WO2021082509A1 - 空调系统及空调结霜控制方法 - Google Patents
空调系统及空调结霜控制方法 Download PDFInfo
- Publication number
- WO2021082509A1 WO2021082509A1 PCT/CN2020/100439 CN2020100439W WO2021082509A1 WO 2021082509 A1 WO2021082509 A1 WO 2021082509A1 CN 2020100439 W CN2020100439 W CN 2020100439W WO 2021082509 A1 WO2021082509 A1 WO 2021082509A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- temperature
- flow device
- adjustable flow
- air conditioner
- heat exchanger
- Prior art date
Links
Images
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F24—HEATING; RANGES; VENTILATING
- F24F—AIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
- F24F11/00—Control or safety arrangements
- F24F11/30—Control or safety arrangements for purposes related to the operation of the system, e.g. for safety or monitoring
- F24F11/41—Defrosting; Preventing freezing
- F24F11/42—Defrosting; Preventing freezing of outdoor units
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F24—HEATING; RANGES; VENTILATING
- F24F—AIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
- F24F11/00—Control or safety arrangements
- F24F11/62—Control or safety arrangements characterised by the type of control or by internal processing, e.g. using fuzzy logic, adaptive control or estimation of values
- F24F11/63—Electronic processing
- F24F11/64—Electronic processing using pre-stored data
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F24—HEATING; RANGES; VENTILATING
- F24F—AIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
- F24F11/00—Control or safety arrangements
- F24F11/62—Control or safety arrangements characterised by the type of control or by internal processing, e.g. using fuzzy logic, adaptive control or estimation of values
- F24F11/63—Electronic processing
- F24F11/65—Electronic processing for selecting an operating mode
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F24—HEATING; RANGES; VENTILATING
- F24F—AIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
- F24F11/00—Control or safety arrangements
- F24F11/70—Control systems characterised by their outputs; Constructional details thereof
- F24F11/80—Control systems characterised by their outputs; Constructional details thereof for controlling the temperature of the supplied air
- F24F11/83—Control systems characterised by their outputs; Constructional details thereof for controlling the temperature of the supplied air by controlling the supply of heat-exchange fluids to heat-exchangers
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F24—HEATING; RANGES; VENTILATING
- F24F—AIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
- F24F11/00—Control or safety arrangements
- F24F11/88—Electrical aspects, e.g. circuits
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F24—HEATING; RANGES; VENTILATING
- F24F—AIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
- F24F2110/00—Control inputs relating to air properties
- F24F2110/10—Temperature
- F24F2110/12—Temperature of the outside air
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F24—HEATING; RANGES; VENTILATING
- F24F—AIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
- F24F2110/00—Control inputs relating to air properties
- F24F2110/20—Humidity
- F24F2110/22—Humidity of the outside air
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F24—HEATING; RANGES; VENTILATING
- F24F—AIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
- F24F2140/00—Control inputs relating to system states
- F24F2140/20—Heat-exchange fluid temperature
Definitions
- the embodiment of the present disclosure relates to an air conditioning system and an air conditioning frosting control method.
- the outdoor unit heat exchanger may appear frosting, which will affect the heat exchange effect of the outdoor unit heat exchanger.
- the heating capacity and heating effect of the air conditioner, and the frost layer reaches a certain thickness, the air conditioner needs to be switched to cooling operation for defrosting. At this time, the air conditioner blows out cold air to further cool the room and affect the user's comfort experience.
- the problem solved by the embodiments of the present disclosure is how to delay or prevent the frosting of the outdoor unit heat exchanger.
- the embodiments of the present disclosure provide an air conditioning system, the air conditioning system includes: a first adjustable flow device, a second adjustable flow device, a compressor, an outdoor heat exchanger and an indoor heat exchanger, the The first adjustable flow device is arranged between the outdoor heat exchanger and the indoor heat exchanger, and the second adjustable flow device is arranged between the outdoor heat exchanger and the air return port of the compressor .
- the pressure of the refrigerant in the outdoor heat exchanger can be controlled, and then the refrigerant evaporation temperature can be controlled to delay or prevent frosting.
- a throttling device on both sides, which can also adjust the refrigerant circulation of the air-conditioning system.
- the combination of the two throttling devices can increase the refrigerant pressure in the outdoor heat exchanger and realize the cooling of the air-conditioning system.
- the independent adjustment of the refrigerant circulation volume reduces other adverse effects caused by the change of the refrigerant pressure in the outdoor heat exchanger, so that the control purpose can be achieved smoothly.
- the air conditioning system further includes a vapor-liquid separator, and the second adjustable flow device is disposed between the vapor-liquid separator and the air return port of the compressor.
- the first adjustable flow device and the second adjustable flow device are electronic expansion valves or throttle orifices.
- the degree of throttling can be adjusted adaptively according to the changes of operating parameters and environmental parameters to achieve the purpose of control.
- the air conditioning system further includes a temperature and humidity sensor, and the temperature and humidity sensor is arranged on the air inlet side of the outdoor heat exchanger.
- the temperature and humidity of the environment where the air conditioner is located are directly detected by the temperature and humidity sensor, and the dew point temperature is searched and calculated based on the actual detected environmental temperature and humidity parameters to obtain a more accurate dew point temperature, which is conducive to subsequent precise control.
- the embodiment of the present disclosure also provides an air conditioner frosting control method, which is used in the above air-conditioning system, and the air conditioner frosting control method includes the following steps:
- the first adjustable flow device is controlled to increase the opening degree
- the second adjustable flow device is controlled to decrease the opening degree
- the dew point temperature is determined based on the outer ring temperature and the outer ring humidity, and based on the dew point temperature and the evaporation temperature of the refrigerant in the outdoor heat exchanger, it is judged whether the air conditioner is in a frost-prone state.
- the frost state control the first adjustable flow device to increase the opening degree and the second adjustable flow device to decrease the opening degree to increase the pressure of the refrigerant in the outdoor heat exchanger, thereby increasing the refrigerant in the outdoor heat exchanger.
- the evaporation temperature makes the evaporation temperature of the refrigerant in the outdoor heat exchanger higher than the outdoor air dew point temperature or the temperature difference with the outdoor air dew point temperature is reduced, so that the outdoor heat exchanger does not frost or the frosting speed slows down, and the air conditioner defrosts longer. Cycle, improve the heating effect, reduce the total number of defrosts, and improve the comfort of the air conditioner at low temperature.
- the speed at which the first adjustable flow device increases the opening is equal to the speed at which the second adjustable flow device decreases the opening.
- the step of controlling the first adjustable flow device to increase the opening degree and controlling the second adjustable flow device to decrease the opening degree includes:
- the temperature difference value is greater than the preset threshold value, obtaining a difference value a obtained by subtracting the dew point temperature from the evaporation temperature;
- the difference a satisfies the first preset condition, keep the current opening degrees of the first adjustable flow device and the second adjustable flow device unchanged, wherein the first preset condition includes a >0.
- the outdoor heat exchanger By increasing the evaporating temperature of the refrigerant in the outdoor heat exchanger to be greater than the dew point temperature, the outdoor heat exchanger can be guaranteed to operate without frosting, and the heating capacity and use comfort of the air conditioner can be improved.
- the first preset condition further includes a ⁇ k, k ⁇ (0,1].
- the step of obtaining the temperature difference value obtained by subtracting the dew point temperature from the outer ring temperature, and comparing the temperature difference value with a preset threshold value after the step includes:
- the temperature difference value is less than or equal to the preset threshold value, obtaining the difference b obtained by subtracting the evaporation temperature from the outer ring temperature;
- the first adjustable flow device and the second adjustable flow device can be adjusted to increase the refrigerant evaporation on the outdoor side. Temperature slows down the frosting speed of the outdoor heat exchanger, prolongs the defrost cycle of the outdoor unit, reduces the number of defrosts, and improves the heating comfort of the air conditioner. At the same time, it ensures sufficient heat exchange to avoid adverse effects on heat exchange.
- the preset threshold value ranges from 5 to 15°C.
- the step of judging whether the air conditioner is in a frost-prone state according to the dew point temperature and the evaporation temperature includes:
- Condensation and frost can be distinguished, and the accuracy of the judgment result can be improved.
- Fig. 1 is a schematic structural diagram of an embodiment of an air conditioning system according to an embodiment of the disclosure
- FIG. 2 is a schematic structural diagram of another embodiment of an air conditioning system according to an embodiment of the disclosure.
