WO2021081930A1 - 可移动平台 - Google Patents

可移动平台 Download PDF

Info

Publication number
WO2021081930A1
WO2021081930A1 PCT/CN2019/114837 CN2019114837W WO2021081930A1 WO 2021081930 A1 WO2021081930 A1 WO 2021081930A1 CN 2019114837 W CN2019114837 W CN 2019114837W WO 2021081930 A1 WO2021081930 A1 WO 2021081930A1
Authority
WO
WIPO (PCT)
Prior art keywords
movable platform
distance sensor
receiving antenna
data
platform according
Prior art date
Application number
PCT/CN2019/114837
Other languages
English (en)
French (fr)
Inventor
王俊喜
王春明
唐照成
Original Assignee
深圳市大疆创新科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳市大疆创新科技有限公司 filed Critical 深圳市大疆创新科技有限公司
Priority to PCT/CN2019/114837 priority Critical patent/WO2021081930A1/zh
Priority to CN201980030611.1A priority patent/CN112105949A/zh
Publication of WO2021081930A1 publication Critical patent/WO2021081930A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S13/00Systems using the reflection or reradiation of radio waves, e.g. radar systems; Analogous systems using reflection or reradiation of waves whose nature or wavelength is irrelevant or unspecified
    • G01S13/88Radar or analogous systems specially adapted for specific applications
    • G01S13/93Radar or analogous systems specially adapted for specific applications for anti-collision purposes
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S13/00Systems using the reflection or reradiation of radio waves, e.g. radar systems; Analogous systems using reflection or reradiation of waves whose nature or wavelength is irrelevant or unspecified
    • G01S13/02Systems using reflection of radio waves, e.g. primary radar systems; Analogous systems
    • G01S13/06Systems determining position data of a target
    • G01S13/08Systems for measuring distance only
    • G01S13/32Systems for measuring distance only using transmission of continuous waves, whether amplitude-, frequency-, or phase-modulated, or unmodulated

