the application range of the sensor, increases the sensor data transmission range, and improves the effect of the Internet utilization rate in the sensor monitoring field.
  • this embodiment provides a sensor detection and control method, as shown in FIG. 3, which includes the following steps:
  • the sensor detection device can establish a connection with the corresponding sensor through the transmission interface.
  • the type of transmission interface can be set according to the actual needs of the connected sensor, and it is physically compatible with wired transmission type sensors and/or wireless transmission type sensors.
  • different wireless transmission interfaces can be set in the sensor detection device, including but not limited to at least one of the communication protocol interfaces such as zigbee, ZWave, WiFi, LoRA, etc.
  • different wired transmission interfaces can also be set in the sensor detection device, including But not limited to RS-232, RS485, RS422 and other wired communication interfaces. In actual operation, you can select the appropriate interface to connect to the corresponding sensor according to various factors such as the distance of sensor data transmission, the cost of data transmission, and the anti-interference of data transmission.
  • acquiring the sensor data in the sensor may specifically be that the sensor detection device acquires the sensor data in the corresponding sensor through the transmission interface.
  • the sensor data can be acquired in real time as needed, and certain acquisition conditions can also be set, including but not limited to setting a predetermined acquisition time and so on.
  • the sensor detection device can establish a real-time connection with the sensor to obtain the sensor data in the sensor in real time; in some cases, real-time sensor data is not required.
  • a fixed acquisition time such as once every half an hour, to acquire the sensor data from the sensor.
  • the sensor data may be sent to the sensor detection device through a transmission connected to the sensor under certain conditions.
  • the transmission conditions include but are not limited to setting a preset time, a certain value in the sensor data reaches an early warning value, etc. Wait.
  • a preset time can be set in the sensor, and the sensor data is sent to the sensor detection device through the transmission interface at every preset time. For example, when performing weather monitoring, it is usually not necessary to monitor the current temperature, humidity and other parameters in real time. You can set the sensor to perform detection every half an hour and send the sensor data to the sensor detection device.
  • an early warning value can also be set.
  • the sensor When the data detected by the sensor reaches or exceeds the early warning value, the sensor sends the sensor data to the sensor detection device through the transmission interface. For example, when performing fire warning in a building, when the smoke sensor detects that the current smoke concentration is greater than the warning value, the sensor data is sent to the sensor detection device.
  • the encapsulation processing of the sensor data can specifically be that the sensor detection device encapsulates the acquired sensor data into a TCP/IP packet, and converts the sensor data into a regular TCP/IP packet. After the conversion, TCP/IP packets can be transmitted losslessly like network data on conventional network equipment.
  • Network equipment includes but not limited to Ethernet cable, WiFi, optical fiber, NBIoT, etc.
  • the sensor detection device encapsulates the sensor data in a TLV format, and the encapsulation format is as shown in FIG. 2.
  • TLV is a variable format.
  • the Tag field is information about the tag and encoding format
  • the Length field defines the length of the value
  • the Value field represents the actual value.
  • TLV encoding means to encode the Tag first, then encode the Length, and finally encode the Value.
  • AID application identifier
  • S303 Send the processed sensor data to the server via the network.
  • the sensor detection device may send the TCP/IP-based message to the server through the network interface.
  • the network interface includes but is not limited to at least one of an Ethernet line interface, a WIFI interface, an optical fiber interface, and an NBIoT interface.
  • the sensor detection control method in this embodiment further includes:
  • the acquired information is processed into information that the sensor or sensor detection device can read and execute.
  • the configuration information can be used to configure the sensor detection device and the sensor, such as upgrading the software version of the sensor detection device;
  • the control instruction can be used to control the sensor detection device, and then control the sensor connected to the sensor detection device, such as controlling the working status of the sensor, etc. .
  • S402 Send the processed information to the sensor or other equipment.
  • the sensor detection device may send the processed information to the corresponding sensor or other equipment connected to the sensor detection device, such as a lamp, a horn, and other equipment. After the sensor or other equipment receives the information, it executes the corresponding operation, such as switching the working state.
  • This embodiment provides a sensor detection control method, by acquiring sensor data in the sensor, and encapsulating the acquired sensor data into a TCP/IP packet, and then sending the TCP/IP packet to the server , It solves the problem that the sensors in related technologies have multiple interfaces, the standards are not uniform, the versatility is poor, and the data transmission distance of the sensor is short, which can only cover the area network. It realizes the adaptation of the standard sensor and improves the application range of the sensor. Improve the sensor data transmission range, and improve the effect of the Internet utilization rate in the sensor monitoring field.
  • this embodiment provides a sensor detection and control method.
  • the sensor detection and control method in the process of automatically guiding the vehicle to an empty parking space in an underground parking lot is taken as an example for description, as shown in FIG. 5, which includes the following steps:
  • S501 Electronicize the parking lot information and import it into the back-end system database.
  • an electronic map can be established to mark all forks, entrances and exits, and parking spaces of the parking lot.
  • S502 Bind all the light tubes with the path, and then import the back-end system database.
  • the light tube contains sensors for detecting vehicle and human body information.
  • the sensor-equipped light tube is located on the top of the parking lot, and is set above each fork, entrance and exit, and parking space. In one embodiment, this kind of light tube with sensor can also be used in all vehicle paths in the parking lot.
  • the working state of the lamp tube can be controlled by the sensor detection device connected to it.
  • the type of the transmission interface can be set according to the actual needs of connecting the sensor, and it is physically compatible with the sensor of the wired transmission type and/or the sensor of the wireless transmission type.
  • different wireless transmission interfaces can be set in the sensor detection device, including but not limited to at least one of the communication protocol interfaces such as zigbee, ZWave, WiFi, LoRA, etc.
  • different wired transmission interfaces can also be set in the sensor detection device, including But not limited to RS-232, RS485, RS422 and other wired communication interfaces
  • the sensor detection device acquires the vehicle information, and sends the vehicle information to the background system.
  • the sensor detects that the vehicle is approaching, for example, the license plate is obtained through the camera, the number is obtained through the RFID (Radio Freqyency Identification)/NFC (Near Field Communication) card, etc., sensor detection
  • the device obtains the vehicle information from the sensor through the transmission interface, encapsulates the vehicle information into a TCP/IP packet in real time, and then sends the processed vehicle information to the background system through the network interface.
  • the sensor detection device encapsulates the vehicle information according to the TLV format, and the encapsulation format is shown in FIG. 2.
  • TLV is a variable format.
  • the Tag field is information about the tag and encoding format
  • the Length field defines the length of the value
  • the Value field represents the actual value.
  • TLV encoding means to encode the Tag first, then encode the Length, and finally encode the Value.
  • AID application identifier
  • the background system After receiving the vehicle information, the background system determines whether the vehicle has a fixed parking space, if there is a fixed parking space, obtain the electronic information of the parking space, and if there is no fixed parking space, obtain the electronic information of the nearest free parking space.
  • the background system After obtaining the electronic information of the target parking space, the background system uses an algorithm to calculate the path between the vehicle and the target parking space, and uses the binding information of the light tube and the path to find out the equipment that needs to be activated, and the sensor detection device activates these equipment .
  • the vehicle only needs to follow the light tube guidance at each intersection and stop until the light tube lights up.
  • the parking space is enough. It is also possible to activate all the light tubes on the path between the vehicle and the target parking space, and the vehicle can follow the guidance path formed by lighting the light tubes to find the target parking space.
  • the sensor detection device can turn off the lighting power of the lamp tube.
