WO2021079563A1 - Fractional phase-locked loop and phase-locked loop device - Google Patents

Fractional phase-locked loop and phase-locked loop device Download PDF

Info

Publication number
WO2021079563A1
WO2021079563A1 PCT/JP2020/026776 JP2020026776W WO2021079563A1 WO 2021079563 A1 WO2021079563 A1 WO 2021079563A1 JP 2020026776 W JP2020026776 W JP 2020026776W WO 2021079563 A1 WO2021079563 A1 WO 2021079563A1
Authority
WO
WIPO (PCT)
Prior art keywords
frequency
phase
locked loop
signal
fractional
Prior art date
Application number
PCT/JP2020/026776
Other languages
French (fr)
Japanese (ja)
Inventor
飯塚 哲也
祖楽 徐
将 長田
Original Assignee
国立大学法人東京大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 国立大学法人東京大学 filed Critical 国立大学法人東京大学
Publication of WO2021079563A1 publication Critical patent/WO2021079563A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03LAUTOMATIC CONTROL, STARTING, SYNCHRONISATION OR STABILISATION OF GENERATORS OF ELECTRONIC OSCILLATIONS OR PULSES
    • H03L7/00Automatic control of frequency or phase; Synchronisation
    • H03L7/06Automatic control of frequency or phase; Synchronisation using a reference signal applied to a frequency- or phase-locked loop
    • H03L7/08Details of the phase-locked loop
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03LAUTOMATIC CONTROL, STARTING, SYNCHRONISATION OR STABILISATION OF GENERATORS OF ELECTRONIC OSCILLATIONS OR PULSES
    • H03L7/00Automatic control of frequency or phase; Synchronisation
    • H03L7/06Automatic control of frequency or phase; Synchronisation using a reference signal applied to a frequency- or phase-locked loop
    • H03L7/16Indirect frequency synthesis, i.e. generating a desired one of a number of predetermined frequencies using a frequency- or phase-locked loop
    • H03L7/18Indirect frequency synthesis, i.e. generating a desired one of a number of predetermined frequencies using a frequency- or phase-locked loop using a frequency divider or counter in the loop
    • H03L7/197Indirect frequency synthesis, i.e. generating a desired one of a number of predetermined frequencies using a frequency- or phase-locked loop using a frequency divider or counter in the loop a time difference being used for locking the loop, the counter counting between numbers which are variable in time or the frequency divider dividing by a factor variable in time, e.g. for obtaining fractional frequency division