- FIG. 3 is a schematic diagram of an embodiment of an air conditioner frost control method according to an embodiment of the disclosure
- step S30 of the air conditioner frosting control method according to the embodiment of the disclosure is refined
- FIG. 5 is a pressure enthalpy diagram in an air conditioner frost control method according to an embodiment of the disclosure
- step S40 of the air conditioner frosting control method according to the embodiment of the disclosure
- FIG. 7 is a schematic diagram of another embodiment of the subsequent steps of step S40 of the air conditioner frosting control method according to the embodiment of the disclosure.
- 1-first adjustable flow device 2-second adjustable flow device, 3-compressor, 4-outdoor heat exchanger, 5-indoor heat exchanger, 6-vapor-liquid separator, 7-dry filter, 8-Temperature and humidity sensor.
- the embodiment of the present disclosure proposes an air conditioning system.
- Fig. 1 is a schematic structural diagram of an embodiment of the air conditioning system of the present invention.
- the air conditioning system includes: a first adjustable flow device 1, a second adjustable flow device 2, a compressor 3, an outdoor heat exchanger 4 and an indoor heat exchanger 5, the first adjustable flow device 1 is arranged between the outdoor heat exchanger 4 and the indoor heat exchanger 5, and the second adjustable flow device 2 is arranged between the outdoor heat exchanger 4 and the air return port of the compressor 3 .
- the first adjustable flow device 1 / the second adjustable flow device 2 is a throttling device with an adjustable throttling degree, which can be a single throttling element or a throttling assembly composed of multiple throttling elements.
- the first adjustable flow device 1 / second adjustable flow device 2 can be an electronic expansion valve or a throttle orifice to ensure that the throttling degree of the first adjustable flow device 1 / second adjustable flow device 2 is adjustable Adjustment, thereby ensuring that the degree of throttling can be adjusted adaptively with the change of air-conditioning operating parameters and environmental parameters to achieve the purpose of control.
- this article defines the inlet and outlet of the outdoor heat exchanger 4 and the indoor heat exchanger 5 with reference to the flow direction of the refrigerant in the heating mode.
- the first adjustable flow device 1 is arranged between the outdoor heat exchanger 4 and the indoor heat exchanger 5. Specifically, the first adjustable flow device 1 is arranged at the inlet of the outdoor heat exchanger 4 and the outlet of the indoor heat exchanger 5 In the meantime, it is used to throttle and reduce the pressure and temperature of the refrigerant flowing to the outdoor heat exchanger 4, so that the refrigerant can smoothly exchange heat and evaporate in the outdoor heat exchanger 4.
- a filter dryer 7 is provided between the first adjustable flow device 1 and the indoor heat exchanger 5 to clean up harmful substances in the refrigerant cycle of the air-conditioning system, thereby protecting the throttling device and compression device in the air-conditioning system. Machine and other important parts.
- the second adjustable flow device 2 is arranged between the outdoor heat exchanger 4 and the air return port of the compressor 3, specifically between the outlet of the outdoor heat exchanger 4 and the air return port of the compressor 3.
- the pressure of the refrigerant in the outdoor heat exchanger 4 can be controlled, and then the refrigerant evaporation temperature can be controlled, so as to delay or prevent frost formation.
- a throttling device on both sides of the heat exchanger 4, which can also adjust the refrigerant circulation of the air conditioning system. Through the combination of the adjustment of the two throttling devices, the pressure of the refrigerant in the outdoor heat exchanger 4 can be increased at the same time. Independent adjustment of the refrigerant circulation of the air-conditioning system reduces other adverse effects caused by the pressure change of the refrigerant in the outdoor heat exchanger 4, so that the control purpose can be achieved smoothly.
- throttling devices are also included, which is not limited here.
- the air-conditioning system further includes a vapor-liquid separator 6, and the second adjustable flow device 2 is provided at the vapor-liquid separator 6 and the air return port of the compressor 3. between.
- the air conditioning system further includes a temperature and humidity sensor 8, and the temperature and humidity sensor 8 is arranged on the air inlet side of the outdoor heat exchanger 4.
- the temperature and humidity sensor 8 is arranged on the air inlet side of the outdoor unit of the air conditioner to measure the temperature and humidity of the environment where the outdoor unit of the air conditioner is located, so as to facilitate obtaining the dew point temperature.
- the temperature and humidity of the environment where the air conditioner is located are directly detected by the temperature and humidity sensor 8, and the dew point temperature is searched and calculated based on the actual detected environmental temperature and humidity parameters to obtain a more accurate dew point temperature, which is conducive to subsequent precise control.
- the air conditioning system further includes a temperature sensor, and the temperature sensor is arranged inside the outdoor heat exchanger 4.
- the temperature sensor is arranged at the elbow part of the copper tube of the outdoor heat exchanger 4 and is used to detect the temperature of the refrigerant in the outdoor heat exchanger 4.
- the evaporation temperature is obtained by direct detection to ensure the accuracy of the data, and then the control is directly based on the evaporation temperature to achieve the accuracy of the control.
- the embodiment of the present disclosure also proposes an air conditioner frosting control method, which is used in the air conditioner system as described above.
- FIG. 3 is a schematic diagram of an embodiment of a method for controlling frosting of an air conditioner according to an embodiment of the disclosure.
- the air conditioner frost control method includes:
- Step S10 after receiving the heating mode operation command, detect the outer ring temperature and outer ring humidity, and determine the dew point temperature based on the outer ring temperature and the outer ring humidity;
- the air conditioner is prone to frost in the heating mode. Therefore, after receiving the heating mode operation command, the control described in each embodiment of the air conditioner frosting control method of the present disclosure is performed, that is, the outer ring temperature and outer ring humidity are detected. Carry out the follow-up delaying frosting or preventing frosting control.
- the air conditioner receives the ventilation mode command/dehumidification mode command/cooling mode command/automatic mode command, the air conditioner operates in the corresponding mode and does not execute the control described in the various embodiments of the air conditioner frost control method of the present disclosure.
- the air conditioner heating mode command when the air conditioner heating mode command is detected, the air conditioner is controlled to operate in the heating mode for a preset period of time, and then subsequent delays such as detecting the outer ring temperature and outer ring humidity are executed. Frost or prevent frost control.
- the outer ring temperature and outer ring humidity can be detected by the temperature and humidity sensor 8 installed on the outdoor heat exchanger 4 of the air conditioner.
- the outer ring temperature and outer ring humidity are sampled in real time. The sampling results of the number of times are averaged, and the average is used as the final detection result.
- the temperature of the outer ring and the humidity of the outer ring may also be detected at preset time intervals.
- the enthalpy map fitting function can be pre-stored in the air conditioner. After the outer ring temperature and outer ring humidity are obtained, the current outdoor air dew point temperature can be obtained based on the enthalpy map fitting function. Compared with direct networking to obtain the dew point temperature based on geographic location, this method searches and calculates the dew point temperature based on the actual detected environmental temperature and humidity parameters to obtain a more accurate dew point temperature, which is conducive to subsequent precise control.
- Step S20 obtaining the evaporation temperature of the refrigerant in the outdoor heat exchanger 4 of the air conditioner
- the evaporation temperature of the refrigerant in the outdoor heat exchanger 4 of the air conditioner can be directly detected by setting a temperature sensor on the outdoor heat exchanger 4.
- Step S30 judging whether the air conditioner is in a frost-prone state according to the dew point temperature and the evaporation temperature
- the air conditioner By comparing the size between the evaporation temperature of the refrigerant in the outdoor heat exchanger 4 and the dew point temperature, it can be judged whether the air conditioner is in a frost-prone state.
- Easily frosting state refers to the state where the evaporation temperature of the air conditioner meets the possible frosting conditions.
- frosting needs to meet certain temperature conditions, such as the evaporation temperature below 0°C. If the dew point temperature and the evaporation temperature of the air conditioner determine that the air conditioner meets the relevant easy
- the condition of the frosting parameter means that the air conditioner is in a frost-prone state. In this frost-prone state, the developer determines the conditions that the relevant parameters meet based on physical principles, and presets the relevant conditions in the air conditioner.
- the air conditioner is in a frost-prone state; if the evaporation temperature of the refrigerant in the outdoor heat exchanger 4 is greater than the dew point temperature, it is determined that the air conditioner In a state that is not easy to frost.
- step S30 includes:
- Step S31 determining whether the air conditioner satisfies that the evaporation temperature is less than or equal to the dew point temperature, and the evaporation temperature is less than or equal to 0°C;
- the air conditioner When the refrigerant evaporation temperature in the outdoor heat exchanger 4 is less than or equal to the dew point temperature, but greater than 0°C, the air conditioner is most likely not to form frost. At this time, it should be determined that the air conditioner is in a state that is not prone to frost.