Definitions

  • the present invention generally relates to the field of detection technology, and more specifically to a movable platform.
  • the present invention has been proposed in order to solve the above-mentioned problems.
  • the present invention provides a movable platform, which solves the problem of the detection blind zone of the area above the movable platform by installing a sensor for detecting the area above the fuselage on the fuselage of the movable platform.
  • the movable platform proposed by the present invention will be briefly described below, and more details will be described in the specific implementation with reference to the accompanying drawings.
  • a movable platform includes: a body; a first distance sensor, and the first distance sensor is installed on the body and configured to The upper area of the body is detected; a status sensor is used to obtain status information of the movable platform; and a control module is communicatively connected with the status sensor and the first distance sensor; wherein the first distance sensor is The detected detection data is fused with the state information to output a detection result, and the control module controls the movement of the movable platform according to the detection result.
  • the first distance sensor is a radar sensor.
  • the first distance sensor is a microwave radar.
  • the first distance sensor is a frequency modulated continuous wave radar.
  • the first distance sensor includes a transmitting antenna and a receiving antenna
  • the polarization form of the transmitting antenna is a circular polarization form
  • the polarization form of the receiving antenna includes a horizontal polarization form and Vertically polarized form.
  • the receiving antenna includes a first receiving antenna, a second receiving antenna, a third receiving antenna, and a fourth receiving antenna, wherein the poles of the first receiving antenna and the fourth receiving antenna are
  • the polarization form is a horizontal polarization form
  • the polarization forms of the second receiving antenna and the third receiving antenna are vertical polarization forms.
  • the first distance sensor calculates the azimuth angle and/or pitch angle of the detected target relative to the movable platform based on the phase angle measurement.
  • the first distance sensor is based on a combination of four of the first receiving antenna, the second receiving antenna, the third receiving antenna, and the fourth receiving antenna.
  • the virtual phase center is used to implement the phase angle measurement.
  • the first distance sensor determines a first virtual phase center based on the first receiving antenna and the second receiving antenna, and based on the third receiving antenna and the fourth receiving antenna A second virtual phase center is determined, and an azimuth angle of the detected target relative to the movable platform is calculated based on the first virtual phase center and the second virtual phase center.
  • the first distance sensor determines a third virtual phase center based on the first receiving antenna and the fourth receiving antenna, and based on the second receiving antenna and the third receiving antenna A fourth virtual phase center is determined, and a pitch angle of the detected target relative to the movable platform is calculated based on the third virtual phase center and the fourth virtual phase center.
  • the first distance sensor is installed on the top of the fuselage.
  • control module is a flight control module, and the control module is configured to control the flight state of the movable platform based on the detection data of the first distance sensor.
  • the movable platform further includes a second distance sensor, the second distance sensor is installed at the bottom of the fuselage, and is used to detect areas other than the upper portion of the fuselage .
  • control module is further configured to control the flight state of the movable platform based on respective detection data of the first distance sensor and the second distance sensor.
  • control module is also used to transmit the state data of the movable platform to the first distance sensor, and the first distance sensor is also used to combine its own detection data with the first distance sensor.
  • the status data is fused to obtain first fused data, and the first fused data is transmitted to the control module.
  • the first distance sensor transmits the first fusion data to the control module via the second distance sensor.
  • control module is also used to transmit the state data of the movable platform to the second distance sensor, and the second distance sensor is also used to combine its own detection data with the second distance sensor.
  • the state data is fused to obtain second fused data
  • the second fused data and the first fused data are fused to obtain third fused data
  • the third fused data is transmitted to the control module.
  • the status data includes at least one of the following: takeoff data of the movable platform, global positioning system data, and inertial measurement unit data.
  • the first distance sensor is also used to issue an alarm when an obstacle is detected.
  • the first distance sensor is also used to calculate the distance of the detected target relative to the movable platform.
  • the movable platform is an unmanned aerial vehicle, an unmanned vehicle, or a ground remote control robot.
  • the movable platform according to the embodiment of the present invention is equipped with a sensor for detecting the area above the fuselage on its fuselage, which can solve the problem of the detection blind area of the area above the movable platform.
  • Fig. 1 shows a schematic block diagram of a movable platform according to an embodiment of the present invention.
  • Fig. 2 shows an exemplary top-view antenna array form of the first distance sensor of the movable platform according to an embodiment of the present invention.
  • Fig. 3 shows a schematic diagram of a virtual phase center composed of a receiving antenna of a first distance sensor of a movable platform according to an embodiment of the present invention.
  • Fig. 4 shows a schematic diagram of a phase angle measurement principle of a first distance sensor of a movable platform according to an embodiment of the present invention.
  • Fig. 5 shows a schematic block diagram of a movable platform according to another embodiment of the present invention.
  • Fig. 1 shows a schematic block diagram of a movable platform 100 according to an embodiment of the present invention.
  • the movable platform 100 includes a body 110, a first distance sensor 120, a status sensor 130 and a control module 140.
  • the first distance sensor 120 is installed on the fuselage 110 (such as the top of the fuselage 110), and is used to detect the upper area of the fuselage 110.
  • the status sensor 130 is used to obtain status information of the movable platform 100.
  • the control module 140 is in communication connection with the state sensor 130 and the first distance sensor 120.
  • the first distance sensor 120 fuses the detected detection data with the state information of the movable platform 100 acquired by the state sensor 130 and outputs the detection result.
  • the control module 140 controls the movement of the movable platform 100 according to the detection result.
  • the movable platform 100 can be prevented from moving. Accidents occur due to the detection blind zone in the upper area. For example, such a design is very beneficial for agricultural plant protection machines with very complex operating scenes.
  • the first distance sensor 120 may be a radar sensor. Compared with optical sensors that are susceptible to smoke, light, occlusion, etc., radar sensors with more smoke penetration capabilities can better meet various harsh operating environments, have stronger adaptability, and have a wider application range.
  • the first distance sensor 120 may be a microwave radar.
  • the directionality of microwaves is very good, and the speed is equal to the speed of light.
  • the use of microwave radar is more suitable for scenarios where the movable platform 100 quickly detects obstacles and quickly avoids obstacles during high-speed movement.
  • the first distance sensor 120 may be a Frequency Modulated Continuous Wave (FMCW) radar.
  • FM continuous wave radar Compared with single-frequency continuous wave radar, which can only measure speed but cannot measure distance, FM continuous wave radar can measure both distance and speed, and its advantages in short-range measurement are increasingly obvious.
  • FM continuous wave radar is receiving and sending at the same time, theoretically there is no blind spot in the range of pulse radar, and the average power of the transmitted signal is equal to the peak power, so only low-power devices are needed.
  • FM continuous wave radar has the advantages of easy implementation, relatively simple structure, small size, light weight and low cost. Therefore, the implementation of the first distance sensor 120 using the frequency modulated continuous wave radar also makes the movable platform 100 easier to implement, simpler in structure, smaller in size, lighter in weight and lower in cost.
  • the first distance sensor 120 may include a radio frequency front end and a signal processing module.
  • the radio frequency front end adopts one receiving and one transmitting
  • the signal processing module is responsible for generating the modulated signal, and processing and analyzing the intermediate frequency signal collected by the analog-to-digital converter (Analog to Digital Converter, ADC).
  • ADC Analog to Digital Converter
  • the RF front-end receives the modulation signal to generate a high-frequency signal whose frequency changes linearly with the modulation voltage, and radiates downward through the antenna.
  • the electromagnetic wave is reflected back when it encounters the ground or obstacles, and is received by the receiving antenna.
  • the transmitted signal is mixed with the intermediate frequency to obtain the intermediate frequency signal.
  • the speed and distance information can be obtained.
  • the first distance sensor 120 may include a transmitting antenna and a receiving antenna.
  • the polarization form of the transmitting antenna may be a circular polarization form
  • the polarization form of the receiving antenna may include a horizontal polarization form and a vertical polarization form.
  • the use of such a polarization form for the transmitting antenna and the receiving antenna can ensure that the first distance sensor 120 better covers the upper area, and at the same time can perform two-dimensional angle measurement.
  • the antenna array form of the first distance sensor 120 will be described below with reference to FIG. 2.
  • Fig. 2 shows an exemplary top-view antenna array form of the first distance sensor 120 of the movable platform 100 according to an embodiment of the present invention.
  • the first distance sensor 120 includes a transmitting antenna TX, and receiving antennas RX1, RX2, RX3, and RX4.
  • the polarization form of the transmitting antenna TX may adopt a circular polarization form
  • the polarization forms of the receiving antennas RX1 and RX4 may adopt a horizontal polarization form
  • the polarization forms of the receiving antennas RX2 and RX3 may adopt a vertical polarization form.
  • the antenna array form shown in FIG. 2 is only exemplary.
  • the first distance sensor 120 of the movable platform 100 may also adopt any other suitable antenna array form.
  • the first distance sensor 120 when it detects an obstacle in the upper area, it can perform distance calculation and angle calculation on the obstacle.
  • the distance settlement process can include: ADC data collection, data truncation and windowing, frequency domain fast Fourier transform (Fast Fourier Transform, FFT), constant false alarm rate (Constant False-Alarm Rate, CFAR) detection and distance Estimated solution.
  • FFT frequency domain fast Fourier transform
  • CFAR Constant False-Alarm Rate
  • the angle calculation of the obstacle may be based on the phase angle measurement to calculate the detected obstacle relative to the movable platform.
  • the first distance sensor 120 may implement the phase angle measurement based on a virtual phase center composed of receiving antennas included in the first distance sensor 120.
  • the receiving antenna of the first distance sensor 120 includes a first receiving antenna RX1, a second receiving antenna RX2, a third receiving antenna RX3, and a fourth receiving antenna RX4.
  • the polarization forms of the first receiving antenna RX1 and the fourth receiving antenna RX4 are horizontal polarization forms, and the polarization forms of the second receiving antenna RX2 and the third receiving antenna RX3 are vertical polarization forms.
  • the virtual phase center formed by the four of the first receiving antenna RX1, the second receiving antenna RX2, the third receiving antenna RX3, and the fourth receiving antenna RX4 can be as shown in FIG. 3.
  • the first distance sensor 120 determines the first virtual phase center RX_E1 based on the first receiving antenna RX1 and the second receiving antenna RX2, and determines the second virtual phase center RX_E2 based on the third receiving antenna RX3 and the fourth receiving antenna RX4. , And calculate the azimuth angle of the detected obstacle relative to the movable platform 100 based on the first virtual phase center RX_E1 and the second virtual phase center RX_E2.
  • the first distance sensor 120 determines the third virtual phase center RX_H2 based on the first receiving antenna RX1 and the fourth receiving antenna RX4, determines the fourth virtual phase center RX_H1 based on the second receiving antenna RX2 and the third receiving antenna RX3, and determines the fourth virtual phase center RX_H1 based on the first receiving antenna RX1 and the fourth receiving antenna RX4.
  • the three virtual phase center RX_H2 and the fourth virtual phase center RX_H1 are used to calculate the pitch angle of the detected obstacle relative to the movable platform 100.
  • the principle of the first distance sensor 120 to perform angle calculation based on the phase angle measurement may be as shown in FIG. 4.
  • is the wavelength of the signal received by the receiving antenna.
  • the azimuth angle ⁇ of the detected obstacle relative to the movable platform 100 can be solved, as shown in the following formula:
  • the pitch angle of the detected obstacle relative to the movable platform 100 can be calculated based on the distance between the third virtual phase center RX_H2 and the fourth virtual phase center RX_H1 through the above-mentioned principle.
  • the control module 140 may be a flight control module, which is used to control the flight state of the movable platform 100 based on the detection data of the first distance sensor 120.
  • the movable platform 100 may be a drone.
  • the movable platform 100 may also be an unmanned vehicle or a ground remote control robot.
  • the first distance sensor 120 may also be used to issue an alarm when an obstacle is detected, so as to further improve the safety of the movable platform 100.
  • the above exemplarily shows the movable platform 100 according to an embodiment of the present invention.
  • the movable platform 100 according to the embodiment of the present invention is installed on its fuselage for detecting the area above the fuselage.
  • the sensor can solve the problem of blind spot detection in the area above the movable platform.
  • FIG. 5 shows a schematic block diagram of a movable platform 500 according to another embodiment of the present invention.
  • the movable platform 500 includes a body 510, a first distance sensor 520, a status sensor 530, a control module 540, and a second distance sensor 550.
  • the first distance sensor 520 is installed on the body 510 (such as the top of the body 510), and is used to detect the upper area of the body 510.
  • the second distance sensor 550 is installed at the bottom of the fuselage 510 and is used to detect areas other than the top of the fuselage 510 (such as the front, rear, and bottom of the fuselage).
  • the status sensor 530 is used to obtain status information of the movable platform 500.
  • the control module 540 is in communication connection with the status sensor 530, the first distance sensor 520 and the second distance sensor 550.
  • the first distance sensor 520 and the second distance sensor 550 merge the detected detection data with the state information of the movable platform 500 acquired by the state sensor 530 and output the detection result.
  • the control module 540 controls the movement of the movable platform 500 according to the detection result. .
  • the first distance sensor 520 for detecting the upper area of the fuselage 510 is installed on the fuselage 510 of the movable platform 500, and the first distance sensor 520 is installed on the bottom of the fuselage 510 of the movable platform 500.
  • the second distance sensor 550 is installed to detect the area outside the upper part of the fuselage 510, so that the movable platform 100 can realize the omnidirectional perception of the surrounding environment, so as to ensure the safety of the movable platform 100 during the movement.
  • Such a design is very beneficial for agricultural plant protection machines with very complex operating scenarios.
  • the first distance sensor 520 may have a similar function and structure as the first distance sensor 120 described in connection with FIG. Understand the structure and function of the first distance sensor 520.
  • the number of the second distance sensor 550 may be multiple, for example, including forward obstacle avoidance radar, backward obstacle avoidance radar, and downward obstacle avoidance radar, so as to realize the detection of the distances other than those above the movable platform 500. Area to be tested.
  • the second distance sensor 550 may be a radar sensor. Compared with optical sensors that are susceptible to smoke, light, occlusion, etc., radar sensors with more smoke penetration capabilities can better meet various harsh operating environments, have stronger adaptability, and have a wider application range.
  • the second distance sensor 550 may be a microwave radar.
  • the directionality of microwaves is very good, and the speed is equal to the speed of light.
  • the use of microwave radar is more suitable for the scene where the mobile platform 500 quickly detects obstacles and quickly avoids obstacles during high-speed movement.
  • the second distance sensor 550 may be a Frequency Modulated Continuous Wave (FMCW) radar.
  • FMCW Frequency Modulated Continuous Wave
  • Single-frequency continuous wave radar which can only measure speed but cannot measure distance
  • FM continuous wave radar can measure both distance and speed, and its advantages in short-range measurement are increasingly obvious.
  • FM continuous wave radar is receiving and sending at the same time, theoretically there is no blind spot in the range of pulse radar, and the average power of the transmitted signal is equal to the peak power, so only low-power devices are needed.
  • FM continuous wave radar has the advantages of easy implementation, relatively simple structure, small size, light weight and low cost. Therefore, the implementation of the second distance sensor 550 using the frequency modulated continuous wave radar also makes the movable platform 500 easier to implement, simpler in structure, smaller in size, lighter in weight and lower in cost.
  • the second distance sensor 550 may include a radio frequency front end and a signal processing module.
  • the radio frequency front end adopts one receiving and one transmitting
  • the signal processing module is responsible for generating the modulated signal, and processing and analyzing the intermediate frequency signal collected by the analog to digital converter (Analog to Digital Converter, ADC).
  • ADC Analog to Digital Converter
  • the RF front-end receives the modulation signal to generate a high-frequency signal whose frequency changes linearly with the modulation voltage, and radiates downward through the antenna.
  • the electromagnetic wave is reflected back when it encounters the ground or obstacles, and is received by the receiving antenna.
  • the transmitted signal is mixed with the intermediate frequency to obtain the intermediate frequency signal.
  • the speed and distance information can be obtained.
  • the second distance sensor 550 may include a transmitting antenna and a receiving antenna.
  • the antenna array form of the second distance sensor 550 may be the same as or different from the first distance sensor 520. Those skilled in the art may Set according to specific needs.
  • the second distance sensor 550 may use the aforementioned phase angle measurement principle to calculate the azimuth and/or pitch angle of the detected obstacle relative to the movable platform 500, or any other The azimuth angle and/or pitch angle of the detected obstacle relative to the movable platform 500 are calculated in a suitable manner.
  • the control module 540 can also be used to transmit the status data of the movable platform 500 to the first distance sensor 520 and the second distance sensor 550.
  • the status data may include, but is not limited to, take-off data of the movable platform 500, global positioning system data, and inertial measurement unit data.
  • the first distance sensor 520 may also be used to fuse its own detection data with the state data to obtain first fusion data, and transmit the first fusion data to the control module 540.
  • the second distance sensor 550 may also be used to fuse its own detection data with the state data to obtain second fusion data, and transmit the second fusion data to the control module 540.
  • the control module 540 may control the movement of the movable platform 500 based on the first fusion data and the second fusion data.
  • the first distance sensor 520 may transmit the first fusion data to the second distance sensor 550, and transmit the first fusion data to the control module 540 via the second distance sensor 550.
  • the control module 540 only needs to include a communication interface with the second distance sensor 550, which further simplifies the structure of the movable platform 500.
  • the first distance sensor 520 can transmit the first fusion data to the second distance sensor 550, and the second distance sensor 550 can fuse its own detection data with the state data to obtain the second fusion data.
  • the second fusion data and the first fusion data are fused to obtain third fusion data, and the third fusion data is transmitted to the control module.
  • the control module 540 can directly control the movement of the movable platform 500 based on the data transmitted by the second distance sensor 550, without performing the data transmitted by the first distance sensor 520 and the second distance sensor 550. Fusion computing.
  • control module 540 may be a flight control module, which is used to control the flight state of the movable platform 500 based on the detection data of the first distance sensor 520 and the detection data of the second distance sensor 550.
  • the movable platform 500 may be a drone.
  • the movable platform 500 may also be an unmanned vehicle or a ground-based remote control robot.
  • the second distance sensor 550 may also be used to issue an alarm when an obstacle is detected, so as to further improve the safety of the movable platform 500.
  • the above exemplarily shows a movable platform 500 according to another embodiment of the present invention.
  • the movable platform 500 according to an embodiment of the present invention is installed on its fuselage for detecting the area above the fuselage.
  • the sensor can solve the problem of blind spot detection in the area above the movable platform.
  • the mobile platform 500 according to the embodiment of the present invention is equipped with a sensor for detecting the area outside the top of the fuselage on its body, which can solve the omnidirectional perception of the surrounding environment of the mobile platform, thereby ensuring the mobile platform 500 Work safety in the process of moving.
  • the disclosed device and method may be implemented in other ways.
  • the device embodiments described above are only illustrative.
  • the division of the units is only a logical function division, and there may be other divisions in actual implementation, for example, multiple units or components may be combined or It can be integrated into another device, or some features can be ignored or not implemented.
  • the various component embodiments of the present invention may be implemented by hardware, or by software modules running on one or more processors, or by a combination of them.
  • a microprocessor or a digital signal processor (DSP) may be used in practice to implement some or all of the functions of some modules according to the embodiments of the present invention.
  • DSP digital signal processor
  • the present invention can also be implemented as a device program (for example, a computer program and a computer program product) for executing part or all of the methods described herein.
  • Such a program for implementing the present invention may be stored on a computer-readable storage medium, or may have the form of one or more signals.
  • Such a signal can be downloaded from an Internet website, or provided on a carrier signal, or provided in any other form.