Definitions

  • the present invention relates to a fractional phase-locked loop and a phase-locked loop device.
  • phase-locked loop PLL: Phase Locked Loop
  • PFD Phase Frequency Detector
  • CP Charge Pump
  • LF Loop Filter
  • VCO Voltage Controlled Oscillator
  • variable divider variable DIV: Divider
  • the phase detector 822 compares the reference signal from the oscillator 812 with the reference signal from the variable frequency divider 830 and outputs a signal corresponding to the phase difference.
  • the charge pump 824 converts the signal from the phase detector 822 into an electric current.
  • the loop filter 826 removes the high frequency component of the current from the charge pump 824 and converts it into the control voltage of the voltage controlled oscillator 828.
  • the voltage controlled oscillator 828 controls the frequency of the output signal based on the control voltage from the loop filter 826.
  • the variable frequency divider 830 divides the signal from the voltage controlled oscillator 828 by a variable frequency division ratio and outputs it to the phase detector 822 as a reference signal.
  • the frequency Fout of the signal from the voltage controlled oscillator 828 is ideally a desired value (non-integer) of the frequency division ratio of the variable frequency divider 830 to the frequency Fref of the reference signal from the oscillator 812. ) Is multiplied.
  • the division ratio of the variable frequency divider 830 is set. It should be 39 at a rate of 25% and 40 at a rate of 75%. Therefore, a phase error occurs in the signal from the variable frequency divider 830 due to the deviation between the actual value (39 or 40) and the desired value (39.25) of the frequency division ratio of the variable frequency divider 830, which is caused by this. Phase noise appears in the final output signal of the fractional phase-locked loop 820. Further, due to the non-linearity of the components such as PFD822 and LPF824, noise at a specific frequency called Fractional Spur also appears in the final output signal as the output of the variable divider 830 fluctuates.
  • FIG. 16 is an explanatory diagram showing a linear model of the above-mentioned fractional phase-locked loop 820.
  • Kpd “F (s)”, “Kvco / s”, and “ ⁇ Nfd” are the phase detector 822, the charge pump 824, the loop filter 828, the voltage controlled oscillator 828, and the variable divider 830, respectively. Is expressed by a transfer function.
  • ⁇ ref is a reference signal.
  • ⁇ out is an output signal that is finally output.
  • In, cp is phase noise due to disturbance of the current from the charge pump 824.
  • ⁇ n, vco is the phase noise generated in the voltage controlled oscillator 828.
  • ⁇ n, div is the phase noise that appears in the signal from the variable divider 830.
  • the output signal ⁇ out can be expressed as in equation (2). From this equation (2), it can be seen that the phase noises ⁇ n and div are amplified by approximately Nfd times (for example, approximately 39.25 times) and appear in the output signal ⁇ out. Therefore, it is required to devise a fractional phase-locked loop that can avoid the phase noise ⁇ n and div being greatly amplified.
  • the main object of the fractional phase-locked loop and the phase-locked loop device of the present invention is to provide a configuration capable of avoiding a large amplification of phase noise appearing in a signal from a variable frequency divider.
  • the fractional phase-locked loop and the phase-locked loop device of the present invention have adopted the following means in order to achieve the above-mentioned main object.
  • the fractional phase-locked loop of the present invention A fractional phase-locked loop that multiplies the frequency of the reference signal by a non-integer and outputs it to the output section.
  • a first frequency adjusting unit that controls the frequency of the signal output to the output unit based on the phase difference between the two input signals.
  • a variable frequency divider that divides the frequency of the reference signal or the signal from the first frequency adjustment unit by a variable division ratio and outputs it to the first frequency adjustment unit.
  • a second that outputs a signal of the second related frequency of the difference between the frequency of the signal from the first frequency adjusting unit and the first related frequency based on the frequency of the reference signal or the multiplication of the difference to the first frequency adjusting unit.
  • Frequency control unit and The gist is to prepare.
  • the first frequency adjusting unit that controls the frequency of the signal output to the output unit based on the phase difference between the two input signals, and the reference signal or the signal from the first frequency adjusting unit
  • the second frequency adjusting unit includes the frequency of the signal from the first frequency adjusting unit and the frequency obtained by multiplying the frequency of the reference signal or the frequency of the related signal based on the reference signal. It may have a harmonic mixer that generates a signal including the frequency component of each difference of the above, and a low-pass filter that extracts and outputs a frequency component of a predetermined frequency or less from each frequency component included in the signal from the harmonic mixer. .. In this case, the low-pass filter may extract and output only the minimum frequency component from each of the frequency components.
  • the second frequency adjusting unit may further include an integer phase-locked loop that multiplies and outputs the frequency of the signal from the low-pass filter. In this way, it is possible to more sufficiently avoid that the phase noise appearing in the signal from the variable frequency divider is greatly amplified.
  • the inventors confirmed this by a linear model of the fractional phase-locked loop of the present invention in this embodiment.
  • the fractional phase-locked loop of the present invention may include a fixed frequency divider that divides the reference signal by a fixed frequency division ratio and outputs it to the second frequency adjustment unit. In this way, injection pulling can be avoided.
  • a fixed frequency divider that divides the reference signal by a fixed frequency division ratio and outputs it to the second frequency adjustment unit.
  • the first frequency adjusting unit compares two input signals and outputs a signal corresponding to the phase difference, and converts a signal from the phase detector into a current.
  • the phase-locked loop loop device of the present invention is the fractional phase-locked loop of the present invention of any of the above-described aspects, and a second inserter that multiplies the frequency of the initial reference signal and outputs it as the reference signal to the fractional phase-locked loop.
  • the gist is to provide a phase-locked loop.
  • the phase-locked loop device of the present invention includes the fractional phase-locked loop of the present invention in any of the above aspects, the effect exerted by the fractional phase-locked loop of the present invention, for example, appears in the signal from the variable frequency divider. It is possible to obtain the same effect as the effect of avoiding the large amplification of the phase noise.
  • variable frequency divider may divide the frequency of the signal from the first frequency control unit by a variable division ratio and output it to the first frequency control unit. .. In this way, in order to increase the input frequency of the variable frequency divider, it is not necessary to increase the frequency of the reference signal from the integer phase-locked loop, so that the power consumption of the integer phase-locked loop can be suppressed. ..
  • FIG. 1 is a configuration diagram showing an outline of the configuration of the phase-locked loop device 20 as the first embodiment of the present invention.
  • the phase-locked loop loop device 20 of the first embodiment includes an integer phase-locked loop 21 connected to the oscillator 12, and a fractional phase-locked loop circuit 21 connected to the integral phase-locked loop 21 and the output unit 14. 40 and.
  • the oscillator 12 for example, a crystal oscillator that oscillates a signal having a frequency of about 20 MHz to 100 MHz is used.
  • the injector phase-locked loop 21 is configured as a circuit that multiplies the frequency Fref of the first reference signal from the oscillator 12 and outputs it as a second reference signal (frequency Fit signal) to the fractional phase-locked loop 40. It includes a detector (PFD) 22, a charge pump (CP) 24, a loop filter (LF) 26, a voltage controlled oscillator (VCO) 28, and a fixed frequency divider (fixed DIV) 30.
  • PFD detector
  • CP charge pump
  • LF loop filter
  • VCO voltage controlled oscillator
  • fixed DIV fixed frequency divider
  • the phase detector 22 compares the first reference signal from the oscillator 12 with the signal from the fixed frequency divider 30 and outputs a signal corresponding to the phase difference.
  • the charge pump 24 converts the signal from the phase detector 22 into an electric current.
  • the phase detector 22 and the charge pump 24 are used to match the frequency Fref of the first reference signal from the oscillator 12 with the frequency Fid1 of the signal from the fixed frequency divider 30.
  • the loop filter 26 removes high frequency components (frequency components higher than the predetermined frequency F0) of the current from the charge pump 24 and converts them into the control voltage of the voltage controlled oscillator 28.
  • the voltage controlled oscillator 28 controls the frequency Fit of the second reference signal output to the fractional phase-locked loop 40 based on the control voltage from the loop filter 26.
  • the fixed frequency divider 30 divides the signal from the voltage controlled oscillator 28 by a fixed frequency division ratio Nid1 and outputs the signal to the phase detector 22. Therefore, the frequency Fid1 of the signal from the fixed frequency divider 30 becomes the frequency (Fint / Nid1).
  • the fractional phase-locked loop 40 is configured as a circuit that multiplies the frequency Fit of the second reference signal from the integer phase-locked loop 21 by a non-integral and outputs the final output signal (frequency Fout signal) to the output unit 14.
  • Phase detector (PFD) 42 charge pump (CP) 44, loop filter (LF) 46, voltage controlled oscillator (VCO) 48, variable frequency divider (variable DIV) 50, fixed frequency divider It includes a (fixed DIV) 52, a harmonic mixer (HM) 54, and a low-pass filter (LPF) 56.
  • the phase detector 42 compares the signal from the variable frequency divider 50 with the signal from the low-pass filter 56, and outputs a signal corresponding to the phase difference.
  • the charge pump 44 converts the signal from the phase detector 42 into an electric current.
  • the phase detector 42 and the charge pump 44 are used to match the frequency Ffd of the signal from the variable frequency divider 50 with the frequency Flpf of the signal from the lowpass filter 56.
  • the loop filter 46 removes high frequency components (frequency components higher than the predetermined frequency F1) of the current from the charge pump 44 and converts them into the control voltage of the voltage controlled oscillator 48.
  • the predetermined frequency F1 may be the same frequency as the predetermined frequency F0, or may be a different frequency.
  • the voltage controlled oscillator 48 controls the frequency Fout of the final output signal output to the output unit 14 based on the control voltage from the loop filter 46.
  • the variable frequency divider 50 includes, for example, a multi-module divider (MMD: Multi-Modulus Divider) capable of changing the frequency division ratio, and a delta-sigma modulator (MMD: Multi-Modulus Divider) that controls the frequency division ratio using the multi-module divider. It is configured as a well-known variable frequency divider with DSM: Delta-Sigma Modulator).
  • the variable frequency divider 50 divides the second reference signal from the integer phase-locked loop 21 by a variable frequency division ratio Nfd and outputs it to the phase detector 42. Therefore, the frequency Ffd of the signal from the variable frequency divider 50 is the frequency (Fint / Nfd). In the variable frequency divider 50, for example, when the desired value of the variable frequency division ratio Nfd is 39.25, the variable frequency division ratio Nfd becomes 39 at a rate of 25% and 40 at a rate of 75%. Operate.
  • the fixed frequency divider 52 divides the second reference signal from the integer phase-locked loop 21 by a fixed frequency division ratio Nid2 and outputs it to the harmonic mixer 54. Therefore, the frequency Fid2 of the signal from the fixed frequency divider 52 becomes the frequency (Fint / Nid2).
  • the low-pass filter 56 extracts a low frequency component (frequency component having a predetermined frequency F2 or less) from the signal from the harmonic mixer 54 and outputs it to the phase detector 42.
  • the predetermined frequency F2 is set so that only the minimum frequency component of each frequency component included in the signal from the harmonic mixer 54 is extracted in the first embodiment.
  • the frequency Flpf of the signal output from the low-pass filter 56 to the phase detector 42 is a multiplication (1x, 2) of the frequency Fout of the signal from the voltage control oscillator 48 and the frequency Fid2 of the signal from the fixed divider 52. It is the minimum frequency among the frequencies of each difference from the double, ).
  • the multiplication for example, 3 times
  • the frequency Flpf of the signal output from the low-pass filter 56 to the phase detector 42 can be expressed as in the equation (4).
  • the relationship between the frequency Fit of the second reference signal from the integer phase-locked loop 21 and the frequency Fout of the final output signal output to the output unit 14 is determined. It can be expressed as in equation (5).
  • the frequency division ratio Nid1 of the fixed frequency divider 30, the desired value of the frequency division ratio Nfd of the variable frequency divider 50, and the frequency division ratio Nid2 of the fixed frequency divider 52 are the final output signals. It is appropriately set based on the desired value of the frequency Fout of.
  • FIG. 2 is an explanatory diagram showing a linear model of the fractional phase-locked loop 40 included in the phase-locked loop device 20 of the first embodiment.
  • Kpd “F (s)”, “Kvco / s”, “ ⁇ Nfd”, and “ ⁇ Nid2” are the phase detector 42, the charge pump 44, the loop filter 46, and the voltage controlled oscillator 48, respectively.
  • the variable frequency divider 50 and the fixed frequency divider 52 are represented by a transfer function.
  • “ ⁇ Nhm” and the symbol for calculating the difference between the two represent the harmonic mixer 54 and the low-pass filter 56 as a transfer function.
  • ⁇ int is a second reference signal from the integer phase-locked loop 21.
  • ⁇ out is the final output signal output to the output unit 14.
  • the final output signal ⁇ out output to the output unit 14 can be expressed as in the equation (6).
  • the Laplace operator s is sufficiently small, that is, when the value Hol (s) is sufficiently large, the phase noises ⁇ n and div are not amplified and are finally (approximately 1 times). It can be seen that it appears in the output signal ⁇ out. Therefore, it can be said that it is possible to prevent the phase noises ⁇ n and div from being greatly amplified and appearing in the final output signal ⁇ out.
  • the fractional phase-locked loop 40 since the fractional phase-locked loop 40 includes the fixed frequency divider 52, the division ratio Nid2 of the fixed frequency divider 52 and the multiplication Nhm for extraction of the harmonic mixer 54 and the low-pass filter 56 are appropriately obtained. If it is determined (for example, if the division ratio Nid2 is 2 and the multiplication multiplication Nhm for extraction is 3), the second term "Nhm / Nid2" on the right side of the equation (4) or the equation (5) should not be an integer. can do. As a result, injection pulling can be avoided. The details are described in, for example, the above-mentioned document A.
  • FIG. 3 is an explanatory diagram showing an example of the analysis result when the conventional fractional phase-locked loop 820 shown in FIG. 15 is used
  • FIG. 4 is a phase-locked loop of the first embodiment shown in FIG. It is explanatory drawing which shows an example of the analysis result when the apparatus 20 (fractional phase-locked loop 40) is used.
  • the frequency Fref of the first reference signal from the oscillator 12 is 30 MHz
  • the frequency division ratio Nid1 of the fixed frequency divider 30 is 74
  • the variable frequency divider 50 As analysis conditions, for the phase-locked loop device 20 of FIG. 1, the frequency Fref of the first reference signal from the oscillator 12 is 30 MHz, the frequency division ratio Nid1 of the fixed frequency divider 30 is 74, and the variable frequency divider 50.
  • the desired value of the frequency division ratio Nfd was 32.029
  • the frequency division ratio Nid2 of the fixed frequency divider 52 was 2
  • the multiplication factor Nhm for extraction of the harmonic mixer 54 and the low-pass filter 56 was 3.
  • the frequency Fref of the reference signal from the oscillator 812 was set to 69.31 MHz
  • the desired value of the division ratio Nfd of the variable frequency divider 830 was set to 32.029.
  • the reason why the frequency Fref of the reference signal of the conventional example is set to 69.31 MHz (non-integer) is that the desired value of the frequency division ratio Nfd of the variable frequency dividers 50 and 830 is the same in the first embodiment and the conventional example.
  • the input frequencies of the fractional phase-locked loops 40 and 820 (in the first embodiment, the frequency Fit of the second reference signal from the inverter phase-locked loop 21 and in the conventional example, the frequency Ref of the reference signal from the oscillator 812). ) are the same.
  • the horizontal axis is the amount of offset from the desired value of the frequency fout of the final output signal (see equation (5)), and the vertical axis is the phase noise level.
  • a phase noise of about ⁇ 42 dBc appears.
  • a phase noise of about ⁇ 72 dBc appears. Therefore, it can be seen that in the first embodiment, the phase noise can be improved by about 30 dBc as compared with the comparative example.
  • the phase detector 42, the charge pump 44, the loop filter 46, the voltage controlled oscillator 48, the variable divider 50, and the fixed divider 50 are included.
  • a 52, a harmonic mixer 54, and a low-pass filter 56 are provided.
  • the variable frequency divider 50 divides the second reference signal from the integer phase-locked loop 21 by the variable frequency division ratio Nfd and outputs it to the phase detector 42.
  • the fixed frequency divider 52 divides the second reference signal from the integer phase-locked loop 21 by a fixed frequency division ratio Nid2 and outputs it to the harmonic mixer 54.
  • the harmonic mixer 54 generates a signal including a frequency component of each difference between the frequency Fout of the signal from the voltage controlled oscillator 48 and each multiplication of the frequency Fid2 of the signal from the fixed frequency divider 52.
  • the low-pass filter 56 extracts low-frequency components from the signal from the harmonic mixer 54.
  • FIG. 5 is a configuration diagram showing an outline of the configuration of the phase-locked loop device 120 of the second embodiment.
  • the phase-locked loop device 120 of the second embodiment is the first shown in FIG. 1, except that the variable frequency divider 50 of the fractional phase-locked loop 40 is replaced with the variable frequency divider 150 of the fractional phase-locked loop 140. It is the same as the phase-locked loop device 20 of the embodiment. Therefore, among the phase-locked loop devices 120 of the second embodiment, the same configurations as those of the phase-locked loop device 20 of the first embodiment are designated by the same reference numerals, and detailed description thereof will be omitted.
  • variable frequency divider 150 divides the signal from the voltage controlled oscillator 48 by the variable frequency division ratio Nfd2 and outputs it to the phase detector 42. Therefore, the frequency Ffd2 of the signal from the variable frequency divider 150 becomes the frequency (Fout / Nfd2).
  • the relationship between the frequency Fit of the second reference signal from the integer phase-locked loop 21 and the frequency Fout of the final output signal output to the output unit 14 is determined. It can be expressed as in equation (7).
  • the frequency division ratio Nid1 of the fixed frequency divider 30, the desired value of the frequency division ratio Nfd2 of the variable frequency divider 150, and the frequency division ratio Nid2 of the fixed frequency divider 52 are the final output signals. It is appropriately set based on the desired value of the frequency Fout of.
  • FIG. 6 is an explanatory diagram showing a linear model of the fractional phase-locked loop 140 included in the phase-locked loop device 120 of the second embodiment.
  • the part related to the variable frequency divider 50 (“ ⁇ Nfd” and the input source) is replaced with the part related to the variable frequency divider 150 (“ ⁇ Nfd2” and the input source). Except for, it is the same as the linear model of the fractional phase-locked loop 40 of FIG.
  • the definition is as shown in the equation (8)
  • the final output signal ⁇ out output to the output unit 14 can be expressed as the equation (9).
  • the variable frequency divider 50 when the signal from the voltage controlled oscillator 48 is input to the variable frequency divider 150, the variable frequency divider 50 is connected to the variable frequency divider 50 as in the first embodiment, and the second from the inter-counter phase-locked loop 21. 2 Compared to the one to which the reference signal is input, the following effects are obtained. Generally, in the fractional phase-locked loops 40 and 140, the phase noise appearing in the final output signal ⁇ out can be reduced by increasing the variable division ratios Nfd and Nfd2 of the variable dividers 50 and 150.
  • variable division ratios Nfd and Nfd2 are set to 5.25 and the variable division ratios Nfd and Nfd2 are set to 5 or 6, the variable division ratios Nfd and Nfd2 are about 20% in each cycle of the signal.
  • the desired values are 50.25 and the variable division ratios Nfd and Nfd2 are 50 or 51, the variable division ratios Nfd and Nfd2 are only about 2% in each cycle of the signal. ..
  • in order to increase the variable division ratio Nfd of the variable frequency divider 50 it is necessary to increase the frequency Fit of the second reference signal ⁇ int from the integer phase-locked loop 21, but the second reference.
  • the power consumption of the integer phase-locked loop 21 becomes large.
  • the inventors of the second embodiment In the phase-locked loop loop device 120, it was confirmed that the frequency Fit of the second reference signal ⁇ int from the inverter phase-locked loop circuit 21 can be set to about two-thirds or less of that of the phase-locked loop loop device 20 of the first embodiment.
  • the fractional phase-locked loop 140 included in the phase-locked loop device 120 of the second embodiment described above includes a variable frequency divider 150 instead of the variable divider 50 of the fractional phase-locked loop 40 of the first embodiment.
  • the variable frequency divider 150 divides the signal from the voltage controlled oscillator 48 by the variable frequency dividing ratio Nfd2 and outputs it to the phase detector 42.
  • Nfd2 variable frequency dividing ratio
  • the power consumption of the integrated phase-locked loop 21 can be suppressed as compared with the phase-locked loop device 20 of the first embodiment.
  • the fractional spar in addition to reducing the phase noise in the final output signal ⁇ out, the fractional spar can also be reduced as in the fractional phase-locked loop 40 of the first embodiment. it can.
  • FIG. 7 is a configuration diagram showing an outline of the configuration of the phase-locked loop device 120B of the third embodiment.
  • the phase-locked loop device 120B of the third embodiment is the same as the phase-locked loop device 120 of the second embodiment shown in FIG. 5, except that the fractional phase-locked loop circuit 140 is replaced with the fractional phase-locked loop circuit 140B. is there.
  • the fractional phase-locked loop 140B of the third embodiment is the same as the fractional phase-locked loop 140 of the second embodiment except that the integer phase-locked loop 158 is added. Therefore, among the phase-locked loop devices 120B of the third embodiment, the same configurations as those of the phase-locked loop device 120 of the second embodiment are designated by the same reference numerals, and detailed description thereof will be omitted.
  • the integer phase-locked loop 158 is configured in the same manner as the integer phase-locked loop 21, and includes a phase detector, a charge pump, a loop filter, a voltage controlled oscillator, and a fixed frequency divider (all of them). Not shown).
  • the integer phase-locked loop 158 multiplies the frequency Flpf of the signal from the low-pass filter 56 and outputs it to the phase detector 42 as a signal of frequency Fit2.
  • the phase detector 42 compares the signal from the variable frequency divider 150 with the signal from the indicator phase-locked loop 158, and outputs a signal corresponding to the phase difference.
  • the relationship between the frequency Fit of the second reference signal from the integer phase-locked loop 21 and the frequency Fout of the final output signal output to the output unit 14 is determined. It can be expressed as in equation (10).
  • the multiplication ratio Nint of the circuit 158 that is, the frequency Flpf of the signal input to the inter-counter phase-locked loop 158 (the signal output from the low-pass filter 56) and the frequency Fint2 of the signal output from the inter-counter phase-locked loop 158.
  • the relationship (Fint2 / Flpf) is appropriately set based on the desired value of the frequency Fout of the final output signal.
  • FIG. 8 is an explanatory diagram showing a linear model of the fractional phase-locked loop 140B included in the phase-locked loop device 120B of the third embodiment.
  • the linear model of the fractional phase-locked loop 140B of the third embodiment of FIG. 8 is the second embodiment of FIG. 6 except that the transfer function (Nint ⁇ Gint (s)) of the integer phase-locked loop 158 is added. It is the same as the linear model of the example fractional phase-locked loop 140. Therefore, the difference between the linear model of the fractional phase-locked loop 140 of the third embodiment and the linear model of the fractional phase-locked loop 140 of the second embodiment will be described. With reference to FIG.
  • the final output signal ⁇ out output to the output unit 14 can be expressed as the equation (12).
  • the Laplace operator s is sufficiently small, that is, when the value Hol (s) is sufficiently large and is within the band of the value Gint (s)
  • the phase noise ⁇ n, div is large. It can be seen that it is reduced to about 1 / Nint and appears in the final output signal ⁇ out. Therefore, it can be said that it is possible to more sufficiently avoid the phase noises ⁇ n and div being greatly amplified and appearing in the final output signal ⁇ out.
  • phase noise appearing in the final output signal ⁇ out of the fractional phase-locked loop 140B of the third embodiment is simply Nint with respect to the phase noise appearing in the final output signal ⁇ out of the fractional phase-locked loop 140 of the second embodiment. It does not mean that it becomes one of. The reason for this will be described below.
  • the signal from the low pass filter 56 (the signal of frequency Flpf) is input to the phase detector 42, whereas the fractional phase of the third embodiment is input.
  • a signal (a signal of frequency Flpf ⁇ Nint) from the inverter phase-locked loop 158 is input to the phase detector 42.
  • the variable frequency divider of the fractional phase-locked loop 140B of the third embodiment is used. It is necessary to multiply the desired value of the frequency Ffd2 of the signal from 150 by Nint with respect to the desired value of the frequency Ffd2 of the signal from the variable frequency divider 150 of the fractional phase-locked loop 140 of the second embodiment.
  • the desired value of the variable division ratio Nfd2 of the variable frequency divider 150 of the third embodiment is set to the desired value of the variable division ratio Nfd2 of the variable frequency divider 150 of the second embodiment by Nint. Must be 1.
  • the third embodiment is performed. It is necessary to set the desired value of the variable division ratio Nfd2 of the variable frequency divider 150 of the example to 5.023.
  • the variable frequency division ratio Nfd2 is set to 50 or 51
  • the variable frequency division ratio Nfd2 is 5 or It should be 6.
  • phase noise appearing in the final output signal ⁇ out of the fractional phase-locked loop 140B of the third embodiment is simply the phase noise appearing in the final output signal ⁇ out of the fractional phase-locked loop 140 of the second embodiment. It is not 1 / Nint.
  • FIG. 9 is an explanatory diagram of the fractional phase-locked loop 140 of the second embodiment
  • FIG. 10 is an explanatory diagram of the fractional phase-locked loop 140B of the third embodiment.
  • the figure on the left side is an explanatory view showing an example of the frequency characteristics of the phase noise ⁇ n, div, and the center figure shows the output of the variable frequency divider 150 as an input and the output unit 14 as an input.
  • the first predetermined circuit which became an output
  • the figure on the right side is an example of the frequency characteristic of the phase of the phase noise included in the final output signal.
  • “Fbw” in FIGS. 9 and 10 is the bandwidth of the first predetermined circuit in the fractional phase-locked loops 140 and 140B. In FIGS. 9 and 10, the bandwidths Fbw of the first predetermined circuit in the fractional phase-locked loops 140 and 140B are the same.
  • “Flpf” in FIG. 9 is the frequency of the signal output from the low-pass filter 56 to the phase detector 42
  • FIG. 10 “Fint2” is the frequency of the signal output from the indicator phase-locked loop 158 to the phase detector 42. The frequency, that is, the frequency of Nint times the frequency Flpf.
  • variable frequency divider 150 of the fractional phase-locked loop 140B when the frequency Fout of the final output signal is the same, the variable frequency divider 150 of the fractional phase-locked loop 140B This is because it is necessary to multiply the desired value of the frequency Ffd2 of the signal from Ffd2 by Nint with respect to the desired value of the frequency Ffd2 of the signal from the variable frequency divider 150 of the fractional phase-locked loop 140.
  • the phase noise ⁇ n div spreads to the higher frequency side as compared with the fractional phase-locked loop 140, so that when the bandwidth Fbw of the first predetermined circuit is the same, the phase noise ⁇ n, It can be seen that the div is further reduced, that is, the phase noise appearing in the final output signal ⁇ out is smaller. From this, it is assumed that in the fractional phase-locked loop 140B, the phase noise appearing in the final output signal ⁇ out is smaller than that in the fractional phase-locked loop 140 even when the bandwidth Fbw of the first predetermined circuit is large to some extent.
  • FIG. 11 is an explanatory diagram when the bandwidth Fbw2 of the second predetermined circuit of the fractional phase-locked loop 140B is a relatively small value Fbwlo, and FIG.
  • FIGS. 11 and 12 are explanatory diagram of the bandwidth Fbw2 of the second predetermined circuit of the fractional phase-locked loop 140B. It is explanatory drawing when is a value Fbwhi larger than a value Fbwlo.
  • the figure on the left is an explanatory diagram showing an example of the frequency characteristics of the phase noises ⁇ n and vco
  • the figure in the center is an explanatory diagram showing an example of the frequency characteristics of the transfer function of the second predetermined circuit.
  • the figure on the right is an explanatory diagram showing an example of the frequency characteristics of the phase noise included in the final output signal ⁇ out. Comparing FIGS.
  • phase noises ⁇ n and vco are reduced as the bandwidth Fbw2 of the second predetermined circuit is widened, that is, the phase noises appearing in the final output signal ⁇ out are smaller. .. Then, if the bandwidth Fbw2 of the second predetermined circuit can be increased, the voltage controlled oscillator 48 having a slightly larger phase noise can be selected. As a result, as the voltage controlled oscillator 48, a voltage controlled oscillator with a small power consumption and an area can be used although the phase noises ⁇ n and vco are slightly large.
  • the fractional phase-locked loop 140B included in the phase-locked loop device 120B of the third embodiment described above includes an integer phase-locked loop 158 in addition to the configuration of the fractional phase-locked loop 140 of the second embodiment.
  • the integer phase-locked loop 158 multiplies the frequency Flpf of the signal from the low-pass filter 56 and outputs it to the phase detector 42 as a signal of frequency Fit2.
  • the phase detector 42 of the fractional phase-locked loop 140B compares the signal from the variable frequency divider 150 with the signal from the indicator phase-locked loop 158 and outputs a signal corresponding to the phase difference.
  • the phase noise appearing in the signal from the variable frequency divider 150 is greatly amplified and appears in the final output signal ⁇ out more sufficiently than in the phase-locked loop device 120B of the second embodiment. It can be avoided. Further, in the fractional phase-locked loop 140B of the third embodiment, in addition to reducing the phase noise in the final output signal ⁇ out, similarly to the fractional phase-locked loops 40 and 140 of the first embodiment and the second embodiment, Fractional spar can also be reduced.
  • FIG. 13 is a configuration diagram showing an outline of the configuration of the phase-locked loop device 20B of the fourth embodiment.
  • the phase-locked loop device 20B of the third embodiment is the same as the phase-locked loop device 20 of the first embodiment shown in FIG. 1, except that the fractional phase-locked loop circuit 40 is replaced with the fractional phase-locked loop circuit 40B. is there.
  • the fractional phase-locked loop 40B of the fourth embodiment is the same as the fractional phase-locked loop 40 of the first embodiment except that the integer phase-locked loop 58 is added. Therefore, among the phase-locked loop devices 20B of the fourth embodiment, the same configurations as those of the phase-locked loop device 20 of the first embodiment are designated by the same reference numerals, and detailed description thereof will be omitted.
  • the integrator phase-locked loop 58 is configured in the same manner as the integrator phase-locked loop 158 of the fractional phase-locked loop 140B of the third embodiment, and the frequency Flpf of the signal from the low-pass filter 56 is multiplied to obtain a signal of frequency Fit2. Is output to the phase detector 42.
  • the phase detector 42 compares the signal from the variable frequency divider 50 with the signal from the indicator phase-locked loop 58, and outputs a signal corresponding to the phase difference.
  • the relationship between the frequency Fit of the second reference signal from the integer phase-locked loop 21 and the frequency Fout of the final output signal output to the output unit 14 is determined. It can be expressed as in equation (13).
  • the multiplication ratio Nint of the circuit 58 that is, the frequency Flpf of the signal input to the intercounter phase-locked loop 58 (the signal output from the low-pass filter 56) and the frequency Fint2 of the signal output from the intercounter phase-locked loop 58.
  • the relationship (Fint2 / Flpf) is appropriately set based on the desired value of the frequency Fout of the final output signal.
  • FIG. 14 is an explanatory diagram showing a linear model of the fractional phase-locked loop 40B included in the phase-locked loop device 20B of the fourth embodiment.
  • the linear model of the fractional phase-locked loop 40B of the fourth embodiment of FIG. 14 is the first embodiment of FIG. 2 except that the transfer function (Nint ⁇ Gint (s)) of the integral phase-locked loop 58 is added. It is the same as the linear model of the fractional phase-locked loop 40 of. Therefore, the difference between the linear model of the fractional phase-locked loop 40B of the fourth embodiment and the linear model of the fractional phase-locked loop 40 of the first embodiment will be described. With reference to FIG.
  • the final output signal ⁇ out output to the output unit 14 can be expressed as the equation (15).
  • the Laplace operator s is sufficiently small, that is, when the value Hol (s) is sufficiently large and is within the band of the value Gint (s)
  • the phase noise ⁇ n, div is large. It can be seen that it is reduced to about 1 / Nint and appears in the final output signal ⁇ out. Therefore, it can be said that it is possible to more sufficiently avoid the phase noises ⁇ n and div being greatly amplified and appearing in the final output signal ⁇ out.
  • fractional phase-locked loop 40B of the fourth embodiment has the same effect as that of the fractional phase-locked loop 140B of the third embodiment described with reference to FIGS. 9 to 12.
  • the fractional phase-locked loop 40B included in the phase-locked loop device 20B of the fourth embodiment described above includes an integer phase-locked loop 58 in addition to the configuration of the fractional phase-locked loop 40 of the first embodiment.
  • the integer phase-locked loop 58 multiplies the frequency Flpf of the signal from the low-pass filter 56 and outputs it to the phase detector 42 as a signal of frequency Fit2.
  • the phase detector 42 of the fractional phase-locked loop 40B compares the signal from the variable frequency divider 50 with the signal from the indicator phase-locked loop 58 and outputs a signal corresponding to the phase difference.
  • the phase noise appearing in the signal from the variable frequency divider 50 is greatly amplified and appears in the final output signal ⁇ out more sufficiently than the phase-locked loop device 20B of the first embodiment. It can be avoided. Further, in the fractional phase-locked loop 40B of the fourth embodiment, in addition to reducing the phase noise in the final output signal ⁇ out, the fractional phase-locked loop 40 of the first embodiment, the second embodiment, and the third embodiment, Similar to 140 and 140B, the fractional spar can be reduced.
  • the second reference signal from the integer phase-locked loop 21 has a fixed frequency division ratio.
  • a fixed frequency divider 52 that divides the frequency with Nid2 and outputs the frequency to the harmonic mixer 54 is provided.
  • the second reference signal from the integer phase-locked loop 21 may be directly input to the harmonic mixer 54 without the fixed frequency divider 52.
  • phase-locked loop circuit 21 connected to the oscillator 12 and the inverter phase
  • the fractional phase-locked loop 40 may be connected to the oscillator 12 and the output unit 14 without the integer phase-locked loop 21.
  • the oscillator 12 instead of the crystal oscillator that oscillates a signal having a frequency of about 20 MHz to 100 MHz as described above, an oscillator that oscillates a signal having a frequency of about several hundred MHz to 1 GHz is used. preferable.
  • the phase detector 42, the charge pump 44, the loop filter 46, and the voltage controlled oscillator 48 correspond to the "first frequency adjusting unit", and the variable frequency divider 50 or the variable frequency divider 50 or the variable frequency divider 40.
  • the device 150 corresponds to the "variable frequency divider”
  • the harmonic mixer 54 and the low-pass filter 56 correspond to the "second frequency adjusting unit”.
  • the fixed frequency divider 52 corresponds to the “fixed frequency divider”.
  • the invention described in the column of the means for solving the problem in the examples is carried out. Since it is an example for specifically explaining the form for solving the problem, the elements of the invention described in the column of means for solving the problem are not limited. That is, the interpretation of the invention described in the column of means for solving the problem should be performed based on the description in the column, and the examples are the inventions described in the column of means for solving the problem. It is just a concrete example.
  • the present invention can be used in the manufacturing industry of fractional phase-locked loops and phase-locked loop devices.