- step S32 if yes, it is determined that the air conditioner is in a frost-prone state.
- the air conditioner is in a frost-prone state.
- the air conditioner is set to The judgment condition of the frost-prone state can distinguish between condensation and frost, and improve the accuracy of the judgment result.
- Step S40 if the air conditioner is in a frost-prone state, control the first adjustable flow device 1 to increase the opening degree, and control the second adjustable flow device 2 to decrease the opening degree.
- the second adjustable flow device 2 between the return ports of the compressor 3 reduces the opening degree.
- the first adjustable flow device 1 and the second adjustable flow device 2 are respectively arranged on the inlet and outlet sides of the outdoor heat exchanger 4, the flow of refrigerant entering the outdoor heat exchanger 4 on the interface side is increased, and the outlet side is restricted from the outdoor
- the flow of refrigerant flowing out of the heat exchanger 4 in this way, can increase the refrigerant pressure in the outdoor heat exchanger 4, thereby increasing the refrigerant evaporation temperature in the outdoor heat exchanger 4, so as to prevent or slow down the frosting of the outdoor heat exchanger of the air conditioner .
- a single throttling device in the air conditioning system can also play a role in regulating the refrigerant pressure in the outdoor heat exchanger, but while adjusting the refrigerant pressure,
- the circulating flow rate of the refrigerant will also change accordingly, that is, the pressure of the refrigerant and the circulating flow rate of the refrigerant cannot be adjusted independently. For example, increasing the opening of the throttling device installed on the inlet side of the outdoor unit heat exchanger will increase the refrigerant flow into the outdoor heat exchanger. If the air conditioning system has other requirements for the refrigerant circulation/ Limitation will conflict with the frost prevention or delay control of the air conditioner. If the flow of refrigerant entering the vapor-liquid separator 6 is too high or too fast, too much refrigerant will stay in the vapor-liquid separator 6.
- a throttling device is provided on both sides of the outdoor heat exchanger 4 in the air conditioning system, one of which is set at the entrance of the outdoor heat exchanger 4, which can slightly increase the outdoor heat exchanger 4
- the internal refrigerant flow is combined with another throttling device provided at the outlet of the outdoor heat exchanger 4 with a reduced opening to jointly increase the refrigerant pressure in the outdoor heat exchanger 4.
- it is provided at the outdoor heat exchanger 4
- the throttling device between the outlet of 4 and the return port of compressor 3 can control the flow of refrigerant flowing out of the outdoor heat exchanger 4 and going back to the compressor 3, thereby controlling the circulating flow of refrigerant of the entire air-conditioning system.
- the function of the first adjustable flow device 1 is consistent with the function of the throttling device in the conventional air conditioning system, and its main function is to adjust the refrigerant Circulation volume; in the heating mode of the air conditioner and the external heat exchanger is prone to frosting, the first adjustable flow device 1 and the second adjustable flow device 2 jointly regulate the circulating flow of the refrigerant, but also control The role of the refrigerant's evaporation temperature in the outdoor heat exchanger 4.
- the second adjustable flow device 2 only plays a role in adjusting the evaporation temperature of the refrigerant in the outdoor heat exchanger 4 when the air conditioner is in heating mode and the outdoor unit of the air conditioner is in a frost-prone state. In other cases (such as ventilation mode/ Dehumidification mode/cooling mode), the second adjustable flow device 2 is in a fully open state and does not have a throttling effect.
- the operation mode of the air-conditioning system is consistent with that of the conventional air-conditioning system.
- the theoretical cycle process is 1->2->3->4->1
- the throttling degree of the first adjustable flow device 1 is correspondingly reduced
- the theoretical cycle process is 1->2->3->5->6->1
- the refrigerant throttling and pressure reduction process is divided into two steps, 3->5 and 6->1.
- the pressure drop at the first adjustable flow device 1 is reduced. It can be seen from Figure 4 that the refrigerant exchanges heat outdoors.
- the pressure corresponding to the evaporation process of the device 4 increases from P4 to P5, and the corresponding evaporation temperature also increases.
- the second adjustable flow device 2 is synchronously controlled to decrease the opening degree, that is, the second adjustable flow device 2 is simultaneously controlled to decrease the opening degree.
- the speed at which the first adjustable flow device 1 increases the opening degree or the speed at which the second adjustable flow device 2 decreases the opening degree can be selected as 5 steps/sec.
- the dew point temperature is determined based on the outer ring temperature and the outer ring humidity, and based on the dew point temperature and the evaporation temperature of the refrigerant in the outdoor heat exchanger 4, it is judged whether the air conditioner is in a frost-prone state.
- the evaporation temperature of the refrigerant in the outdoor heat exchanger 4 makes the evaporation temperature of the refrigerant in the outdoor heat exchanger 4 higher than the outdoor air dew point temperature or the temperature difference with the outdoor air dew point temperature is reduced, so that the outdoor heat exchanger 4 does not frost or frost speed Slow down and lengthen the defrost cycle of the air conditioner, improve the heating effect, reduce the total number of defrosts, and improve the comfort of the air conditioner at low temperature.
- the speed at which the first adjustable flow device 1 increases the opening is equal to the speed at which the second adjustable flow device 2 decreases the opening.
- the second adjustable flow device 2 is controlled to decrease the opening at the same speed to ensure that the first adjustable flow device 1 and the second adjustable flow device 2 work together.
- the degree of throttling is equivalent to that when a throttling device is set at the inlet of the outdoor heat exchanger 4 to act alone to improve the accuracy of control.
- the method includes:
- Step S50 Obtain a temperature difference value obtained by subtracting the dew point temperature from the outer ring temperature, and compare the temperature difference value with a preset threshold value;
- the temperature difference between the outer ring temperature and the dew point temperature reflects the humidity of the outer ring to a certain extent.
- the humidity in the outer ring is smaller.
- the humidity in the outer ring is obtained by subtracting the dew point temperature from the outer ring.
- the temperature difference is small, the humidity of the outer ring is large.
- the size of the temperature difference obtained by subtracting the dew point temperature from the outer ring temperature is different, and the corresponding throttling device adjustment cut-off conditions are different.
- the preset threshold value can be a preset fixed value or a value that changes with the change of outdoor air temperature.
- the selection of the preset threshold value cannot be too small, because the preset threshold value is small, and the corresponding heat exchange temperature difference will also be small. It may cause the outdoor heat exchanger 4 to fail to realize effective heat exchange, and at the same time, the preset threshold value cannot be selected too large, because if the preset threshold value is selected too large, the effect of delaying frost formation is not obvious.
- the preset threshold value ranges from 5 to 15°C.
- the optimal value can be determined through experiments. By selecting a suitable preset threshold value, it is possible to ensure an adequate heat exchange temperature difference while realizing an effective anti-frosting/delaying frosting effect.
- different preset thresholds can be set in the air conditioner, which can be independently selected by the user based on the needs. For example, when the user requires a higher degree of comfort, it means that the user does not want to defrost too many times, and needs to strengthen the prevention of frosting. Or delay the control of frosting. At this time, the preset threshold can be a smaller value; when the outdoor air temperature is very low and it is desired to increase the heating capacity of the air conditioner, the heat exchange temperature difference of the outdoor heat exchanger 4 is required to be greater. At this time, the preset The threshold value can be a larger value.
- Step S60 if the temperature difference value is greater than the preset threshold value, obtain a difference value a>0 obtained by subtracting the dew point temperature from the evaporation temperature;
- the stop adjustment of the first adjustable flow device 1 and the second adjustable flow device 2 can be determined by the relationship between the evaporation temperature and the dew point temperature time.
- Step S70 When the difference a satisfies the first preset condition, keep the current opening degrees of the first adjustable flow device 1 and the second adjustable flow device 2 unchanged, wherein the first The preset conditions include a>0.
- the outdoor heat exchanger 4 By increasing the evaporation temperature of the refrigerant in the outdoor heat exchanger 4 to be greater than the dew point temperature, the outdoor heat exchanger 4 can be guaranteed to operate without frosting, and the heating capacity of the air conditioner and the comfort of use can be improved.
- the first preset condition further includes a ⁇ k, k ⁇ (0,1].
- the temperature difference value is greater than the preset threshold value, it means that the outer ring temperature is far greater than the dew point temperature, and the temperature range from the dew point temperature to the outer ring temperature is very different.