  • S507 The lamp tube automatically turns off the lighting power after detecting that the person has left the target parking space.
  • the sensor detection device turns off the power of the lamp tube to achieve the effect of saving energy.
  • the lighting power supply can be turned off after detecting that the person has left the target parking space for a certain period of time, so as not to affect the line of sight of the person.
  • This embodiment provides a sensor detection and control method applied to parking in an underground garage.
  • the sensor detection device acquires sensor data from the sensor in the lamp tube and encapsulates the acquired sensor data into a TCP/IP packet. Then the TCP/IP message is sent to the background system, and the background system calculates the lamps that need to be lit.
  • the sensor detection device controls these lamps to light up, and the vehicle can quickly find the target based on the lighted lamps.
  • the parking space realizes the effect of accurately and quickly finding the parking space, and improves the car owner's experience.
  • this embodiment provides a sensor detection and control method.
  • the sensor detection and control method in the process of driving away from the underground parking lot is taken as an example for description. As shown in FIG. 6, the method includes the following steps:
  • the sensors in the lamp tube such as sound sensors, infrared sensors, etc., detect people and turn on the power to illuminate.
  • the lamp tube detects that the vehicle is started, turns on the lighting power supply, and notifies the sensor detection device.
  • the sensor in the lamp tube such as a sound sensor, an infrared sensor, etc. detects that the vehicle is started, then paints and illuminates the power supply, and sends the vehicle information to the sensor detection device through the transmission interface.
  • Vehicle information can be obtained through the camera to obtain the license plate, and the RFID/NFC card to obtain the number.
  • the sensor detection device sends the vehicle information to the background system.
  • the sensor detection device encapsulates the acquired vehicle information into a TCP/IP packet, and sends the processed vehicle information to the background system through the network interface.
  • the sensor detection device encapsulates the vehicle information according to the TLV format, and the encapsulation format is shown in FIG. 2.
  • TLV is a variable format.
  • the Tag field is information about the tag and encoding format
  • the Length field defines the length of the value
  • the Value field represents the actual value.
  • TLV encoding means to encode the Tag first, then encode the Length, and finally encode the Value.
  • AID application identifier
  • the background system calculates the path of the vehicle to the exit, obtains the lamp information on the path, and then sends the lamp information to the sensor detection device through the network interface.
  • the sensor detection device sequentially activates these lamps according to the obtained lamp information.
  • the vehicle only needs to follow the light guides at each intersection to find the exit of the parking lot. It is also possible to start all the light tubes on the exit path of the vehicle to the parking lot, and the vehicle can follow the guiding path formed by the lighted tube to find the exit.
  • the sensor detection device can turn off the lighting power of the lamp tube.
  • S606 The lamp does not detect vehicles and persons for a period of time, automatically turns off the power supply, and informs the sensor detection device through the transmission interface.
  • This embodiment provides a sensor detection and control method applied when a vehicle leaves an underground garage.
  • the sensor detection device acquires sensor data from a sensor in a lamp tube, and encapsulates the acquired sensor data into a TCP/IP packet. , And then send the TCP/IP message to the background system.
  • the background system calculates the lamps that need to be lit.
  • the sensor detection device controls these lamps to light up.
  • the vehicle can quickly find the target according to the lighted lamps. Export, to achieve the effect of finding the exit accurately and quickly, and improve the user experience of the car owner.
  • this embodiment provides a sensor detection and control method.
  • the sensor detection and control method in the process of monitoring the sewage discharge of multiple enterprises is taken as an example for description. As shown in FIG. 7, the method includes the following steps:
  • the sensor detection device is connected to the detection equipment through the transmission interface, and the detection equipment is inserted into the sewage pipeline of each enterprise.
  • the type of the transmission interface can be set according to the actual needs of connecting the sensor, and it is physically compatible with the sensor of the wired transmission type and/or the sensor of the wireless transmission type.
  • different wireless transmission interfaces can be set in the sensor detection device, including but not limited to at least one of the communication protocol interfaces such as zigbee, ZWave, WiFi, LoRA, etc.
  • different wired transmission interfaces can also be set in the sensor detection device, including But not limited to RS-232, RS485, RS422 and other wired communication interfaces
  • S702 The sensor detection device periodically obtains sampling data.
  • the time for acquiring the sampling data can be set in the sensor detection device, and when the predetermined time is reached, the sampling data is acquired through the transmission interface.
  • the sensor detection device encapsulates the sampled data into a TCP/IP packet.
  • the sensor detection device encapsulates the sampled data according to the TLV format, and the encapsulated format is as shown in FIG. 2.
  • TLV is a variable format.
  • the Tag field is information about the tag and encoding format
  • the Length field defines the length of the value
  • the Value field represents the actual value.
  • TLV encoding means to encode the Tag first, then encode the Length, and finally encode the Value.
  • AID application identifier
  • the sensor detection device sends the TCP/IP-based message to the server through the network interface.
  • the network interface includes but is not limited to at least one of an Ethernet line interface, a WIFI interface, an optical fiber interface, and an NBIoT interface.
  • This embodiment provides a sensor detection control method that applies pollutant discharge detection to multiple enterprises.
  • the sensor detection device acquires sensor data of the detection equipment and encapsulates the acquired sensor data into a TCP/IP packet. Then the TCP/IP-based message is sent to the background system to realize the effect of remote monitoring of the enterprise's pollution discharge and improve the detection efficiency.
  • Embodiment 6 is a diagrammatic representation of Embodiment 6
  • this embodiment provides a terminal, as shown in FIG. 9, which includes a processor 91, a memory 92, and a communication bus 93, in which:
  • the communication bus is used to connect the processor and the memory
  • the processor is configured to execute one or more computer programs stored in the memory to implement at least one step in the sensor detection control method in the second, third, fourth, and fifth embodiments.
  • This embodiment also provides a computer-readable storage medium, which is included in any method or technology for storing information (such as computer-readable instructions, data structures, computer program modules, or other data). Volatile or non-volatile, removable or non-removable media.
  • Computer-readable storage media include but are not limited to RAM (Random Access Memory), ROM (Read-Only Memory, read-only memory), EEPROM (Electrically Erasable Programmable read only memory, charged Erasable Programmable Read-Only Memory) ), flash memory or other memory technology, CD-ROM (Compact Disc Read-Only Memory), digital versatile disk (DVD) or other optical disk storage, magnetic cassettes, magnetic tapes, magnetic disk storage or other magnetic storage devices, Or any other medium that can be used to store desired information and that can be accessed by a computer.
  • the computer-readable storage medium in this embodiment can be used to store one or more computer programs, and the stored one or more computer programs can be executed by one or more processors to implement the second, third, and fourth embodiments above. 5. At least one step in the sensor detection control method in the fifth.
  • This embodiment also provides a computer program (or computer software).
  • the computer program can be distributed on a computer-readable medium and executed by a computable device to implement the steps in the second, third, fourth, and fifth embodiments above.
  • the sensor detects at least one step in the control method; and in some cases, at least one step shown or described may be performed in a different order from that described in the foregoing embodiment.
  • This embodiment also provides a computer program product, including a computer readable device, and any computer program as shown above is stored on the computer readable device.
  • the computer-readable device in this embodiment may include the computer-readable storage medium as shown above.
  • communication media usually contain computer-readable instructions, data structures, computer program modules, or other data in a modulated data signal such as carrier waves or other transmission mechanisms, and may include any information delivery medium. Therefore, this application is not limited to any specific combination of hardware and software.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Health & Medical Sciences (AREA)
  • Computing Systems (AREA)
  • General Health & Medical Sciences (AREA)
  • Medical Informatics (AREA)
  • Telephonic Communication Services (AREA)
  • Selective Calling Equipment (AREA)

