WO2021082258A1 - 一种利用硝酸介质综合处理红土镍矿的方法 - Google Patents

一种利用硝酸介质综合处理红土镍矿的方法 Download PDF

Info

Publication number
WO2021082258A1
WO2021082258A1 PCT/CN2019/129147 CN2019129147W WO2021082258A1 WO 2021082258 A1 WO2021082258 A1 WO 2021082258A1 CN 2019129147 W CN2019129147 W CN 2019129147W WO 2021082258 A1 WO2021082258 A1 WO 2021082258A1
Authority
WO
WIPO (PCT)
Prior art keywords
nitric acid
ore
leaching
nickel
calcination
Prior art date
Application number
PCT/CN2019/129147
Other languages
English (en)
French (fr)
Inventor
王成彦
马保中
赵林
陈永强
王鹏辉
但勇
金长浩
赵澎
Original Assignee
眉山顺应动力电池材料有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 眉山顺应动力电池材料有限公司 filed Critical 眉山顺应动力电池材料有限公司
Publication of WO2021082258A1 publication Critical patent/WO2021082258A1/zh

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B21/00Nitrogen; Compounds thereof
    • C01B21/20Nitrogen oxides; Oxyacids of nitrogen; Salts thereof
    • C01B21/38Nitric acid
    • C01B21/40Preparation by absorption of oxides of nitrogen
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B21/00Obtaining aluminium
    • C22B21/0038Obtaining aluminium by other processes
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B23/00Obtaining nickel or cobalt
    • C22B23/02Obtaining nickel or cobalt by dry processes
    • C22B23/023Obtaining nickel or cobalt by dry processes with formation of ferro-nickel or ferro-cobalt
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B23/00Obtaining nickel or cobalt
    • C22B23/04Obtaining nickel or cobalt by wet processes
    • C22B23/0407Leaching processes
    • C22B23/0415Leaching processes with acids or salt solutions except ammonium salts solutions
    • C22B23/0438Nitric acids or salts thereof
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B26/00Obtaining alkali, alkaline earth metals or magnesium
    • C22B26/20Obtaining alkaline earth metals or magnesium
    • C22B26/22Obtaining magnesium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B3/00Extraction of metal compounds from ores or concentrates by wet processes
    • C22B3/04Extraction of metal compounds from ores or concentrates by wet processes by leaching
    • C22B3/06Extraction of metal compounds from ores or concentrates by wet processes by leaching in inorganic acid solutions, e.g. with acids generated in situ; in inorganic salt solutions other than ammonium salt solutions
    • C22B3/065Nitric acids or salts thereof
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B47/00Obtaining manganese
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/20Recycling