Landscapes

  • Stabilization Of Oscillater, Synchronisation, Frequency Synthesizers (AREA)

Abstract

A fractional phase-locked loop that multiplies the frequency of a reference signal by a non-integer and outputs a resultant signal to an output unit, comprises: a first frequency adjusting unit which controls the frequency of a signal to be output to the output unit, on the basis of a phase difference between two input signals; a variable frequency divider which divides the frequency of the reference signal or the signal from the first frequency adjusting unit by a variable division ratio, and outputs a resultant signal to the first frequency adjusting unit; and a second frequency adjusting unit which outputs, to the first frequency adjusting unit, a signal of a second related frequency based on a difference between the frequency of the signal from the first frequency adjusting unit and a first related frequency based on the frequency of the reference signal.

Description

フラクショナル位相同期回路および位相同期回路装置Fractional phase-locked loop and phase-locked loop device
 本発明は、フラクショナル位相同期回路および位相同期回路装置に関する。 The present invention relates to a fractional phase-locked loop and a phase-locked loop device.
 従来、この種のフラクショナル位相同期回路(PLL:Phase Locked Loop)としては、基準信号の周波数を非整数倍して出力するものが提案されている(例えば、特許文献1や非特許文献1参照)。図15に示すように、これらのフラクショナル位相同期回路820では、位相検出器(PFD:Phase Frequency Detector)822と、チャージポンプ(CP:Charge Pump)824と、ループフィルタ(LF:Loop Filter)826と、電圧制御発振器(VCO:Voltage Controlled Oscillator)828と、可変分周器(可変DIV:Divider)830とを備える。ここで、位相検出器822は、発振器812からの基準信号と可変分周器830からの参照信号とを比較して位相差に応じた信号を出力する。チャージポンプ824は、位相検出器822からの信号を電流に変換する。ループフィルタ826は、チャージポンプ824からの電流の高周波数成分を除去して電圧制御発振器828の制御電圧に変換する。電圧制御発振器828は、ループフィルタ826からの制御電圧に基づいて、出力する信号の周波数を制御する。可変分周器830は、電圧制御発振器828からの信号を可変分周比で分周して参照信号として位相検出器822に出力する。こうしたフラクショナル位相同期回路820では、電圧制御発振器828からの信号の周波数Foutは、理想的には、発振器812からの基準信号の周波数Frefに可変分周器830の分周比の所望値(非整数)を乗じた値となる。 Conventionally, as a fractional phase-locked loop (PLL: Phase Locked Loop) of this type, one that outputs the frequency of a reference signal multiplied by a non-integer has been proposed (see, for example, Patent Document 1 and Non-Patent Document 1). .. As shown in FIG. 15, in these fractional phase-locked loops 820, a phase detector (PFD: Phase Frequency Detector) 822, a charge pump (CP: Charge Pump) 824, and a loop filter (LF: Loop Filter) 626 are used. , A voltage controlled oscillator (VCO: Voltage Controlled Oscillator) 828 and a variable divider (variable DIV: Divider) 830 are provided. Here, the phase detector 822 compares the reference signal from the oscillator 812 with the reference signal from the variable frequency divider 830 and outputs a signal corresponding to the phase difference. The charge pump 824 converts the signal from the phase detector 822 into an electric current. The loop filter 826 removes the high frequency component of the current from the charge pump 824 and converts it into the control voltage of the voltage controlled oscillator 828. The voltage controlled oscillator 828 controls the frequency of the output signal based on the control voltage from the loop filter 826. The variable frequency divider 830 divides the signal from the voltage controlled oscillator 828 by a variable frequency division ratio and outputs it to the phase detector 822 as a reference signal. In such a fractional phase-locked loop 820, the frequency Fout of the signal from the voltage controlled oscillator 828 is ideally a desired value (non-integer) of the frequency division ratio of the variable frequency divider 830 to the frequency Fref of the reference signal from the oscillator 812. ) Is multiplied.
特開2006-303554号公報Japanese Unexamined Patent Publication No. 2006-303554
 上述のフラクショナル位相同期回路820において、例えば、電圧制御発振器828からの信号の周波数Foutを発振器812からの基準信号の周波数Frefの39.25倍にしたいときには、可変分周器830の分周比を25%の割合で39にすると共に75%の割合で40にする必要がある。このため、可変分周器830の分周比の実際値(39または40)と所望値(39.25)とのずれにより可変分周器830からの信号に位相誤差が生じ、これに起因した位相雑音がフラクショナル位相同期回路820の最終出力信号に現われる。また、PFD822やLPF824などの構成要素が非線形性を有することに起因して可変分周器830の出力変動に伴って最終出力信号にフラクショナルスパー(Fractional Spur)と呼ばれる特定の周波数における雑音も現れる。 In the above-mentioned fractional phase-locked loop 820, for example, when it is desired to make the frequency Fout of the signal from the voltage controlled oscillator 828 39.25 times the frequency Fref of the reference signal from the oscillator 812, the division ratio of the variable frequency divider 830 is set. It should be 39 at a rate of 25% and 40 at a rate of 75%. Therefore, a phase error occurs in the signal from the variable frequency divider 830 due to the deviation between the actual value (39 or 40) and the desired value (39.25) of the frequency division ratio of the variable frequency divider 830, which is caused by this. Phase noise appears in the final output signal of the fractional phase-locked loop 820. Further, due to the non-linearity of the components such as PFD822 and LPF824, noise at a specific frequency called Fractional Spur also appears in the final output signal as the output of the variable divider 830 fluctuates.
 図16は、上述のフラクショナル位相同期回路820の線形モデルを示す説明図である。図中、「Kpd」、「F(s)」、「Kvco/s」、「÷Nfd」は、それぞれ位相検出器822およびチャージポンプ824、ループフィルタ826、電圧制御発振器828、可変分周器830を伝達関数で表わしたものである。「φref」は、基準信号である。「φout」は、最終的に出力される出力信号である。「In,cp」は、チャージポンプ824からの電流の乱れによる位相雑音である。「φn,vco」は、電圧制御発振器828内で発生する位相雑音である。「φn,div」は、可変分周器830からの信号に現われる位相雑音である。この図16を参照して、式(1)のように定義すると、出力信号φoutは、式(2)のように表わすことができる。この式(2)から、位相雑音φn,divが略Nfd倍(例えば、略39.25倍)に増幅されて出力信号φoutに現われることが分かる。このため、位相雑音φn,divが大きく増幅されるのを回避可能なフラクショナル位相同期回路を考案することが求められている。 FIG. 16 is an explanatory diagram showing a linear model of the above-mentioned fractional phase-locked loop 820. In the figure, “Kpd”, “F (s)”, “Kvco / s”, and “÷ Nfd” are the phase detector 822, the charge pump 824, the loop filter 828, the voltage controlled oscillator 828, and the variable divider 830, respectively. Is expressed by a transfer function. “Φref” is a reference signal. “Φout” is an output signal that is finally output. “In, cp” is phase noise due to disturbance of the current from the charge pump 824. “Φn, vco” is the phase noise generated in the voltage controlled oscillator 828. “Φn, div” is the phase noise that appears in the signal from the variable divider 830. With reference to FIG. 16, if defined as in equation (1), the output signal φout can be expressed as in equation (2). From this equation (2), it can be seen that the phase noises φn and div are amplified by approximately Nfd times (for example, approximately 39.25 times) and appear in the output signal φout. Therefore, it is required to devise a fractional phase-locked loop that can avoid the phase noise φn and div being greatly amplified.
Figure JPOXMLDOC01-appb-M000001
Figure JPOXMLDOC01-appb-M000001
 本発明のフラクショナル位相同期回路および位相同期回路装置は、可変分周器からの信号に現われる位相雑音が大きく増幅されるのを回避可能な構成を提供することを主目的とする。 The main object of the fractional phase-locked loop and the phase-locked loop device of the present invention is to provide a configuration capable of avoiding a large amplification of phase noise appearing in a signal from a variable frequency divider.
 本発明のフラクショナル位相同期回路および位相同期回路装置は、上述の主目的を達成するために以下の手段を採った。 The fractional phase-locked loop and the phase-locked loop device of the present invention have adopted the following means in order to achieve the above-mentioned main object.
 本発明のフラクショナル位相同期回路は、
 基準信号の周波数を非整数倍して出力部に出力するフラクショナル位相同期回路であって、
 2つの入力信号の位相差に基づいて、前記出力部に出力する信号の周波数を制御する第1周波数調節部と、
 前記基準信号または前記第1周波数調節部からの信号の周波数を可変分周比で分周して前記第1周波数調節部に出力する可変分周器と、
 前記第1周波数調節部からの信号の周波数と前記基準信号の周波数に基づく第1関連周波数との差分または前記差分の逓倍の第2関連周波数の信号を前記第1周波数調節部に出力する第2周波数調節部と、
 を備えることを要旨とする。
The fractional phase-locked loop of the present invention
A fractional phase-locked loop that multiplies the frequency of the reference signal by a non-integer and outputs it to the output section.
A first frequency adjusting unit that controls the frequency of the signal output to the output unit based on the phase difference between the two input signals.
A variable frequency divider that divides the frequency of the reference signal or the signal from the first frequency adjustment unit by a variable division ratio and outputs it to the first frequency adjustment unit.
A second that outputs a signal of the second related frequency of the difference between the frequency of the signal from the first frequency adjusting unit and the first related frequency based on the frequency of the reference signal or the multiplication of the difference to the first frequency adjusting unit. Frequency control unit and
The gist is to prepare.
 この本発明のフラクショナル位相同期回路では、2つの入力信号の位相差に基づいて出力部に出力する信号の周波数を制御する第1周波数調節部と、基準信号または第1周波数調節部からの信号の周波数を可変分周比で分周して第1周波数調節部に出力する可変分周器と、第1周波数調節部からの信号の周波数と基準信号の周波数に基づく第1関連周波数との差分またはその差分の逓倍の第2関連周波数の信号を第1周波数調節部に出力する第2周波数調節部とを備える。こうした構成とすることにより、可変分周器からの信号に現われる位相雑音が大きく増幅されるのを回避することができる。発明者らは、このことを本発明のフラクショナル位相同期回路の線形モデルにより確認した。 In the fractional phase synchronization circuit of the present invention, the first frequency adjusting unit that controls the frequency of the signal output to the output unit based on the phase difference between the two input signals, and the reference signal or the signal from the first frequency adjusting unit The difference between the variable frequency divider that divides the frequency by the variable frequency division ratio and outputs it to the first frequency control unit, and the first related frequency based on the frequency of the signal from the first frequency control unit and the frequency of the reference signal. It is provided with a second frequency adjusting unit that outputs a signal of the second related frequency obtained by multiplying the difference to the first frequency adjusting unit. With such a configuration, it is possible to prevent the phase noise appearing in the signal from the variable divider from being greatly amplified. The inventors confirmed this by the linear model of the fractional phase-locked loop of the present invention.
 本発明のフラクショナル位相同期回路において、前記第2周波数調節部は、前記第1周波数調節部からの信号の周波数と、前記基準信号または前記基準信号に基づく関連信号の周波数の各逓倍の周波数と、の各差分の周波数成分を含む信号を生成するハーモニックミキサと、前記ハーモニックミキサからの信号に含まれる各周波数成分から所定周波数以下の周波数成分を抽出して出力するローパスフィルタとを有するものとしてもよい。この場合、前記ローパスフィルタは、前記各周波数成分から最小周波数の成分だけを抽出して出力するものとしてもよい。 In the fractional phase synchronization circuit of the present invention, the second frequency adjusting unit includes the frequency of the signal from the first frequency adjusting unit and the frequency obtained by multiplying the frequency of the reference signal or the frequency of the related signal based on the reference signal. It may have a harmonic mixer that generates a signal including the frequency component of each difference of the above, and a low-pass filter that extracts and outputs a frequency component of a predetermined frequency or less from each frequency component included in the signal from the harmonic mixer. .. In this case, the low-pass filter may extract and output only the minimum frequency component from each of the frequency components.
 本発明のフラクショナル位相同期回路において、前記第2周波数調節部は、前記ローパスフィルタからの信号の周波数を逓倍して出力するインテジャー位相同期回路を更に有するものとしてもよい。こうすれば、可変分周器からの信号に現われる位相雑音が大きく増幅されるのをより十分に回避することができる。発明者らは、このことをこの態様の本発明のフラクショナル位相同期回路の線形モデルにより確認した。 In the fractional phase-locked loop of the present invention, the second frequency adjusting unit may further include an integer phase-locked loop that multiplies and outputs the frequency of the signal from the low-pass filter. In this way, it is possible to more sufficiently avoid that the phase noise appearing in the signal from the variable frequency divider is greatly amplified. The inventors confirmed this by a linear model of the fractional phase-locked loop of the present invention in this embodiment.
 本発明のフラクショナル位相同期回路において、前記基準信号を固定分周比で分周して前記第2周波数調節部に出力する固定分周器を備えるものとしてもよい。こうすれば、インジェクションプリング(Injection Pulling)を回避することができる。この詳細については、例えば文献Aに記載されている。 The fractional phase-locked loop of the present invention may include a fixed frequency divider that divides the reference signal by a fixed frequency division ratio and outputs it to the second frequency adjustment unit. In this way, injection pulling can be avoided. The details are described in, for example, Document A.
 文献A:D Yang et al., “A Calibration Free Triple Loop Bang Bang PLL Achieving 131fsrms Jitter and 70dBc Fractional Spurs”, ISSCC, Feb. 2019 Reference A: D Yang et al., “A Calibration Free Triple Loop Bang Bang PLL Achieving 131fsrms Jitter and 70dBc Fractional Spurs”, ISSCC, Feb. 2019
 本発明のフラクショナル位相同期回路において、前記第1周波数調節部は、2つの入力信号を比較して位相差に応じた信号を出力する位相検出器と、前記位相検出器からの信号を電流に変換するチャージポンプと、前記チャージポンプからの電流の所定周波数よりも高い周波数成分を除去して電圧に変換するループフィルタと、前記ループフィルタからの電圧に基づいて、前記出力部に出力する信号の周波数を制御する電圧制御発振器とを有するものとしてもよい。 In the fractional phase synchronization circuit of the present invention, the first frequency adjusting unit compares two input signals and outputs a signal corresponding to the phase difference, and converts a signal from the phase detector into a current. Charge pump, a loop filter that removes frequency components higher than a predetermined frequency of the current from the charge pump and converts it into a voltage, and a frequency of a signal output to the output unit based on the voltage from the loop filter. It may have a voltage controlled oscillator for controlling the above.
 本発明の位相同期回路装置は、上述の何れかの態様の本発明のフラクショナル位相同期回路と、初期基準信号の周波数を逓倍して前記基準信号として前記フラクショナル位相同期回路に出力する第2インテジャー位相同期回路とを備えることを要旨とする。 The phase-locked loop loop device of the present invention is the fractional phase-locked loop of the present invention of any of the above-described aspects, and a second inserter that multiplies the frequency of the initial reference signal and outputs it as the reference signal to the fractional phase-locked loop. The gist is to provide a phase-locked loop.
 この本発明の位相同期回路装置では、上述の何れかの態様の本発明のフラクショナル位相同期回路を備えるから、本発明のフラクショナル位相同期回路が奏する効果、例えば、可変分周器からの信号に現われる位相雑音が大きく増幅されるのを回避することができる効果などと同様の効果を奏することができる。 Since the phase-locked loop device of the present invention includes the fractional phase-locked loop of the present invention in any of the above aspects, the effect exerted by the fractional phase-locked loop of the present invention, for example, appears in the signal from the variable frequency divider. It is possible to obtain the same effect as the effect of avoiding the large amplification of the phase noise.
 本発明の位相同期回路装置において、前記可変分周器は、前記第1周波数調節部からの信号の周波数を可変分周比で分周して前記第1周波数調節部に出力するものとしてもよい。こうすれば、可変分周器の入力周波数を高くするために、インテジャー位相同期回路からの基準信号の周波数を高くしなくてよいから、インテジャー位相同期回路の消費電力を抑制することができる。 In the phase-locked loop device of the present invention, the variable frequency divider may divide the frequency of the signal from the first frequency control unit by a variable division ratio and output it to the first frequency control unit. .. In this way, in order to increase the input frequency of the variable frequency divider, it is not necessary to increase the frequency of the reference signal from the integer phase-locked loop, so that the power consumption of the integer phase-locked loop can be suppressed. ..
本発明の第1実施例としての位相同期回路装置20の構成の概略を示す構成図である。It is a block diagram which shows the outline of the structure of the phase-locked loop device 20 as the 1st Example of this invention. 第1実施例の位相同期回路装置20が備えるフラクショナル位相同期回路40の線形モデルを示す説明図である。It is explanatory drawing which shows the linear model of the fractional phase-locked loop 40 which the phase-locked loop apparatus 20 of 1st Example includes. 従来例のフラクショナル位相同期回路820を用いたときの解析結果の一例を示す説明図である。It is explanatory drawing which shows an example of the analysis result at the time of using the fractional phase-locked loop 820 of the conventional example. 第1実施例の位相同期回路装置20(フラクショナル位相同期回路40)を用いたときの解析結果の一例を示す説明図である。It is explanatory drawing which shows an example of the analysis result at the time of using the phase-locked loop apparatus 20 (fractional phase-locked loop 40) of 1st Example. 第2実施例の位相同期回路装置120の構成の概略を示す構成図である。It is a block diagram which shows the outline of the structure of the phase-locked loop device 120 of 2nd Example. 第2実施例の位相同期回路装置120が備えるフラクショナル位相同期回路140の線形モデルを示す説明図である。It is explanatory drawing which shows the linear model of the fractional phase-locked loop 140 included in the phase-locked loop apparatus 120 of 2nd Example. 第3実施例の位相同期回路装置120Bの構成の概略を示す構成図である。It is a block diagram which shows the outline of the structure of the phase-locked loop device 120B of 3rd Example. 第3実施例の位相同期回路装置120Bが備えるフラクショナル位相同期回路140Bの線形モデルを示す説明図である。It is explanatory drawing which shows the linear model of the fractional phase-locked loop 140B included in the phase-locked loop apparatus 120B of 3rd Example. 第2実施例のフラクショナル位相同期回路140についての説明図である。It is explanatory drawing about the fractional phase-locked loop 140 of 2nd Example. 第3実施例のフラクショナル位相同期回路140Bについての説明図である。It is explanatory drawing about the fractional phase-locked loop 140B of 3rd Example. フラクショナル位相同期回路140Bのバンド幅Fbwが比較的小さい値Fbw1のときの説明図である。It is explanatory drawing when the bandwidth Fbw of a fractional phase-locked loop 140B is a value Fbw1 which is relatively small. フラクショナル位相同期回路140Bのバンド幅Fbwが値Fbw1よりも大きい値Fbw2のときの説明図である。It is explanatory drawing when the bandwidth Fbw of a fractional phase-locked loop 140B is a value Fbw2 which is larger than a value Fbw1. 第4実施例の位相同期回路装置20Bの構成の概略を示す構成図である。It is a block diagram which shows the outline of the structure of the phase-locked loop device 20B of 4th Example. 第4実施例の位相同期回路装置20Bが備えるフラクショナル位相同期回路40Bの線形モデルを示す説明図である。It is explanatory drawing which shows the linear model of the fractional phase-locked loop 40B included in the phase-locked loop apparatus 20B of 4th Example. 従来例のフラクショナル位相同期回路820の構成の概略を示す構成図である。It is a block diagram which shows the outline of the structure of the fractional phase-locked loop 820 of the conventional example. 従来例のフラクショナル位相同期回路820の線形モデルを示す説明図である。It is explanatory drawing which shows the linear model of the fractional phase-locked loop 820 of the conventional example.
 次に、本発明を実施するための形態を実施例を用いて説明する。 Next, a mode for carrying out the present invention will be described with reference to examples.
 図1は、本発明の第1実施例としての位相同期回路装置20の構成の概略を示す構成図である。第1実施例の位相同期回路装置20は、図示するように、発振器12に接続されるインテジャー位相同期回路21と、インテジャー位相同期回路21と出力部14とに接続されるフラクショナル位相同期回路40とを備える。ここで、発振器12としては、例えば、20MHz~100MHz程度の周波数の信号を発振する水晶発振器が用いられる。 FIG. 1 is a configuration diagram showing an outline of the configuration of the phase-locked loop device 20 as the first embodiment of the present invention. As shown in the figure, the phase-locked loop loop device 20 of the first embodiment includes an integer phase-locked loop 21 connected to the oscillator 12, and a fractional phase-locked loop circuit 21 connected to the integral phase-locked loop 21 and the output unit 14. 40 and. Here, as the oscillator 12, for example, a crystal oscillator that oscillates a signal having a frequency of about 20 MHz to 100 MHz is used.