Abstract

本申请实施例提供的一种传感器检测装置和传感器检测控制方法,通过在传感器检测装置中设置与现有标准传感器兼容的传感接口,并与传感器连接,传感器检测装置可通过传感接口获取传感器的传感数据,并将获取到的传感数据封装成TCP/IP格式的报文,最后将该封装后的TCP/IP格式报文通过网络接口发送至网络服务器,以便其他设备和业务使用该传感数据。

Description

一种传感器检测装置和传感器检测控制方法
相关申请的交叉引用
本申请基于申请号为201911054389.7、申请日为2019年10月31日的中国专利申请提出,并要求该中国专利申请的优先权,该中国专利申请的全部内容在此以引入方式并入本申请。
技术领域
本申请实施例涉及但不限于传感器监测和控制应用领域,具体而言,涉及但不限于一种传感器检测装置和传感器检测控制方法。
背景技术
2009年温家宝总理提出“感知中国”以来,物联网被正式列为国家五大新兴战略产业之一。传感器作为物联网中重要的组成部分,对其的检测与控制也越来越受到人们的关注。
当前业界公认的发展难点在于物联网处于时期发展阶段,缺乏完整的技术标准体系,目前的传感器有许多种接口,标准不统一,通用性较差。且传感器的传输距离只能覆盖区域网,不好应用于大规模组网、远距离数据传输和控制,或者与internet上已有业务无缝互联互通。针对相关技术中存在的上述问题,目前并没有一种传输范围广且适用性好的传感器检测控制方法。
发明内容
本申请实施例提供的一种传感器检测装置和传感器检测控制方法。
本申请实施例提供一种传感器检测装置,包括:传感器接口模块,用于与 传感器连接;数据处理模块,用于获取所述传感器中的传感数据,对所述传感数据进行封装;通讯模块,用于将封装后的所述传感数据通过网络发送至服务器,和/或从服务器接收信息。
本申请实施例还提供一种传感器检测控制方法,包括:与传感器建立连接;当获取到所述传感器中的传感数据时,对所述传感数据进行封装处理;将处理后的所述传感数据通过网络发送至服务器。
在本申请的一种实施例中,传感器检测控制方法还包括:接收到服务器发送的信息时,对获取到的所述信息进行处理;将处理后的信息发送给传感器或其他设备。
本申请其他特征和相应的有益效果在说明书的后面部分进行阐述说明,且应当理解,至少部分有益效果从本申请说明书中的记载变的显而易见。
附图说明
图1为本申请实施例一中的传感器检测装置结构示意图;
图2为本申请实施例一中的TLV封装的格式示意图;
图3为本申请实施例二中的传感器检测控制方法流程图;
图4为本申请实施例二中的传感器检测控制方法流程图;
图5为本申请实施例三中的地下停车场自动引导车辆至空闲车位过程中的传感器检测控制方法流程图;
图6为本申请实施例四中的开车离开地下停车场过程中的传感器检测控制方法流程图;
图7为本申请实施例五中的监控多家企业排污情况过程中的传感器检测控制方法流程图;
图8为本申请各实施例中一种可选的传感器检测装置连接示意图;
图9为本申请实施例六中的终端结构示意图。
具体实施方式
为了使本申请的目的、技术方案及优点更加清楚明白,下面通过具体实施方式结合附图对本申请实施例作进一步详细说明。应当理解,此处所描述的具体实施例仅仅用以解释本申请,并不用于限定本申请。
实施例一:
为了解决相关技术中,传感器具有多种接口,标准不统一,通用性较差,以及相关技术中,传感器的数据传输距离较短,只能覆盖区域网,不好应用于大规模组网、远距离数据传输和控制以及与Internet上已有业务无缝互联互通的问题,本实施例提供了一种传感器检测装置,如图1所示,包括传感器接口模块11、数据处理模块12和通讯模块13。
传感器接口模块11用于与传感器连接。传感器接口模块中拥有至少一个传感器接口,用于连接传感器。传感器接口的类型可根据连接传感器的实际需要进行设置,在物理上兼容有线传输类型的传感器和/或无线传输类型的传感器。
例如,传感器接口模块11可设置不同的无线传输接口,包括但不限于zigbee、ZWave(由丹麦公司Zensys主导的短距离无线通信技术)、WiFi、LoRA(Long Range Radio,远距离无线电)等通信协议接口中的至少一个,此外,传感器接口模块还可设置不同的有线传输接口,包括但不限于RS-232、RS485、RS422等有线通讯接口。在实际操作中,可根据传感器数据传输的距离、数据传输的成本以及数据传输的抗干扰性等多方面因素,选择合适的端口与对应的传感器进行连接。
数据处理模块12用于获取传感器中的传感数据,对传感数据进行封装。
数据处理模块12通过传感器接口模块11与传感器进行交互,获取传感器中的传感数据。数据处理模块12获取传感器中传感数据时,可根据需要,实时获取传感数据,也可设置一定的获取条件,包括但不限于设置预定获取时间等 等。例如,在一些对传感数据即时性要求较高的场景,如医疗过程患者体征检测等,传感器检测装置可建立与传感器的实时连接,以便即时获取传感器中的传感数据;在一些不需实时监测的应用场景中,如气象监测等,可设置固定获取时间,如半小时一次,获取传感器中的传感数据。
在一实施例中,传感数据可以由传感器在一定条件下,通过与其连接的传输接口发送至数据处理模块12,传输条件包括但不限于设置预设时间、传感数据中某个值达到预警值等等。在一些实施例中,可在传感器中设定一个预设时间,每隔一段预设时间,便通过传输接口将传感数据发送至传感器检测装置。例如,在进行气象监测时,通常不必实时监测当前的气温、湿度等参数,可以设置传感器每隔半小时进行一次检测,并将传感数据发送至传感器检测装置。在一些实施例中,还可设置一个预警值,当传感器检测到的数据达到或超过该预警值时,传感器通过传输接口将传感数据发送至传感器检测装置。例如,在进行建筑物内的火灾预警时,当烟雾传感器检测到当前烟雾浓度大于预警值时,将传感数据发送至传感器检测装置。
数据处理模块12将获取到的传感数据封装成TCP/IP化报文,将传感数据转换成常规的TCP/IP报文,转换后的TCP/IP报文可以在常规网络设备上像网络数据一样进行无损传输,网络设备包括但不限于以太网线、WiFi、光纤、NBIoT(Narrow Band Internet of Things,窄带物联网)等。优选的,数据处理模块12获取到传感数据之后,将传感数据按照TLV格式封装起来,封装的格式如图2所示。TLV一种可变格式,标签(Tag)字段是关于标签和编码格式的信息,长度(Length)字段定义数值的长度,内容(Value)字段表示实际的数值。TLV编码就是指先对Tag编码,再对Length编码,最后对Value编码。例如,一个TLV格式的AID(应用标识符)“9F0607A0000000031010”,其中9F06是tag,07是长度,A0000000031010为AID本身的值。数据处理模块12将获取到的传感数据TCP/IP化后,将数据发送至通讯模块13。