Definitions

  • the invention relates to the technical field of non-ferrous metal metallurgy technology and comprehensive utilization of mineral resources, in particular to a method for comprehensively treating laterite nickel ore by using nitric acid medium for obtaining efficient separation of valuable metals
  • the mineral resources of nickel mainly include nickel sulfide ore and nickel oxide ore (also known as laterite nickel ore).
  • nickel sulfide ore also known as laterite nickel ore.
  • the nickel produced by the world's nickel industry mainly came from nickel sulfide ore resources.
  • Current statistics show that nickel sulfide ore accounts for more than 70% of the total, producing about 50% of nickel.
  • the rich reserves of laterite nickel ore has attracted people's attention, and the efficient and economical treatment of laterite nickel ore is of great significance.
  • the hydrometallurgical treatment of laterite nickel ore mainly includes reduction roasting-ammonia leaching, high-pressure acid leaching, and atmospheric acid leaching.
  • Reduction roasting-ammonia leaching method reduces nickel silicate and nickel oxide in minerals to metal to the greatest extent through reduction roasting, while controlling the reduction conditions to reduce iron to ferroferric oxide.
  • the roasted nickel and cobalt are leached with ammonia solution, and the iron in the leached residue is recovered by magnetic separation.
  • the process uses atmospheric leaching, which reduces equipment and management costs, it has disadvantages such as difficult control of the reducing atmosphere, large fluctuations in nickel leaching rate, low cobalt leaching rate, easy ammonia volatilization, and low ferromagnetic separation enrichment rate.
  • the high-pressure acid leaching method is suitable for processing laterite nickel ore, and its biggest advantage is that the leaching rate of nickel and cobalt can reach more than 90%.
  • the conditions of the leaching method are harsh and the utilization rate of laterite resources is low.
  • the atmospheric acid leaching method has become one of the attractive laterite nickel smelting methods due to its small equipment investment, mild reaction conditions, low technical risk, and stronger mineral universality.
  • the normal pressure acid leaching process consumes a lot of acid, and it is difficult to separate Fe and Ni in the leaching solution.
  • the current pressurized acid leaching process uses sulfuric acid as the leaching agent under high temperature and high pressure to control the leaching conditions so that most of the iron, aluminum, silicon, etc. are hydrolyzed into the slag, while nickel and cobalt enter the solution to achieve selective leaching. After the leaching solution is neutralized and removed (Fe, Al), a high-quality nickel and cobalt solution is obtained.
  • the biggest advantage of this process is good leaching selectivity, high nickel and cobalt leaching rate, but it has complex process technology, high equipment requirements, large investment, high operating cost, serious scarring of the pressurized kettle, and high leaching slag because of low iron and high sulfur. Disadvantages such as comprehensive utilization.
  • Patent CN200910180397 discloses an alkali-acid dual-cycle process for treating laterite nickel ore. Its technical solution is to leaching out valuable metals such as aluminum and chromium in laterite nickel ore through an alkali fusion reaction, and subsequently leaching nickel through an acid leaching pressurization process cobalt. This method can realize the comprehensive utilization of toxic substances, thereby greatly reducing the cost and reducing environmental pollution. However, for the laterite nickel ore with low chromium content, the process cost is greatly increased. At the same time, the filter cake has a certain entrainment phenomenon after repeated filtration. , Resulting in the loss of valuable metals.
  • Patent CN201110327198 discloses a method for treating laterite nickel ore. It is proposed to use laterite nickel ore as raw material, adopting the new process of raw ore maturation-selective atmospheric leaching-magnetic roasting-magnetic separation to recycle the valuable elements iron, nickel and cobalt. This process uses sulfuric acid for selective leaching. Since there is still a certain amount of calcium and magnesium in the laterite nickel ore, it will cause serious scarring over time.
  • Patent CN1676634 discloses a nickel-cobalt oxide ore pressurized oxidation leaching method. This method does not directly use sulfuric acid as the leaching agent, but adds sulfur powder slurry or sulfide ore concentrate slurry into the autoclave, and reacts with the introduced oxygen to produce Leach the required sulfuric acid, thereby leaching the nickel and cobalt in the ore. Although this patent avoids the problem of insufficient sulfuric acid addition in the traditional method, the reaction temperature and pressure are still relatively high, and the requirements for industrial equipment and conditions are relatively strict, and the implementation is relatively difficult.
  • Patent CN103757261 discloses a hydrochloric acid atmospheric leaching of laterite nickel ore-selective leaching of serpentine-type laterite nickel ore in acid leaching solution-hydrolysis coupling reaction-separation and purification of Fe and Si oxides to prepare iron fine powder and SiO2 for building materials
  • the cleaner production method of laterite nickel ore although this method can solve the traditional atmospheric pressure leaching solution of laterite nickel ore is difficult to handle and the acid consumption is large, but the content of metal impurities such as aluminum and magnesium in nickel and cobalt is high, it still needs subsequent separation and purification.
  • the purpose of the present invention is to provide a method for comprehensively treating laterite nickel ore using nitric acid medium, which can realize the effective separation of iron and nickel and cobalt, reduce the content of metals such as aluminum and magnesium in the nickel and cobalt products, and reduce the use of neutralizers , Realizing the renewable utilization of nitric acid, greatly improving the comprehensive utilization efficiency and economic value of laterite nickel ore.
  • a method for comprehensively treating laterite nickel ore using nitric acid medium including:
  • Step 1 Crushing and fine grinding: crush and finely grind the raw ore of laterite nickel ore to obtain ore powder;
  • Step 2 Selective leaching: adding a nitric acid solution as a leaching agent to the mineral powder to perform selective leaching, and liquid-solid separation to obtain leaching residue and leaching liquid;
  • Step 3 One-step or multi-step calcination: adding the leachate obtained in step two to a calcination furnace for calcination and decomposition to obtain mixed dry-based metal oxides, and nitrogen oxide gas NO x is produced during the calcination process;
  • Step 4 Pellets and sintering: the leaching slag obtained in step two enters the pelleting and sintering process to produce iron ore concentrate;
  • Step 5 Preparation of concentrated nitric acid: absorb the nitrogen oxides NO x produced in step 3 to prepare concentrated nitric acid, and prepare a nitric acid solution to return to step 2 as a leaching agent.
  • the particle size of the mineral powder in the first step is less than 74 ⁇ m.
  • the said laterite nickel ore raw ore contains the following elements, the mass content of which is: Fe is 38-48%; Ni is 0.6-2.0%.
  • the said laterite nickel ore ore also contains the following elements, the mass content of which is: Co is 0.05 to 0.20%, Al is 1 to 5%, and Mn is 0.05 to 0.30%.
  • the concentration of the nitric acid solution in the second step is 150-300 g/L; and the solid-liquid ratio of the mineral powder to the nitric acid solution is 1:1 to 1:5 g/mL;
  • the leaching temperature is 160-220°C
  • the leaching time is 0.5-2h
  • the stirring speed is 150-600rpm.
  • Said step three includes one-step calcination or multi-step calcination:
  • One-step calcination controlling the temperature of the calcination furnace at 500-550°C; producing dry-based mixed oxides containing nickel, cobalt, manganese, and aluminum, magnesium, and iron;
  • Two-step calcination First, control the temperature of the calciner to 230-330°C to produce dry-based oxides of nickel, cobalt and manganese, containing a small amount of iron, magnesium, and aluminum impurities; then control the temperature of the calciner to increase to 500-550°C to produce Dry-based oxide of aluminum magnesium manganese.
  • Multi-step calcination First, control the temperature of the calciner to 180-210°C to produce iron dry-based oxides mixed with a very small amount of cobalt and manganese to separate all iron; then control the temperature of the calciner to rise to 260-290°C , To produce pure nickel, cobalt and manganese dry-based oxides; continue to heat up and control the temperature of the calciner at 500-550°C to produce aluminum-magnesium-manganese dry-based oxides, containing very small amounts of nickel and cobalt.
  • the leaching solution is sprayed into the calciner.
  • the iron ore concentrate with an iron content of 50-65% is obtained after the said step four pelletizing and sintering.
  • the method for comprehensively treating laterite nickel ore using nitric acid medium provided by the embodiments of the present invention has a short process flow and easy operation, and can well achieve nickel-cobalt-manganese and iron-aluminum-magnesium Efficient purification and separation to improve the overall recovery rate of valuable metals.
  • the method does not use a neutralizer in the whole process, avoids the introduction of impurities of the neutralizer and reduces the production cost.
  • the method can realize the renewable utilization of nitric acid and reduce the environmental pressure.
  • nitrate is easier to decompose, and the NO 2 and NO produced by the decomposition are closer to the main acid-making process.
  • the use of nitric acid as the leaching agent solves the serious problem of equipment scarring in the industry.
  • Fig. 1 is a schematic flow diagram of a method for comprehensively treating laterite nickel ore by using nitric acid medium according to an embodiment of the present invention.
  • a method for comprehensively treating laterite nickel ore using nitric acid medium includes:
  • Step 1 Crushing and fine grinding: crush and finely grind the raw ore of laterite nickel ore to obtain ore powder;
  • the particle size of the mineral powder in this step is less than 74 ⁇ m.
  • the specific ore is sieved after fine grinding, and 100% of the ore powder is required to have a particle size of less than 74 ⁇ m. Under non-optimal conditions, it can be controlled that the mineral powder with a particle size of less than 74 ⁇ m in the mineral powder accounts for more than 70% of the total weight of the mineral powder, which can meet the requirements of this patent.
  • the said laterite nickel ore ore generally has requirements for the content of Fe and Ni.
  • the laterite nickel ore ore contains the following elements, the mass content of which is: Fe is 38 ⁇ 48%; Ni is 0.6 ⁇ 2.0%.
  • the said laterite nickel ore ore also contains the following elements, the mass content of which is: Co is 0.05 to 0.20%, Al is 1 to 5%, and Mn is 0.05 to 0.30%.
  • impurities there are other impurities in the ore, which add up to 100% of the impurities.