Landscapes

  • Engineering & Computer Science (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Physics & Mathematics (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • General Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Radar Systems Or Details Thereof (AREA)

Abstract

一种可移动平台,其包括:机身(110);第一距离传感器(120),第一距离传感器(120)安装在机身(110)上,用于对机身(110)的上方区域进行检测;状态传感器(130),用于获取可移动平台(100)的状态信息;以及控制模块(140),与状态传感器(130)以及第一距离传感器(120)通信连接;其中,第一距离传感器(120)将检测的检测数据与状态信息融合后输出检测结果,控制模块(140)根据检测结果控制可移动平台(100)的移动。可移动平台在其机身上安装有用于对机身上方区域进行检测的传感器,能够解决可移动平台上方区域检测盲区的问题。

Description

可移动平台
说明书
技术领域
本发明总体上涉及探测技术领域,更具体地涉及一种可移动平台。
背景技术
目前,可移动平台广泛用于航拍、农业、植保、运输、测绘、救灾等领域。对于一些应用领域,诸如农业植保领域,其作业场景非常复杂,故如果对周围环境感知不全面,则容易出现事故。例如,目前诸如农业植保机的很多可移动平台缺乏对上方区域的障碍物进行检测,使得其向上飞行时触碰树木、电线等从而导致炸机的事故时有发生。因此,需要提供技术方案来解决这样的问题。
发明内容
为了解决上述问题而提出了本发明。本发明提供一种可移动平台,其通过在可移动平台的机身上安装用于对机身上方区域进行检测的传感器,从而解决可移动平台上方区域检测盲区的问题。下面简要描述本发明提出的可移动平台,更多细节将在后续结合附图在具体实施方式中加以描述。
根据本发明的实施例,提供了一种可移动平台,所述可移动平台包括:机身;第一距离传感器,所述第一距离传感器安装在所述机身上,用于对所述机身的上方区域进行检测;状态传感器,用于获取所述可移动平台的状态信息;以及控制模块,与所述状态传感器以及所述第一距离传感器通信连接;其中,所述第一距离传感器将检测的检测数据与所述状态信息融合后输出检测结果,所述控制模块根据所述检测结果控制所述可移动平台的移动。
在本发明的一个实施例中,所述第一距离传感器为雷达传感器。
在本发明的一个实施例中,所述第一距离传感器为微波雷达。
在本发明的一个实施例中,所述第一距离传感器为调频连续波雷达。
在本发明的一个实施例中,所述第一距离传感器包括发射天线和接收天线,所述发射天线的极化形式为圆极化形式,所述接收天线的极化形式包括水平极化形式和垂直极化形式。
在本发明的一个实施例中,所述接收天线包括第一接收天线、第二接收天线、第三接收天线和第四接收天线,其中所述第一接收天线和所述第四接收天线的极化形式为水平极化形式,所述第二接收天线和所述第三接收天线的极化形式为垂直极化形式。
在本发明的一个实施例中,所述第一距离传感器基于相位测角来计算所检测的目标相对于所述可移动平台的方位角和/或俯仰角。
在本发明的一个实施例中,所述第一距离传感器基于所述第一接收天线、所述第二接收天线、所述第三接收天线和所述第四接收天线这四者两两组成的虚拟相位中心来实施所述相位测角。
在本发明的一个实施例中,所述第一距离传感器基于所述第一接收天线和所述第二接收天线确定第一虚拟相位中心,基于所述第三接收天线和所述第四接收天线确定第二虚拟相位中心,并基于所述第一虚拟相位中心和所述第二虚拟相位中心来计算所检测的目标相对于所述可移动平台的方位角。
在本发明的一个实施例中,所述第一距离传感器基于所述第一接收天线和所述第四接收天线确定第三虚拟相位中心,基于所述第二接收天线和所述第三接收天线确定第四虚拟相位中心,并基于所述第三虚拟相位中心和所述第四虚拟相位中心来计算所检测的目标相对于所述可移动平台的俯仰角。
在本发明的一个实施例中,所述第一距离传感器安装在所述机身的顶部。
在本发明的一个实施例中,所述控制模块为飞控模块,所述控制模块用于基于所述第一距离传感器的检测数据对所述可移动平台的飞行状态进行控制。
在本发明的一个实施例中,所述可移动平台还包括第二距离传感器,所述第二距离传感器安装在所述机身的底部,用于对所述机身的上方以外的区域进行检测。
在本发明的一个实施例中,所述控制模块还用于基于所述第一距离传感器和所述第二距离传感器各自的检测数据对所述可移动平台的飞行状态进行控制。
在本发明的一个实施例中,所述控制模块还用于将所述可移动平台的状态数据传送至所述第一距离传感器,所述第一距离传感器还用于将其自身的检测数据与所述状态数据进行融合得到第一融合数据,并将所述第一融合数据传送至所述控制模块。
在本发明的一个实施例中,所述第一距离传感器经由所述第二距离传感器将所述第一融合数据传送至所述控制模块。
在本发明的一个实施例中,所述控制模块还用于将所述可移动平台的状态数据传送至所述第二距离传感器,所述第二距离传感器还用于将其自身的检测数据与所述状态数据进行融合得到第二融合数据,将所述第二融合数据与所述第一融合数据进行融合得到第三融合数据,并将所述第三融合数据传送至所述控制模块。
在本发明的一个实施例中,所述状态数据包括如下至少一种:所述可移动平台的起飞数据、全球定位系统数据、惯性测量单元数据。
在本发明的一个实施例中,所述第一距离传感器还用于在检测到障碍物时发出告警。
在本发明的一个实施例中,所述第一距离传感器还用于计算所检测的目标相对于所述可移动平台的距离。
在本发明的一个实施例中,所述可移动平台为无人机、无人驾驶车辆、或地面遥控机器人。
根据本发明实施例的可移动平台在其机身上安装有用于对机身上方区域进行检测的传感器,能够解决可移动平台上方区域检测盲区的问题。
附图说明
图1示出根据本发明实施例的可移动平台的示意性框图。
图2示出根据本发明实施例的可移动平台的第一距离传感器的示例性的上视天线布阵形式。
图3示出根据本发明实施例的可移动平台的第一距离传感器的接收天 线组成虚拟相位中心的示意图。
图4示出根据本发明实施例的可移动平台的第一距离传感器的相位测角原理的示意图。
图5示出根据本发明另一实施例的可移动平台的示意性框图。
具体实施方式
为了使得本发明的目的、技术方案和优点更为明显,下面将参照附图详细描述根据本发明的示例实施例。显然,所描述的实施例仅仅是本发明的一部分实施例,而不是本发明的全部实施例,应理解,本发明不受这里描述的示例实施例的限制。基于本发明中描述的本发明实施例,本领域技术人员在没有付出创造性劳动的情况下所得到的所有其它实施例都应落入本发明的保护范围之内。
在下文的描述中,给出了大量具体的细节以便提供对本发明更为彻底的理解。然而,对于本领域技术人员而言显而易见的是,本发明可以无需一个或多个这些细节而得以实施。在其他的例子中,为了避免与本发明发生混淆,对于本领域公知的一些技术特征未进行描述。
应当理解的是,本发明能够以不同形式实施,而不应当解释为局限于这里提出的实施例。相反地,提供这些实施例将使公开彻底和完全,并且将本发明的范围完全地传递给本领域技术人员。
在此使用的术语的目的仅在于描述具体实施例并且不作为本发明的限制。在此使用时,单数形式的“一”、“一个”和“所述/该”也意图包括复数形式,除非上下文清楚指出另外的方式。还应明白术语“组成”和/或“包括”,当在该说明书中使用时,确定所述特征、整数、步骤、操作、元件和/或部件的存在,但不排除一个或更多其它的特征、整数、步骤、操作、元件、部件和/或组的存在或添加。在此使用时,术语“和/或”包括相关所列项目的任何及所有组合。
为了彻底理解本发明,将在下列的描述中提出详细的步骤以及详细的结构,以便阐释本发明提出的技术方案。本发明的较佳实施例详细描述如下,然而除了这些详细描述外,本发明还可以具有其他实施方式。
下面参照附图描述根据本发明实施例的可移动平台。图1示出了根据 本发明实施例的可移动平台100的示意性框图。如图1所示,可移动平台100包括机身110、第一距离传感器120、状态传感器130和控制模块140。其中,第一距离传感器120安装在机身110上(诸如机身110的顶部),用于对机身110的上方区域进行检测。状态传感器130用于获取可移动平台100的状态信息。控制模块140与状态传感器130以及第一距离传感器120通信连接。第一距离传感器120将检测的检测数据与状态传感器130获取的可移动平台100的状态信息融合后输出检测结果,控制模块140根据所述检测结果控制可移动平台100的移动。