在一实施例中,数据处理模块12可以运行能执行并发任务的嵌入式系统,包括但不限于Linux系统。数据处理模块12可通过该嵌入式系统进行数据获取、数据封装、数据传递等操作。
通讯模块13用于将封装后的所述传感数据通过网络发送至服务器。通讯模块中包含有至少一个网络接口,通过该接口将TCP/IP化的报文发送至服务器中。网络接口包括但不限于以太网线接口、WIFI接口、光纤接口、NBIoT接口中的至少一种。
在一实施例中,通讯模块13还用于从服务器接收信息,包括但不限于配置信息、控制指令等等。配置信息可用于对传感器检测装置以及传感器进行配置,例如升级传感器检测装置的软件版本;控制指令可用于对传感器检测装置进行控制,进而控制与传感器检测装置相连的传感器,例如控制传感器的工作状态。
在一实施例中,传感器检测装置还包括设备接口模块14,设备接口模块14包含至少一个设备接口,用于与传感器以外的其他设备连接。例如,设备接口模块14可连接灯管、喇叭等设备,数据处理模块12可通过设备接口模块14对连接的设备进行控制。
本实施例提供了一种传感器检测装置,包括传感器接口模块、数据处理模块和通讯模块,传感器接口模块用于连接传感器,数据处理模块,通过传感器接口模块获取到传感器中的传感数据,并将获取到的传感数据封装成TCP/IP化报文,然后将TCP/IP化的报文通过通讯模块发送至服务器,解决了相关技术中传感器具有多种接口,标准不统一,通用性较差,以及传感器的数据传输距离较短,只能覆盖区域网的问题,实现了适配标准传感器,提高传感器适用范围,提高传感器数据传输范围,提高了传感器监测领域中互联网利用率的效果。
实施例二:
为了解决相关技术中,传感器具有多种接口,标准不统一,通用性较差,以及相关技术中,传感器的数据传输距离较短,只能覆盖区域网,不好应用于大规模组网、远距离数据传输和控制以及与Internet上已有业务无缝互联互通的问题,本实施例提供了一种传感器检测控制方法,如图3所示,包括以下步骤:
S301:与传感器建立连接。
在该步骤中,具体可以为传感器检测装置通过传输接口与对应传感器建立 连接。
传输接口的类型可根据连接传感器的实际需要进行设置,在物理上兼容有线传输类型的传感器和/或无线传输类型的传感器。例如,传感器检测装置中可设置不同的无线传输接口,包括但不限于zigbee、ZWave、WiFi、LoRA等通信协议接口中的至少一个,此外,传感器检测装置中还可设置不同的有线传输接口,包括但不限于RS-232、RS485、RS422等有线通讯接口。在实际操作中,可根据传感器数据传输的距离、数据传输的成本以及数据传输的抗干扰性等多方面因素,选择合适的接口与对应的传感器进行连接。
S302:当获取到传感器中的传感数据时,对传感数据进行封装处理。
在该步骤中,获取传感器中的传感数据具体可以为传感器检测装置通过传输接口获取到对应传感器中的传感器数据。在获取传感数据时,可根据需要,实时获取传感数据,也可设置一定的获取条件,包括但不限于设置预定获取时间等等。例如,在一些对传感数据即时性要求较高的场景,如医疗过程患者体征检测等,传感器检测装置可建立与传感器的实时连接,以便即时获取传感器中的传感数据;在一些不需实时监测的应用场景中,如气象监测等,可设置固定获取时间,如半小时一次,获取传感器中的传感数据。
在一实施例中,传感数据可以由传感器在一定条件下,通过与其连接的传输发送至传感器检测装置,传输条件包括但不限于设置预设时间、传感数据中某个值达到预警值等等。在一些实施例中,可在传感器中设定一个预设时间,每隔一段预设时间,便通过传输接口将传感数据发送至传感器检测装置。例如,在进行气象监测时,通常不必实时监测当前的气温、湿度等参数,可以设置传感器每隔半小时进行一次检测,并将传感数据发送至传感器检测装置。在一些实施例中,还可设置一个预警值,当传感器检测到的数据达到或超过该预警值时,传感器通过传输接口将传感数据发送至传感器检测装置。例如,在进行建筑物内的火灾预警时,当烟雾传感器检测到当前烟雾浓度大于预警值时,将传感数据发送至传感器检测装置。
在该步骤中,对传感数据进行封装处理具体可以为传感器检测装置对获取到的传感数据封装成TCP/IP化报文,将传感数据转换成常规的TCP/IP报文,转换后的TCP/IP报文可以在常规网络设备上像网络数据一样进行无损传输,网络设备包括但不限于以太网线、WiFi、光纤、NBIoT等。
优选的,传感器检测装置在获取到传感数据之后,将传感数据按照TLV格式封装起来,封装的格式如图2所示。TLV一种可变格式,标签(Tag)字段是关于标签和编码格式的信息,长度(Length)字段定义数值的长度,内容(Value)字段表示实际的数值。TLV编码就是指先对Tag编码,再对Length编码,最后对Value编码。例如,一个TLV格式的AID(应用标识符)“9F0607A0000000031010”,其中9F06是tag,07是长度,A0000000031010为AID本身的值。
S303:将处理后的传感数据通过网络发送至服务器。
在该步骤中,具体可以为传感器检测装置将TCP/IP化的报文通过网络接口发送至服务器。网络接口包括但不限于以太网线接口、WIFI接口、光纤接口、NBIoT接口中的至少一种。
在一实施例中,为提高传感器检测装置的适用范围,参照图4,本实施例中的传感器检测控制方法还包括:
S401:接收到服务器发送的信息时,对获取到的所述信息进行处理。
在该步骤中,具体可以为传感器接收到服务器发送的信息时,包括但不限于配置信息、控制指令等等,将获取到的信息处理成传感器或传感器检测装置能够读取和执行的信息。配置信息可用于对传感器检测装置以及传感器进行配置,例如升级传感器检测装置的软件版本;控制指令可用于对传感器检测装置进行控制,进而控制与传感器检测装置相连的传感器,例如控制传感器的工作状态等。
S402:将处理后的信息发送给传感器或其他设备。
在该步骤中,具体可以为传感器检测装置将处理后的信息发送给对应的传感器或其他与传感器检测装置连接的设备,例如灯管、喇叭等设备。传感器或 其他设备在接收到该信息后,执行对应的操作,如切换工作状态等。
本实施例提供了一种传感器检测控制方法,通过获取传感器中的传感数据,并将获取到的传感数据封装成TCP/IP化报文,然后将TCP/IP化的报文发送至服务器,解决了相关技术中传感器具有多种接口,标准不统一,通用性较差,以及传感器的数据传输距离较短,只能覆盖区域网的问题,实现了适配标准传感器,提高传感器适用范围,提高传感器数据传输范围,提高了传感器监测领域中互联网利用率的效果。
实施例三:
为了解决相关技术中,传感器具有多种接口,标准不统一,通用性较差,以及相关技术中,传感器的数据传输距离较短,只能覆盖区域网,不好应用于大规模组网、远距离数据传输和控制以及与Internet上已有业务无缝互联互通的问题,本实施例提供了一种传感器检测控制方法。为了更好的理解本实施例的内容,此处以地下停车场自动引导车辆至空闲车位过程中的传感器检测控制方法为例进行说明,如图5所示,包括以下步骤:
S501:将停车场的信息电子化,并导入后台系统数据库。
在该步骤中,具体可以为建立电子地图,将停车场的所有岔路口、出入口以及车位标注出来。
S502:将所有的灯管与路径绑定,然后导入后台系统数据库。
在该步骤中,灯管中含有传感器,用于检测车辆及人体信息,该带有传感器的灯管位于停车场顶部,并设置在每个岔路口、出入口以及车位上方。在一实施例中,也可在停车场内所有车辆路径都使用这种带有传感器的灯管。灯管的工作状态可由与其连接的传感器检测装置控制。
S503:所有灯管通过传输接口连接到传感器检测装置。
在该步骤中,传输接口的类型可根据连接传感器的实际需要进行设置,在物理上兼容有线传输类型的传感器和/或无线传输类型的传感器。例如,传感器 检测装置中可设置不同的无线传输接口,包括但不限于zigbee、ZWave、WiFi、LoRA等通信协议接口中的至少一个,此外,传感器检测装置中还可设置不同的有线传输接口,包括但不限于RS-232、RS485、RS422等有线通讯接口
S504:当传感器检测到车辆靠近时,传感器检测装置获取车辆信息,并将车辆信息发送至后台系统。
在该步骤中,具体可以为传感器检测到车辆靠近时,例如通过摄像头获取车牌、通过RFID(Radio Freqyency Identification,射频识别)/NFC(Near Field Communication,近场通信)卡获取编号等等,传感器检测装置通过传输接口获取到传感器中的车辆信息,并将车辆信息实时封装成TCP/IP化报文,然后再通过网络接口将处理后的车辆信息发送给后台系统。
优选的,传感器检测装置在获取到车辆信息之后,将车辆信息按照TLV格式封装起来,封装的格式如图2所示。TLV一种可变格式,标签(Tag)字段是关于标签和编码格式的信息,长度(Length)字段定义数值的长度,内容(Value)字段表示实际的数值。TLV编码就是指先对Tag编码,再对Length编码,最后对Value编码。例如,一个TLV格式的AID(应用标识符)“9F0607A0000000031010”,其中9F06是tag,07是长度,A0000000031010为AID本身的值。
S505:后台系统收到该车辆信息后,判断该车辆是否有固定车位,如果有固定车位则获取该停车位的电子化信息,如果没有固定车位则获取最近的一个空闲车位的电子化信息。
S506:后台系统在获取到目标车位电子化信息后,利用算法计算车辆到目标车位之间的路径,并利用灯管与路径的绑定信息找出需要启动的设备,由传感器检测装置启动这些设备。
在该步骤中,可以只启动关键点的灯管,如岔路口、目标车位、停车场出入口等地方的灯管,车辆只需在每个路口跟随灯管指引,并停至灯管点亮处的停车位即可。也可以启动车辆到目标车位之间路径上所有的灯管,车辆可跟随点亮灯管形成的指引路径找到目标车位。
在一实施例中,为达到节省资源的目的,灯管中的传感器检测到车辆经过 该灯管之后,传感器检测装置可关闭该灯管照明电源。
S507:灯管在检测到人员从目标车位离开后,自动关闭照明电源。
在该步骤中,灯管中的传感器,如声音传感器、红外传感器等,检测到人员离开目标车位后,传感器检测装置关闭该灯管的电源,达到节省能源的效果。优选的,可在检测到人员离开目标车位一定时间后再关闭照明电源,以免影响人员视线。
本实施例提供了一种应用于地下车库停车时的传感器检测控制方法,传感器检测装置通过获取灯管中传感器的传感数据,并将获取到的传感数据封装成TCP/IP化报文,然后将TCP/IP化的报文发送后台系统,后台系统计算后得出需要点亮的灯管,传感器检测装置控制这些灯管点亮,车辆即可根据这些点亮的灯管快速地找到目标车位,实现了准确、快速地寻找停车位的效果,提高了车主使用体验。
实施例四:
为了解决相关技术中,传感器具有多种接口,标准不统一,通用性较差,以及相关技术中,传感器的数据传输距离较短,只能覆盖区域网,不好应用于大规模组网、远距离数据传输和控制以及与Internet上已有业务无缝互联互通的问题,本实施例提供了一种传感器检测控制方法。为了更好的理解本实施例的内容,此处以开车离开地下停车场过程中的传感器检测控制方法为例进行说明,如图6所示,包括以下步骤:
S601:灯管检测到有人出现时,开启电源照明。
在该步骤中,灯管中的传感器,如声音传感器、红外传感器等,检测到人员,则开启电源照明。
S602:灯管检测到车辆发动,开启照明电源,并通知传感器检测装置。
在该步骤中,在该步骤中,灯管中的传感器,如声音传感器、红外传感器等,检测到车辆发动,则烤漆照明电源,并将车辆信息通过传输接口发送给传感器检测装置。车辆信息可通过摄像头获取车牌、通过RFID/NFC卡获取编号 等方式获取。
S603:传感器检测装置将车辆信息发送至后台系统。
在该步骤中,传感器检测装置将获取到的车辆信息封装成TCP/IP化报文,并通过网络接口将处理后的车辆信息发送至后台系统。
优选的,传感器检测装置在获取到车辆信息之后,将车辆信息按照TLV格式封装起来,封装的格式如图2所示。TLV一种可变格式,标签(Tag)字段是关于标签和编码格式的信息,长度(Length)字段定义数值的长度,内容(Value)字段表示实际的数值。TLV编码就是指先对Tag编码,再对Length编码,最后对Value编码。例如,一个TLV格式的AID(应用标识符)“9F0607A0000000031010”,其中9F06是tag,07是长度,A0000000031010为AID本身的值。
S604:后台系统进过计算得出车辆到出口的路径,并获取该路径上的灯管信息,然后通过网络接口将灯管信息发送至传感器检测装置。
S605:传感器检测装置根据得到的灯管信息,依次启动这些灯管。
在该步骤中,可以只启动关键点的灯管,如岔路口、目标车位、停车场出入口等地方的灯管,车辆只需在每个路口跟随灯管指引,即可找到停车场出口。也可以启动车辆到停车场出口路径上所有的灯管,车辆可跟随点亮灯管形成的指引路径找到出口。
在一实施例中,为达到节省资源的目的,灯管中的传感器检测到车辆经过该灯管之后,传感器检测装置可关闭该灯管照明电源。
S606:灯管在持续一点时间内未检测车辆及人员,自动关闭电源,并通过传输接口通知传感器检测装置。
S607:传感器检测装置将收到的通知封装成TCP/IP化报文后,通过网络接口发送至后台系统。
本实施例提供了一种应用于车辆离开地下车库时的传感器检测控制方法,传感器检测装置通过获取灯管中传感器的传感数据,并将获取到的传感数据封装成TCP/IP化报文,然后将TCP/IP化报文发送后台系统,后台系统计算后得出需要点亮的灯管,传感器检测装置控制这些灯管点亮,车辆即可根据这些点 亮的灯管快速地找到目出口,实现了准确、快速地寻找出口的效果,提高了车主使用体验。
实施例五:
为了解决相关技术中,传感器具有多种接口,标准不统一,通用性较差,以及相关技术中,传感器的数据传输距离较短,只能覆盖区域网,不好应用于大规模组网、远距离数据传输和控制以及与Internet上已有业务无缝互联互通的问题,本实施例提供了一种传感器检测控制方法。为了更好的理解本实施例的内容,此处以监控多家企业排污情况过程中的传感器检测控制方法为例进行说明,如图7所示,包括以下步骤:
S701:传感器检测装置通过传输接口连接检测设备,并将检测设备插入各企业排污管道。
在该步骤中,传输接口的类型可根据连接传感器的实际需要进行设置,在物理上兼容有线传输类型的传感器和/或无线传输类型的传感器。例如,传感器检测装置中可设置不同的无线传输接口,包括但不限于zigbee、ZWave、WiFi、LoRA等通信协议接口中的至少一个,此外,传感器检测装置中还可设置不同的有线传输接口,包括但不限于RS-232、RS485、RS422等有线通讯接口
S702:传感器检测装置定期获取采样数据。
在该步骤中,传感器检测装置中可设定获取采样数据的时间,在达到预定时间时,通过传输接口获取采样数据。
S703:传感器检测装置将采样数据封装成TCP/IP化报文。
优选的,传感器检测装置在获取到采样数据之后,将采样数据按照TLV格式封装起来,封装的格式如图2所示。TLV一种可变格式,标签(Tag)字段是关于标签和编码格式的信息,长度(Length)字段定义数值的长度,内容(Value)字段表示实际的数值。TLV编码就是指先对Tag编码,再对Length编码,最后对Value编码。例如,一个TLV格式的AID(应用标识符)“9F0607A0000000031010”,其中9F06是tag,07是长度,A0000000031010为AID本身的值。
S704:传感器检测装置将TCP/IP化报文通过网络接口发送至服务器。
在该步骤中,网络接口包括但不限于以太网线接口、WIFI接口、光纤接口、NBIoT接口中的至少一种。
本实施例提供了一种应用对多家企业进行排污检测的传感器检测控制方法,传感器检测装置通过获取检测设备的传感数据,并将获取到的传感数据封装成TCP/IP化报文,然后将TCP/IP化报文发送后台系统,实现了远程监控企业排污情况的效果,提高了检测效率。
实施例六:
为了解决相关技术中,传感器具有多种接口,标准不统一,通用性较差,以及相关技术中,传感器的数据传输距离较短,只能覆盖区域网,不好应用于大规模组网、远距离数据传输和控制以及与Internet上已有业务无缝互联互通的问题,本实施例提供了一种终端,如图9所示,其包括处理器91、存储器92和通信总线93,其中:
通信总线用于连接处理器和存储器;
处理器用于执行存储器中存储的一个或多个计算机程序,以实现上述实施例二、三、四、五中的传感器检测控制方法中的至少一个步骤。
本实施例还提供了一种计算机可读存储介质,该计算机可读存储介质包括在用于存储信息(诸如计算机可读指令、数据结构、计算机程序模块或其他数据)的任何方法或技术中实施的易失性或非易失性、可移除或不可移除的介质。计算机可读存储介质包括但不限于RAM(Random Access Memory,随机存取存储器),ROM(Read-Only Memory,只读存储器),EEPROM(Electrically Erasable Programmable read only memory,带电可擦可编程只读存储器)、闪存或其他存储器技术、CD-ROM(Compact Disc Read-Only Memory,光盘只读存储器),数字多功能盘(DVD)或其他光盘存储、磁盒、磁带、磁盘存储或其他磁存储装置、或者可以用于存储期望的信息并且可以被计算机访问的任何其他的介质。
本实施例中的计算机可读存储介质可用于存储一个或多个计算机程序,其 存储的一个或多个计算机程序可被哟个或多个处理器执行,以实现上述实施例二、三、四、五中的传感器检测控制方法中的至少一个步骤。
本实施例还提供了一种计算机程序(或称计算机软件),该计算机程序可以分布在计算机可读介质上,由可计算装置来执行,以实现上述实施例二、三、四、五中的传感器检测控制方法中的至少一个步骤;并且在某些情况下,可以采用不同于上述实施例所描述的顺序执行所示出或描述的至少一个步骤。
本实施例还提供了一种计算机程序产品,包括计算机可读装置,该计算机可读装置上存储有如上所示的任一计算机程序。本实施例中该计算机可读装置可包括如上所示的计算机可读存储介质。
可见,本领域的技术人员应该明白,上文中所公开方法中的全部或某些步骤、系统、装置中的功能模块/单元可以被实施为软件(可以用计算装置可执行的计算机程序代码来实现)、固件、硬件及其适当的组合。在硬件实施方式中,在以上描述中提及的功能模块/单元之间的划分不一定对应于物理组件的划分;例如,一个物理组件可以具有多个功能,或者一个功能或步骤可以由若干物理组件合作执行。某些物理组件或所有物理组件可以被实施为由处理器,如中央处理器、数字信号处理器或微处理器执行的软件,或者被实施为硬件,或者被实施为集成电路,如专用集成电路。
此外,本领域普通技术人员公知的是,通信介质通常包含计算机可读指令、数据结构、计算机程序模块或者诸如载波或其他传输机制之类的调制数据信号中的其他数据,并且可包括任何信息递送介质。所以,本申请不限制于任何特定的硬件和软件结合。
以上内容是结合具体的实施方式对本申请实施例所作的进一步详细说明,不能认定本申请的具体实施只局限于这些说明。对于本申请所属技术领域的普通技术人员来说,在不脱离本申请构思的前提下,还可以做出若干简单推演或替换,都应当视为属于本申请的保护范围。

Claims (10)

  1. 一种传感器检测装置,包括:
    传感器接口模块,用于与传感器连接;
    数据处理模块,用于获取所述传感器中的传感数据,对所述传感数据进行封装;
    通讯模块,用于将封装后的所述传感数据通过网络发送至服务器和/或从服务器接收信息。
  2. 如权利要求1所述的传感器检测装置,其中,所述传感器接口模块包含至少一个数据接口,所述数据接口兼容现有的传感接口,用于与现有标准传感器连接。
  3. 如权利要求2所述的传感器检测装置,其中,所述数据接口兼容现有的传感器包括无线传感器和有线传感器。
  4. 权利要求3所述的传感器检测装置,其中,所述数据处理模块还用于运行能执行并发任务的嵌入式系统。
  5. 权利要求4所述的传感器检测装置,其中,对所述传感数据进行封装包括:
    将所述传感数据按照TLV格式封装为TCP/IP报文。
  6. 权利要求5所述的传感器检测装置,其中,所述通讯模块包含至少一个网络接口,所述网络接口为有线网络接口和/或无线网络接口。
  7. 权利要求6所述的传感器检测装置,其中,所述传感器检测装置还包括设备接口模块,所述设备接口模块包含至少一个设备接口,用于与传感器以外的其他设备连接。
  8. 权利要求1-7任一项所述的传感器检测装置,其中,所述数据处理模块 还用于处理所述通讯模块从服务器接收的信息,并将处理后的信息通过所述数据接口发送至对应的传感器。
  9. 一种传感器检测控制方法,包括:
    与传感器建立连接;
    当获取到所述传感器中的传感数据时,对所述传感数据进行封装处理;
    将处理后的所述传感数据通过网络发送至服务器。
  10. 权利要求9所述的传感器检测控制方法,其中,所述传感器检测控制方法还包括:
    接收到服务器发送的信息时,对获取到的所述信息进行处理;
    将处理后的信息发送给传感器或其他设备。
PCT/CN2020/118549 2019-10-31 2020-09-28 一种传感器检测装置和传感器检测控制方法 WO2021082849A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201911054389.7A CN112752233A (zh) 2019-10-31 2019-10-31 一种传感器检测装置和传感器检测控制方法
CN201911054389.7 2019-10-31