  • the impurities here are O, H and a small amount of Mg, Si and other elements.
  • Step 2 Selective leaching: adding a nitric acid solution as a leaching agent to the mineral powder to perform selective leaching, and liquid-solid separation to obtain leaching residue and leaching liquid;
  • the concentration of the nitric acid solution in this step is 150 ⁇ 300g/L; and the solid-liquid ratio of the mineral powder to the nitric acid solution is 1:1 ⁇ 1:5g/mL; the controlled reaction conditions for selective leaching: the leaching temperature is 160 ⁇ 220°C The leaching time is 0.5-2h, and the stirring speed is 150-600rpm.
  • the ore slurry is separated from liquid and solid to obtain a leaching liquid and a leaching residue.
  • the liquid-solid separation adopts well-known technology and will not be repeated.
  • the use of nitric acid as the leaching agent solves the serious problem of equipment scarring in the industry.
  • Step 3 One-step or multi-step calcination: adding the leachate obtained in step two to a calcination furnace for calcination and decomposition to obtain mixed dry-based metal oxides, and nitrogen oxide gas NO x is produced during the calcination process;
  • step 2 The leaching solution obtained in step 2 is added to a calcination furnace, and nitrate heating is used for easy decomposition and the difference in decomposition temperature, and one or more steps are used for calcination.
  • Said step three includes one-step calcination or multi-step calcination:
  • One-step calcination controlling the temperature of the calcination furnace at 500-550°C; producing dry-based mixed oxides containing nickel, cobalt, manganese, and aluminum, magnesium, and iron;
  • Two-step calcination First, control the temperature of the calciner to 230-330°C to produce dry-based oxides of nickel, cobalt and manganese, containing a small amount of iron, magnesium, and aluminum impurities; then control the temperature of the calciner to increase to 500-550°C to produce Dry-based oxide of aluminum magnesium manganese.
  • the dry-based oxide containing nickel, cobalt and manganese can be used for the preparation of ternary materials after purification.
  • Multi-step calcination First, control the temperature of the calciner to 180-210°C to produce iron dry-based oxides mixed with a very small amount of cobalt and manganese to separate all iron; then control the temperature of the calciner to rise to 260-290°C , To produce high-purity dry-based oxides of nickel, cobalt and manganese, almost free of impurity elements; continue to heat up, control the temperature of the calciner at 500-550°C, and produce dry-based oxides of aluminum, magnesium and manganese, containing very small amounts of nickel and cobalt .
  • the nickel-cobalt-manganese dry-based oxide with high purity obtained in the second step can be directly used in the preparation of ternary materials.
  • nitrogen oxide gas NO x is produced, and the main component of NO x is a mixture of NO and NO 2.
  • the leachate can be sprayed into the calciner.
  • Step 4 Pellets and sintering: the leaching slag obtained in step two enters the pelleting and sintering process to produce iron concentrate; the iron content of the iron concentrate is 50-65%.
  • Step 5 Preparation of concentrated nitric acid: absorb the nitrogen oxides NO x produced in step 3 to prepare concentrated nitric acid, and prepare a nitric acid solution to return to step 2 as a leaching agent. NO and NO 2 are closer to the main sulphuric acid process. Realize the renewable utilization of nitric acid.
  • the NO x nitrogen oxide absorbent may be a normal pressure, the pressure may also be provided by way of the NOx absorption rate, the preparation of concentrated nitric acid, the nitric acid production process returns to step two for leaching agents, nitric acid may be recycled to achieve.
  • the scheme provided by the present invention for comprehensively treating laterite nickel ore using nitric acid medium adopts selective leaching, two-step calcination, pellet and sintering, and concentrated nitric acid preparation process to prepare nickel with higher purity
  • the dry-based oxides of valuable metals such as cobalt and manganese can realize the renewable utilization of nitric acid and provide an innovative idea for the treatment of laterite nickel ore.
  • the method for comprehensively treating laterite nickel ore provided by the present invention using nitric acid medium has the following advantages:
  • the method of the present invention for comprehensively treating laterite nickel ore using nitric acid medium realizes simple and effective separation of valuable metals, which not only facilitates iron enrichment, but also reduces the loss of nickel and cobalt during subsequent impurity removal.
  • the sintering process obtains an iron concentrate with an iron content of more than 60% and no sulfur, which can be directly sold as an iron-making raw material.
  • the present invention can effectively separate nickel, cobalt and manganese from metals such as aluminum, magnesium, and iron through a multi-step calcination process, and the preparation of high-purity nickel, cobalt and manganese oxides can be directly used to prepare ternary materials.
  • the present invention is suitable for laterite nickel ore containing complex components such as nickel, cobalt and manganese, and efficiently prepares dry-based valuable metal oxides of nickel, cobalt and manganese, and fully recovers and utilizes multiple valuable metal elements in mineral resources.
  • the method does not use a neutralizer in the whole process, which avoids the introduction of impurities of the neutralizer and reduces the production cost.
  • the present invention can realize the renewable utilization of nitric acid, reduces the pressure on the environment, and is of great significance for the comprehensive utilization of laterite nickel ore.
  • a method for comprehensively treating laterite nickel ore with nitric acid medium includes: crushing and finely grinding the raw laterite nickel ore containing 1.2% nickel and 45% iron, so that the particle size of the ore powder is less than 74 ⁇ m.
  • the ore accounts for 100% of the total weight of the ore after crushing/fine grinding.
  • the nitrogen oxides NO x (mainly NO and NO 2 ) produced during the calcination process enter the concentrated nitric acid preparation process, and the produced nitric acid can continue to be used for selective leaching to realize the renewable utilization of nitric acid.
  • a method for comprehensively treating laterite nickel ore using nitric acid medium includes: crushing and finely grinding the laterite nickel ore with 1.2% nickel and 45% iron, so that the particle size of the ore powder is less than 74 ⁇ m The ore accounts for 100% of the total weight of the ore after crushing/fine grinding. Take an appropriate amount of mineral powder, add nitric acid with an initial concentration of 180g/L into the mixture, at a leaching temperature of 160°C, leaching time 1.5h, liquid-solid ratio 1:1g/mL, and stirring speed at 300rpm.
  • selective leaching is performed, and then the leaching residue is subjected to a pelletizing and sintering process to obtain an iron concentrate with an iron content of 50%; the leaching solution is subjected to a one-step calcination process to obtain a mixed dry-based oxide of nickel, cobalt and manganese at 500°C.
  • the nitrogen oxides NO x (mainly NO and NO 2 ) produced during the calcination process enter the concentrated nitric acid preparation process, and the produced nitric acid can continue to be used for selective leaching to realize the renewable utilization of nitric acid.
  • a method for comprehensively treating laterite nickel ore using nitric acid medium includes: crushing and finely grinding the laterite nickel ore with 1.2% nickel and 45% iron, so that the particle size of the ore powder is less than 74 ⁇ m The ore accounts for 100% of the total weight of the ore after crushing/fine grinding.
  • nitric acid with an initial concentration of 250g/L to the mixture, at a leaching temperature of 220°C, leaching time 2h, liquid-solid ratio 1:5g/mL, and stirring speed at 150rpm Selective leaching, and then pelletizing and sintering the leaching residue to obtain an iron concentrate with an iron content of 62%; the leaching solution is subjected to a two-step calcination process to obtain a mixed dry-based oxide of nickel, cobalt and manganese at 230°C, and then The temperature is raised to 500°C to obtain a mixed dry-based oxide of aluminum-magnesium-manganese.
  • the nitrogen oxides NO x (mainly NO and NO 2 ) produced during the calcination process enter the concentrated nitric acid preparation process, and the produced nitric acid can continue to be used for selective leaching to realize the renewable utilization of nitric acid.
  • a method for comprehensively treating laterite nickel ore with nitric acid medium includes: crushing and finely grinding the raw laterite nickel ore containing 1.2% nickel and 45% iron, so that the particle size of the ore powder is less than 74 ⁇ m.
  • the ore accounts for 100% of the total weight of the ore after crushing/fine grinding.
  • a method for comprehensively treating laterite nickel ore using nitric acid medium includes: crushing and finely grinding the laterite nickel ore with 1.2% nickel and 45% iron, so that the particle size of the ore powder is less than 74 ⁇ m The ore accounts for 100% of the total weight of the ore after crushing/fine grinding. Take an appropriate amount of mineral powder, add nitric acid with an initial concentration of 200g/L to the mixture, at a leaching temperature of 170°C, leaching time 0.5h, liquid-solid ratio 1:2g/mL, and stirring speed at 500rpm.
  • the leaching residue is pelletized and sintered to obtain an iron concentrate with an iron content of 65%; the leaching solution is subjected to a two-step calcination process to obtain a mixed dry-based oxide of nickel, cobalt and manganese at 330°C. Then the temperature is raised to 500°C to obtain a mixed dry-based oxide of aluminum, magnesium and manganese.
  • the nitrogen oxides NO x (mainly NO and NO 2 ) produced during the calcination process enter the concentrated nitric acid preparation process, and the produced nitric acid can continue to be used for selective leaching to realize the renewable utilization of nitric acid.
  • the embodiment of the present invention can use nitric acid as the leaching agent under mild conditions without external pressure.
  • the leaching rate of nickel, cobalt and manganese can reach more than 90%, and the recovery rate of iron can reach more than 95%;
  • this patent directly prepares purer nickel-cobalt-manganese dry-based valuable metal oxides and iron concentrates with an iron grade of 50-65% through calcination and decomposition.
  • the technology does not require any neutralizing agent, which not only shortens the process flow, but also reduces the cost and avoids the entrainment loss of nitrate. Therefore, the present invention comprehensively and efficiently completes the laterite nickel ore The extraction and separation of valuable metals is of great significance to the comprehensive utilization of laterite nickel ore.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Metallurgy (AREA)
  • Mechanical Engineering (AREA)
  • Materials Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Environmental & Geological Engineering (AREA)
  • Geology (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Manufacture And Refinement Of Metals (AREA)