在本发明的实施例中,由于在可移动平台100的机身110上安装用于对机身110的上方区域进行检测的第一距离传感器120,能够使得可移动平台100在移动的过程中避免由于上方区域的检测盲区而出现事故,对于诸如作业场景非常复杂的农业植保机来说,这样的设计非常有益。
在本发明的实施例中,第一距离传感器120可以是雷达传感器。相对于易受烟雾、光线、遮挡等影响的光学传感器,采用更具烟雾穿透能力的雷达传感器更能够满足各种恶劣作业环境,适应能力更强,适用范围更广。
在本发明的实施例中,第一距离传感器120可以是微波雷达。微波的方向性很好,速度等于光速。采用微波雷达更能够适用可移动平台100高速移动中快速检测障碍物并快速避障的场景。
在本发明的实施例中,第一距离传感器120可以是调频连续波(Frequency Modulated Continuous Wave,FMCW)雷达。相对于仅能测速而无法测距的单频连续波雷达,调频连续波雷达既可以测距又可测速,并且在近距离测量上的优势日益明显。调频连续波雷达收发同时,理论上不存在脉冲雷达所存在的测距盲区,并且发射信号的平均功率等于峰值功率,因此只需要小功率的器件。此外调频连续波雷达具有容易实现、结构相对简单、尺寸小、重量轻以及成本低等优点。因此,第一距离传感器120采用调频连续波雷达来实现也使得可移动平台100更容易实现、结构更简单、尺寸更小、重量更轻并且成本更低。
示例性地,第一距离传感器120可以包括射频前端和信号处理模块。其中,射频前端采用一收一发,信号处理模块负责产生调制信号,对经过模数转换器(Analog to Digital Converter,ADC)采集的中频信号进行处理 分析。射频前端接收到调制信号产生频率随调制电压线性变化的高频信号,通过天线向下辐射,电磁波遇到地面或障碍物反射回来,被接收天线接收到,发射信号与中频进行混频得到中频信号,根据中频信号的频率就可得到速度、距离信息。
在本发明的实施例中,第一距离传感器120可以包括发射天线和接收天线。其中,所述发射天线的极化形式可以为圆极化形式,所述接收天线的极化形式可以包括水平极化形式和垂直极化形式。发射天线和接收天线各自采用这样的极化形式可以确保第一距离传感器120更好地覆盖上方区域,同时能够进行二维测角。下面参照图2来描述第一距离传感器120的天线布阵形式。
图2示出了根据本发明实施例的可移动平台100的第一距离传感器120的示例性的上视天线布阵形式。如图2所示,第一距离传感器120包括发射天线TX,接收天线RX1、RX2、RX3和RX4。其中,发射天线TX的极化形式可以采用圆极化形式、接收天线RX1和RX4的极化形式可以采用水平极化形式,接收天线RX2和RX3的极化形式可以采用垂直极化形式。应理解,图2所示的天线布阵形式仅是示例性的,在本发明的实施例中,可移动平台100的第一距离传感器120还可以采用任何其他合适的天线布阵形式。
在本发明的实施例中,第一距离传感器120在检测到上方区域有障碍物时,可以对该障碍物进行距离解算和角度解算。其中,距离结算的过程可以包括:ADC数据采集、数据截断和加窗、频域快速傅里叶变换(Fast Fourier Transform,FFT)、恒虚警率(Constant False-Alarm Rate,CFAR)检测以及距离估计解算。
在本发明的实施例中,第一距离传感器120在检测到上方区域有障碍物时,对该障碍物进行的角度解算可以是基于相位测角来计算所检测的障碍物相对于可移动平台100的方位角和/或俯仰角。进一步地,在本发明的实施例中,第一距离传感器120可以基于其所包括的接收天线所组成的虚拟相位中心来实施所述相位测角。下面以图2所示的天线布阵形式为例来描述。在该示例中,第一距离传感器120的接收天线包括第一接收天线RX1、第二接收天线RX2、第三接收天线RX3和第四接收天线RX4。其中 第一接收天线RX1和第四接收天线RX4的极化形式为水平极化形式,第二接收天线RX2和第三接收天线RX3的极化形式为垂直极化形式。第一接收天线RX1、第二接收天线RX2、第三接收天线RX3和第四接收天线RX4这四者两两组成的虚拟相位中心可以如图3所示。
如图3所示,第一距离传感器120基于第一接收天线RX1和第二接收天线RX2确定第一虚拟相位中心RX_E1,基于第三接收天线RX3和第四接收天线RX4确定第二虚拟相位中心RX_E2,并基于第一虚拟相位中心RX_E1和第二虚拟相位中心RX_E2来计算所检测的障碍物相对于可移动平台100的方位角。此外,第一距离传感器120基于第一接收天线RX1和第四接收天线RX4确定第三虚拟相位中心RX_H2,基于第二接收天线RX2和第三接收天线RX3确定第四虚拟相位中心RX_H1,并基于第三虚拟相位中心RX_H2和第四虚拟相位中心RX_H1来计算所检测的障碍物相对于可移动平台100的俯仰角。
在本发明的实施例中,第一距离传感器120基于相位测角进行角度解算的原理可以如图4所示。如图4所示,路程差可表示为:d1=d*sin(θ),其中d为第一距离传感器120的前述第一虚拟相位中心RX_E1和第二虚拟相位中心RX_E2之间的间距(基线长度),第一距离传感器120的第一虚拟相位中心RX_E1和第二虚拟相位中心RX_E2之间接收到的信号传播存在波程差对应的延时因而也存在相位差,如下式所示:
Figure PCTCN2019114837-appb-000001
其中,λ为接收天线接收的信号的波长。
根据上式可求解出所检测的障碍物相对于可移动平台100的方位角度θ,如下式所示:
Figure PCTCN2019114837-appb-000002
类似地,可以通过上述原理基于第三虚拟相位中心RX_H2和第四虚拟相位中心RX_H1之间的间距来计算所检测的障碍物相对于可移动平台100的俯仰角。
现在返回继续参考图1,在本发明的实施例中,控制模块140可以是飞控模块,其用于基于第一距离传感器120的检测数据对可移动平台100 的飞行状态进行控制。在该示例中,可移动平台100可以是无人机。在替他示例中,可移动平台100还可以为无人驾驶车辆或地面遥控机器人等。
在本发明的实施例中,第一距离传感器120还可以用于在检测到障碍物时发出告警,以进一步提升可移动平台100的作业安全。
以上示例性地示出了根据本发明一个实施例的可移动平台100,基于上面的描述,根据本发明实施例的可移动平台100在其机身上安装有用于对机身上方区域进行检测的传感器,能够解决可移动平台上方区域检测盲区的问题。
下面参照图5描述根据本发明另一实施例的可移动平台。图5示出了根据本发明另一实施例的可移动平台500的示意性框图。如图5所示,可移动平台500包括机身510、第一距离传感器520、状态传感器530、控制模块540以及第二距离传感器550。其中,第一距离传感器520安装在机身510上(诸如机身510的顶部),用于对机身510的上方区域进行检测。第二距离传感器550安装在机身510的底部,用于对机身510的上方以外的区域(诸如机身的前方、后方、下方等)进行检测。状态传感器530用于获取可移动平台500的状态信息。控制模块540与状态传感器530、第一距离传感器520以及第二距离传感器550通信连接。第一距离传感器520和第二距离传感器550将检测的检测数据与状态传感器530获取的可移动平台500的状态信息融合后输出检测结果,控制模块540根据所述检测结果控制可移动平台500的移动。
在本发明的该实施例中,由于在可移动平台500的机身510上安装用于对机身510的上方区域进行检测的第一距离传感器520,并在可移动平台500的机身510底部安装对机身510的上方以外的区域进行检测的第二距离传感器550,使得可移动平台100能够实现对周围环境的全向感知,从而确保可移动平台100在移动的过程中的作业安全,对于诸如作业场景非常复杂的农业植保机来说,这样的设计非常有益。
在本发明的实施例中,第一距离传感器520可以与前文结合图1所描述的第一距离传感器120具有相似的功能和结构,为了简洁,此处不再赘述,本领域技术人员可以结合前文理解第一距离传感器520的结构和功能。
在本发明的实施例中,第二距离传感器550的数量可以为多个,例如 包括向前避障雷达、向后避障雷达和向下避障雷达,以实现对可移动平台500上方以外的区域进行检测。
在本发明的实施例中,第二距离传感器550可以是雷达传感器。相对于易受烟雾、光线、遮挡等影响的光学传感器,采用更具烟雾穿透能力的雷达传感器更能够满足各种恶劣作业环境,适应能力更强,适用范围更广。
在本发明的实施例中,第二距离传感器550可以是微波雷达。微波的方向性很好,速度等于光速。采用微波雷达更能够适用可移动平台500高速移动中快速检测障碍物并快速避障的场景。
在本发明的实施例中,第二距离传感器550可以是调频连续波(Frequency Modulated Continuous Wave,FMCW)雷达。相对于仅能测速而无法测距的单频连续波雷达,调频连续波雷达既可以测距又可测速,并且在近距离测量上的优势日益明显。调频连续波雷达收发同时,理论上不存在脉冲雷达所存在的测距盲区,并且发射信号的平均功率等于峰值功率,因此只需要小功率的器件。此外调频连续波雷达具有容易实现、结构相对简单、尺寸小、重量轻以及成本低等优点。因此,第二距离传感器550采用调频连续波雷达来实现也使得可移动平台500更容易实现、结构更简单、尺寸更小、重量更轻并且成本更低。
示例性地,第二距离传感器550可以包括射频前端和信号处理模块。其中,射频前端采用一收一发,信号处理模块负责产生调制信号,对经过模数转换器(Analog to Digital Converter,ADC)采集的中频信号进行处理分析。射频前端接收到调制信号产生频率随调制电压线性变化的高频信号,通过天线向下辐射,电磁波遇到地面或障碍物反射回来,被接收天线接收到,发射信号与中频进行混频得到中频信号,根据中频信号的频率就可得到速度、距离信息。
在本发明的实施例中,第二距离传感器550可以包括发射天线和接收天线,其天线布阵形式可以与第一距离传感器520相同,也可以与第一距离传感器520不同,本领域技术人员可以根据具体需求而设置。
在本发明的实施例中,第二距离传感器550可以采用前文所述的相位测角原理来计算检测到的障碍物相对于可移动平台500的方位角和/或俯仰角,也可以采用其他任何合适的方式计算检测到的障碍物相对于可移动平 台500的方位角和/或俯仰角。
在本发明的实施例中,控制模块540还可以用于将可移动平台500的状态数据传送至第一距离传感器520和第二距离传感器550。其中,所述状态数据可以包括但不限于可移动平台500的起飞数据、全球定位系统数据、惯性测量单元数据。第一距离传感器520还可以用于将其自身的检测数据与所述状态数据进行融合得到第一融合数据,并将所述第一融合数据传送至控制模块540。第二距离传感器550还可以用于将其自身的检测数据与所述状态数据进行融合得到第二融合数据,并将所述第二融合数据传送至控制模块540。控制模块540可以基于该第一融合数据和第二融合数据对可移动平台500的移动进行控制。
可替代地,第一距离传感器520可以将所述第一融合数据传送至第二距离传感器550,并经由第二距离传感器550将所述第一融合数据传送至控制模块540。在该实施例中,控制模块540仅需包括与第二距离传感器550的通信接口即可,进一步简化可移动平台500的结构。
进一步地,第一距离传感器520可以将所述第一融合数据传送至第二距离传感器550,第二距离传感器550可以将将其自身的检测数据与所述状态数据进行融合得到第二融合数据,将所述第二融合数据与所述第一融合数据进行融合得到第三融合数据,并将所述第三融合数据传送至所述控制模块。在该实施例中,控制模块540可以直接基于第二距离传感器550传送来的数据对可移动平台500的移动进行控制,无需将第一距离传感器520和第二距离传感器550各自传送来的数据进行融合计算。
在本发明的实施例中,控制模块540可以是飞控模块,其用于基于第一距离传感器520的检测数据和第二距离传感器550的检测数据对可移动平台500的飞行状态进行控制。在该示例中,可移动平台500可以是无人机。在替他示例中,可移动平台500还可以为无人驾驶车辆或地面遥控机器人等。
在本发明的实施例中,第二距离传感器550还可以用于在检测到障碍物时发出告警,以进一步提升可移动平台500的作业安全。
以上示例性地示出了根据本发明另一个实施例的可移动平台500,基于上面的描述,根据本发明实施例的可移动平台500在其机身上安装有用 于对机身上方区域进行检测的传感器,能够解决可移动平台上方区域检测盲区的问题。此外,根据本发明实施例的可移动平台500在其机身上安装有用于对机身上方以外的区域进行检测的传感器,能够解决可移动平台周围环境的全向感知,从而确保可移动平台500在移动的过程中的作业安全。
尽管这里已经参考附图描述了示例实施例,应理解上述示例实施例仅仅是示例性的,并且不意图将本发明的范围限制于此。本领域普通技术人员可以在其中进行各种改变和修改,而不偏离本发明的范围和精神。所有这些改变和修改意在被包括在所附权利要求所要求的本发明的范围之内。
本领域普通技术人员可以意识到,结合本文中所公开的实施例描述的各示例的单元及算法步骤,能够以电子硬件、或者计算机软件和电子硬件的结合来实现。这些功能究竟以硬件还是软件方式来执行,取决于技术方案的特定应用和设计约束条件。专业技术人员可以对特定的应用来使用不同方法来实现所描述的功能,但是这种实现不应认为超出本发明的范围。
在本申请所提供的几个实施例中,应该理解到,所揭露的设备和方法,可以通过其它的方式实现。例如,以上所描述的设备实施例仅仅是示意性的,例如,所述单元的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个单元或组件可以结合或者可以集成到另一个设备,或一些特征可以忽略,或不执行。
在此处所提供的说明书中,说明了大量具体细节。然而,能够理解,本发明的实施例可以在没有这些具体细节的情况下实践。在一些实例中,并未详细示出公知的方法、结构和技术,以便不模糊对本说明书的理解。
类似地,应当理解,为了精简本发明并帮助理解各个发明方面中的一个或多个,在对本发明的示例性实施例的描述中,本发明的各个特征有时被一起分组到单个实施例、图、或者对其的描述中。然而,并不应将该本发明的方法解释成反映如下意图:即所要求保护的本发明要求比在权利要求中所明确记载的特征更多的特征。更确切地说,如相应的权利要求书所反映的那样,其发明点在于可以用少于某个公开的单个实施例的所有特征的特征来解决相应的技术问题。因此,遵循具体实施方式的权利要求书由此明确地并入该具体实施方式,其中权利要求本身都作为本发明的单独实施例。
本领域的技术人员可以理解,除了特征之间相互排斥之外,可以采用任何组合对本说明书(包括伴随的权利要求、摘要和附图)中公开的所有特征以及如此公开的任何方法或者设备的所有过程或单元进行组合。除非另外明确陈述,本说明书(包括伴随的权利要求、摘要和附图)中公开的特征可以由提供相同、等同或相似目的的替代特征来代替。
此外,本领域的技术人员能够理解,尽管在此所述的一些实施例包括其它实施例中所包括的某些特征而不是其它特征,但是不同实施例的特征的组合意味着处于本发明的范围之内并且形成不同的实施例。例如,在权利要求书中,所要求保护的实施例的任意之一都可以以任意的组合方式来使用。
本发明的各个部件实施例可以以硬件实现,或者以在一个或者多个处理器上运行的软件模块实现,或者以它们的组合实现。本领域的技术人员应当理解,可以在实践中使用微处理器或者数字信号处理器(DSP)来实现根据本发明实施例的一些模块的一些或者全部功能。本发明还可以实现为用于执行这里所描述的方法的一部分或者全部的装置程序(例如,计算机程序和计算机程序产品)。这样的实现本发明的程序可以存储在计算机可读存储介质上,或者可以具有一个或者多个信号的形式。这样的信号可以从因特网网站上下载得到,或者在载体信号上提供,或者以任何其他形式提供。
应该注意的是上述实施例对本发明进行说明而不是对本发明进行限制,并且本领域技术人员在不脱离所附权利要求的范围的情况下可设计出替换实施例。在权利要求中,不应将位于括号之间的任何参考符号构造成对权利要求的限制。本发明可以借助于包括有若干不同元件的硬件以及借助于适当编程的计算机来实现。在列举了若干装置的单元权利要求中,这些装置中的若干个可以是通过同一个硬件项来具体体现。单词第一、第二、以及第三等的使用不表示任何顺序。可将这些单词解释为名称。
以上所述,仅为本发明的具体实施方式或对具体实施方式的说明,本发明的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本发明揭露的技术范围内,可轻易想到变化或替换,都应涵盖在本发明的保护范围之内。本发明的保护范围应以权利要求的保护范围为准。

Claims (21)

  1. 一种可移动平台,其特征在于,所述可移动平台包括:
    机身;
    第一距离传感器,所述第一距离传感器安装在所述机身上,用于对所述机身的上方区域进行检测;
    状态传感器,用于获取所述可移动平台的状态信息;以及
    控制模块,与所述状态传感器以及所述第一距离传感器通信连接;
    其中,所述第一距离传感器将检测的检测数据与所述状态信息融合后输出检测结果,所述控制模块根据所述检测结果控制所述可移动平台的移动。
  2. 根据权利要求1所述的可移动平台,其特征在于,所述第一距离传感器为雷达传感器。
  3. 根据权利要求2所述的可移动平台,其特征在于,所述第一距离传感器为微波雷达。
  4. 根据权利要求2所述的可移动平台,其特征在于,所述第一距离传感器为调频连续波雷达。
  5. 根据权利要求2-4中的任一项所述的可移动平台,其特征在于,所述第一距离传感器包括发射天线和接收天线,所述发射天线的极化形式为圆极化形式,所述接收天线的极化形式包括水平极化形式和垂直极化形式。
  6. 根据权利要求5所述的可移动平台,其特征在于,所述接收天线包括第一接收天线、第二接收天线、第三接收天线和第四接收天线,其中所述第一接收天线和所述第四接收天线的极化形式为水平极化形式,所述第二接收天线和所述第三接收天线的极化形式为垂直极化形式。
  7. 根据权利要求2-6中的任一项所述的可移动平台,其特征在于,所述第一距离传感器基于相位测角来计算所检测的目标相对于所述可移动平台的方位角和/或俯仰角。
  8. 根据权利要求7所述的可移动平台,其特征在于,所述第一距离传感器基于所述第一接收天线、所述第二接收天线、所述第三接收天线和所述第四接收天线这四者两两组成的虚拟相位中心来实施所述相位测角。
  9. 根据权利要求8所述的可移动平台,其特征在于,所述第一距离 传感器基于所述第一接收天线和所述第二接收天线确定第一虚拟相位中心,基于所述第三接收天线和所述第四接收天线确定第二虚拟相位中心,并基于所述第一虚拟相位中心和所述第二虚拟相位中心来计算所检测的目标相对于所述可移动平台的方位角。
  10. 根据权利要求8所述的可移动平台,其特征在于,所述第一距离传感器基于所述第一接收天线和所述第四接收天线确定第三虚拟相位中心,基于所述第二接收天线和所述第三接收天线确定第四虚拟相位中心,并基于所述第三虚拟相位中心和所述第四虚拟相位中心来计算所检测的目标相对于所述可移动平台的俯仰角。
  11. 根据权利要求1-10中的任一项所述的可移动平台,其特征在于,所述第一距离传感器安装在所述机身的顶部。
  12. 根据权利要求1-11中的任一项所述的可移动平台,其特征在于,所述控制模块为飞控模块,所述控制模块用于基于所述第一距离传感器的检测数据对所述可移动平台的飞行状态进行控制。
  13. 根据权利要求1-12中的任一项所述的可移动平台,其特征在于,所述可移动平台还包括第二距离传感器,所述第二距离传感器安装在所述机身的底部,用于对所述机身的上方以外的区域进行检测。
  14. 根据权利要求13所述的可移动平台,其特征在于,所述控制模块还用于基于所述第一距离传感器和所述第二距离传感器各自的检测数据对所述可移动平台的飞行状态进行控制。
  15. 根据权利要12-14中的任一项所述的可移动平台,其特征在于,所述控制模块还用于将所述可移动平台的状态数据传送至所述第一距离传感器,所述第一距离传感器还用于将其自身的检测数据与所述状态数据进行融合得到第一融合数据,并将所述第一融合数据传送至所述控制模块。
  16. 根据权利要求15所述的可移动平台,其特征在于,所述第一距离传感器经由所述第二距离传感器将所述第一融合数据传送至所述控制模块。
  17. 根据权利要求16所述的可移动平台,其特征在于,所述控制模块还用于将所述可移动平台的状态数据传送至所述第二距离传感器,所述第二距离传感器还用于将其自身的检测数据与所述状态数据进行融合得到 第二融合数据,将所述第二融合数据与所述第一融合数据进行融合得到第三融合数据,并将所述第三融合数据传送至所述控制模块。
  18. 根据权利要求15-17中的任一项所述的可移动平台,其特征在于,所述状态数据包括如下至少一种:所述可移动平台的起飞数据、全球定位系统数据、惯性测量单元数据。
  19. 根据权利要求1-18中的任一项所述的可移动平台,其特征在于,所述第一距离传感器还用于在检测到障碍物时发出告警。
  20. 根据权利要求1-19中的任一项所述的可移动平台,其特征在于,所述第一距离传感器还用于计算所检测的目标相对于所述可移动平台的距离。
  21. 根据权利要求1-20中的任一项所述的可移动平台,其特征在于,所述可移动平台为无人机、无人驾驶车辆、或地面遥控机器人。
PCT/CN2019/114837 2019-10-31 2019-10-31 可移动平台 WO2021081930A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/CN2019/114837 WO2021081930A1 (zh) 2019-10-31 2019-10-31 可移动平台
CN201980030611.1A CN112105949A (zh) 2019-10-31 2019-10-31 可移动平台