Publications (1)

Publication Number Publication Date
WO2021082849A1 true WO2021082849A1 (zh) 2021-05-06

Family

ID=75644674

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/118549 WO2021082849A1 (zh) 2019-10-31 2020-09-28 一种传感器检测装置和传感器检测控制方法

Country Status (2)

Country Link
CN (1) CN112752233A (zh)
WO (1) WO2021082849A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114326679A (zh) * 2021-12-30 2022-04-12 重庆长安新能源汽车科技有限公司 一种基于一版集成软件刷写控制器的方法及系统

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013130268A1 (en) * 2012-02-14 2013-09-06 Analytical Instrument Systems, Inc. Web-based multi-sensor/instrument control system
CN207115727U (zh) * 2017-06-21 2018-03-16 杭州明览智能科技有限公司 一种物联网数据采集终端设备
CN207302038U (zh) * 2017-09-30 2018-05-01 河北卓智电子技术有限公司 信息采集设备及采集系统
CN207976740U (zh) * 2018-03-21 2018-10-16 安徽省城建设计研究总院股份有限公司 一种通用型数据采集终端及其系统装置
CN208187439U (zh) * 2018-04-28 2018-12-04 深圳远征技术有限公司 可配置数据集中采集系统

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013130268A1 (en) * 2012-02-14 2013-09-06 Analytical Instrument Systems, Inc. Web-based multi-sensor/instrument control system
CN207115727U (zh) * 2017-06-21 2018-03-16 杭州明览智能科技有限公司 一种物联网数据采集终端设备
CN207302038U (zh) * 2017-09-30 2018-05-01 河北卓智电子技术有限公司 信息采集设备及采集系统
CN207976740U (zh) * 2018-03-21 2018-10-16 安徽省城建设计研究总院股份有限公司 一种通用型数据采集终端及其系统装置
CN208187439U (zh) * 2018-04-28 2018-12-04 深圳远征技术有限公司 可配置数据集中采集系统

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114326679A (zh) * 2021-12-30 2022-04-12 重庆长安新能源汽车科技有限公司 一种基于一版集成软件刷写控制器的方法及系统
CN114326679B (zh) * 2021-12-30 2023-07-18 深蓝汽车科技有限公司 一种基于一版集成软件刷写控制器的方法及系统

Also Published As

Publication number Publication date
CN112752233A (zh) 2021-05-04

Similar Documents

Publication Publication Date Title
CN206001353U (zh) 一种智慧城市led路灯
CN104091465B (zh) 停车位查询导航系统及方法
CN103824473B (zh) 一种智能泊车引导方法
CN111798665B (zh) 一种道路系统
US11613250B2 (en) System, method, infrastructure, and vehicle for automated valet parking
KR102029656B1 (ko) 사물인터넷기반 임베디드 방식의 교통신호 자율운영시스템
CN206004950U (zh) 一种智慧城市路灯远程控制系统
AU2020200434A1 (en) Managing transit signal priority (TSP) requests
WO2021082849A1 (zh) 一种传感器检测装置和传感器检测控制方法
WO2019144622A1 (zh) 一种停车管理系统和方法
CN207946903U (zh) 基于物联网的区域智能防护系统
CN106971364A (zh) 一种基于物联网的智慧社区系统
CN105185132B (zh) 一种基于电力载波的智能交通信号灯控制系统和控制方法
CN104778856A (zh) 一种停车场停车自动导引系统
CN108765593A (zh) 智慧灯杆停车管理系统
CN105355076A (zh) 一种基于双传感器的无线停车场数据采集系统
CN203444600U (zh) 工程安装试验智能安全监护装置
CN113066308A (zh) 一种停车位检测及灯光诱导停车系统和方法
CN208271251U (zh) 一种用于住宅小区停车场的智能访客停车系统
CN206004973U (zh) 一种智能型照明管理系统
CN109816996A (zh) 基于无线传感器网络的智能红绿灯控制系统
CN109949443A (zh) 一种用于住宅小区停车场的智能访客停车系统
CN205028463U (zh) 一种基于电力载波的智能交通信号灯控制系统
CN206574100U (zh) 交通设备信息管理系统
CN204303163U (zh) 城市道路交通红绿灯应急信号网络控制系统

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20881345

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20881345

Country of ref document: EP

Kind code of ref document: A1

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 28/02/2023)

122 Ep: pct application non-entry in european phase

Ref document number: 20881345

Country of ref document: EP

Kind code of ref document: A1