Abstract

一种利用硝酸介质综合处理红土镍矿的方法包括:对红土镍矿的原矿矿石进行破碎与细磨,从而得到矿粉;再将硝酸溶液作为浸出剂加入所述矿粉中,进行选择性浸出,液固分离得到浸出渣和浸出液;再将得到的浸出液加入煅烧炉进行煅烧分解,得到混合干基金属氧化物,在煅烧过程中产出氮氧化物气体NO x;再将得到的浸出渣进入球团与烧结工序,生产铁精矿;对氮氧化物NO x进行吸收,制备浓硝酸,并配制硝酸溶液返回作浸出剂。该方法能实现铁与镍钴的有效分离,以及降低镍钴产物中铝镁等金属的含量,降低中和剂的使用,实现硝酸的可再生利用,大大提升红土镍矿的综合利用效率和经济价值。

Description

一种利用硝酸介质综合处理红土镍矿的方法
本申请要求于2019年10月31日提交的中国专利申请201911057468.3的优先权,该专利申请的全部内容通过引用结合在本申请中。
技术领域
本发明涉及有色金属冶金技术与矿产资源综合利用技术领域,尤其是涉及获得有价金属高效分离的一种利用硝酸介质综合处理红土镍矿的方法
发明背景
镍的矿物资源主要有硫化镍矿和氧化镍矿(又称红土镍矿)。前些年世界镍工业生产的镍,主要来自硫化镍矿资源,而当前统计数据显示:硫化镍矿占比超过70%,产出约50%的镍。随着市场对镍、钴需求的不断增加以及硫化镍矿资源的日趋枯竭,储量丰富的红土镍矿引起了人们的重视,高效经济的处理红土镍矿具有重要意义。
目前湿法冶金法处理红土镍矿主要有还原焙烧—氨浸法、高压酸浸法、常压酸浸法等。还原焙烧—氨浸法通过还原焙烧使矿物中的硅酸镍和氧化镍最大限度地还原成金属,同时控制还原条件,使铁还原成四氧化三铁。焙烧后的镍、钴采用氨性溶液浸出,浸出渣中的铁通过磁选进行回收。虽然该工艺采用常压浸出,降低了设备成本及管理成本,但存在还原气氛不易控制,镍浸出率波动较大,钴浸出率低,氨易挥发、铁磁选富集率低等不足。高压酸浸法适于处理红土镍矿,其最大的优点是镍、钴浸出率可达到90%以上。但浸出方法条件较苛刻、红土矿资源利用率较低。常压酸浸法由于其设备投资小、反应条件温和、技术风险小、矿种普适性更强,已成为具有吸引力的红土镍矿冶炼方法之一。但常压酸浸过程酸耗大,浸出液中Fe、Ni分离困难。
目前加压酸浸工艺是在高温和高压下,用硫酸作浸出剂,控制浸出条件,使大部分铁、铝、硅等水解进入渣中,镍、钴则进入溶液,实现选择性浸出,然后将浸出液进行中和除杂(Fe、Al)后得到高品质的镍、钴溶液。该工艺的最大优点是浸出选择性好,镍、钴浸出率高,但存在工艺技术复杂,设备要求高、投资大,操作成本高,加压釜结疤严重,浸出渣因铁低硫高无法实现综合利用等弊端。
鉴于上述红土镍矿的常规湿法冶金工艺存在不足,近年来人们一直在研究适用于红土镍矿的更具竞争优势的新技术。
专利CN200910180397公开了一种处理红土镍矿的碱-酸双循环工艺,其技术方案是通过碱熔反应促使红土镍矿中的铝,铬等有价金属浸出,后续通过酸浸加压工艺浸出镍钴。该方法能够实现有毒物质的综合利用,从而大大的降低了成本,减少对环境的污染,但对于铬含量低的红土镍矿该工艺成本大大提高,同时多次过滤,滤饼存在一定的夹带现象,造成有价金属的损失。
专利CN201110327198公开了一种红土镍矿处理方法,提出了以红土镍矿为原料,采用原矿熟化—选择性常压浸出—磁化焙烧—磁选的新工艺回收利用其中的有价元素铁、镍和钴。该工艺采用硫酸进行选择性浸出,由于红土镍矿中还有一定的钙镁,因此时间久了会造成严重的结疤现象。
专利CN1676634公开了一种镍钴氧化矿加压氧化浸出法,该法不直接采用硫酸作浸出剂,而是向高压釜内加入硫磺粉浆或硫化矿精矿浆,与通入的氧反应生成浸出所需的硫酸,从而将矿中镍钴浸出。该专利虽然避免了传统方法中的硫酸添加不足的问题,但反应温度与压力仍较高,对于工业设备和条件要求较为严苛,实施难度较大。
专利CN103757261公开了一种红土镍矿盐酸常压浸出—酸浸液中蛇纹石型红土镍矿选择性浸出—水解耦合反应—含Fe、Si氧化物分离、纯化制备铁精粉及建材用SiO2的红土镍矿清洁生产方法,该方法虽然可解决红土镍矿传统常压浸出液难以处理、酸耗大的问题,但镍钴中铝镁等金属杂质含量高,仍需后续的分离提纯。
本专利主要发明人曾在专利CN200810115191.0和CN201810816384.2公开过采用硝酸介质浸出红土镍矿的方法,但对于浸出液的处理均采用加入碱性物质(如:氧化钙、碳酸钙、氧化镁)对硝酸浸出液进行中和,得到金属氢氧化物。上述两个技术虽然能够避免传统工艺的弊端,但中和沉淀过程产生的渣夹带有价金属镍、钴严重及液固分离始终是难解决的问题。
综上可见,上述现有技术中对红土镍矿提炼工艺进行的改进仍存在生产成本高、工艺条件苛刻、杂质夹杂严重,分离提纯困难等弊端,而且使用硫酸作为浸出剂会出现严重的结疤现象。
发明内容
本发明的目的是提供一种利用硝酸介质综合处理红土镍矿的方法,该方法能实现铁与镍钴的有效分离,以及降低镍钴产物中铝镁等金属的含量,降低中和剂的使用,实现硝酸的可再生利用,大大提升红土镍矿的综合利用效率和经济价值。
本发明的目的是通过以下技术方案实现的:
一种利用硝酸介质综合处理红土镍矿的方法,包括:
步骤一、破碎与细磨:对红土镍矿的原矿矿石进行破碎与细磨,从而得到矿粉;
步骤二、选择性浸出:将硝酸溶液作为浸出剂加入所述矿粉中,进行选择性浸出,液固分离得到浸出渣和浸出液;
步骤三、一步或多步煅烧:将步骤二中得到的浸出液加入煅烧炉进行煅烧分解,得到混合干基金属氧化物,在煅烧过程中产出氮氧化物气体NO x
步骤四、球团与烧结:步骤二中得到的浸出渣进入球团与烧结工序,生产铁精矿;
步骤五、浓硝酸制备:对步骤三中产生的氮氧化物NO x进行吸收,制备浓硝酸,并配制硝酸溶液返回步骤二作浸出剂。
所述的步骤一中的矿粉的粒度小于74μm。
所述的红土镍矿原矿矿石中包含以下元素,其质量含量为:Fe为38~48%;Ni为0.6~2.0%。