- the refrigerant evaporation temperature is higher than the outdoor air dew point temperature ( That is, when a>0)
- the outdoor unit heat exchanger will not be frosted, but under the condition of no frosting, the difference between the refrigerant evaporation temperature and the outdoor air dew point temperature is too large, which will reduce the heat exchange temperature difference too much.
- the outdoor unit heat exchanger can be achieved without frosting and at the same time large heat transfer The target of the temperature difference.
- the method includes:
- Step S80 if the temperature difference value is less than or equal to the preset threshold value, obtain the difference b obtained by subtracting the evaporation temperature from the outer ring temperature;
- the difference b obtained by subtracting the evaporation temperature from the outer ring temperature is the heat exchange temperature difference of the outdoor heat exchanger 4. If this value is too large, the outdoor heat exchanger 4 will frost quickly and the air conditioner will defrost frequently. This value If it is too small, the heat exchange will be small. Therefore, it is necessary to control this value in a moderate range so that the outdoor heat exchanger 4 of the air conditioner will not be frosted too quickly, and at the same time, the heat exchange can be larger.
- Step S90 when the difference b satisfies a second preset condition, keep the current opening degrees of the first adjustable flow device 1 and the second adjustable flow device 2 unchanged, wherein the second The preset condition is T-1 ⁇ b ⁇ T, and T is the preset threshold.
- the difference between the dew point temperature and the outer ring temperature is larger, and the refrigerant evaporation temperature is adjusted to be above the dew point temperature to meet
- the condition of 0 ⁇ a ⁇ k, k ⁇ (0,1] can prevent the outdoor heat exchanger 4 from frosting.
- the outdoor heat exchanger 4 also has a large heat exchange temperature difference, and the heat exchange will not be too attenuated;
- the humidity of the outer ring is high, the difference between the dew point temperature and the outer ring temperature is small.
- the first adjustable flow device 1 and the second adjustable flow device 2 When the temperature difference obtained by subtracting the dew point temperature from the outer ring temperature is less than or equal to the preset threshold, and the outdoor air humidity is relatively high, adjust the first adjustable flow device 1 and the second adjustable flow device 2 to increase the outdoor refrigerant
- the evaporating temperature makes the difference b of the outer ring temperature minus the evaporating temperature meet T-1 ⁇ b ⁇ T, which slows down the frosting speed of outdoor heat exchanger 4, prolongs the defrosting period of the outdoor unit, reduces the number of defrosts, and improves the heating of the air conditioner Comfort, at the same time, ensure sufficient heat exchange to avoid adverse effects on heat exchange.
- the difference between the ring temperature and the evaporation temperature is limited to about a preset threshold to achieve more precise control.
- the second adjustable flow device 2 After receiving the shutdown/mode conversion command, detect the switching status of the second adjustable flow device 2, and if the second adjustable flow device 2 is not fully opened, control the second adjustable flow device 2 to be fully opened Perform shutdown/mode conversion. If the second adjustable flow device 2 is fully opened, switch the mode or shut down directly to avoid the next time the air conditioner is turned on in a state that is not easy to frost or the air conditioner is not in a heating mode (such as a cooling mode). The second adjustable flow device 2 will have a negative impact on the operation of the air conditioning system, and the mode conversion is the same.
Landscapes
- Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Combustion & Propulsion (AREA)
- Mechanical Engineering (AREA)
- General Engineering & Computer Science (AREA)
- Signal Processing (AREA)
- Physics & Mathematics (AREA)
- Fuzzy Systems (AREA)
- Mathematical Physics (AREA)
- Air Conditioning Control Device (AREA)
Abstract