 インテジャー位相同期回路21は、発振器12からの第1基準信号の周波数Frefを逓倍して第2基準信号(周波数Fintの信号)としてフラクショナル位相同期回路40に出力する回路として構成されており、位相検出器(PFD)22と、チャージポンプ(CP)24と、ループフィルタ(LF)26と、電圧制御発振器(VCO)28と、固定分周器(固定DIV)30とを備える。 The injector phase-locked loop 21 is configured as a circuit that multiplies the frequency Fref of the first reference signal from the oscillator 12 and outputs it as a second reference signal (frequency Fit signal) to the fractional phase-locked loop 40. It includes a detector (PFD) 22, a charge pump (CP) 24, a loop filter (LF) 26, a voltage controlled oscillator (VCO) 28, and a fixed frequency divider (fixed DIV) 30.
 位相検出器22は、発振器12からの第1基準信号と固定分周器30からの信号とを比較して位相差に応じた信号を出力する。チャージポンプ24は、位相検出器22からの信号を電流に変換する。位相検出器22およびチャージポンプ24は、発振器12からの第1基準信号の周波数Frefと固定分周器30からの信号の周波数Fid1とを一致させるために用いられる。 The phase detector 22 compares the first reference signal from the oscillator 12 with the signal from the fixed frequency divider 30 and outputs a signal corresponding to the phase difference. The charge pump 24 converts the signal from the phase detector 22 into an electric current. The phase detector 22 and the charge pump 24 are used to match the frequency Fref of the first reference signal from the oscillator 12 with the frequency Fid1 of the signal from the fixed frequency divider 30.
 ループフィルタ26は、チャージポンプ24からの電流の高周波数成分(所定周波数F0よりも高い周波数成分)を除去して電圧制御発振器28の制御電圧に変換する。電圧制御発振器28は、ループフィルタ26からの制御電圧に基づいて、フラクショナル位相同期回路40に出力する第2基準信号の周波数Fintを制御する。固定分周器30は、電圧制御発振器28からの信号を固定分周比Nid1で分周して位相検出器22に出力する。したがって、固定分周器30からの信号の周波数Fid1は、周波数(Fint/Nid1)となる。 The loop filter 26 removes high frequency components (frequency components higher than the predetermined frequency F0) of the current from the charge pump 24 and converts them into the control voltage of the voltage controlled oscillator 28. The voltage controlled oscillator 28 controls the frequency Fit of the second reference signal output to the fractional phase-locked loop 40 based on the control voltage from the loop filter 26. The fixed frequency divider 30 divides the signal from the voltage controlled oscillator 28 by a fixed frequency division ratio Nid1 and outputs the signal to the phase detector 22. Therefore, the frequency Fid1 of the signal from the fixed frequency divider 30 becomes the frequency (Fint / Nid1).
 こうして構成されるインテジャー位相同期回路21では、発振器12からの第1基準信号の周波数Frefとフラクショナル位相同期回路40に出力する第2基準信号の周波数Fintとの関係は、式(3)のように表わすことができる。 In the integrated phase-locked loop 21 configured in this way, the relationship between the frequency Fref of the first reference signal from the oscillator 12 and the frequency Fit of the second reference signal output to the fractional phase-locked loop 40 is as shown in equation (3). Can be expressed in.
 Fint=Fref・Fid1      (3) Fint = Fref Fid1 (3)
 フラクショナル位相同期回路40は、インテジャー位相同期回路21からの第2基準信号の周波数Fintを非整数倍して最終出力信号(周波数Foutの信号)として出力部14に出力する回路として構成されており、位相検出器(PFD)42と、チャージポンプ(CP)44と、ループフィルタ(LF)46と、電圧制御発振器(VCO)48と、可変分周器(可変DIV)50と、固定分周器(固定DIV)52と、ハーモニックミキサ(HM:Harmonic Mixer)54と、ローパスフィルタ(LPF)56とを備える。 The fractional phase-locked loop 40 is configured as a circuit that multiplies the frequency Fit of the second reference signal from the integer phase-locked loop 21 by a non-integral and outputs the final output signal (frequency Fout signal) to the output unit 14. , Phase detector (PFD) 42, charge pump (CP) 44, loop filter (LF) 46, voltage controlled oscillator (VCO) 48, variable frequency divider (variable DIV) 50, fixed frequency divider It includes a (fixed DIV) 52, a harmonic mixer (HM) 54, and a low-pass filter (LPF) 56.
 位相検出器42は、可変分周器50からの信号とローパスフィルタ56からの信号とを比較して位相差に応じた信号を出力する。チャージポンプ44は、位相検出器42からの信号を電流に変換する。位相検出器42およびチャージポンプ44は、可変分周器50からの信号の周波数Ffdとローパスフィルタ56からの信号の周波数Flpfとを一致させるために用いられる。 The phase detector 42 compares the signal from the variable frequency divider 50 with the signal from the low-pass filter 56, and outputs a signal corresponding to the phase difference. The charge pump 44 converts the signal from the phase detector 42 into an electric current. The phase detector 42 and the charge pump 44 are used to match the frequency Ffd of the signal from the variable frequency divider 50 with the frequency Flpf of the signal from the lowpass filter 56.
 ループフィルタ46は、チャージポンプ44からの電流の高周波数成分(所定周波数F1よりも高い周波数成分)を除去して電圧制御発振器48の制御電圧に変換する。なお、所定周波数F1は、所定周波数F0と同一の周波数でもよいし、異なる周波数でもよい。電圧制御発振器48は、ループフィルタ46からの制御電圧に基づいて、出力部14に出力する最終出力信号の周波数Foutを制御する。 The loop filter 46 removes high frequency components (frequency components higher than the predetermined frequency F1) of the current from the charge pump 44 and converts them into the control voltage of the voltage controlled oscillator 48. The predetermined frequency F1 may be the same frequency as the predetermined frequency F0, or may be a different frequency. The voltage controlled oscillator 48 controls the frequency Fout of the final output signal output to the output unit 14 based on the control voltage from the loop filter 46.
 可変分周器50は、例えば、分周比を変更可能なマルチモジュール分周器(MMD:Multi-Modulus Divider)と、このマルチモジュール分周器を用いて分周比を制御するデルタシグマモジュレータ(DSM:Delta-Sigma Modulator)とを有する周知の可変分周器として構成されている。この可変分周器50は、インテジャー位相同期回路21からの第2基準信号を可変分周比Nfdで分周して位相検出器42に出力する。したがって、可変分周器50からの信号の周波数Ffdは、周波数(Fint/Nfd)となる。可変分周器50は、例えば、可変分周比Nfdの所望値が39.25の場合、の可変分周比Nfdが25%の割合で39になると共に75%の割合で40となるように動作する。 The variable frequency divider 50 includes, for example, a multi-module divider (MMD: Multi-Modulus Divider) capable of changing the frequency division ratio, and a delta-sigma modulator (MMD: Multi-Modulus Divider) that controls the frequency division ratio using the multi-module divider. It is configured as a well-known variable frequency divider with DSM: Delta-Sigma Modulator). The variable frequency divider 50 divides the second reference signal from the integer phase-locked loop 21 by a variable frequency division ratio Nfd and outputs it to the phase detector 42. Therefore, the frequency Ffd of the signal from the variable frequency divider 50 is the frequency (Fint / Nfd). In the variable frequency divider 50, for example, when the desired value of the variable frequency division ratio Nfd is 39.25, the variable frequency division ratio Nfd becomes 39 at a rate of 25% and 40 at a rate of 75%. Operate.
 固定分周器52は、インテジャー位相同期回路21からの第2基準信号を固定分周比Nid2で分周してハーモニックミキサ54に出力する。したがって、固定分周器52からの信号の周波数Fid2は、周波数(Fint/Nid2)となる。 The fixed frequency divider 52 divides the second reference signal from the integer phase-locked loop 21 by a fixed frequency division ratio Nid2 and outputs it to the harmonic mixer 54. Therefore, the frequency Fid2 of the signal from the fixed frequency divider 52 becomes the frequency (Fint / Nid2).
 ハーモニックミキサ54は、周知のサンプルホールド回路(SHC:Sample and Hold Circuit)などを用いて構成されており、電圧制御発振器48からの信号の周波数Foutと固定分周器52からの信号の周波数Fid2(=Fint/Nid2)の各逓倍(1倍、2倍、・・・)の周波数との各差分の周波数成分を含む信号を生成する。ローパスフィルタ56は、ハーモニックミキサ54からの信号から低周波数成分(所定周波数F2以下の周波数成分)を抽出して位相検出器42に出力する。ここで、所定周波数F2は、第1実施例では、ハーモニックミキサ54からの信号に含まれる各周波数成分のうち最小周波数の成分だけが抽出されるように設定されるものとした。したがって、ローパスフィルタ56から位相検出器42に出力される信号の周波数Flpfは、電圧制御発振器48からの信号の周波数Foutと固定分周器52からの信号の周波数Fid2の各逓倍(1倍、2倍、・・・)との各差分の周波数のうち最小周波数となる。以下、各逓倍のうちローパスフィルタ56で抽出される最小周波数に対応する逓倍(例えば、3倍)を「抽出用逓倍Nhm」という。すると、ローパスフィルタ56から位相検出器42に出力される信号の周波数Flpfは、式(4)のように表わすことができる。 The harmonic mixer 54 is configured by using a well-known sample hold circuit (SHC: Sample and Hold Circuit) or the like, and has a frequency Fout of a signal from a voltage controlled oscillator 48 and a frequency Fid2 of a signal from a fixed frequency divider 52 (SHC). = Fit / Nid2) Generates a signal containing the frequency component of each difference from the frequency of each multiplication (1x, 2x, ...). The low-pass filter 56 extracts a low frequency component (frequency component having a predetermined frequency F2 or less) from the signal from the harmonic mixer 54 and outputs it to the phase detector 42. Here, the predetermined frequency F2 is set so that only the minimum frequency component of each frequency component included in the signal from the harmonic mixer 54 is extracted in the first embodiment. Therefore, the frequency Flpf of the signal output from the low-pass filter 56 to the phase detector 42 is a multiplication (1x, 2) of the frequency Fout of the signal from the voltage control oscillator 48 and the frequency Fid2 of the signal from the fixed divider 52. It is the minimum frequency among the frequencies of each difference from the double, ...). Hereinafter, the multiplication (for example, 3 times) corresponding to the minimum frequency extracted by the low-pass filter 56 among the multiplications is referred to as "extraction multiplication Nhm". Then, the frequency Flpf of the signal output from the low-pass filter 56 to the phase detector 42 can be expressed as in the equation (4).
 Flpf=Fout-(Nhm/Nid2)・Fint             (4) Flpf = Fout- (Nhm / Nid2) ・ Fint (4)
 こうして構成される第1実施例のフラクショナル位相同期回路40では、インテジャー位相同期回路21からの第2基準信号の周波数Fintと、出力部14に出力する最終出力信号の周波数Foutとの関係は、式(5)のように表わすことができる。 In the fractional phase-locked loop 40 of the first embodiment configured in this way, the relationship between the frequency Fit of the second reference signal from the integer phase-locked loop 21 and the frequency Fout of the final output signal output to the output unit 14 is determined. It can be expressed as in equation (5).
 Fout=Fint/Nfd+(Nhm/Nid2)・Fint             (5) Fout = Fint / Nfd + (Nhm / Nid2) ・ Fint (5)
 なお、位相同期回路装置20において、固定分周器30の分周比Nid1や、可変分周器50の分周比Nfdの所望値、固定分周器52の分周比Nid2は、最終出力信号の周波数Foutの所望値に基づいて適宜設定される。 In the phase-locked loop device 20, the frequency division ratio Nid1 of the fixed frequency divider 30, the desired value of the frequency division ratio Nfd of the variable frequency divider 50, and the frequency division ratio Nid2 of the fixed frequency divider 52 are the final output signals. It is appropriately set based on the desired value of the frequency Fout of.
 図2は、第1実施例の位相同期回路装置20が備えるフラクショナル位相同期回路40の線形モデルを示す説明図である。図中、「Kpd」、「F(s)」、「Kvco/s」、「÷Nfd」、「÷Nid2」は、それぞれ位相検出器42およびチャージポンプ44、ループフィルタ46、電圧制御発振器48、可変分周器50、固定分周器52を伝達関数で表わしたものである。「×Nhm」および2つの差分を演算する記号は、ハーモニックミキサ54およびローパスフィルタ56を伝達関数で表わしたものである。「φint」は、インテジャー位相同期回路21からの第2基準信号である。「φout」は、出力部14に出力される最終出力信号である。「In,cp」は、チャージポンプ44からの電流の乱れによる位相雑音である。「φn,vco」は、電圧制御発振器48内で発生する位相雑音である。「φn,div」は、可変分周器50からの信号に現われる位相雑音である。この図2を参照して、上述の式(1)のように定義すると、出力部14に出力される最終出力信号φoutは、式(6)のように表わすことができる。この式(6)において、ラプラス演算子sが十分に小さいとき、即ち、値Hol(s)が十分に大きいときを考えると、位相雑音φn,divが増幅されずに(略1倍で)最終出力信号φoutに現われることが分かる。したがって、位相雑音φn,divが大きく増幅されて最終出力信号φoutに現われるのを回避することができると言える。 FIG. 2 is an explanatory diagram showing a linear model of the fractional phase-locked loop 40 included in the phase-locked loop device 20 of the first embodiment. In the figure, “Kpd”, “F (s)”, “Kvco / s”, “÷ Nfd”, and “÷ Nid2” are the phase detector 42, the charge pump 44, the loop filter 46, and the voltage controlled oscillator 48, respectively. The variable frequency divider 50 and the fixed frequency divider 52 are represented by a transfer function. “× Nhm” and the symbol for calculating the difference between the two represent the harmonic mixer 54 and the low-pass filter 56 as a transfer function. “Φint” is a second reference signal from the integer phase-locked loop 21. “Φout” is the final output signal output to the output unit 14. “In, cp” is phase noise due to disturbance of the current from the charge pump 44. “Φn, vco” is the phase noise generated in the voltage controlled oscillator 48. “Φn, div” is the phase noise that appears in the signal from the variable divider 50. With reference to FIG. 2, if defined as in the above equation (1), the final output signal φout output to the output unit 14 can be expressed as in the equation (6). In this equation (6), when the Laplace operator s is sufficiently small, that is, when the value Hol (s) is sufficiently large, the phase noises φn and div are not amplified and are finally (approximately 1 times). It can be seen that it appears in the output signal φout. Therefore, it can be said that it is possible to prevent the phase noises φn and div from being greatly amplified and appearing in the final output signal φout.
Figure JPOXMLDOC01-appb-M000002
Figure JPOXMLDOC01-appb-M000002
 また、第1実施例では、フラクショナル位相同期回路40が固定分周器52を備えることにより、固定分周器52の分周比Nid2とハーモニックミキサ54およびローパスフィルタ56の抽出用逓倍Nhmを適切に定めれば(例えば、分周比Nid2を2、抽出用逓倍Nhmを3とすれば)、式(4)や式(5)の右辺第2項の「Nhm/Nid2」が整数にならないようにすることができる。これにより、インジェクションプリング(Injection Pulling)を回避することができる。この詳細については、例えば上述の文献Aに記載されている。 Further, in the first embodiment, since the fractional phase-locked loop 40 includes the fixed frequency divider 52, the division ratio Nid2 of the fixed frequency divider 52 and the multiplication Nhm for extraction of the harmonic mixer 54 and the low-pass filter 56 are appropriately obtained. If it is determined (for example, if the division ratio Nid2 is 2 and the multiplication multiplication Nhm for extraction is 3), the second term "Nhm / Nid2" on the right side of the equation (4) or the equation (5) should not be an integer. can do. As a result, injection pulling can be avoided. The details are described in, for example, the above-mentioned document A.
 図3は、図15で示した従来例のフラクショナル位相同期回路820を用いたときの解析結果の一例を示す説明図であり、図4は、図1で示した第1実施例の位相同期回路装置20(フラクショナル位相同期回路40)を用いたときの解析結果の一例を示す説明図である。なお、解析条件として、図1の位相同期回路装置20については、発振器12からの第1基準信号の周波数Frefを30MHz、固定分周器30の分周比Nid1を74、可変分周器50の分周比Nfdの所望値を32.029、固定分周器52の分周比Nid2を2、ハーモニックミキサ54およびローパスフィルタ56の抽出用逓倍Nhmを3とした。また、図15のフラクショナル位相同期回路820については、発振器812からの基準信号の周波数Frefを69.31MHz、可変分周器830の分周比Nfdの所望値を32.029とした。なお、従来例の基準信号の周波数Frefを69.31MHz(非整数)とした理由は、第1実施例と従来例とで、可変分周器50,830の分周比Nfdの所望値を同一にすると共に、フラクショナル位相同期回路40,820の入力周波数(第1実施例では、インテジャー位相同期回路21からの第2基準信号の周波数Fint、従来例では、発振器812からの基準信号の周波数Fref)を同一にするためである。 FIG. 3 is an explanatory diagram showing an example of the analysis result when the conventional fractional phase-locked loop 820 shown in FIG. 15 is used, and FIG. 4 is a phase-locked loop of the first embodiment shown in FIG. It is explanatory drawing which shows an example of the analysis result when the apparatus 20 (fractional phase-locked loop 40) is used. As analysis conditions, for the phase-locked loop device 20 of FIG. 1, the frequency Fref of the first reference signal from the oscillator 12 is 30 MHz, the frequency division ratio Nid1 of the fixed frequency divider 30 is 74, and the variable frequency divider 50. The desired value of the frequency division ratio Nfd was 32.029, the frequency division ratio Nid2 of the fixed frequency divider 52 was 2, and the multiplication factor Nhm for extraction of the harmonic mixer 54 and the low-pass filter 56 was 3. Regarding the fractional phase-locked loop 820 of FIG. 15, the frequency Fref of the reference signal from the oscillator 812 was set to 69.31 MHz, and the desired value of the division ratio Nfd of the variable frequency divider 830 was set to 32.029. The reason why the frequency Fref of the reference signal of the conventional example is set to 69.31 MHz (non-integer) is that the desired value of the frequency division ratio Nfd of the variable frequency dividers 50 and 830 is the same in the first embodiment and the conventional example. The input frequencies of the fractional phase-locked loops 40 and 820 (in the first embodiment, the frequency Fit of the second reference signal from the inverter phase-locked loop 21 and in the conventional example, the frequency Ref of the reference signal from the oscillator 812). ) Are the same.
 図3および図4中、横軸は、最終出力信号の周波数foutの所望値(式(5)参照)からのオフセット量であり、縦軸は、位相雑音レベルである。比較例では、図3に示すように、-42dBc程度の位相雑音が現われている。これに対して、第1実施例では、図4に示すように、-72dBc程度の位相雑音が現われている。したがって、第1実施例では、比較例に比して位相雑音を30dBc程度改善できたことがわかる。 In FIGS. 3 and 4, the horizontal axis is the amount of offset from the desired value of the frequency fout of the final output signal (see equation (5)), and the vertical axis is the phase noise level. In the comparative example, as shown in FIG. 3, a phase noise of about −42 dBc appears. On the other hand, in the first embodiment, as shown in FIG. 4, a phase noise of about −72 dBc appears. Therefore, it can be seen that in the first embodiment, the phase noise can be improved by about 30 dBc as compared with the comparative example.
 以上説明した第1実施例の位相同期回路装置20が備えるフラクショナル位相同期回路40では、位相検出器42とチャージポンプ44とループフィルタ46と電圧制御発振器48と可変分周器50と固定分周器52とハーモニックミキサ54とローパスフィルタ56とを備える。ここで、可変分周器50は、インテジャー位相同期回路21からの第2基準信号を可変分周比Nfdで分周して位相検出器42に出力する。固定分周器52は、インテジャー位相同期回路21からの第2基準信号を固定分周比Nid2で分周してハーモニックミキサ54に出力する。ハーモニックミキサ54は、電圧制御発振器48からの信号の周波数Foutと固定分周器52からの信号の周波数Fid2の各逓倍との各差分の周波数成分を含む信号を生成する。ローパスフィルタ56は、ハーモニックミキサ54からの信号から低周波数成分を抽出する。こうした構成とすることにより、可変分周器50からの信号に現われる位相雑音が大きく増幅されて最終出力信号φoutに現われるのを回避することができる。また、第1実施例のフラクショナル位相同期回路40の構成により、最終出力信号φoutにおける位相雑音を低減するのに加えて、PFD42やLPF56などの構成要素が非線形性を有することに起因して可変分周器50の出力変動に伴って最終出力信号φoutに生じる特定の周波数における雑音(いわゆるフラクショナルスパー)も低減することができる。 In the fractional phase-locked loop 40 included in the phase-locked loop device 20 of the first embodiment described above, the phase detector 42, the charge pump 44, the loop filter 46, the voltage controlled oscillator 48, the variable divider 50, and the fixed divider 50 are included. A 52, a harmonic mixer 54, and a low-pass filter 56 are provided. Here, the variable frequency divider 50 divides the second reference signal from the integer phase-locked loop 21 by the variable frequency division ratio Nfd and outputs it to the phase detector 42. The fixed frequency divider 52 divides the second reference signal from the integer phase-locked loop 21 by a fixed frequency division ratio Nid2 and outputs it to the harmonic mixer 54. The harmonic mixer 54 generates a signal including a frequency component of each difference between the frequency Fout of the signal from the voltage controlled oscillator 48 and each multiplication of the frequency Fid2 of the signal from the fixed frequency divider 52. The low-pass filter 56 extracts low-frequency components from the signal from the harmonic mixer 54. With such a configuration, it is possible to prevent the phase noise appearing in the signal from the variable divider 50 from being greatly amplified and appearing in the final output signal φout. Further, in addition to reducing the phase noise in the final output signal φout by the configuration of the fractional phase-locked loop 40 of the first embodiment, the variable component due to the non-linearity of the components such as PFD42 and LPF56. Noise at a specific frequency (so-called fractional spar) generated in the final output signal φout due to the output fluctuation of the peripheral device 50 can also be reduced.
 図5は、第2実施例の位相同期回路装置120の構成の概略を示す構成図である。第2実施例の位相同期回路装置120は、フラクショナル位相同期回路40の可変分周器50をフラクショナル位相同期回路140の可変分周器150に置き換えた点を除いて、図1に示した第1実施例の位相同期回路装置20と同一である。したがって、第2実施例の位相同期回路装置120のうち第1実施例の位相同期回路装置20と同一の構成については、同一の符号を付し、詳細な説明を省略する。 FIG. 5 is a configuration diagram showing an outline of the configuration of the phase-locked loop device 120 of the second embodiment. The phase-locked loop device 120 of the second embodiment is the first shown in FIG. 1, except that the variable frequency divider 50 of the fractional phase-locked loop 40 is replaced with the variable frequency divider 150 of the fractional phase-locked loop 140. It is the same as the phase-locked loop device 20 of the embodiment. Therefore, among the phase-locked loop devices 120 of the second embodiment, the same configurations as those of the phase-locked loop device 20 of the first embodiment are designated by the same reference numerals, and detailed description thereof will be omitted.