所述的红土镍矿原矿矿石中还包含以下元素,其质量含量为:Co为0.05~0.20%、Al为1~5%,Mn为0.05~0.30%。
所述的步骤二的硝酸溶液浓度为150~300g/L;且矿粉与硝酸溶液的固液比为1:1~1:5g/mL;
选择性浸出的控制反应条件:浸出温度为160~220℃,浸出时间为0.5~2h,搅拌转速为150~600rpm。
所述的步骤三包括一步煅烧或多步煅烧:
一步煅烧,控制煅烧炉的温度为500~550℃;产出含镍钴锰及铝镁铁的干基混合氧化物;
两步煅烧,首先,控制煅烧炉的温度为230~330℃,产出镍钴锰的干基氧化物,含有少量铁镁铝杂质;再控制煅烧炉的温度升温至500~550℃,产出铝镁锰的干基氧化物。
多步煅烧,首先,控制煅烧炉的温度为180~210℃,产出铁干基氧化物,混有极少量钴和锰,将所有铁分离;再控制煅烧炉的温度升温至260~290℃,产出纯净镍钴锰的干基氧化物;继续升温,控制煅烧炉温度为500~550℃,产出铝镁锰的干基氧化物,含有极少量镍和钴。
所述的浸出液通过喷雾的方式加入煅烧炉。
所述的步骤四球团与烧结处理后得到铁含量为50~65%的铁精矿。
由上述本发明提供的技术方案可以看出,本发明实施例提供的一种利用硝酸介质综合处理红土镍矿的方法,流程短,易操作,能够很好地实现镍钴锰与铁铝镁的高效净化分离,提高整体的有价金属回收率。该方法全流程不使用中和剂,避免了中和剂的杂质引入同时降低生产成本。该方法能够实现硝酸的可再生利用,降低环境压力,而且相对于硫酸盐、氯化物,硝酸盐更易分解,分解产生的NO 2和NO更接近主要的制酸工艺。采用硝酸作为浸出剂很好的解决了工业中设备结疤严重的问题。
附图简要说明
为了更清楚地说明本发明实施例的技术方案,下面将对实施例描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本发明的一些实施例,对于本领域的普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他附图。
图1为本发明实施例提供的利用硝酸介质综合处理红土镍矿的方法的流程示意图。
实施本发明的方式
下面结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例。基于本发明的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本发明的保护范围。
下面将结合附图对本发明实施例作进一步地详细描述。
实施例一
如图1所示,一种利用硝酸介质综合处理红土镍矿的方法,包括:
步骤一、破碎与细磨:对红土镍矿的原矿矿石进行破碎与细磨,从而得到矿粉;
本步骤中矿粉的粒度小于74μm。具体的矿石在细磨后进行过筛,要求100%的矿粉粒度小于74μm。在非最佳的情况下,可以控制矿粉中粒度小于74μm的矿粉占矿粉总重量的70%以上,即可以满足本专利的要求。
同时,本例中,所述的所述红土镍矿原矿矿石中一般对Fe和Ni的含量有要求,通常所述的所述红土镍矿原矿矿石中包含以下元素,其质量含量为:Fe为38~48%;Ni为0.6~2.0%。
一般情况下,所述的所述红土镍矿原矿矿石中还包含以下元素,其质量含量为: Co为0.05~0.20%、Al为1~5%,Mn为0.05~0.30%。
当然,矿石中还有其它的杂质,与杂质合计100%。这里的杂质为O、H及少量的Mg、Si等元素。
步骤二、选择性浸出:将硝酸溶液作为浸出剂加入所述矿粉中,进行选择性浸出,液固分离得到浸出渣和浸出液;
本步骤中的硝酸溶液浓度为150~300g/L;且矿粉与硝酸溶液的固液比为1:1~1:5g/mL;选择性浸出的控制反应条件:浸出温度为160~220℃,浸出时间为0.5~2h,搅拌转速为150~600rpm。选择性浸出完成后矿浆液固分离,得到浸出液和浸出渣。液固分离采用公知的技术不再赘述。采用硝酸作为浸出剂很好的解决了工业中设备结疤严重的问题。
步骤三、一步或多步煅烧:将步骤二中得到的浸出液加入煅烧炉进行煅烧分解,得到混合干基金属氧化物,在煅烧过程中产出氮氧化物气体NO x
将步骤二得到的浸出液加入煅烧炉中,利用硝酸盐加热易分解及分解温度的差异,采用一步或多步煅烧。所述的步骤三包括一步煅烧或多步煅烧:
一步煅烧,控制煅烧炉的温度为500~550℃;产出含镍钴锰及铝镁铁的干基混合氧化物;
两步煅烧,首先,控制煅烧炉的温度为230~330℃,产出镍钴锰的干基氧化物,含有少量铁镁铝杂质;再控制煅烧炉的温度升温至500~550℃,产出铝镁锰的干基氧化物。其中含镍钴锰的干基氧化物净化后可用于三元材料的制备。
多步煅烧,首先,控制煅烧炉的温度为180~210℃,产出铁干基氧化物,混有极少量钴和锰,将所有铁分离;再控制煅烧炉的温度升温至260~290℃,产出纯度高的镍钴锰干基氧化物,几乎不含杂质元素;继续升温,控制煅烧炉温度为500~550℃,产出铝镁锰的干基氧化物,含有极少量镍和钴。其中第二步得到纯度高的镍钴锰干基氧化物可直接用于三元材料的制备。
在煅烧过程中会产出氮氧化物气体NO x,NO x成分主要为NO和NO 2的混合物。
为提高分解速率,必要时所述的浸出液可以通过喷雾的方式加入煅烧炉。
步骤四、球团与烧结:步骤二中得到的浸出渣进入球团与烧结工序,生产铁精矿;铁精矿铁含量为50~65%。
步骤五、浓硝酸制备:对步骤三中产生的氮氧化物NO x进行吸收,制备浓硝酸,并配制硝酸溶液返回步骤二作浸出剂。NO和NO 2更接近主要的制酸工艺。实现硝酸的可 再生利用。
氮氧化物NO x进行吸收,吸收过程可常压,也可采用加压的方式提供NOx吸收率,制备浓硝酸,将生产的硝酸返回步骤二作浸出剂,实现硝酸的可再生利用。
由上述技术方案可以看出:本发明所提供的利用硝酸介质综合处理红土镍矿的方案,采用选择性浸出,两步煅烧,球团与烧结和浓硝酸制备工艺流程,制备纯度较高的镍钴锰等有价金属干基氧化物,实现硝酸可再生利用,为红土镍矿的处理提供了一种创新思路。
与现有技术中的红土镍矿提炼工艺相比,本发明所提供的利用硝酸介质综合处理红土镍矿的方法具有以下优势:
(1)本发明利用硝酸介质综合处理红土镍矿的方法,实现了有价金属的简单有效分离,这不仅有利于铁富集,也减少了后续除杂时镍钴的损失,通过球团/烧结工艺获得铁含量超过60%且不含硫的铁精矿,可以作为炼铁原料直接出售。
(2)本发明通过多步煅烧工艺可以有效地将镍钴锰与铝镁铁等金属分离,制备纯度高的镍钴锰氧化物可直接用于制备三元材料。
(3)本发明适用于含有镍钴锰等复杂成分的红土镍矿,高效的制备镍钴锰的干基有价金属氧化物,充分的回收和利用矿产资源中的多种有价金属元素。
(4)该方法全流程不使用中和剂,避免了中和剂的杂质引入同时降低生产成本。
(5)本发明可以实现硝酸的可再生利用,降低了对环境的压力,对于红土镍矿的综合利用具有重要意义。
为了更加清晰地展现出本发明所提供的技术方案及所产生的技术效果,下面以具体实施例对本发明所提供的硝酸选择性浸出处理红土镍矿进行详细描述。
实施例二
如图1所示,一种利用硝酸介质综合处理红土镍矿的方法,包括:将含镍1.2%,铁45%的红土镍矿原矿矿石进行破碎与细磨,使矿粉中粒度小于74μm的矿石占所述破碎/细磨后矿石总重量的100%。取适量的矿粉,将初始浓度为150g/L的硝酸加入所述的混合料中,在浸出温度为180℃,浸出时间1h,液固比为1:3g/mL,搅拌转速为200rpm条件下,进行选择性浸出,然后将浸出渣进行球团与烧结工艺,得到含铁量60%的铁精矿;浸出液进行多步煅烧工艺,在210℃得到铁干基氧化物,然后升温285℃下得到纯净的镍钴锰混合干基氧化物,然后升温至500℃,得到铝镁锰混合干基氧化物。煅烧过 程中产生的氮氧化物NO x(主要为NO和NO 2)进入浓硝酸制备工序,生产的硝酸可继续用于选择性浸出,实现硝酸的可再生利用。
实施例三
如图1所示,一种利用硝酸介质综合处理红土镍矿的方法,包括:将含镍1.2%,铁45%的红土镍矿原矿矿石进行破碎与细磨,使矿粉中粒度小于74μm的矿石占所述破碎/细磨后矿石总重量的100%。取适量的矿粉,将初始浓度为180g/L的硝酸加入所述的混合料中,在浸出温度为160℃,浸出时间1.5h,液固比为1:1g/mL,搅拌转速为300rpm条件下,进行选择性浸出,然后将浸出渣进行球团与烧结工艺,得到含铁量50%的铁精矿;浸出液进行一步煅烧工艺,在500℃下得到镍钴锰混合干基氧化物。煅烧过程中产生的氮氧化物NO x(主要为NO和NO 2)进入浓硝酸制备工序,生产的硝酸可继续用于选择性浸出,实现硝酸的可再生利用。
实施例四
如图1所示,一种利用硝酸介质综合处理红土镍矿的方法,包括:将含镍1.2%,铁45%的红土镍矿原矿矿石进行破碎与细磨,使矿粉中粒度小于74μm的矿石占所述破碎/细磨后矿石总重量的100%。取适量的矿粉,将初始浓度为250g/L的硝酸加入所述的混合料中,在浸出温度为220℃,浸出时间2h,液固比为1:5g/mL,搅拌转速为150rpm条件下,进行选择性浸出,然后将浸出渣进行球团与烧结工艺,得到含铁量62%的铁精矿;浸出液进行两步煅烧工艺,在230℃下得到镍钴锰混合干基氧化物,然后升温至500℃,得到铝镁锰混合干基氧化物。煅烧过程中产生的氮氧化物NO x(主要为NO和NO 2)进入浓硝酸制备工序,生产的硝酸可继续用于选择性浸出,实现硝酸的可再生利用。
实施例五
如图1所示,一种利用硝酸介质综合处理红土镍矿的方法,包括:将含镍1.2%,铁45%的红土镍矿原矿矿石进行破碎与细磨,使矿粉中粒度小于74μm的矿石占所述破碎/细磨后矿石总重量的100%。取适量的矿粉,将初始浓度为300g/L的硝酸加入所述的混合料中,在浸出温度为190℃,浸出时间1h,液固比为1:4g/mL,搅拌转速为600rpm条件下,进行选择性浸出,然后将浸出渣进行球团与烧结工艺,得到含铁量57%的铁精矿;浸出液进行一步煅烧工艺,在550℃下得到镍钴锰混合干基氧化物。煅烧过程中产生的氮氧化物NO x(主要为NO和NO 2)进入浓硝酸制备工序,生产的硝酸可继续用于选择性 浸出,实现硝酸的可再生利用。
实施例六
如图1所示,一种利用硝酸介质综合处理红土镍矿的方法,包括:将含镍1.2%,铁45%的红土镍矿原矿矿石进行破碎与细磨,使矿粉中粒度小于74μm的矿石占所述破碎/细磨后矿石总重量的100%。取适量的矿粉,将初始浓度为200g/L的硝酸加入所述的混合料中,在浸出温度为170℃,浸出时间0.5h,液固比为1:2g/mL,搅拌转速为500rpm条件下,进行选择性浸出,然后将浸出渣进行球团与烧结工艺,得到含铁量65%的铁精矿;浸出液进行两步煅烧工艺,在330℃下得到镍钴锰混合干基氧化物,然后升温至500℃,得到铝镁锰混合干基氧化物。煅烧过程中产生的氮氧化物NO x(主要为NO和NO 2)进入浓硝酸制备工序,生产的硝酸可继续用于选择性浸出,实现硝酸的可再生利用。
综上,本发明实施例可在无需外部加压的温和条件下,使用硝酸作为浸出剂,镍钴锰浸出率均可达到90%以上,铁的回收率可达95%以上;与本专利主要发明人先前申请的专利CN200810115191.0和CN201810816384.2相比,本专利通过煅烧分解直接制备出较纯的镍钴锰干基有价金属氧化物和铁品位50~65%的铁精矿,实现了硝酸的可再生利用;此外,本技术不需要任何中和剂,既缩短了工艺流程,又减少了成本和避免了硝酸根的夹带损失,因此本发明综合高效的完成了红土镍矿中有价金属的提取和分离,对于红土镍矿的综合利用具有重要意义。
以上所述,仅为本发明较佳的具体实施方式,但本发明的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本发明披露的技术范围内,可轻易想到的变化或替换,都应涵盖在本发明的保护范围之内。因此,本发明的保护范围应该以权利要求书的保护范围为准。