一种空调系统及空调结霜控制方法,所述空调系统包括:第一可调节流装置、第二可调节流装置、压缩机、室外换热器与室内换热器,所述第一可调节流装置设置于所述室外换热器与所述室内换热器之间,所述第二可调节流装置设置于所述室外换热器与所述压缩机的回气口之间。所述空调系统及空调结霜控制方法可实现防止结霜或延缓结霜的效果。
Description
本申请要求于2019年11月1日提交的中国专利申请第201911059659.3的优先权,该中国专利申请的全文通过引用的方式结合于此以作为本申请的一部分。
本公开实施例涉及一种空调系统及空调结霜控制方法。
空调器运行制热模式时,若室外机换热器内制冷剂的蒸发温度较低时,室外机换热器可能出现结霜现象,结霜会影响室外机换热器的换热效果,影响空调器的制热能力和制热效果,且在霜层达到一定厚度,需要将空调器转制冷运行以进行化霜,此时空调吹出冷风,对室内进一步降温,影响用户的舒适体验。
因此,如何延缓或防止室外机换热器结霜成为目前亟待解决的技术问题。
发明内容
本公开实施例解决的问题是如何延缓或防止室外机换热器结霜。
为解决上述问题,本公开实施例提供一种空调系统,所述空调系统包括:第一可调节流装置、第二可调节流装置、压缩机、室外换热器与室内换热器,所述第一可调节流装置设置于所述室外换热器与所述室内换热器之间,所述第二可调节流装置设置于所述室外换热器与所述压缩机的回气口之间。
通过在室外换热器两侧分别设置一个节流装置,可控制室外换热器内制冷剂压力,进而控制制冷剂蒸发温度,实现延缓结霜或防止结霜,同时,通过在室外换热器两侧分别设置一个节流装置,还可调节空调系统的制冷剂循环量,通过两个节流装置调节的结合,在增大室外换热器内制冷剂压力的同时,可实现对空调系统制冷剂循环量的独立调节,降低因室外换热器内制冷剂压力变化带来的其他不良影响,以便控制目的顺利实现。
可选地,所述空调系统还包括汽液分离器,所述第二可调节流装置设置于所述汽液分离器与所述压缩机的回气口之间。
避免气液两相的制冷剂流过第二可调节流装置导致节流不稳定,将制冷剂经汽液分离器进行气液分离后,确保流入第二可调节流装置的仅为气态制冷剂,保证节流的稳定性。
可选地,所述第一可调节流装置、所述第二可调节流装置为电子膨胀阀或节流孔板。
将第一可调节流装置、第二可调节流设置为电子膨胀阀或节流孔板,确保第一可调节流装置/第二可调节流装置的节流程度为可调节,进而保证随空调运行参数和环境参数的变化而适应性地调节节流程度,实现控制目的。
可选地,所述空调系统还包括温湿度传感器,所述温湿度传感器设置于所述室外换热器进风侧。
通过温湿度传感器直接检测获得空调所处环境的温度和湿度,基于实际检测的环境温湿度参数进行露点温度的查找、计算,可获得更为精准的露点温度,有利于后续的精准控制。
为解决上述问题,本公开实施例还提供一种空调结霜控制方法,用于上述空调系统,所述空调结霜控制方法包括如下步骤:
在接收到制热模式运行命令后,检测外环温度和外环湿度,基于所述外环温度和所述外环湿度确定露点温度;
获取所述空调室外换热器内制冷剂的蒸发温度;
根据所述露点温度和所述蒸发温度判断所述空调是否处于易结霜状态;
若所述空调处于易结霜状态,则控制所述第一可调节流装置增大开度,并控制所述第二可调节流装置减小开度。
通过在空调制热运行模式下,基于外环温度和外环湿度确定露点温度,并基于露点温度和室外换热器内制冷剂的蒸发温度判断空调是否处于易结霜状态,在空调处于易结霜状态时,控制第一可调节流装置增大开度、第二可调节流装置减小开度,以增大室外换热器内制冷剂的压力,进而提高室外换热器内制冷剂的蒸发温度,使得室外换热器内制冷剂的蒸发温度高于室外空气露点温度或与室外空气露点温度的温差减小,使得室外换热器不结霜或结霜速度减慢,加长空调化霜周期,提升制热效果,减少总的化霜次数,提高 空调在低温制热的舒适性。
可选地,所述第一可调节流装置增大开度的速度与所述第二可调节流装置减小开度的速度相等。
确保第一可调节流装置、第二可调节流装置共同起作用时的节流程度,与在室外换热器进口处设置一个节流装置单独作用时相当,以提高控制的精准性。
可选地,所述若所述空调处于易结霜状态,则控制所述第一可调节流装置增大开度,并控制所述第二可调节流装置减小开度的步骤之后包括:
获取所述外环温度减去所述露点温度所得的温差值,将所述温差值与预设阈值进行大小比较;
若所述温差值大于所述预设阈值,则获取所述蒸发温度减去所述露点温度所得差值a;
在所述差值a满足第一预设条件时,保持所述第一可调节流装置和所述第二可调节流装置的当前开度不变,其中,所述第一预设条件包括a>0。
通过提高室外换热器内制冷剂的蒸发温度,使其大于露点温度,可保证室外换热器不结霜运行,提升空调制热量及使用舒适性。
可选地,所述第一预设条件还包括a<k,k∈(0,1]。
确保达到室外机换热器不会结霜同时又有较大换热温差的目标。
可选地,所述获取所述外环温度减去所述露点温度所得的温差值,将所述温差值与预设阈值进行大小比较的步骤之后包括:
若所述温差值小于或等于所述预设阈值,则获取所述外环温度减去所述蒸发温度所得差值b;
在所述差值b满足第二预设条件时,保持所述第一可调节流装置和所述第二可调节流装置的当前开度不变,其中,所述第二预设条件为T-1<b<T,T为所述预设阈值。
当外环温度减去露点温度所得的温差值小于或等于预设阈值,室外侧空气湿度较大时,通过调节第一可调节流装置、第二可调节流装置,可提高室外侧制冷剂蒸发温度,减缓室外换热器结霜速度,延长室外机化霜周期,减少化霜次数,提升空调制热舒适性,同时,确保足够的换热量,避免对换热造成不良影响。
可选地,所述预设阈值的取值范围为5~15℃。
通过选取合适的预设阈值,可在实现有效防结霜/延缓结霜效果的同时,保证足够换热温差。
可选地,所述根据所述露点温度和所述蒸发温度判断所述空调是否处于易结霜状态步骤包括:
判断所述空调是否满足所述蒸发温度小于或等于所述露点温度,且所述蒸发温度小于或等于0℃;
若是,则判定所述空调处于易结霜状态。
可区分凝露与结霜,提高判断结果的准确性。
图1为本公开实施例空调系统一实施例的结构示意图;
图2为本公开实施例空调系统另一实施例的结构示意图;
图3为本公开实施例空调结霜控制方法一实施例的示意图;
图4为本公开实施例空调结霜控制方法步骤S30细化后的一实施例的示意图;
图5为本公开实施例空调结霜控制方法中的压焓图;
图6为本公开实施例空调结霜控制方法步骤S40后续步骤一实施例的示意图;
图7为本公开实施例空调结霜控制方法步骤S40后续步骤另一实施例的示意图。
附图标记说明:
1-第一可调节流装置,2-第二可调节流装置,3-压缩机,4-室外换热器,5-室内换热器,6-汽液分离器,7-干燥过滤器,8-温湿度传感器。
为使本公开的上述目的、特征和优点能够更为明显易懂,下面结合附图对本公开的具体实施例做详细的说明。
本公开实施例提出一种空调系统。
图1为本发明空调系统的一实施例结构示意图。
如图1,所述空调系统包括:第一可调节流装置1、第二可调节流装置2、压缩机3、室外换热器4与室内换热器5,所述第一可调节流装置1设置于所述室外换热器4与所述室内换热器5之间,所述第二可调节流装置2设置于所述室外换热器4与所述压缩机3的回气口之间。
第一可调节流装置1/第二可调节流装置2,为节流程度可调的节流装置,可以为单个的节流元件,也可以是由多个节流元件组成的节流组件。第一可调节流装置1/第二可调节流装置2,可以为电子膨胀阀或节流孔板,以确保第一可调节流装置1/第二可调节流装置2的节流程度为可调节,进而保证随空调运行参数和环境参数的变化而适应性地调节节流程度,实现控制目的。
为便于描述,本文以制热模式下制冷剂流向为参考定义室外换热器4及室内换热器5的进口和出口。第一可调节流装置1设置于室外换热器4与室内换热器5之间,具体地,第一可调节流装置1设置于室外换热器4的进口与室内换热器5的出口之间,用于将流向室外换热器4的制冷剂进行节流降压降温,使制冷剂在室外换热器4顺利换热蒸发。可选地,在第一可调节流装置1与室内换热器5之间,设置干燥过滤器7,以清理空调系统制冷剂循环中的有害物质,从而保护空调系统中的节流装置、压缩机等重要部件。
第二可调节流装置2,设置于室外换热器4与压缩机3回气口之间,具体设置于室外换热器4的出口与压缩机3回气口之间。
通过在室外换热器4两侧分别设置一个节流装置,可控制室外换热器4内制冷剂压力,进而控制制冷剂蒸发温度,实现延缓结霜或防止结霜,同时,通过在室外换热器4两侧分别设置一个节流装置,还可调节空调系统的制冷剂循环量,通过两个节流装置调节的结合,在增大室外换热器4内制冷剂压力的同时,可实现对空调系统制冷剂循环量的独立调节,降低因室外换热器4内制冷剂压力变化带来的其他不良影响,以便控制目的顺利实现。
可选地,在空调系统中,除第一可调节流装置1和第二可调节流装置2外,还包括其他节流装置,此处不做限制。
可选地,如图1或图2,所述空调系统还包括汽液分离器6,所述第二可调节流装置2设置于所述汽液分离器6与所述压缩机3的回气口之间。
为了避免气液两相的制冷剂流过第二可调节流装置2导致节流不稳定,将制冷剂经汽液分离器6进行气液分离后,确保流入第二可调节流装置2的 仅为气态制冷剂,保证节流的稳定性。
此外,通过在室外换热器4两侧分别设置一个节流装置,可避免制冷剂进入汽液分离器6的速度太快、量太多,避免大量制冷剂滞留在汽液分离器6中。
可选地,如图2,所述空调系统还包括温湿度传感器8,所述温湿度传感器8设置于所述室外换热器4进风侧。
该温湿度传感器8设置于所述空调室外机进风侧,用以测量空调室外机所处环境的温度和湿度,便于获得露点温度。通过温湿度传感器8直接检测获得空调所处环境的温度和湿度,基于实际检测的环境温湿度参数进行露点温度的查找、计算,可获得更为精准的露点温度,有利于后续的精准控制。
可选地,所述空调系统还包括温度传感器,所述温度传感器设置于所述室外换热器4内部。
该温度传感器设置于室外换热器4铜管弯头部分,用于检测室外换热器4内的制冷剂温度。通过直接检测获得蒸发温度,保证数据的准确性,再直接基于蒸发温度进行控制,实现控制的准确性。