 可変分周器150は、電圧制御発振器48からの信号を可変分周比Nfd2で分周して位相検出器42に出力する。したがって、可変分周器150からの信号の周波数Ffd2は、周波数(Fout/Nfd2)となる。 The variable frequency divider 150 divides the signal from the voltage controlled oscillator 48 by the variable frequency division ratio Nfd2 and outputs it to the phase detector 42. Therefore, the frequency Ffd2 of the signal from the variable frequency divider 150 becomes the frequency (Fout / Nfd2).
 こうして構成される第2実施例のフラクショナル位相同期回路140では、インテジャー位相同期回路21からの第2基準信号の周波数Fintと、出力部14に出力する最終出力信号の周波数Foutとの関係は、式(7)のように表わすことができる。 In the fractional phase-locked loop 140 of the second embodiment configured in this way, the relationship between the frequency Fit of the second reference signal from the integer phase-locked loop 21 and the frequency Fout of the final output signal output to the output unit 14 is determined. It can be expressed as in equation (7).
 Fout=(Nfd2/(Nfd2-1))・(Nhm/Nid2)・Fint (7) Fout = (Nfd2 / (Nfd2-1)) ・ (Nhm / Nid2) ・ Fint (7)
 なお、位相同期回路装置120において、固定分周器30の分周比Nid1や、可変分周器150の分周比Nfd2の所望値、固定分周器52の分周比Nid2は、最終出力信号の周波数Foutの所望値に基づいて適宜設定される。 In the phase-locked loop device 120, the frequency division ratio Nid1 of the fixed frequency divider 30, the desired value of the frequency division ratio Nfd2 of the variable frequency divider 150, and the frequency division ratio Nid2 of the fixed frequency divider 52 are the final output signals. It is appropriately set based on the desired value of the frequency Fout of.
 図6は、第2実施例の位相同期回路装置120が備えるフラクショナル位相同期回路140の線形モデルを示す説明図である。図6のフラクショナル位相同期回路140の線形モデルは、可変分周器50に関する部分(「÷Nfd」および入力元)を可変分周器150に関する部分(「÷Nfd2」および入力元)に置き換えた点を除いて、図2のフラクショナル位相同期回路40の線形モデルと同一である。この図6を参照して、式(8)のように定義すると、出力部14に出力される最終出力信号φoutは、式(9)のように表わすことができる。この式(9)において、ラプラス演算子sが十分に小さいとき、即ち、値Hol(s)が十分に大きいときを考えると、位相雑音φn,divがNfd2/(Nfd2-1)倍に増幅されて最終出力信号φoutに現われることが分かる。したがって、位相雑音φn,divが大きく増幅されて最終出力信号φoutに現われるのを回避することができると言える。 FIG. 6 is an explanatory diagram showing a linear model of the fractional phase-locked loop 140 included in the phase-locked loop device 120 of the second embodiment. In the linear model of the fractional phase-locked loop 140 of FIG. 6, the part related to the variable frequency divider 50 (“÷ Nfd” and the input source) is replaced with the part related to the variable frequency divider 150 (“÷ Nfd2” and the input source). Except for, it is the same as the linear model of the fractional phase-locked loop 40 of FIG. With reference to FIG. 6, if the definition is as shown in the equation (8), the final output signal φout output to the output unit 14 can be expressed as the equation (9). In this equation (9), considering when the Laplace operator s is sufficiently small, that is, when the value Hol (s) is sufficiently large, the phase noises φn and div are amplified by Nfd2 / (Nfd2-1) times. It can be seen that it appears in the final output signal φout. Therefore, it can be said that it is possible to prevent the phase noises φn and div from being greatly amplified and appearing in the final output signal φout.
Figure JPOXMLDOC01-appb-M000003
Figure JPOXMLDOC01-appb-M000003
 また、第2実施例では、可変分周器150に電圧制御発振器48からの信号が入力されることにより、第1実施例のように可変分周器50にインテジャー位相同期回路21からの第2基準信号が入力されるものに比して以下の効果を奏する。一般に、フラクショナル位相同期回路40,140では、可変分周器50,150の可変分周比Nfd,Nfd2を大きくすることにより、最終出力信号φoutに現われる位相雑音を低減することができる。これは、可変分周比Nfd,Nfd2の所望値を5.25が可変分周比Nfd,Nfd2を5または6とする場合、信号の各周期で可変分周比Nfd,Nfd2が20%程度もぶれるのに対し、この所望値を50.25で可変分周比Nfd,Nfd2を50または51とする場合、信号の各周期で可変分周比Nfd,Nfd2が2%程度しかぶれないためである。第1実施例では、可変分周器50の可変分周比Nfdを大きくするために、インテジャー位相同期回路21からの第2基準信号φintの周波数Fintを高くする必要があるものの、第2基準信号φintの周波数Fintを高くすると、インテジャー位相同期回路21の消費電力が大きくなってしまう。これに対して、第2実施例では、可変分周器150の入力周波数を高くするために、第2基準信号φintの周波数Fintを高くする必要がない。これにより、インテジャー位相同期回路21の消費電力を低減することができる。発明者らは、解析により、第1実施例の位相同期回路装置20と第2実施例の位相同期回路装置120とで最終出力信号φoutに現われる位相雑音を同程度とする場合、第2実施例の位相同期回路装置120では、インテジャー位相同期回路21からの第2基準信号φintの周波数Fintを第1実施例の位相同期回路装置20の3分の2程度以下にできることを確認した。 Further, in the second embodiment, when the signal from the voltage controlled oscillator 48 is input to the variable frequency divider 150, the variable frequency divider 50 is connected to the variable frequency divider 50 as in the first embodiment, and the second from the inter-counter phase-locked loop 21. 2 Compared to the one to which the reference signal is input, the following effects are obtained. Generally, in the fractional phase-locked loops 40 and 140, the phase noise appearing in the final output signal φout can be reduced by increasing the variable division ratios Nfd and Nfd2 of the variable dividers 50 and 150. This is because when the desired values of the variable division ratios Nfd and Nfd2 are set to 5.25 and the variable division ratios Nfd and Nfd2 are set to 5 or 6, the variable division ratios Nfd and Nfd2 are about 20% in each cycle of the signal. On the other hand, when the desired values are 50.25 and the variable division ratios Nfd and Nfd2 are 50 or 51, the variable division ratios Nfd and Nfd2 are only about 2% in each cycle of the signal. .. In the first embodiment, in order to increase the variable division ratio Nfd of the variable frequency divider 50, it is necessary to increase the frequency Fit of the second reference signal φint from the integer phase-locked loop 21, but the second reference. When the frequency Fit of the signal φint is increased, the power consumption of the integer phase-locked loop 21 becomes large. On the other hand, in the second embodiment, it is not necessary to increase the frequency Fit of the second reference signal φint in order to increase the input frequency of the variable frequency divider 150. As a result, the power consumption of the integer phase-locked loop 21 can be reduced. According to the analysis, when the phase-locked loop device 20 of the first embodiment and the phase-locked loop device 120 of the second embodiment have the same phase noise appearing in the final output signal φout, the inventors of the second embodiment In the phase-locked loop loop device 120, it was confirmed that the frequency Fit of the second reference signal φint from the inverter phase-locked loop circuit 21 can be set to about two-thirds or less of that of the phase-locked loop loop device 20 of the first embodiment.
 以上説明した第2実施例の位相同期回路装置120が備えるフラクショナル位相同期回路140では、第1実施例のフラクショナル位相同期回路40の可変分周器50に代えて、可変分周器150を備える。ここで、可変分周器150は、電圧制御発振器48からの信号を可変分周比Nfd2で分周して位相検出器42に出力する。こうした構成とすることにより、第1実施例の位相同期回路装置20と同様に、可変分周器150からの信号に現われる位相雑音が大きく増幅されて最終出力信号φoutに現われるのを回避することができるのに加えて、第1実施例の位相同期回路装置20に比してインテジャー位相同期回路21の消費電力を抑制することができる。また、第2実施例のフラクショナル位相同期回路140では、最終出力信号φoutにおける位相雑音を低減するのに加えて、第1実施例のフラクショナル位相同期回路40と同様に、フラクショナルスパーも低減することができる。 The fractional phase-locked loop 140 included in the phase-locked loop device 120 of the second embodiment described above includes a variable frequency divider 150 instead of the variable divider 50 of the fractional phase-locked loop 40 of the first embodiment. Here, the variable frequency divider 150 divides the signal from the voltage controlled oscillator 48 by the variable frequency dividing ratio Nfd2 and outputs it to the phase detector 42. With such a configuration, it is possible to prevent the phase noise appearing in the signal from the variable frequency divider 150 from being greatly amplified and appearing in the final output signal φout, as in the phase-locked loop device 20 of the first embodiment. In addition to being able to do so, the power consumption of the integrated phase-locked loop 21 can be suppressed as compared with the phase-locked loop device 20 of the first embodiment. Further, in the fractional phase-locked loop 140 of the second embodiment, in addition to reducing the phase noise in the final output signal φout, the fractional spar can also be reduced as in the fractional phase-locked loop 40 of the first embodiment. it can.
 図7は、第3実施例の位相同期回路装置120Bの構成の概略を示す構成図である。第3実施例の位相同期回路装置120Bは、フラクショナル位相同期回路140がフラクショナル位相同期回路140Bに置き換えられた点を除いて、図5に示した第2実施例の位相同期回路装置120と同一である。そして、第3実施例のフラクショナル位相同期回路140Bは、インテジャー位相同期回路158が追加された点を除いて、第2実施例のフラクショナル位相同期回路140と同一である。したがって、第3実施例の位相同期回路装置120Bのうち第2実施例の位相同期回路装置120と同一の構成については、同一の符号を付し、詳細な説明を省略する。 FIG. 7 is a configuration diagram showing an outline of the configuration of the phase-locked loop device 120B of the third embodiment. The phase-locked loop device 120B of the third embodiment is the same as the phase-locked loop device 120 of the second embodiment shown in FIG. 5, except that the fractional phase-locked loop circuit 140 is replaced with the fractional phase-locked loop circuit 140B. is there. The fractional phase-locked loop 140B of the third embodiment is the same as the fractional phase-locked loop 140 of the second embodiment except that the integer phase-locked loop 158 is added. Therefore, among the phase-locked loop devices 120B of the third embodiment, the same configurations as those of the phase-locked loop device 120 of the second embodiment are designated by the same reference numerals, and detailed description thereof will be omitted.
 インテジャー位相同期回路158は、インテジャー位相同期回路21と同様に構成されており、位相検出器と、チャージポンプと、ループフィルタと、電圧制御発振器と、固定分周器とを備える(何れも図示省略)。このインテジャー位相同期回路158は、ローパスフィルタ56からの信号の周波数Flpfを逓倍して周波数Fint2の信号として位相検出器42に出力する。フラクショナル位相同期回路140Bにおいて、位相検出器42は、可変分周器150からの信号とインテジャー位相同期回路158からの信号とを比較して位相差に応じた信号を出力する。 The integer phase-locked loop 158 is configured in the same manner as the integer phase-locked loop 21, and includes a phase detector, a charge pump, a loop filter, a voltage controlled oscillator, and a fixed frequency divider (all of them). Not shown). The integer phase-locked loop 158 multiplies the frequency Flpf of the signal from the low-pass filter 56 and outputs it to the phase detector 42 as a signal of frequency Fit2. In the fractional phase-locked loop 140B, the phase detector 42 compares the signal from the variable frequency divider 150 with the signal from the indicator phase-locked loop 158, and outputs a signal corresponding to the phase difference.
 こうして構成される第3実施例のフラクショナル位相同期回路140Bでは、インテジャー位相同期回路21からの第2基準信号の周波数Fintと、出力部14に出力する最終出力信号の周波数Foutとの関係は、式(10)のように表わすことができる。 In the fractional phase-locked loop 140B of the third embodiment configured in this way, the relationship between the frequency Fit of the second reference signal from the integer phase-locked loop 21 and the frequency Fout of the final output signal output to the output unit 14 is determined. It can be expressed as in equation (10).
 Fout=(Nhm・Nfd2)/(Nhm・Nfd2-1)・(Nhm/Nid2)・Fint     (10) Fout = (Nhm ・ Nfd2) / (Nhm ・ Nfd2-1) ・ (Nhm / Nid2) ・ Fint (10)
 なお、位相同期回路装置120Bにおいて、固定分周器30の分周比Nid1や、可変分周器150の分周比Nfd2の所望値、固定分周器52の分周比Nid2、インテジャー位相同期回路158の逓倍比Nint、即ち、インテジャー位相同期回路158に入力される信号(ローパスフィルタ56から出力される信号)の周波数Flpfとインテジャー位相同期回路158から出力される信号の周波数Fint2との関係(Fint2/Flpf)は、最終出力信号の周波数Foutの所望値に基づいて適宜設定される。 In the phase-locked loop device 120B, the frequency division ratio Nid1 of the fixed frequency divider 30, the desired value of the frequency division ratio Nfd2 of the variable frequency divider 150, the frequency division ratio Nid2 of the fixed frequency divider 52, and the indicator phase synchronization. The multiplication ratio Nint of the circuit 158, that is, the frequency Flpf of the signal input to the inter-counter phase-locked loop 158 (the signal output from the low-pass filter 56) and the frequency Fint2 of the signal output from the inter-counter phase-locked loop 158. The relationship (Fint2 / Flpf) is appropriately set based on the desired value of the frequency Fout of the final output signal.
 図8は、第3実施例の位相同期回路装置120Bが備えるフラクショナル位相同期回路140Bの線形モデルを示す説明図である。図8の第3実施例のフラクショナル位相同期回路140Bの線形モデルは、インテジャー位相同期回路158の伝達関数(Nint×Gint(s))が加えられた点を除いて、図6の第2実施例のフラクショナル位相同期回路140の線形モデルと同一である。したがって、第3実施例のフラクショナル位相同期回路140の線形モデルのうち第2実施例のフラクショナル位相同期回路140の線形モデルとは異なる点について説明する。この図8を参照して、式(11)のように定義すると、出力部14に出力される最終出力信号φoutは、式(12)のように表わすことができる。この式(12)において、ラプラス演算子sが十分に小さいとき、即ち、値Hol(s)が十分に大きく且つ値Gint(s)の帯域内にあるときを考えると、位相雑音φn,divが略Nint分の1に低減されて最終出力信号φoutに現われることが分かる。したがって、位相雑音φn,divが大きく増幅されて最終出力信号φoutに現われるのをより十分に回避することができると言える。 FIG. 8 is an explanatory diagram showing a linear model of the fractional phase-locked loop 140B included in the phase-locked loop device 120B of the third embodiment. The linear model of the fractional phase-locked loop 140B of the third embodiment of FIG. 8 is the second embodiment of FIG. 6 except that the transfer function (Nint × Gint (s)) of the integer phase-locked loop 158 is added. It is the same as the linear model of the example fractional phase-locked loop 140. Therefore, the difference between the linear model of the fractional phase-locked loop 140 of the third embodiment and the linear model of the fractional phase-locked loop 140 of the second embodiment will be described. With reference to FIG. 8, if the definition is as shown in the equation (11), the final output signal φout output to the output unit 14 can be expressed as the equation (12). In this equation (12), when the Laplace operator s is sufficiently small, that is, when the value Hol (s) is sufficiently large and is within the band of the value Gint (s), the phase noise φn, div is large. It can be seen that it is reduced to about 1 / Nint and appears in the final output signal φout. Therefore, it can be said that it is possible to more sufficiently avoid the phase noises φn and div being greatly amplified and appearing in the final output signal φout.
Figure JPOXMLDOC01-appb-M000004
Figure JPOXMLDOC01-appb-M000004
 ただし、第3実施例のフラクショナル位相同期回路140Bの最終出力信号φoutに現われる位相雑音は、第2実施例のフラクショナル位相同期回路140の最終出力信号φoutに現われる位相雑音に対して、単純にNint分の1になる訳ではない。以下、この理由について説明する。上述したように、第2実施例のフラクショナル位相同期回路140Bでは、位相検出器42に、ローパスフィルタ56からの信号(周波数Flpfの信号)が入力されるのに対し、第3実施例のフラクショナル位相同期回路140Bでは、位相検出器42に、インテジャー位相同期回路158からの信号(周波数Flpf・Nintの信号)が入力される。このため、第2実施例および第3実施例のフラクショナル位相同期回路140,140Bにおいて、最終出力信号φoutの周波数Foutを同一にする場合、第3実施例のフラクショナル位相同期回路140Bの可変分周器150からの信号の周波数Ffd2の所望値を、第2実施例のフラクショナル位相同期回路140の可変分周器150からの信号の周波数Ffd2の所望値に対してNint倍にする必要がある。そのためには、第3実施例の可変分周器150の可変分周比Nfd2の所望値を、第2実施例の可変分周器150の可変分周比Nfd2の所望値に対してNint分の1にする必要がある。例えば、第2実施例の可変分周器150の可変分周比Nfd2の所望値が50.23で且つ第3実施例のインテジャー位相同期回路158の逓倍比Nintが10の場合、第3実施例の可変分周器150の可変分周比Nfd2の所望値を5.023にする必要がある。この場合、第2実施例の可変分周器150では、可変分周比Nfd2を50または51とするのに対し、第3実施例の可変分周器150では、可変分周比Nfd2を5または6とする必要がある。可変分周器150の可変分周比Nfd2の所望値が小さくなると、位相雑音φn,divが大きくなりやすい。こうした理由により、第3実施例のフラクショナル位相同期回路140Bの最終出力信号φoutに現われる位相雑音は、第2実施例のフラクショナル位相同期回路140の最終出力信号φoutに現われる位相雑音に対して、単純にNint分の1になる訳ではないのである。 However, the phase noise appearing in the final output signal φout of the fractional phase-locked loop 140B of the third embodiment is simply Nint with respect to the phase noise appearing in the final output signal φout of the fractional phase-locked loop 140 of the second embodiment. It does not mean that it becomes one of. The reason for this will be described below. As described above, in the fractional phase-locked loop 140B of the second embodiment, the signal from the low pass filter 56 (the signal of frequency Flpf) is input to the phase detector 42, whereas the fractional phase of the third embodiment is input. In the synchronous circuit 140B, a signal (a signal of frequency Flpf · Nint) from the inverter phase-locked loop 158 is input to the phase detector 42. Therefore, in the fractional phase-locked loops 140 and 140B of the second embodiment and the third embodiment, when the frequency Fout of the final output signal φout is the same, the variable frequency divider of the fractional phase-locked loop 140B of the third embodiment is used. It is necessary to multiply the desired value of the frequency Ffd2 of the signal from 150 by Nint with respect to the desired value of the frequency Ffd2 of the signal from the variable frequency divider 150 of the fractional phase-locked loop 140 of the second embodiment. For that purpose, the desired value of the variable division ratio Nfd2 of the variable frequency divider 150 of the third embodiment is set to the desired value of the variable division ratio Nfd2 of the variable frequency divider 150 of the second embodiment by Nint. Must be 1. For example, when the desired value of the variable division ratio Nfd2 of the variable frequency divider 150 of the second embodiment is 50.23 and the multiplication ratio Nint of the integer phase-locked loop 158 of the third embodiment is 10, the third embodiment is performed. It is necessary to set the desired value of the variable division ratio Nfd2 of the variable frequency divider 150 of the example to 5.023. In this case, in the variable frequency divider 150 of the second embodiment, the variable frequency division ratio Nfd2 is set to 50 or 51, whereas in the variable frequency divider 150 of the third embodiment, the variable frequency division ratio Nfd2 is 5 or It should be 6. When the desired value of the variable division ratio Nfd2 of the variable frequency divider 150 becomes small, the phase noises φn and div tend to increase. For this reason, the phase noise appearing in the final output signal φout of the fractional phase-locked loop 140B of the third embodiment is simply the phase noise appearing in the final output signal φout of the fractional phase-locked loop 140 of the second embodiment. It is not 1 / Nint.
 次に、第2実施例および第3実施例のフラクショナル位相同期回路140,140Bにおける、位相雑音φn,divに対する、最終出力信号φoutに現われる位相雑音の低減効果の比較について説明する。図9は、第2実施例のフラクショナル位相同期回路140についての説明図であり、図10は、第3実施例のフラクショナル位相同期回路140Bについての説明図である。図9および図10において、左側の図は、位相雑音φn,divの周波数特性の一例を示す説明図であり、中央の図は、可変分周器150の出力を入力とすると共に出力部14を出力とした回路(以下、「第1所定回路」という)の伝達関数の周波数特性の一例を示す説明図であり、右側の図は、最終出力信号に含まれる位相雑音の位相の周波数特性の一例を示す説明図である。図9および図10の「Fbw」は、フラクショナル位相同期回路140,140Bにおける第1所定回路のバンド幅である。図9および図10では、フラクショナル位相同期回路140,140Bにおける第1所定回路のバンド幅Fbwは、同一とした。図9の「Flpf」は、ローパスフィルタ56から位相検出器42に出力される信号の周波数であり、図10「Fint2」は、インテジャー位相同期回路158から位相検出器42に出力される信号の周波数、即ち、周波数FlpfのNint倍の周波数である。 Next, a comparison of the effect of reducing the phase noise appearing in the final output signal φout with respect to the phase noises φn and div in the fractional phase-locked loops 140 and 140B of the second embodiment and the third embodiment will be described. FIG. 9 is an explanatory diagram of the fractional phase-locked loop 140 of the second embodiment, and FIG. 10 is an explanatory diagram of the fractional phase-locked loop 140B of the third embodiment. In FIGS. 9 and 10, the figure on the left side is an explanatory view showing an example of the frequency characteristics of the phase noise φn, div, and the center figure shows the output of the variable frequency divider 150 as an input and the output unit 14 as an input. It is explanatory drawing which shows an example of the frequency characteristic of the transfer function of the circuit (hereinafter referred to as "the first predetermined circuit") which became an output, and the figure on the right side is an example of the frequency characteristic of the phase of the phase noise included in the final output signal. It is explanatory drawing which shows. “Fbw” in FIGS. 9 and 10 is the bandwidth of the first predetermined circuit in the fractional phase-locked loops 140 and 140B. In FIGS. 9 and 10, the bandwidths Fbw of the first predetermined circuit in the fractional phase-locked loops 140 and 140B are the same. “Flpf” in FIG. 9 is the frequency of the signal output from the low-pass filter 56 to the phase detector 42, and FIG. 10 “Fint2” is the frequency of the signal output from the indicator phase-locked loop 158 to the phase detector 42. The frequency, that is, the frequency of Nint times the frequency Flpf.