Claims (9)

  1. 一种利用硝酸介质综合处理红土镍矿的方法,其特征在于,包括:
    步骤一、破碎与细磨:对红土镍矿的原矿矿石进行破碎与细磨,从而得到矿粉;
    步骤二、选择性浸出:将硝酸溶液作为浸出剂加入所述矿粉中,进行选择性浸出,液固分离得到浸出渣和浸出液;
    步骤三、一步或多步煅烧:将步骤二中得到的浸出液加入煅烧炉进行煅烧分解,得到混合干基金属氧化物,在煅烧过程中产出氮氧化物气体NO x
    步骤四、球团与烧结:步骤二中得到的浸出渣进入球团与烧结工序,生产铁精矿;
    步骤五、浓硝酸制备:对步骤三中产生的氮氧化物NO x进行吸收,制备浓硝酸,并配制硝酸溶液返回步骤二作浸出剂。
  2. 根据权利要求1所述的利用硝酸介质综合处理红土镍矿的方法,其特征在于,所述的步骤一中矿粉粒度小于74μm。
  3. 根据权利要求1所述的利用硝酸介质综合处理红土镍矿的方法,其特征在于,所述的红土镍矿原矿矿石中包含以下元素,其质量含量为:Fe为38~48%;Ni为0.6~2.0%。
  4. 根据权利要求3所述的利用硝酸介质综合处理红土镍矿的方法,其特征在于,所述的红土镍矿原矿矿石中还包含以下元素,其质量含量为:Co为0.05~0.20%、Al为1~5%,Mn为0.05~0.30%。
  5. 根据权利要求1、2、3或4所述的利用硝酸介质综合处理红土镍矿的方法,其特征在于,所述的步骤二的硝酸溶液浓度为150~300g/L;且矿粉与硝酸溶液的固液比为1:1~1:5g/mL;
    选择性浸出的控制反应条件:浸出温度为160~220℃,浸出时间为0.5~2h,搅拌转速为150~600rpm。
  6. 根据权利要求1、2、3或4所述的利用硝酸介质综合处理红土镍矿的方法,其特征在于,所述的步骤三包括一步煅烧或多步煅烧:
    一步煅烧,控制煅烧炉的温度为500~550℃;产出含镍钴锰及铝镁铁的干基混合氧化物;
    两步煅烧,首先,控制煅烧炉的温度为230~330℃,产出镍钴锰的干基氧化物,含有少量铁镁铝杂质;再控制煅烧炉的温度升温至500~550℃,产出铝镁锰的干基氧化物。
    多步煅烧,首先,控制煅烧炉的温度为180~210℃,产出铁干基氧化物,混有极少 量钴和锰,将所有铁分离;再控制煅烧炉的温度升温至260~290℃,产出纯净镍钴锰的干基氧化物;继续升温,控制煅烧炉温度为500~550℃,产出铝镁锰的干基氧化物,含有极少量镍和钴。
  7. 根据权利要求6所述的利用硝酸介质综合处理红土镍矿的方法,其特征在于,所述的含镍钴锰的干基氧化物净化后用于三元材料的制备;所述的纯净镍钴锰的干基氧化物用于三元材料的制备。
  8. 根据权利要求6所述的利用硝酸介质综合处理红土镍矿的方法,其特征在于,所述的浸出液通过喷雾的方式加入煅烧炉。
  9. 根据权利要求1、2、3或4所述的利用硝酸介质综合处理红土镍矿的方法,其特征在于,所述的步骤四球团与烧结处理后得到铁含量为50~65%的铁精矿。
PCT/CN2019/129147 2019-10-31 2019-12-27 一种利用硝酸介质综合处理红土镍矿的方法 WO2021082258A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201911057468.3 2019-10-31
CN201911057468.3A CN110629022A (zh) 2019-10-31 2019-10-31 一种利用硝酸介质综合处理红土镍矿的方法

Publications (1)

Publication Number Publication Date
WO2021082258A1 true WO2021082258A1 (zh) 2021-05-06

Family

ID=68978711

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/129147 WO2021082258A1 (zh) 2019-10-31 2019-12-27 一种利用硝酸介质综合处理红土镍矿的方法

Country Status (2)

Country Link
CN (1) CN110629022A (zh)
WO (1) WO2021082258A1 (zh)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112095003B (zh) * 2020-08-17 2022-04-08 四川顺应动力电池材料有限公司 一种从红土镍矿中回收多种有价金属及酸碱双介质再生循环的方法
CN112143887A (zh) * 2020-09-15 2020-12-29 眉山顺应动力电池材料有限公司 一种用硝酸低成本回收红土镍矿中有价金属元素的方法
CN112280976B (zh) * 2020-10-11 2023-03-17 四川顺应动力电池材料有限公司 一种从红土镍矿中回收有价金属及酸再生循环的方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102534206A (zh) * 2012-02-23 2012-07-04 北京矿冶研究总院 一种褐铁型红土镍矿的浸出方法
CN107312930A (zh) * 2017-07-07 2017-11-03 金川集团股份有限公司 一种低镍锍硝酸浸出液热解除铁的方法
US20180312940A1 (en) * 2014-12-22 2018-11-01 Scandium International Mining Corp. Method for recovering scandium values from leach solutions
CN108998662A (zh) * 2018-07-24 2018-12-14 北京科技大学 一种从褐铁型红土镍矿中高效回收铁、钪、铝的方法
CN109052492A (zh) * 2018-07-24 2018-12-21 北京科技大学 一种由红土镍矿硝酸浸出液制备三元正极材料的方法
CN109721038A (zh) * 2019-02-19 2019-05-07 眉山顺应动力电池材料有限公司 一种硝酸盐热解回收硝酸方法及装置系统

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AT508774B1 (de) * 2010-04-20 2011-04-15 Key Technologies Ind Gmbh Verfahren zur gewinnung bzw. rückgewinnung von salpetersäure und flusssäure aus lösungen von edelstahlbeizanlagen

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102534206A (zh) * 2012-02-23 2012-07-04 北京矿冶研究总院 一种褐铁型红土镍矿的浸出方法
US20180312940A1 (en) * 2014-12-22 2018-11-01 Scandium International Mining Corp. Method for recovering scandium values from leach solutions
CN107312930A (zh) * 2017-07-07 2017-11-03 金川集团股份有限公司 一种低镍锍硝酸浸出液热解除铁的方法
CN108998662A (zh) * 2018-07-24 2018-12-14 北京科技大学 一种从褐铁型红土镍矿中高效回收铁、钪、铝的方法
CN109052492A (zh) * 2018-07-24 2018-12-21 北京科技大学 一种由红土镍矿硝酸浸出液制备三元正极材料的方法
CN109721038A (zh) * 2019-02-19 2019-05-07 眉山顺应动力电池材料有限公司 一种硝酸盐热解回收硝酸方法及装置系统

Also Published As

Publication number Publication date
CN110629022A (zh) 2019-12-31

Similar Documents

Publication Publication Date Title
CN108998662B (zh) 一种从褐铁型红土镍矿中高效回收铁、钪、铝的方法
CN105420519B (zh) 一种从含钒或/和铬物料中提取钒铬的方法
AU2020463690B2 (en) Method for recycling multiple valuable metals from lateritic nickel ore and regeneration cycle of acid-alkaline double medium
WO2021082258A1 (zh) 一种利用硝酸介质综合处理红土镍矿的方法
CN102560100B (zh) 一种利用铜钴铁合金制备高纯超细钴粉的工艺方法
CN109110826B (zh) 一种电池级硫酸镍的生产方法
CN112322909B (zh) 一种用硫酸浸出法提取红土镍矿有价金属元素及酸碱再生循环的方法
CN101514401B (zh) 一种从低品位红土镍矿高效富集镍钴的方法
CN105293564A (zh) 一种钢铁厂含锌烟尘灰循环利用的方法
WO2017185946A1 (zh) 一种处理低品位红土镍矿的方法及其选矿方法
CN103290223B (zh) 一种废催化剂多金属综合回收的方法
CN107090551B (zh) 一种钒钛磁铁矿的直接提钒的方法
WO2012171481A1 (zh) 全面综合回收和基本无三废、零排放的湿法冶金方法
CN104232941B (zh) 一种从高铼钼精矿中综合回收钼和铼的方法
CN102199710A (zh) 从含有镍和钼的石煤矿中提取与分离镍和钼的方法
CN104263909B (zh) 从氧化镍矿中焙烧水浸回收镍钴铁的工艺
CN110735032B (zh) 一种钒钛铁共生矿处理工艺
Ju et al. An approach towards utilization of water-quenched blast furnace slag for recovery of titanium, magnesium, and aluminum
CN106591579B (zh) 一种从红土镍矿中选择性提取镍、钴和铁的方法
CN114959261A (zh) 全湿法流程从多金属合金中回收钨、钼、镍、钴的方法
CN101693554A (zh) 石煤矿提取五氧化二钒的方法
CN102912124B (zh) 盐酸浸出氧化镍矿回收镍钴锰铁的方法
CN113699368B (zh) 利用柠檬酸进行氧化型矿物的低温多金属提取的方法
CN110980753B (zh) 一种采用高硅铁矿生产优质硅酸钠的工艺
CN110950348B (zh) 一种高硅铁矿石生产超纯纳米白炭黑的工艺

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19950751

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19950751

Country of ref document: EP

Kind code of ref document: A1