本公开实施例还提出一种空调结霜控制方法,用于如上所述的空调系统。
图3为本公开实施例空调结霜控制方法一实施例的示意图。
所述空调结霜控制方法包括:
步骤S10,在接收到制热模式运行命令后,检测外环温度和外环湿度,基于所述外环温度和所述外环湿度确定露点温度;
空调在制热模式下才易结霜,因此,在接收到制热模式运行命令后,才进行本公开空调结霜控制方法各实施例所述的控制,即检测外环温度和外环湿度,进行后续的延缓结霜或防止结霜控制。在空调接收到通风模式命令/除湿模式命令/制冷模式命令/自动模式命令时,空调运行对应的模式,不执行本公开空调结霜控制方法各实施例所述的控制。
可选地,为确保控制的稳定性与准确性,在检测到空调制热模式命令时,控制空调以制热模式运行预设时长后,再执行检测外环温度和外环湿度等后续延缓结霜或防止结霜控制。
检测外环温度和外环湿度,可通过设置在空调室外换热器4上的温湿度传感器8检测获得,为提高所检测参数的准确性,实时采样外环温度和外环 湿度,对预设次数的采样结果求均值,将均值作为最终的检测结果。可选地,也可间隔预设时间间隔检测获得外环温度和外环湿度。
可在空调中预存焓湿图拟合函数,在获得外环温度和外环湿度后,即可基于焓湿图拟合函数获得当前室外空气的露点温度。相比直接联网基于地理位置获得露点温度,本方式基于实际检测的环境温湿度参数进行露点温度的查找、计算,可获得更为精准的露点温度,有利于后续的精准控制。
步骤S20,获取所述空调室外换热器4内制冷剂的蒸发温度;
可通过在室外换热器4上设置温度传感器,直接检测获得空调室外换热器4内制冷剂的蒸发温度。
步骤S30,根据所述露点温度和所述蒸发温度判断所述空调是否处于易结霜状态;
通过室外换热器4内制冷剂蒸发温度与露点温度之间的大小比较,可判断空调是否处于易结霜状态。易结霜状态,指空调蒸发温度满足可能结霜条件的状态,通常,结霜需要满足一定的温度条件,如蒸发温度低于0℃,若基于露点温度和空调蒸发温度确定空调满足相关的易结霜参数条件,则空调处于易结霜状态,此易结霜状态,由开发人员基于物理原理确定其相关参数满足的条件,并将相关条件预设于空调中。
可选地,若室外换热器4内制冷剂的蒸发温度小于或等于露点温度,则判定空调处于易结霜状态;若室外换热器4内制冷剂的蒸发温度大于露点温度,则判定空调处于不易结霜状态。
可选地,如图4,步骤S30包括:
步骤S31,判断所述空调是否满足所述蒸发温度小于或等于所述露点温度,且所述蒸发温度小于或等于0℃;
当室外换热器4内制冷剂蒸发温度小于或等于露点温度,但大于0℃时,空调极可能不会结霜,此时,应当判定空调处于不易结霜状态。
步骤S32,若是,则判定所述空调处于易结霜状态。
如果满足蒸发温度小于或等于所述露点温度,且所述蒸发温度小于或等于0℃,则可判定空调处于易结霜状态。
在蒸发温度低于露点温度但高于0℃时,换热器表面会产生凝露而基本不结霜,通过将蒸发温度小于或等于露点温度,且蒸发温度小于或等于0℃ 设置为空调处于易结霜状态的判断条件,可区分凝露与结霜,提高判断结果的准确性。
步骤S40,若所述空调处于易结霜状态,则控制所述第一可调节流装置1增大开度,并控制所述第二可调节流装置2减小开度。
如果空调处于易结霜状态,则控制设置于室外换热器4进口与室内换热器5出口之间的第一可调节流装置1增大开度,控制设置于室外换热器4出口与压缩机3回气口之间的第二可调节流装置2减小开度。因第一可调节流装置1与第二可调节流装置2分别设置在室外换热器4进口侧与出口侧,增大接口侧进入室外换热器4的制冷剂流量,限制出口侧从室外换热器4流出的制冷剂流量,如此,实现增大室外换热器4内制冷剂压力,进而增大室外换热器4内制冷剂蒸发温度,以防止或减缓空调室外换热器结霜。
在空调系统中设置单个节流装置(如在室外机换热器进口侧设置节流装置)虽然也能起到调节室外换热器内制冷剂压力的作用,但在调节制冷剂压力的同时,制冷剂的循环流量也会随之发生变化,即制冷剂的压力与制冷剂的循环流量不能独立调节。例如,增大设置在室外机换热器进口侧的节流装置的开度,进入室外换热器内的制冷剂流量也会随之增大,如果空调系统对于制冷剂循环量有其他要求/限制,则会与空调的防止结霜或延缓结霜控制发生冲突,如进入汽液分离器6的制冷剂流量过多过快,会导致过多制冷剂滞留在汽液分离器6中。
而在本公开给出的实施例中,在空调系统中室外换热器4的两侧分别设置一个节流装置,其中一个设置在室外换热器4进口,可稍微增大室外换热器4内的制冷剂流量,与另一个设置在室外换热器4出口的开度减小的节流装置结合,共同实现增大室外换热器4内制冷剂压力,此外,设置在室外换热器4出口与压缩机3回气口之间的节流装置,可以控制从室外换热器4流出的、即将流回压缩机3的制冷剂流量,进而控制整个空调系统的制冷剂循环流量。通过两个节流装置的结合,实现室外换热器4内制冷剂压力与制冷剂流量的独立调节,在控制调整室外换热器4内制冷剂压力的同时能够不对制冷剂循环流量的调节产生干扰。
为便于理解本公开所给实施例的有益效果,参照图5的压焓图对本公开所给实施例做详细的说明。
在空调运行制冷模式及制热模式但室外换热器4不易结霜状态下,第一可调节流装置1的功能与常规空调系统中的节流装置功能一致,其主要功能是调节制冷剂的循环量;在空调运行制热模式且外机换热器易结霜状态下,第一可调节流装置1除与第二可调节流装置2共同调节制冷剂的循环流量外,还起到控制制冷剂在室外换热器4中蒸发温度的作用。第二可调节流装置2仅在空调处于制热模式,且空调室外机处于易结霜状态时,起到调节室外换热器4内制冷剂蒸发温度的作用,其它情况下(如通风模式/除湿模式/制冷模式),第二可调节流装置2处于全开状态,不起节流作用。
当第二可调节流装置2全开时,本空调系统的运行模式与常规空调系统的运行模式一致,在图5中其理论循环过程为1->2->3->4->1,当第二可调节流装置2起节流作用时,第一可调节流装置1的节流程度相应减小,其理论循环过程为1->2->3->5->6->1,制冷剂的节流降压过程分为3->5和6->1两步完成,第一可调节流装置1处的压降减小,由图4可以看出制冷剂在室外换热器4的蒸发过程所对应的压力由P4增大到P5,与之对应的蒸发温度也相应升高。
可选地,在控制第一可调节流装置1增大开度时,同步控制第二可调节流装置2减小开度,即同时控制第二可调节流装置2减小开度。
第一可调节流装置1增大开度的速度或者第二可调节流装置2减小开度的速度可选为5步/秒。
通过在空调制热运行模式下,基于外环温度和外环湿度确定露点温度,并基于露点温度和室外换热器4内制冷剂的蒸发温度判断空调是否处于易结霜状态,在空调处于易结霜状态时,控制第一可调节流装置1增大开度、第二可调节流装置2减小开度,以增大室外换热器4内制冷剂的压力,进而提高室外换热器4内制冷剂的蒸发温度,使得室外换热器4内制冷剂的蒸发温度高于室外空气露点温度或与室外空气露点温度的温差减小,使得室外换热器4不结霜或结霜速度减慢,加长空调化霜周期,提升制热效果,减少总的化霜次数,提高空调在低温制热的舒适性。
可选地,所述第一可调节流装置1增大开度的速度与所述第二可调节流装置2减小开度的速度相等。
在第一可调节流装置1增大开度时,控制第二可调节流装置2以同等速 度减小开度,确保第一可调节流装置1、第二可调节流装置2共同起作用时的节流程度,与在室外换热器4进口处设置一个节流装置单独作用时相当,以提高控制的精准性。
可选地,如图6,步骤S40之后包括:
步骤S50,获取所述外环温度减去所述露点温度所得的温差值,将所述温差值与预设阈值进行大小比较;
外环温度与露点温度的温差大小一定程度上反应了外环湿度大小,在外环温度减去露点温度所得的温差值较大时,外环湿度较小,在外环湿度减去露点温度所得的温差值较小时,外环湿度较大。外环温度减去露点温度所得的温差值的大小不同,对应的节流装置调节截止条件不同。
预设阈值,可取一预设的固定值,也可以是随室外空气温度变化而变化的值,预设阈值的选取,不能过小,因为预设阈值小,对应的换热温差也会小,可能导致室外换热器4无法实现有效换热,同时,预设阈值的选取也不能过大,因为预设阈值的选取若是过大,则延缓结霜的效果不明显。
可选地,所述预设阈值的取值范围为5~15℃。最优取值可通过实验确定。通过选取合适的预设阈值,可在实现有效防结霜/延缓结霜效果的同时,保证足够换热温差。
可选地,可在空调中设置不同的预设阈值,由用户基于需求自主选择,例如,在用户需求更高的舒适度时,说明用户不希望化霜太多次,则需要加强防止结霜或延缓结霜的控制,此时,预设阈值可取较小值;当室外空气温度很低,希望提升空调制热量时,需要室外换热器4的换热温差更大,此时,预设阈值可取较大值。
步骤S60,若所述温差值大于所述预设阈值,则获取所述蒸发温度减去所述露点温度所得差值a>0;
在外环温度减去露点温度所得温差值大于预设阈值时,可通过蒸发温度与露点温度之间的大小关系确定第一可调节流装置1和所述第二可调节流装置2的停止调节的时间。
步骤S70,在所述差值a满足第一预设条件时,保持所述第一可调节流装置1和所述第二可调节流装置2的当前开度不变,其中,所述第一预设条件包括a>0。
通过提高室外换热器4内制冷剂的蒸发温度,使其大于露点温度,可保证室外换热器4不结霜运行,提升空调制热量及使用舒适性。
可选地,所述第一预设条件还包括a<k,k∈(0,1]。
在控制室外换热器4内制冷剂的蒸发温度升高的同时,还需避免制冷剂蒸发温度的升高导致室外换热器4的换热温差(外环温度减去制冷剂蒸发温度所得的温差)过低,否则有无法有效换热的风险。
在温差值大于预设阈值时,说明外环温度远远大于露点温度,从露点温度到外环温度之间相差很大的温度区间,此时,当制冷剂蒸发温度高于室外空气露点温度(即a>0)时,室外机换热器不会结霜,但在满足不结霜的条件下,制冷剂蒸发温度与室外空气露点温度的差值太大会使换热温差减小太多,因此,限制a<k,k∈(0,1],当a满足a<k,k∈(0,1]时,就能达到室外机换热器不会结霜同时又有较大换热温差的目标。