 図9および図10を比較すると、周波数Flpfに比して周波数Fint2(=Nint×Flpf)が大きいために、フラクショナル位相同期回路140Bの位相雑音φn,divがフラクショナル位相同期回路140の位相雑音φn,divに比して高周波数側に広がる(極大値が高周波数側になる)ことが分かる。これは、上述したように、第2実施例および第3実施例のフラクショナル位相同期回路140,140Bにおいて、最終出力信号の周波数Foutを同一にする場合、フラクショナル位相同期回路140Bの可変分周器150からの信号の周波数Ffd2の所望値を、フラクショナル位相同期回路140の可変分周器150からの信号の周波数Ffd2の所望値に対してNint倍にする必要があるためである。そして、フラクショナル位相同期回路140Bでは、フラクショナル位相同期回路140に比して、位相雑音φn,divが高周波数側に広がることにより、第1所定回路のバンド幅Fbwが同一の場合、位相雑音φn,divがより低減される、即ち、最終出力信号φoutに現われる位相雑音がより小さくなることが分かる。このことから、フラクショナル位相同期回路140Bでは、第1所定回路のバンド幅Fbwがある程度大きい場合でも、フラクショナル位相同期回路140に比して、最終出力信号φoutに現われる位相雑音が小さくなると想定される。 Comparing FIGS. 9 and 10, since the frequency Fit2 (= Nint × Flpf) is larger than the frequency Flpf, the phase noise φn of the fractional phase-locked loop 140B and the div are the phase noise φn of the fractional phase-locked loop 140. It can be seen that it spreads to the high frequency side compared to the div (the maximum value becomes the high frequency side). As described above, in the fractional phase-locked loops 140 and 140B of the second embodiment and the third embodiment, when the frequency Fout of the final output signal is the same, the variable frequency divider 150 of the fractional phase-locked loop 140B This is because it is necessary to multiply the desired value of the frequency Ffd2 of the signal from Ffd2 by Nint with respect to the desired value of the frequency Ffd2 of the signal from the variable frequency divider 150 of the fractional phase-locked loop 140. Then, in the fractional phase-locked loop 140B, the phase noise φn, div spreads to the higher frequency side as compared with the fractional phase-locked loop 140, so that when the bandwidth Fbw of the first predetermined circuit is the same, the phase noise φn, It can be seen that the div is further reduced, that is, the phase noise appearing in the final output signal φout is smaller. From this, it is assumed that in the fractional phase-locked loop 140B, the phase noise appearing in the final output signal φout is smaller than that in the fractional phase-locked loop 140 even when the bandwidth Fbw of the first predetermined circuit is large to some extent.
 次に、フラクショナル位相同期回路140Bにおける、電圧制御発振器48の出力を入力とすると共に出力部14を出力した回路(以下、「第2所定回路」という)のバンド幅Fbw2を変更したときの、電圧制御発振器48内で発生する位相雑音φn,vcoに対する、最終出力信号φoutに現われる位相雑音(具体的には、位相雑音φn,vcoに起因する位相雑音)の低減効果の比較について説明する。図11は、フラクショナル位相同期回路140Bの第2所定回路のバンド幅Fbw2が比較的小さい値Fbwloのときの説明図であり、図12は、フラクショナル位相同期回路140Bの第2所定回路のバンド幅Fbw2が値Fbwloよりも大きい値Fbwhiのときの説明図である。図11および図12において、左側の図は、位相雑音φn,vcoの周波数特性の一例を示す説明図であり、中央の図は、第2所定回路の伝達関数の周波数特性の一例を示す説明図であり、右側の図は、最終出力信号φoutに含まれる位相雑音の周波数特性の一例を示す説明図である。図11および図12を比較すると、位相雑音φn,vcoは、第2所定回路のバンド幅Fbw2を広くするほどより低減される、即ち、最終出力信号φoutに現われる位相雑音がより小さくなることが分かる。そして、第2所定回路のバンド幅Fbw2を大きくすることができれば、位相雑音の若干大きい電圧制御発振器48を選択することができる。これにより、電圧制御発振器48として、位相雑音φn,vcoが若干大きいものの、消費電力や面積の小さい電圧制御発振器を用いることができる。 Next, in the fractional phase-locked loop 140B, the voltage when the bandwidth Fbw2 of the circuit (hereinafter referred to as “second predetermined circuit”) that outputs the output unit 14 while inputting the output of the voltage controlled oscillator 48 is changed. A comparison of the effect of reducing the phase noise appearing in the final output signal φout (specifically, the phase noise caused by the phase noise φn, vco) with respect to the phase noise φn, vco generated in the controlled oscillator 48 will be described. FIG. 11 is an explanatory diagram when the bandwidth Fbw2 of the second predetermined circuit of the fractional phase-locked loop 140B is a relatively small value Fbwlo, and FIG. 12 is an explanatory diagram of the bandwidth Fbw2 of the second predetermined circuit of the fractional phase-locked loop 140B. It is explanatory drawing when is a value Fbwhi larger than a value Fbwlo. In FIGS. 11 and 12, the figure on the left is an explanatory diagram showing an example of the frequency characteristics of the phase noises φn and vco, and the figure in the center is an explanatory diagram showing an example of the frequency characteristics of the transfer function of the second predetermined circuit. The figure on the right is an explanatory diagram showing an example of the frequency characteristics of the phase noise included in the final output signal φout. Comparing FIGS. 11 and 12, it can be seen that the phase noises φn and vco are reduced as the bandwidth Fbw2 of the second predetermined circuit is widened, that is, the phase noises appearing in the final output signal φout are smaller. .. Then, if the bandwidth Fbw2 of the second predetermined circuit can be increased, the voltage controlled oscillator 48 having a slightly larger phase noise can be selected. As a result, as the voltage controlled oscillator 48, a voltage controlled oscillator with a small power consumption and an area can be used although the phase noises φn and vco are slightly large.
 以上説明した第3実施例の位相同期回路装置120Bが備えるフラクショナル位相同期回路140Bでは、第2実施例のフラクショナル位相同期回路140の構成に加えて、インテジャー位相同期回路158を備える。ここで、インテジャー位相同期回路158は、ローパスフィルタ56からの信号の周波数Flpfを逓倍して周波数Fint2の信号として位相検出器42に出力する。そして、フラクショナル位相同期回路140Bの位相検出器42は、可変分周器150からの信号とインテジャー位相同期回路158からの信号とを比較して位相差に応じた信号を出力する。こうした構成とすることにより、第2実施例の位相同期回路装置120Bに比して、可変分周器150からの信号に現われる位相雑音が大きく増幅されて最終出力信号φoutに現われるのをより十分に回避することができる。また、第3実施例のフラクショナル位相同期回路140Bでは、最終出力信号φoutにおける位相雑音を低減するのに加えて、第1実施例や第2実施例のフラクショナル位相同期回路40,140と同様に、フラクショナルスパーも低減することができる。 The fractional phase-locked loop 140B included in the phase-locked loop device 120B of the third embodiment described above includes an integer phase-locked loop 158 in addition to the configuration of the fractional phase-locked loop 140 of the second embodiment. Here, the integer phase-locked loop 158 multiplies the frequency Flpf of the signal from the low-pass filter 56 and outputs it to the phase detector 42 as a signal of frequency Fit2. Then, the phase detector 42 of the fractional phase-locked loop 140B compares the signal from the variable frequency divider 150 with the signal from the indicator phase-locked loop 158 and outputs a signal corresponding to the phase difference. With such a configuration, the phase noise appearing in the signal from the variable frequency divider 150 is greatly amplified and appears in the final output signal φout more sufficiently than in the phase-locked loop device 120B of the second embodiment. It can be avoided. Further, in the fractional phase-locked loop 140B of the third embodiment, in addition to reducing the phase noise in the final output signal φout, similarly to the fractional phase-locked loops 40 and 140 of the first embodiment and the second embodiment, Fractional spar can also be reduced.
 図13は、第4実施例の位相同期回路装置20Bの構成の概略を示す構成図である。第3実施例の位相同期回路装置20Bは、フラクショナル位相同期回路40がフラクショナル位相同期回路40Bに置き換えられた点を除いて、図1に示した第1実施例の位相同期回路装置20と同一である。そして、第4実施例のフラクショナル位相同期回路40Bは、インテジャー位相同期回路58が追加された点を除いて、第1実施例のフラクショナル位相同期回路40と同一である。したがって、第4実施例の位相同期回路装置20Bのうち第1実施例の位相同期回路装置20と同一の構成については、同一の符号を付し、詳細な説明を省略する。 FIG. 13 is a configuration diagram showing an outline of the configuration of the phase-locked loop device 20B of the fourth embodiment. The phase-locked loop device 20B of the third embodiment is the same as the phase-locked loop device 20 of the first embodiment shown in FIG. 1, except that the fractional phase-locked loop circuit 40 is replaced with the fractional phase-locked loop circuit 40B. is there. The fractional phase-locked loop 40B of the fourth embodiment is the same as the fractional phase-locked loop 40 of the first embodiment except that the integer phase-locked loop 58 is added. Therefore, among the phase-locked loop devices 20B of the fourth embodiment, the same configurations as those of the phase-locked loop device 20 of the first embodiment are designated by the same reference numerals, and detailed description thereof will be omitted.
 インテジャー位相同期回路58は、第3実施例のフラクショナル位相同期回路140Bのインテジャー位相同期回路158と同様に構成されており、ローパスフィルタ56からの信号の周波数Flpfを逓倍して周波数Fint2の信号として位相検出器42に出力する。フラクショナル位相同期回路40Bにおいて、位相検出器42は、可変分周器50からの信号とインテジャー位相同期回路58からの信号とを比較して位相差に応じた信号を出力する。 The integrator phase-locked loop 58 is configured in the same manner as the integrator phase-locked loop 158 of the fractional phase-locked loop 140B of the third embodiment, and the frequency Flpf of the signal from the low-pass filter 56 is multiplied to obtain a signal of frequency Fit2. Is output to the phase detector 42. In the fractional phase-locked loop 40B, the phase detector 42 compares the signal from the variable frequency divider 50 with the signal from the indicator phase-locked loop 58, and outputs a signal corresponding to the phase difference.
 こうして構成される第4実施例のフラクショナル位相同期回路40Bでは、インテジャー位相同期回路21からの第2基準信号の周波数Fintと、出力部14に出力する最終出力信号の周波数Foutとの関係は、式(13)のように表わすことができる。 In the fractional phase-locked loop 40B of the fourth embodiment configured in this way, the relationship between the frequency Fit of the second reference signal from the integer phase-locked loop 21 and the frequency Fout of the final output signal output to the output unit 14 is determined. It can be expressed as in equation (13).
 Fout=(Nhm/Nid2+1/(Nfd・Nint))・Fint             (13) Fout = (Nhm / Nid2 + 1 / (Nfd ・ Nint)) ・ Fint (13)
 なお、位相同期回路装置20Bにおいて、固定分周器30の分周比Nid1や、可変分周器50の分周比Nfdの所望値、固定分周器52の分周比Nid2、インテジャー位相同期回路58の逓倍比Nint、即ち、インテジャー位相同期回路58に入力される信号(ローパスフィルタ56から出力される信号)の周波数Flpfとインテジャー位相同期回路58から出力される信号の周波数Fint2との関係(Fint2/Flpf)は、最終出力信号の周波数Foutの所望値に基づいて適宜設定される。 In the phase-locked loop device 20B, the frequency division ratio Nid1 of the fixed frequency divider 30, the desired value of the frequency division ratio Nfd of the variable frequency divider 50, the frequency division ratio Nid2 of the fixed frequency divider 52, and the indicator phase synchronization. The multiplication ratio Nint of the circuit 58, that is, the frequency Flpf of the signal input to the intercounter phase-locked loop 58 (the signal output from the low-pass filter 56) and the frequency Fint2 of the signal output from the intercounter phase-locked loop 58. The relationship (Fint2 / Flpf) is appropriately set based on the desired value of the frequency Fout of the final output signal.
 図14は、第4実施例の位相同期回路装置20Bが備えるフラクショナル位相同期回路40Bの線形モデルを示す説明図である。図14の4実施例のフラクショナル位相同期回路40Bの線形モデルは、インテジャー位相同期回路58の伝達関数(Nint×Gint(s))が加えられた点を除いて、図2の第1実施例のフラクショナル位相同期回路40の線形モデルと同一である。したがって、第4実施例のフラクショナル位相同期回路40Bの線形モデルのうち第1実施例のフラクショナル位相同期回路40の線形モデルとは異なる点について説明する。この図14を参照して、式(14)のように定義すると、出力部14に出力される最終出力信号φoutは、式(15)のように表わすことができる。この式(15)において、ラプラス演算子sが十分に小さいとき、即ち、値Hol(s)が十分に大きく且つ値Gint(s)の帯域内にあるときを考えると、位相雑音φn,divが略Nint分の1に低減されて最終出力信号φoutに現われることが分かる。したがって、位相雑音φn,divが大きく増幅されて最終出力信号φoutに現われるのをより十分に回避することができると言える。 FIG. 14 is an explanatory diagram showing a linear model of the fractional phase-locked loop 40B included in the phase-locked loop device 20B of the fourth embodiment. The linear model of the fractional phase-locked loop 40B of the fourth embodiment of FIG. 14 is the first embodiment of FIG. 2 except that the transfer function (Nint × Gint (s)) of the integral phase-locked loop 58 is added. It is the same as the linear model of the fractional phase-locked loop 40 of. Therefore, the difference between the linear model of the fractional phase-locked loop 40B of the fourth embodiment and the linear model of the fractional phase-locked loop 40 of the first embodiment will be described. With reference to FIG. 14, if the definition is as shown in the equation (14), the final output signal φout output to the output unit 14 can be expressed as the equation (15). In this equation (15), when the Laplace operator s is sufficiently small, that is, when the value Hol (s) is sufficiently large and is within the band of the value Gint (s), the phase noise φn, div is large. It can be seen that it is reduced to about 1 / Nint and appears in the final output signal φout. Therefore, it can be said that it is possible to more sufficiently avoid the phase noises φn and div being greatly amplified and appearing in the final output signal φout.
Figure JPOXMLDOC01-appb-M000005
Figure JPOXMLDOC01-appb-M000005
 また、第4実施例のフラクショナル位相同期回路40Bでは、図9~図12を用いて説明した第3実施例のフラクショナル位相同期回路140Bが奏する効果と同様の効果を奏する。 Further, the fractional phase-locked loop 40B of the fourth embodiment has the same effect as that of the fractional phase-locked loop 140B of the third embodiment described with reference to FIGS. 9 to 12.
 以上説明した第4実施例の位相同期回路装置20Bが備えるフラクショナル位相同期回路40Bでは、第1実施例のフラクショナル位相同期回路40の構成に加えて、インテジャー位相同期回路58を備える。ここで、インテジャー位相同期回路58は、ローパスフィルタ56からの信号の周波数Flpfを逓倍して周波数Fint2の信号として位相検出器42に出力する。そして、フラクショナル位相同期回路40Bの位相検出器42は、可変分周器50からの信号とインテジャー位相同期回路58からの信号とを比較して位相差に応じた信号を出力する。こうした構成とすることにより、第1実施例の位相同期回路装置20Bに比して、可変分周器50からの信号に現われる位相雑音が大きく増幅されて最終出力信号φoutに現われるのをより十分に回避することができる。また、第4実施例のフラクショナル位相同期回路40Bでは、最終出力信号φoutにおける位相雑音を低減するのに加えて、第1実施例や第2実施例、第3実施例のフラクショナル位相同期回路40,140,140Bと同様に、フラクショナルスパーも低減することができる。 The fractional phase-locked loop 40B included in the phase-locked loop device 20B of the fourth embodiment described above includes an integer phase-locked loop 58 in addition to the configuration of the fractional phase-locked loop 40 of the first embodiment. Here, the integer phase-locked loop 58 multiplies the frequency Flpf of the signal from the low-pass filter 56 and outputs it to the phase detector 42 as a signal of frequency Fit2. Then, the phase detector 42 of the fractional phase-locked loop 40B compares the signal from the variable frequency divider 50 with the signal from the indicator phase-locked loop 58 and outputs a signal corresponding to the phase difference. With such a configuration, the phase noise appearing in the signal from the variable frequency divider 50 is greatly amplified and appears in the final output signal φout more sufficiently than the phase-locked loop device 20B of the first embodiment. It can be avoided. Further, in the fractional phase-locked loop 40B of the fourth embodiment, in addition to reducing the phase noise in the final output signal φout, the fractional phase-locked loop 40 of the first embodiment, the second embodiment, and the third embodiment, Similar to 140 and 140B, the fractional spar can be reduced.
 第1実施例や第2実施例、第3実施例、第4実施例の位相同期回路装置20,120,120B,20Bでは、インテジャー位相同期回路21からの第2基準信号を固定分周比Nid2で分周してハーモニックミキサ54に出力する固定分周器52を備えるものとした。しかし、この固定分周器52を備えずに、インテジャー位相同期回路21からの第2基準信号をハーモニックミキサ54に直接に入力するものとしてもよい。 In the phase-locked loop devices 20, 120, 120B, and 20B of the first embodiment, the second embodiment, the third embodiment, and the fourth embodiment, the second reference signal from the integer phase-locked loop 21 has a fixed frequency division ratio. A fixed frequency divider 52 that divides the frequency with Nid2 and outputs the frequency to the harmonic mixer 54 is provided. However, the second reference signal from the integer phase-locked loop 21 may be directly input to the harmonic mixer 54 without the fixed frequency divider 52.
 第1実施例や第2実施例、第3実施例、第4実施例の位相同期回路装置20,120,120B,20Bでは、発振器12に接続されるインテジャー位相同期回路21と、インテジャー位相同期回路21と出力部14とに接続されるフラクショナル位相同期回路40とを備えるものとした。しかし、インテジャー位相同期回路21を備えずにフラクショナル位相同期回路40が発振器12と出力部14とに接続されるものとしてもよい。この場合、発振器12としては、上述のような例えば20MHz~100MHz程度の周波数の信号を発振する水晶発振器に代えて、数百MHz程度~1GHz程度の周波数の信号を発振する発振器が用いられるのが好ましい。 In the phase-locked loop devices 20, 120, 120B, and 20B of the first embodiment, the second embodiment, the third embodiment, and the fourth embodiment, the phase-locked loop circuit 21 connected to the oscillator 12 and the inverter phase A fractional phase-locked loop 40 connected to the synchronization circuit 21 and the output unit 14 is provided. However, the fractional phase-locked loop 40 may be connected to the oscillator 12 and the output unit 14 without the integer phase-locked loop 21. In this case, as the oscillator 12, instead of the crystal oscillator that oscillates a signal having a frequency of about 20 MHz to 100 MHz as described above, an oscillator that oscillates a signal having a frequency of about several hundred MHz to 1 GHz is used. preferable.
 実施例の主要な要素と課題を解決するための手段の欄に記載した発明の主要な要素との対応関係について説明する。第1実施例や第2実施例では、位相検出器42とチャージポンプ44とループフィルタ46と電圧制御発振器48とが「第1周波数調節部」に相当し、可変分周器50または可変分周器150が「可変分周器」に相当し、ハーモニックミキサ54とローパスフィルタ56とが「第2周波数調節部」に相当する。また、固定分周器52が「固定分周器」に相当する。 The correspondence between the main elements of the examples and the main elements of the invention described in the column of means for solving the problem will be described. In the first embodiment and the second embodiment, the phase detector 42, the charge pump 44, the loop filter 46, and the voltage controlled oscillator 48 correspond to the "first frequency adjusting unit", and the variable frequency divider 50 or the variable frequency divider 50 or the variable frequency divider 40. The device 150 corresponds to the "variable frequency divider", and the harmonic mixer 54 and the low-pass filter 56 correspond to the "second frequency adjusting unit". Further, the fixed frequency divider 52 corresponds to the “fixed frequency divider”.
 なお、実施例の主要な要素と課題を解決するための手段の欄に記載した発明の主要な要素との対応関係は、実施例が課題を解決するための手段の欄に記載した発明を実施するための形態を具体的に説明するための一例であることから、課題を解決するための手段の欄に記載した発明の要素を限定するものではない。即ち、課題を解決するための手段の欄に記載した発明についての解釈はその欄の記載に基づいて行なわれるべきものであり、実施例は課題を解決するための手段の欄に記載した発明の具体的な一例に過ぎないものである。 Regarding the correspondence between the main elements of the examples and the main elements of the invention described in the column of means for solving the problem, the invention described in the column of the means for solving the problem in the examples is carried out. Since it is an example for specifically explaining the form for solving the problem, the elements of the invention described in the column of means for solving the problem are not limited. That is, the interpretation of the invention described in the column of means for solving the problem should be performed based on the description in the column, and the examples are the inventions described in the column of means for solving the problem. It is just a concrete example.
 以上、本発明を実施するための形態について実施例を用いて説明したが、本発明はこうした実施例に何等限定されるものではなく、本発明の要旨を逸脱しない範囲内において、種々なる形態で実施し得ることは勿論である。 Although the embodiments for carrying out the present invention have been described above with reference to examples, the present invention is not limited to these examples, and various embodiments are used without departing from the gist of the present invention. Of course, it can be done.
 本発明は、フラクショナル位相同期回路および位相同期回路装置の製造産業などに利用可能である。 The present invention can be used in the manufacturing industry of fractional phase-locked loops and phase-locked loop devices.