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2019/114837 WO2021081930A1 (zh) 2019-10-31 2019-10-31 可移动平台

Publications (1)

Publication Number Publication Date
WO2021081930A1 true WO2021081930A1 (zh) 2021-05-06

Family

ID=73749368

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/114837 WO2021081930A1 (zh) 2019-10-31 2019-10-31 可移动平台

Country Status (2)

Country Link
CN (1) CN112105949A (zh)
WO (1) WO2021081930A1 (zh)

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104635742A (zh) * 2013-11-13 2015-05-20 四川豪斯特电子技术有限责任公司 一种无人机飞行控制装置
CN105607642A (zh) * 2015-09-18 2016-05-25 广东中安金狮科创有限公司 无人机自动在三维空间测距避让和穿越飞行的方法
CN105667773A (zh) * 2016-01-06 2016-06-15 无锡觅睿恪科技有限公司 多旋翼室内无人机
CN105955303A (zh) * 2016-07-05 2016-09-21 北京奇虎科技有限公司 无人机自主避障方法、装置
CN206057975U (zh) * 2016-08-25 2017-03-29 大连楼兰科技股份有限公司 一种避障装置及植保无人机
CN206684581U (zh) * 2017-04-18 2017-11-28 深圳城际快机科技有限公司 自动避障无人机
CN108303991A (zh) * 2017-12-15 2018-07-20 成都优力德新能源有限公司 无人机障碍报警系统
CN109313452A (zh) * 2017-10-31 2019-02-05 深圳市大疆创新科技有限公司 无人机避障控制方法、雷达系统及无人机
US20190187275A1 (en) * 2017-12-18 2019-06-20 The Government Of The United States Of America, As Represented By The Secretary Of The Navy Millimeter-Wave Airborne Radar for 3-Dimensional Imaging of Moving and Stationary Targets

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105892489B (zh) * 2016-05-24 2019-09-10 国网山东省电力公司电力科学研究院 一种基于多传感器融合的自主避障无人机系统及控制方法
CN107783549B (zh) * 2016-08-25 2020-12-08 大连楼兰科技股份有限公司 基于多传感器信息融合技术的单旋翼植保无人机避障系统
CN107783545B (zh) * 2016-08-25 2021-04-27 大连楼兰科技股份有限公司 基于ooda环多传感器信息融合的灾后救援旋翼无人机避障系统

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104635742A (zh) * 2013-11-13 2015-05-20 四川豪斯特电子技术有限责任公司 一种无人机飞行控制装置
CN105607642A (zh) * 2015-09-18 2016-05-25 广东中安金狮科创有限公司 无人机自动在三维空间测距避让和穿越飞行的方法
CN105667773A (zh) * 2016-01-06 2016-06-15 无锡觅睿恪科技有限公司 多旋翼室内无人机
CN105955303A (zh) * 2016-07-05 2016-09-21 北京奇虎科技有限公司 无人机自主避障方法、装置
CN206057975U (zh) * 2016-08-25 2017-03-29 大连楼兰科技股份有限公司 一种避障装置及植保无人机
CN206684581U (zh) * 2017-04-18 2017-11-28 深圳城际快机科技有限公司 自动避障无人机
CN109313452A (zh) * 2017-10-31 2019-02-05 深圳市大疆创新科技有限公司 无人机避障控制方法、雷达系统及无人机
CN108303991A (zh) * 2017-12-15 2018-07-20 成都优力德新能源有限公司 无人机障碍报警系统
US20190187275A1 (en) * 2017-12-18 2019-06-20 The Government Of The United States Of America, As Represented By The Secretary Of The Navy Millimeter-Wave Airborne Radar for 3-Dimensional Imaging of Moving and Stationary Targets

Also Published As

Publication number Publication date
CN112105949A (zh) 2020-12-18

Similar Documents

Publication Publication Date Title
US11380995B2 (en) Two-dimensional antenna system and method and device for positioning a target
US20180356507A1 (en) Multicopter with radar system
US8791852B2 (en) Standoff range sense through obstruction radar system
US11495877B2 (en) Multi-layer, multi-steering antenna system for autonomous vehicles
JP7429054B2 (ja) レーダデータを結合するためのシステムおよび方法
CN107783133B (zh) 毫米波雷达的固定翼无人机防撞系统及防撞方法
US11474230B2 (en) Method and apparatus for non-line-of-sight detection and coded radar signals
CN202141803U (zh) 电力线路巡查无人机用多模式毫米波雷达
KR20070092959A (ko) 충돌 경보 및 방지 시스템
CN107783115A (zh) 旋翼无人机远距离复杂环境防撞毫米波雷达系统
CN107783128B (zh) 基于毫米波雷达的固定翼无人机多目标防撞系统
CN108897331A (zh) 一种基于雷达技术的飞行器高度控制方法及系统
Cui et al. 3D detection and tracking for on-road vehicles with a monovision camera and dual low-cost 4D mmWave radars
CN107783118A (zh) 基于毫米波雷达的固定翼无人机多目标防撞系统的防撞方法
US20210263139A1 (en) Distributed Monopulse Radar Antenna Array for Collision Avoidance
CN107783114A (zh) 旋翼无人机远距离复杂环境防撞毫米波雷达信号处理系统及方法
CN110597289A (zh) 一种无人机避障系统及无人机避障方法
WO2022099468A1 (zh) 雷达及雷达的数据处理方法、可移动平台、存储介质
RU2497145C1 (ru) Многодиапазонный вертолетный радиолокационный комплекс
WO2021081930A1 (zh) 可移动平台
WO2021087706A1 (zh) 雷达系统、可移动平台及雷达系统的控制方法
CN107783124B (zh) 基于组合波形的旋翼无人机复杂环境防碰撞雷达系统及信号处理方法
WO2022160277A1 (zh) 一种目标检测方法、设备、可移动平台及存储介质
JP2015059748A (ja) 障害物検知装置
CN107450065A (zh) 一种低成本小型无人机监视雷达

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19950723

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19950723

Country of ref document: EP

Kind code of ref document: A1