可选地,如图7,步骤S50之后包括:
步骤S80,若所述温差值小于或等于所述预设阈值,则获取所述外环温度减去所述蒸发温度所得差值b;
外环温度减去所述蒸发温度所得差值b,即为室外换热器4的换热温差,此值过大则室外换热器4结霜快,空调器就会频繁化霜,此值过小则换热量小,因此需要将此值控制在一个适中的范围,使得空调室外换热器4结霜不会太快,同时又能有较大的换热量。
步骤S90,在所述差值b满足第二预设条件时,保持所述第一可调节流装置1和所述第二可调节流装置2的当前开度不变,其中,所述第二预设条件为T-1<b<T,T为所述预设阈值。
当外环温度减去露点温度所得的温差值大于所述预设阈值,即外环湿度较小时,露点温度与外环温度的差值较大,将制冷剂蒸发温度调整到露点温度以上,满足0<a<k,k∈(0,1]条件,可以避免室外换热器4结霜,同时室外换热器4也有较大的换热温差,换热量不会出现太大的衰减;当外环湿度较大时,露点温度与外环温度的差值较小,如果仍然以0<a<k,k∈(0,1]作为调整截止条件,将制冷剂蒸发温度控制调整到露点温度以上,虽然可以避免室外换热器4结霜,但室外换热器4的换热温差也会较小,换热量就会出现大幅衰减。因此,将外环温度减去蒸发温度所得差值b控制在T-1<b<T。
当外环温度减去露点温度所得的温差值小于或等于预设阈值,室外侧空气湿度较大时,通过调节第一可调节流装置1、第二可调节流装置2,提高室外侧制冷剂蒸发温度,使得外环温度减去蒸发温度所得差值b满足T-1<b<T,减缓室外换热器4结霜速度,延长室外机化霜周期,减少化霜次数,提升空调制热舒适性,同时,确保足够的换热量,避免对换热造成不良影响。
通过将外环温度减去露点温度所得的差值与预设阈值进行比较,区分两种不同空气状况下,蒸发温度上升的截止条件,在所得的差值小于或等于预设阈值时,将外环温度减去蒸发温度所得的差值(即换热温差)限制在预设阈值左右,以实现更为精准的控制。
可选地,在接受到关机/模式转换命令后,检测第二可调节流装置2的开关状况,若第二可调节流装置2未全开,则控制第二可调节流装置2全开后进行关机/模式转换,若第二可调节流装置2已全开,则直接转换模式或关机,避免因为下次开机空调处于不易结霜状态或者空调不是制热模式(如制冷模式),则第二可调节流装置2对空调系统的运行就会产生负面影响,模式转换亦是同理。
虽然本公开披露如上,但本公开并非限定于此。任何本领域技术人员,在不脱离本公开的精神和范围内,均可作各种更动与修改,因此本公开的保护范围应当以权利要求所限定的范围为准。
Claims (11)
- 一种空调系统,其中,所述空调系统包括:第一可调节流装置(1)、第二可调节流装置(2)、压缩机(3)、室外换热器(4)与室内换热器(5),所述第一可调节流装置(1)设置于所述室外换热器(4)与所述室内换热器(5)之间,所述第二可调节流装置(2)设置于所述室外换热器(4)与所述压缩机(3)的回气口之间。
- 如权利要求1所述的空调系统,其特征在于,所述空调系统还包括汽液分离器,所述第二可调节流装置(2)设置于所述汽液分离器(6)与所述压缩机(3)的回气口之间。
- 如权利要求1或2所述的空调系统,其中,所述第一可调节流装置(1)、所述第二可调节流装置(2)为电子膨胀阀或节流孔板。
- 如权利要求1或2所述的空调系统,其中,所述空调系统还包括温湿度传感器(8),所述温湿度传感器(8)设置于所述室外换热器(4)进风侧。
- 一种空调结霜控制方法,用于权利要求1-4中任一项所述的空调系统,其中,所述空调结霜控制方法包括如下步骤:在接收到制热模式运行命令后,检测外环温度和外环湿度,基于所述外环温度和所述外环湿度确定露点温度;获取所述空调室外换热器(4)内制冷剂的蒸发温度;根据所述露点温度和所述蒸发温度判断所述空调是否处于易结霜状态;若所述空调处于易结霜状态,则控制所述第一可调节流装置(1)增大开度,并控制所述第二可调节流装置(2)减小开度。
- 如权利要求5所述的空调结霜控制方法,其中,所述第一可调节流装置(1)增大开度的速度与所述第二可调节流装置(2)减小开度的速度相等。
- 如权利要求5所述的空调结霜控制方法,其中,所述若所述空调处于易结霜状态,则控制所述第一可调节流装置(1)增大开度,并控制所述第二可调节流装置(2)减小开度的步骤之后包括:获取所述外环温度减去所述露点温度所得的温差值,将所述温差值与预设阈值进行大小比较;若所述温差值大于所述预设阈值,则获取所述蒸发温度减去所述露点温 度所得差值a;在所述差值a满足第一预设条件时,保持所述第一可调节流装置(1)和所述第二可调节流装置(2)的当前开度不变,其中,所述第一预设条件包括a>0。
- 如权利要求7所述的空调结霜控制方法,其中,所述第一预设条件还包括a<k,k∈(0,1]。
- 如权利要求7或8所述的空调结霜控制方法,其中,所述获取所述外环温度减去所述露点温度所得的温差值,将所述温差值与预设阈值进行大小比较的步骤之后包括:若所述温差值小于或等于所述预设阈值,则获取所述外环温度减去所述蒸发温度所得差值b;在所述差值b满足第二预设条件时,保持所述第一可调节流装置(1)和所述第二可调节流装置(2)的当前开度不变,其中,所述第二预设条件为T-1<b<T,T为所述预设阈值。
- 如权利要求9所述的空调结霜控制方法,其中,所述预设阈值的取值范围为5~15℃。
- 如权利要求5-8中任一项所述的空调结霜控制方法,其中,所述根据所述露点温度和所述蒸发温度判断所述空调是否处于易结霜状态的步骤包括:判断所述空调是否满足所述蒸发温度小于或等于所述露点温度,且所述蒸发温度小于或等于0℃;若是,则判定所述空调处于易结霜状态。
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201911059659.3 | 2019-11-01 | ||
CN201911059659.3A CN110762756B (zh) | 2019-11-01 | 2019-11-01 | 一种空调系统及空调结霜控制方法 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2021082509A1 true WO2021082509A1 (zh) | 2021-05-06 |
Family
ID=69335223
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/CN2020/100439 WO2021082509A1 (zh) | 2019-11-01 | 2020-07-06 | 空调系统及空调结霜控制方法 |
Country Status (2)
Country | Link |
---|---|
CN (1) | CN110762756B (zh) |
WO (1) | WO2021082509A1 (zh) |
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN114216170A (zh) * | 2021-12-20 | 2022-03-22 | 珠海格力电器股份有限公司 | 一种空调设备 |
CN114659268A (zh) * | 2022-03-01 | 2022-06-24 | 浙江乾丰智能科技有限公司 | 一种空气能热水器结霜程度预测方法 |
CN114838529A (zh) * | 2021-09-19 | 2022-08-02 | 青岛海尔空调器有限总公司 | 用于调节换热器的换热容积的方法、装置、空调器 |
CN115325663A (zh) * | 2022-08-03 | 2022-11-11 | 珠海格力节能环保制冷技术研究中心有限公司 | 空调及其防冻结控制方法、装置、计算机设备与存储介质 |
CN115468310A (zh) * | 2022-08-08 | 2022-12-13 | 青岛经济技术开发区海尔热水器有限公司 | 一种储水式热水器的加热控制方法及装置 |
CN116841336A (zh) * | 2023-07-03 | 2023-10-03 | 江苏拓米洛高端装备股份有限公司 | 一种试验箱的控制方法、装置、系统和试验箱 |
Families Citing this family (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN110762756B (zh) * | 2019-11-01 | 2021-11-30 | 宁波奥克斯电气股份有限公司 | 一种空调系统及空调结霜控制方法 |
CN111486530B (zh) * | 2020-03-31 | 2021-11-09 | 珠海格力电器股份有限公司 | 空调器及其控制方法 |
CN112283878B (zh) * | 2020-09-18 | 2021-09-28 | 珠海格力电器股份有限公司 | 一种空调控制方法、装置、存储介质及空调 |
CN113091215B (zh) * | 2021-04-08 | 2022-07-19 | 青岛海尔空调器有限总公司 | 空调器的制热控制方法 |
CN113715574B (zh) * | 2021-07-29 | 2023-05-02 | 西安交通大学 | 跨临界二氧化碳电动汽车热管理系统及其无霜控制方法 |
CN114734782B (zh) * | 2022-04-25 | 2022-12-16 | 杭州绿能新能源汽车部件有限公司 | 热管理系统的控制方法 |
Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP2924370A1 (en) * | 2014-03-20 | 2015-09-30 | LG Electronics Inc. | Air conditioner and method for controlling an air conditioner |
CN106885405A (zh) * | 2017-04-24 | 2017-06-23 | 深圳创维空调科技有限公司 | 一种空调器系统及其除霜方法 |
CN109373514A (zh) * | 2018-11-19 | 2019-02-22 | 青岛海尔空调电子有限公司 | 一种空调室外机化霜控制方法 |
CN109579385A (zh) * | 2018-11-28 | 2019-04-05 | 山东大学 | 一种空调自除霜装置及控制方法 |
CN109631254A (zh) * | 2018-12-07 | 2019-04-16 | Tcl空调器(中山)有限公司 | 空调器、空调器制热控制方法及计算机可读存储介质 |
CN109668247A (zh) * | 2018-12-26 | 2019-04-23 | 宁波奥克斯电气股份有限公司 | 一种空调器及除霜控制方法 |
CN110762756A (zh) * | 2019-11-01 | 2020-02-07 | 宁波奥克斯电气股份有限公司 | 一种空调系统及空调结霜控制方法 |
Family Cites Families (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2004251567A (ja) * | 2003-02-21 | 2004-09-09 | Fujitsu General Ltd | 空気調和機 |
CN204006307U (zh) * | 2014-04-21 | 2014-12-10 | 广东美的集团芜湖制冷设备有限公司 | 具有卸荷功能的空调器 |
CN204757488U (zh) * | 2015-06-02 | 2015-11-11 | 广东美的暖通设备有限公司 | 一种延迟空调制热结霜的装置 |
CN108266898B (zh) * | 2016-12-30 | 2020-12-22 | 青岛海尔新能源电器有限公司 | 一种空气能热水器化霜控制方法和系统 |
CN108626841A (zh) * | 2018-04-25 | 2018-10-09 | 广东美的制冷设备有限公司 | 空调器、除霜方法和计算机可读存储介质 |
CN109442807A (zh) * | 2018-11-16 | 2019-03-08 | 无锡同方人工环境有限公司 | 能够避免底部结霜的换热器以及控制方法 |
CN110094904B (zh) * | 2019-03-18 | 2020-05-19 | 珠海格力电器股份有限公司 | 除霜系统、控制方法、装置及制冷设备 |
CN110195914A (zh) * | 2019-06-03 | 2019-09-03 | 宁波奥克斯电气股份有限公司 | 一种延缓结霜的控制方法、装置及空调器 |
-
2019
- 2019-11-01 CN CN201911059659.3A patent/CN110762756B/zh active Active
-
2020
- 2020-07-06 WO PCT/CN2020/100439 patent/WO2021082509A1/zh active Application Filing
Patent Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP2924370A1 (en) * | 2014-03-20 | 2015-09-30 | LG Electronics Inc. | Air conditioner and method for controlling an air conditioner |
CN106885405A (zh) * | 2017-04-24 | 2017-06-23 | 深圳创维空调科技有限公司 | 一种空调器系统及其除霜方法 |
CN109373514A (zh) * | 2018-11-19 | 2019-02-22 | 青岛海尔空调电子有限公司 | 一种空调室外机化霜控制方法 |
CN109579385A (zh) * | 2018-11-28 | 2019-04-05 | 山东大学 | 一种空调自除霜装置及控制方法 |
CN109631254A (zh) * | 2018-12-07 | 2019-04-16 | Tcl空调器(中山)有限公司 | 空调器、空调器制热控制方法及计算机可读存储介质 |
CN109668247A (zh) * | 2018-12-26 | 2019-04-23 | 宁波奥克斯电气股份有限公司 | 一种空调器及除霜控制方法 |
CN110762756A (zh) * | 2019-11-01 | 2020-02-07 | 宁波奥克斯电气股份有限公司 | 一种空调系统及空调结霜控制方法 |
Cited By (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN114838529A (zh) * | 2021-09-19 | 2022-08-02 | 青岛海尔空调器有限总公司 | 用于调节换热器的换热容积的方法、装置、空调器 |
CN114838529B (zh) * | 2021-09-19 | 2024-03-19 | 青岛海尔空调器有限总公司 | 用于调节换热器的换热容积的方法、装置、空调器 |
CN114216170A (zh) * | 2021-12-20 | 2022-03-22 | 珠海格力电器股份有限公司 | 一种空调设备 |
CN114216170B (zh) * | 2021-12-20 | 2023-03-31 | 珠海格力电器股份有限公司 | 一种空调设备 |
CN114659268A (zh) * | 2022-03-01 | 2022-06-24 | 浙江乾丰智能科技有限公司 | 一种空气能热水器结霜程度预测方法 |
CN114659268B (zh) * | 2022-03-01 | 2023-10-03 | 温岭煌格科技咨询有限公司 | 一种空气能热水器结霜程度预测方法 |
CN115325663A (zh) * | 2022-08-03 | 2022-11-11 | 珠海格力节能环保制冷技术研究中心有限公司 | 空调及其防冻结控制方法、装置、计算机设备与存储介质 |
CN115468310A (zh) * | 2022-08-08 | 2022-12-13 | 青岛经济技术开发区海尔热水器有限公司 | 一种储水式热水器的加热控制方法及装置 |
CN116841336A (zh) * | 2023-07-03 | 2023-10-03 | 江苏拓米洛高端装备股份有限公司 | 一种试验箱的控制方法、装置、系统和试验箱 |
Also Published As
Publication number | Publication date |
---|---|
CN110762756A (zh) | 2020-02-07 |
CN110762756B (zh) | 2021-11-30 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2021082509A1 (zh) | 空调系统及空调结霜控制方法 | |
CN105972772B (zh) | 空调器的除霜控制方法及装置 | |
CN110671777B (zh) | 一种空调器的控制方法、装置和空调器 | |
CN106016581B (zh) | 空调器的除霜控制方法及装置 | |
US8020395B2 (en) | Air conditioning apparatus | |
CN106016628B (zh) | 空调器化霜控制的方法及装置 | |
US11320185B2 (en) | Defrosting control method for multi-split system | |
EP3611439B1 (en) | Air conditioner | |
WO2010015123A1 (en) | Constant temperature dehumidifying air-conditioner | |
CN111561761B (zh) | 一种延缓空调系统结霜的控制方法 | |
WO2022160767A1 (zh) | 用于空调系统除霜控制的方法及装置、空调系统 | |
WO2019033998A1 (zh) | 用于调节空调室内机的蒸发温度的方法及空调 | |
WO2021068358A1 (zh) | 一种多联机除霜控制方法 | |
WO2020233116A1 (zh) | 用于空调器的除霜控制方法 | |
JP3885300B2 (ja) | 空気調和装置 | |
WO2020215787A1 (zh) | 热泵系统的控制方法 | |
WO2020037848A1 (zh) | 空调器及用于空调器的控制方法 | |
CN113375301B (zh) | 一种空调控制方法、装置、存储介质及空调 | |
JP6589935B2 (ja) | 空調システム | |
CN113864925A (zh) | 空调器 | |
JP2002107001A (ja) | 空気調和機 | |
JP6439890B2 (ja) | 空調システム | |
JP2000055444A (ja) | 空気調和機 | |
JP2663792B2 (ja) | 空気調和装置の運転制御装置 | |
CN116518533A (zh) | 一种空调器无风感控制方法及空调器 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 20881530 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 20881530 Country of ref document: EP Kind code of ref document: A1 |