Claims (8)

  1.  基準信号の周波数を非整数倍して出力部に出力するフラクショナル位相同期回路であって、
     2つの入力信号の位相差に基づいて、前記出力部に出力する信号の周波数を制御する第1周波数調節部と、
     前記基準信号または前記第1周波数調節部からの信号の周波数を可変分周比で分周して前記第1周波数調節部に出力する可変分周器と、
     前記第1周波数調節部からの信号の周波数と前記基準信号の周波数に基づく第1関連周波数との差分または前記差分の逓倍の第2関連周波数の信号を前記第1周波数調節部に出力する第2周波数調節部と、
     を備えるフラクショナル位相同期回路。
    A fractional phase-locked loop that multiplies the frequency of the reference signal by a non-integer and outputs it to the output section.
    A first frequency adjusting unit that controls the frequency of the signal output to the output unit based on the phase difference between the two input signals.
    A variable frequency divider that divides the frequency of the reference signal or the signal from the first frequency adjustment unit by a variable division ratio and outputs it to the first frequency adjustment unit.
    A second that outputs a signal of the second related frequency of the difference between the frequency of the signal from the first frequency adjusting unit and the first related frequency based on the frequency of the reference signal or the multiplication of the difference to the first frequency adjusting unit. Frequency control unit and
    Fractional phase-locked loop with.
  2.  請求項1記載のフラクショナル位相同期回路であって、
     前記第2周波数調節部は、
      前記第1周波数調節部からの信号の周波数と、前記基準信号または前記基準信号に基づく関連信号の周波数の各逓倍の周波数と、の各差分の周波数成分を含む信号を生成するハーモニックミキサと、
      前記ハーモニックミキサからの信号に含まれる各周波数成分から所定周波数以下の周波数成分を抽出して出力するローパスフィルタとを有する、
     フラクショナル位相同期回路。
    The fractional phase-locked loop according to claim 1.
    The second frequency adjusting unit is
    A harmonic mixer that generates a signal including a frequency component of each difference between the frequency of the signal from the first frequency adjusting unit and the frequency of each multiplication of the frequency of the reference signal or the frequency of the related signal based on the reference signal.
    It has a low-pass filter that extracts and outputs a frequency component of a predetermined frequency or less from each frequency component included in the signal from the harmonic mixer.
    Fractional phase-locked loop.
  3.  請求項2記載のフラクショナル位相同期回路であって、
     前記ローパスフィルタは、前記各周波数成分から最小周波数の成分だけを抽出して出力する、
     フラクショナル位相同期回路。
    The fractional phase-locked loop according to claim 2.
    The low-pass filter extracts and outputs only the minimum frequency component from each of the frequency components.
    Fractional phase-locked loop.
  4.  請求項2または3記載のフラクショナル位相同期回路であって、
     前記第2周波数調節部は、前記ローパスフィルタからの信号の周波数を逓倍して出力するインテジャー位相同期回路を更に有する、
     フラクショナル位相同期回路。
    The fractional phase-locked loop according to claim 2 or 3.
    The second frequency adjusting unit further includes an integer phase-locked loop that multiplies and outputs the frequency of the signal from the low-pass filter.
    Fractional phase-locked loop.
  5.  請求項1ないし4のうちの何れか1つの請求項に記載のフラクショナル位相同期回路であって、
     前記基準信号を固定分周比で分周して前記第2周波数調節部に出力する固定分周器、
     を備えるフラクショナル位相同期回路。
    The fractional phase-locked loop according to any one of claims 1 to 4.
    A fixed frequency divider that divides the reference signal by a fixed frequency division ratio and outputs it to the second frequency adjustment unit.
    Fractional phase-locked loop with.
  6.  請求項1ないし5のうちの何れか1つの請求項に記載のフラクショナル位相同期回路であって、
     前記第1周波数調節部は、
      2つの入力信号を比較して位相差に応じた信号を出力する位相検出器と、
      前記位相検出器からの信号を電流に変換するチャージポンプと、
      前記チャージポンプからの電流の所定周波数よりも高い周波数成分を除去して電圧に変換するループフィルタと、
      前記ループフィルタからの電圧に基づいて、前記出力部に出力する信号の周波数を制御する電圧制御発振器とを有する、
     フラクショナル位相同期回路。
    The fractional phase-locked loop according to any one of claims 1 to 5.
    The first frequency adjusting unit is
    A phase detector that compares two input signals and outputs a signal according to the phase difference,
    A charge pump that converts the signal from the phase detector into an electric current,
    A loop filter that removes frequency components higher than the predetermined frequency of the current from the charge pump and converts it into a voltage.
    It has a voltage controlled oscillator that controls the frequency of a signal output to the output unit based on the voltage from the loop filter.
    Fractional phase-locked loop.
  7.  請求項1ないし6のうちの何れか1つの請求項に記載のフラクショナル位相同期回路と、
     初期基準信号の周波数を逓倍して前記基準信号として前記フラクショナル位相同期回路に出力する第2インテジャー位相同期回路と、
     を備える位相同期回路装置。
    The fractional phase-locked loop according to any one of claims 1 to 6.
    A second integer phase-locked loop that multiplies the frequency of the initial reference signal and outputs it as the reference signal to the fractional phase-locked loop.
    A phase-locked loop device comprising.
  8.  請求項7記載の位相同期回路装置であって、
     前記可変分周器は、前記第1周波数調節部からの信号の周波数を可変分周比で分周して前記第1周波数調節部に出力する、
     位相同期回路装置。
    The phase-locked loop device according to claim 7.
    The variable frequency divider divides the frequency of the signal from the first frequency control unit by a variable frequency division ratio and outputs it to the first frequency control unit.
    Phase-locked loop device.
PCT/JP2020/026776 2019-10-23 2020-07-09 Fractional phase-locked loop and phase-locked loop device WO2021079563A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019192731 2019-10-23
JP2019-192731 2019-10-23

Publications (1)

Publication Number Publication Date
WO2021079563A1 true WO2021079563A1 (en) 2021-04-29

Family

ID=75619729

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/026776 WO2021079563A1 (en) 2019-10-23 2020-07-09 Fractional phase-locked loop and phase-locked loop device

Country Status (1)

Country Link
WO (1) WO2021079563A1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04371024A (en) * 1991-06-19 1992-12-24 Sony Corp Pll frequency synthesizer
JPH07122999A (en) * 1993-10-21 1995-05-12 Murata Mfg Co Ltd Pll circuit
JP2006311489A (en) * 2005-03-29 2006-11-09 Renesas Technology Corp Phase locked loop circuits, offset pll transmitters, high frequency integrated circuits for communication and radio communication systems
JP2016006950A (en) * 2014-05-26 2016-01-14 三菱電機株式会社 Frequency synthesizer

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04371024A (en) * 1991-06-19 1992-12-24 Sony Corp Pll frequency synthesizer
JPH07122999A (en) * 1993-10-21 1995-05-12 Murata Mfg Co Ltd Pll circuit
JP2006311489A (en) * 2005-03-29 2006-11-09 Renesas Technology Corp Phase locked loop circuits, offset pll transmitters, high frequency integrated circuits for communication and radio communication systems
JP2016006950A (en) * 2014-05-26 2016-01-14 三菱電機株式会社 Frequency synthesizer

Similar Documents

Publication Publication Date Title
US7548121B2 (en) Fractional frequency synthesizer and phase locked loop utilizing fractional frequency synthesizer and method thereof
US20150084676A1 (en) Apparatus and methods for synchronizing phase-locked loops
US8587352B2 (en) Fractional-N phase locked loop
US8054114B2 (en) Fractional-N phase-locked loop
US7973606B2 (en) Fractional-N frequency synthesizer and method thereof
US20110298507A1 (en) System and method for calibrating output frequency in phase locked loop
WO2012172745A1 (en) Cancellation system for phase jumps at loop gain changes in fractional-n frequency synthesizers
US8963594B2 (en) Phase-locked loop circuit
US6943598B2 (en) Reduced-size integrated phase-locked loop
KR20120063864A (en) Differential controlled phase locked loop circuit
US8664989B1 (en) Method to increase frequency resolution of a fractional phase-locked loop
US20190288695A1 (en) Three loop phase-locked loop
WO2013168325A1 (en) High-linearity phase frequency detector
WO2021079563A1 (en) Fractional phase-locked loop and phase-locked loop device
US9191128B2 (en) Spread spectrum clock generator and method for generating spread spectrum clock signal
JP2011244120A (en) Atomic oscillator
KR102392119B1 (en) Fractional-N Sub-Sampling Phase Locked Loop Using Phase Rotator
US8432200B1 (en) Self-tracking adaptive bandwidth phase-locked loop
KR102392109B1 (en) Fractional-N Phase Locked Loop Using Phase Rotator
KR101364843B1 (en) Automatic frequency calibration and frequency synthesizer including the same
JP2009016973A (en) Synthesizer
TWI552532B (en) Spread spectrum clock generator and method for generating spread spectrum clock signal
GB2567463A (en) Phase locked loop circuit
KR102059595B1 (en) Phase Locked Loop Circuit
US8587353B2 (en) Frequency synthesizer

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20880173

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20880173

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP