WO2021079462A1 - Thermoelectric conversion element module and method for producing thermoelectric conversion element module - Google Patents

Thermoelectric conversion element module and method for producing thermoelectric conversion element module Download PDF

Info

Publication number
WO2021079462A1
WO2021079462A1 PCT/JP2019/041709 JP2019041709W WO2021079462A1 WO 2021079462 A1 WO2021079462 A1 WO 2021079462A1 JP 2019041709 W JP2019041709 W JP 2019041709W WO 2021079462 A1 WO2021079462 A1 WO 2021079462A1
Authority
WO
WIPO (PCT)
Prior art keywords
insulating substrate
insulating
type thermoelectric
thermoelectric element
substrate
Prior art date
Application number
PCT/JP2019/041709
Other languages
French (fr)
Japanese (ja)
Inventor
智 ▲高▼平
公治 黒木
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Priority to CN201980101378.1A priority Critical patent/CN114556600B/en
Priority to JP2020519157A priority patent/JP6822609B1/en
Priority to PCT/JP2019/041709 priority patent/WO2021079462A1/en
Publication of WO2021079462A1 publication Critical patent/WO2021079462A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02NELECTRIC MACHINES NOT OTHERWISE PROVIDED FOR
    • H02N11/00Generators or motors not provided for elsewhere; Alleged perpetua mobilia obtained by electric or magnetic means
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N10/00Thermoelectric devices comprising a junction of dissimilar materials, i.e. devices exhibiting Seebeck or Peltier effects
    • H10N10/01Manufacture or treatment
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N10/00Thermoelectric devices comprising a junction of dissimilar materials, i.e. devices exhibiting Seebeck or Peltier effects
    • H10N10/10Thermoelectric devices comprising a junction of dissimilar materials, i.e. devices exhibiting Seebeck or Peltier effects operating with only the Peltier or Seebeck effects
    • H10N10/13Thermoelectric devices comprising a junction of dissimilar materials, i.e. devices exhibiting Seebeck or Peltier effects operating with only the Peltier or Seebeck effects characterised by the heat-exchanging means at the junction
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N10/00Thermoelectric devices comprising a junction of dissimilar materials, i.e. devices exhibiting Seebeck or Peltier effects
    • H10N10/10Thermoelectric devices comprising a junction of dissimilar materials, i.e. devices exhibiting Seebeck or Peltier effects operating with only the Peltier or Seebeck effects
    • H10N10/17Thermoelectric devices comprising a junction of dissimilar materials, i.e. devices exhibiting Seebeck or Peltier effects operating with only the Peltier or Seebeck effects characterised by the structure or configuration of the cell or thermocouple forming the device

Definitions

  • the present invention relates to a thermoelectric conversion element module and a method for manufacturing a thermoelectric conversion element module.
  • Patent Document 1 discloses a thermoelectric module.
  • the thermoelectric module has first and second ceramic substrates facing each other.
  • the first and second electrodes are bonded to the inner surfaces of the first and second ceramic substrates, respectively.
  • a thermoelectric element is interposed between the first and second electrodes.
  • the thermoelectric element is bonded to the first and second electrodes.
  • thermoelectric conversion element module In the manufacturing process of the thermoelectric conversion element module as in Patent Document 1, voids or cracks may occur in the ceramic substrate. This may create a path that penetrates the ceramic substrate in the thickness direction. A voltage is applied to the thermoelectric conversion element module during actual operation in the market. This can lead to electromigration in the path created by voids or cracks. At this time, the front and back surfaces of the ceramic substrate may be electrically connected, and the electric circuit formed by the thermoelectric element may be electrically connected to the outside via the ceramic substrate. Therefore, the thermoelectric conversion element module may not function.
  • the present invention has been made to solve the above-mentioned problems, and an object of the present invention is a thermoelectric conversion capable of preventing an electric circuit formed by a thermoelectric element from being electrically connected to the outside via an insulating substrate. To obtain a method for manufacturing an element module and a thermoelectric conversion element module.
  • thermoelectric conversion element module is provided between the first insulating substrate, the second insulating substrate provided above the first insulating substrate, and the first insulating substrate and the second insulating substrate.
  • a first electrode provided on the back surface and electrically connecting the upper end side of the n-type thermoelectric element and the upper end side of the p-type thermoelectric element, and an n-type thermoelectric element provided on the upper surface of the first insulating substrate.
  • a first metal layer provided under the insulating substrate, a first insulating layer provided under the first metal layer, a second metal layer provided on the second insulating substrate, and the first A second insulating layer provided on the two metal layers is provided.
  • thermoelectric conversion element module is provided between the first insulating substrate, the second insulating substrate provided above the first insulating substrate, and the first insulating substrate and the second insulating substrate.
  • a first electrode provided on the back surface and electrically connecting the upper end side of the n-type thermoelectric element and the upper end side of the p-type thermoelectric element, and an n-type thermoelectric element provided on the upper surface of the first insulating substrate.
  • a first insulating layer provided under the insulating substrate and a second insulating layer provided on the second insulating substrate are provided, and the first insulating substrate and the second insulating substrate are ceramic substrates. The first insulating layer and the second insulating layer are not fired.
  • the method for manufacturing a thermoelectric conversion element module according to the present invention is to insert an n-type thermoelectric element and a p-type thermoelectric element between the first insulating substrate and the second insulating substrate provided above the first insulating substrate.
  • the first electrode provided on the back surface of the second insulating substrate facing the first insulating substrate electrically connects the upper end side of the n-type thermoelectric element and the upper end side of the p-type thermoelectric element.
  • the second electrode provided on the upper surface of the first insulating substrate and the lower end side of the n-type thermoelectric element are electrically connected to each other, and the third electrode provided on the upper surface of the first insulating substrate is electrically connected.
  • thermoelectric element And the lower end side of the p-type thermoelectric element are electrically connected, and after the first insulating substrate and the second insulating substrate are fired, a first insulating layer is provided under the first insulating substrate. A second insulating layer is provided on the second insulating substrate.
  • thermoelectric conversion element module In the method for manufacturing a thermoelectric conversion element module and a thermoelectric conversion element module according to the present invention, a first insulating layer and a second insulating layer are provided below the first insulating substrate and above the second insulating substrate, respectively.
  • the first insulating layer and the second insulating layer can prevent the electric circuit formed by the thermoelectric element from being electrically connected to the outside via the insulating substrate.
  • thermoelectric conversion element module which concerns on Embodiment 1.
  • FIG. It is sectional drawing which shows the state which mounted the semiconductor device on the thermoelectric conversion element module which concerns on Embodiment 1.
  • FIG. It is sectional drawing of the thermoelectric conversion element module which concerns on Embodiment 2.
  • FIG. It is sectional drawing of the thermoelectric conversion element module which concerns on Embodiment 3.
  • thermoelectric conversion element module and the method for manufacturing the thermoelectric conversion element module according to the embodiment of the present invention will be described with reference to the drawings.
  • the same or corresponding components may be designated by the same reference numerals and the description may be omitted.
  • FIG. 1 is a cross-sectional view of the thermoelectric conversion element module 100 according to the first embodiment.
  • the thermoelectric conversion element module 100 has a first insulating substrate 10 and a second insulating substrate 20 provided above the first insulating substrate 10.
  • the first insulating substrate 10 and the second insulating substrate 20 face each other.
  • the first insulating substrate 10 and the second insulating substrate 20 are ceramic substrates formed by, for example, firing.
  • the first insulating substrate 10 and the second insulating substrate 20 are formed of, for example, a green sheet.
  • the first insulating substrate 10 and the second insulating substrate 20 may be formed from a plurality of laminated green sheets.
  • the first insulating substrate 10 and the second insulating substrate 20 are formed of, for example, an aluminum oxide-based sintered body or an aluminum nitride-based sintered body.
  • the thickness of the first insulating substrate 10 and the second insulating substrate 20 is, for example, 0.15 to 0.25 mm.
  • a plurality of n-type thermoelectric elements 31a to 31c and a plurality of p-type thermoelectric elements 32a to 32c are provided between the first insulating substrate 10 and the second insulating substrate 20.
  • the first insulating substrate 10 and the second insulating substrate 20 sandwich the n-type thermoelectric elements 31a to 31c and the p-type thermoelectric elements 32a to 32c.
  • the first insulating substrate 10 and the second insulating substrate 20 are support members for the n-type thermoelectric elements 31a to 31c and the p-type thermoelectric elements 32a to 32c.
  • Each of the plurality of n-type thermoelectric elements 31a to 31c and the plurality of p-type thermoelectric elements 32a to 32c is erected perpendicularly to the first insulating substrate 10 and the second insulating substrate 20.
  • the plurality of n-type thermoelectric elements 31a to 31c and the plurality of p-type thermoelectric elements 32a to 32c are arranged alternately.
  • the number of the n-type thermoelectric elements 31a to 31c and the p-type thermoelectric elements 32a to 32c provided in the thermoelectric conversion element module 100 may be one or more, respectively.
  • Electrodes 41a to 41d are provided on the upper surface of the first insulating substrate 10. Further, electrodes 42a to 42c are provided on the back surface of the second insulating substrate 20, which is a surface facing the first insulating substrate 10. The n-type thermoelectric elements 31a to 31c and the p-type thermoelectric elements 32a to 32c are provided between the electrodes 41a to 41d and the electrodes 42a to 42c.
  • the electrode 41a is electrically connected to the lower end side of the n-type thermoelectric element 31a.
  • the electrode 42a electrically connects the upper end side of the n-type thermoelectric element 31a and the upper end side of the p-type thermoelectric element 32a.
  • the electrode 41b electrically connects the lower end side of the p-type thermoelectric element 32a and the lower end side of the n-type thermoelectric element 31b.
  • the electrode 42b electrically connects the upper end side of the n-type thermoelectric element 31b and the upper end side of the p-type thermoelectric element 32b.
  • the electrode 41c electrically connects the lower end side of the p-type thermoelectric element 32b and the lower end side of the n-type thermoelectric element 31c.
  • the electrode 42c electrically connects the upper end side of the n-type thermoelectric element 31c and the upper end side of the p-type thermoelectric element 32c.
  • the electrode 41d is electrically connected to the lower end side of the p-type thermoelectric element 32c.
  • the electrodes 41a to 41d and the electrodes 42a to 42c alternately connect the n-type thermoelectric elements 31a to 31c and the p-type thermoelectric elements 32a to 32c in series. As a result, the electrodes 41a to 41d, the electrodes 42a to 42c, the n-type thermoelectric elements 31a to 31c, and the p-type thermoelectric elements 32a to 32c form an electric circuit.
  • thermoelectric elements 31a to 31c and the p-type thermoelectric elements 32a to 32c, and the electrodes 41a to 41d and the electrodes 42a to 42c are joined by, for example, solder.
  • a first insulating layer 12 is provided under the first insulating substrate 10.
  • a second insulating layer 22 is provided on the second insulating substrate 20.
  • the first insulating layer 12 and the second insulating layer 22 are formed of aluminum oxide, aluminum nitride, silicon oxide, silicon nitride, silicon oxynitride, titanium nitride, or a non-conductive organic material.
  • the first insulating layer 12 and the second insulating layer 22 may be formed from an insulator such as an aluminum oxide sintered body or an aluminum nitride material sintered body.
  • a metal layer 14 is provided under the first insulating layer 12. Further, a metal layer 24 is provided on the second insulating layer 22.
  • the outermost layers of the metal layers 14 and 24 are formed of gold, for example.
  • the metal layers 14 and 24 are used when solder-bonding members arranged above or below the thermoelectric conversion element module 100. In addition, you may use resin bonding instead of solder bonding. In this case, the metal layers 14 and 24 may not be provided.
  • thermoelectric conversion element module 100 First, the first insulating substrate 10 and the second insulating substrate 20 are fired. After that, the first insulating layer 12 is provided on the surface opposite to the upper surface of the first insulating substrate 10. Further, the second insulating layer 22 is provided on the surface opposite to the back surface of the second insulating substrate 20.
  • the first insulating layer 12 is formed by, for example, firing a green sheet laminate to form the first insulating substrate 10, and then sputtering or vapor-depositing the first insulating substrate 10.
  • the second insulating layer 22 is formed by, for example, firing a green sheet laminate to form a second insulating substrate 20, and then sputtering or vapor-depositing the second insulating substrate 20. Therefore, the first insulating layer 12 and the second insulating layer 22 are not fired.
  • the thickness of the first insulating layer 12 and the second insulating layer 22 may be any general thickness that can be formed by sputtering or vapor deposition.
  • the metal layer 14 is formed on the surface of the first insulating layer 12 opposite to the first insulating substrate 10. Further, the metal layer 24 is formed on the surface of the second insulating layer 22 opposite to the second insulating substrate 20.
  • an n-type thermoelectric element and a p-type thermoelectric element are provided between the first insulating substrate 10 and the second insulating substrate 20.
  • the electrode 41a and the lower end side of the n-type thermoelectric element 31a are electrically connected.
  • the electrode 42a electrically connects the upper end side of the n-type thermoelectric element 31a and the upper end side of the p-type thermoelectric element 32a.
  • the electrode 41b electrically connects the lower end side of the p-type thermoelectric element 32a and the lower end side of the n-type thermoelectric element 31b.
  • the electrode 42b electrically connects the upper end side of the n-type thermoelectric element 31b and the upper end side of the p-type thermoelectric element 32b.
  • the electrode 41c electrically connects the lower end side of the p-type thermoelectric element 32b and the lower end side of the n-type thermoelectric element 31c.
  • the electrode 42c electrically connects the upper end side of the n-type thermoelectric element 31c and the upper end side of the p-type thermoelectric element 32c.
  • the electrode 41d and the lower end side of the p-type thermoelectric element 32c are electrically connected.
  • FIG. 2 is a cross-sectional view showing a state in which the semiconductor device 50 is mounted on the thermoelectric conversion element module 100 according to the first embodiment.
  • the semiconductor device 50 includes a substrate 51 and a semiconductor chip 52 provided on the upper surface of the substrate 51.
  • the semiconductor device 50 is provided on the thermoelectric conversion element module 100 via the metal block 60.
  • the metal block 60 is joined to the metal layer 24 with, for example, solder.
  • the metal block 60 may not be provided.
  • a power supply 70 is connected between the electrodes 41a and 41d. As a result, a closed circuit of a plurality of thermoelectric elements is formed. In the closed circuit, a direct current flows in the direction indicated by the arrow in FIG. As a result, in each of the n-type thermoelectric elements 31a to 31c and the p-type thermoelectric elements 32a to 32c, the carrier moves in the direction from the second insulating substrate 20 to the first insulating substrate 10. As the carrier moves, heat is absorbed from the second insulating substrate 20 and dissipated to the first insulating substrate 10. Therefore, the semiconductor device 50 can be cooled. Further, the semiconductor device 50 can be heated by passing an electric current in the opposite direction.
  • thermoelectric conversion element module 100 is used as a cooling or heating module by utilizing the Seebeck effect or the Peltier effect.
  • thermoelectric conversion element module may not function.
  • thermoelectric conversion element modules that may cause defects in advance.
  • the first insulating layer 12 is provided on the surface of the first insulating substrate 10 facing the surface on which the electrodes 41a to 41d are provided.
  • the second insulating layer 22 is provided on the surface of the second insulating substrate 20 facing the surface on which the electrodes 42a to 42c are provided. Therefore, even when a path penetrating in the thickness direction is formed in the first insulating substrate 10 or the second insulating substrate 20, it is possible to prevent the electric circuit formed by the thermoelectric element from being electrically connected to the outside. .. Therefore, the function of the thermoelectric conversion element module 100 can be surely realized in a state where the thermoelectric conversion element module 100 is mounted on the product and is in operation in the market.
  • the first insulating layer 12 and the second insulating layer 22 are formed after the first insulating substrate 10 and the second insulating substrate 20 are fired. Therefore, the first insulating layer 12 and the second insulating layer 22 are not fired. In the first insulating layer 12 and the second insulating layer 22, the occurrence of voids or cracks can be suppressed as compared with the fired first insulating substrate 10 and the second insulating substrate 20.
  • voids or cracks do not occur in the insulating layer formed by sputtering or vapor deposition. Therefore, by forming the first insulating layer 12 and the second insulating layer 22 by sputtering or vapor deposition, the occurrence of voids or cracks can be suppressed.
  • the first insulating layer 12 and the second insulating layer 22 can suppress the occurrence of voids or cracks as compared with the first insulating substrate 10 or the second insulating substrate 20, the first insulating substrate 10 or the second insulating substrate 20 It may be formed from the same material as.
  • the first insulating layer 12 and the second insulating layer 22 and the first insulating substrate 10 and the second insulating substrate 20 may be formed of the same material having high thermal conductivity. Thereby, the temperature control function of the thermoelectric conversion element module 100 can be improved.
  • first insulating layer 12 may be formed of a material that is less likely to generate voids or cracks than the first insulating substrate 10.
  • second insulating layer 22 may be formed of a material that is less likely to generate voids or cracks than the second insulating substrate 20.
  • the first insulating layer 12 and the second insulating layer 22 are formed after the first insulating substrate 10 and the second insulating substrate 20 are fired. Therefore, the firing temperatures of the first insulating layer 12 and the second insulating layer 22 are not limited by the firing temperatures of the first insulating substrate 10 and the second insulating substrate 20.
  • the firing temperature of the first insulating layer 12 may be equal to or lower than the firing temperature of the first insulating substrate 10.
  • the firing temperature of the second insulating layer 22 may be equal to or lower than the firing temperature of the second insulating substrate 20.
  • the degree of freedom of the materials of the first insulating layer 12 and the second insulating layer 22 can be improved.
  • thermoelectric conversion element module and the method for manufacturing the thermoelectric conversion element module according to the following embodiments. Since the thermoelectric conversion element module and the method for manufacturing the thermoelectric conversion element module according to the following embodiments have much in common with the first embodiment, the differences from the first embodiment will be mainly described.
  • FIG. 3 is a cross-sectional view of the thermoelectric conversion element module 200 according to the second embodiment.
  • the thermoelectric conversion element module 200 includes a first insulating substrate 210a and a second insulating substrate 220a. Between the first insulating substrate 210a and the second insulating substrate 220a, as in the first embodiment, electrodes 41a to 41d, electrodes 42a to 42c, n-type thermoelectric elements 31a to 31c, and p-type thermoelectric elements 32a to 32c are used. An electric circuit is formed.
  • a first insulating layer 212a is provided under the first insulating substrate 210a.
  • a third insulating substrate 210b is provided below the first insulating layer 212a.
  • a third insulating layer 212b is provided below the third insulating substrate 210b.
  • a metal layer 14 is provided under the third insulating layer 212b.
  • a second insulating layer 222a is provided on the second insulating substrate 220a.
  • a fourth insulating substrate 220b is provided on the second insulating layer 222a.
  • a fourth insulating layer 222b is provided on the fourth insulating substrate 220b.
  • a metal layer 24 is provided on the fourth insulating layer 222b.
  • a plurality of insulating substrates are laminated. Further, an insulating layer is provided on the surface of each insulating substrate opposite to the thermoelectric element.
  • the first insulating substrate 210a, the second insulating substrate 220a, the third insulating substrate 210b, and the fourth insulating substrate 220b may each be a single green sheet. Further, the first insulating substrate 210a, the second insulating substrate 220a, the third insulating substrate 210b, and the fourth insulating substrate 220b may each be a green sheet laminate. Further, in the present embodiment, the insulating substrates are laminated in two layers, but may be laminated in three or more layers.
  • FIG. 4 is a cross-sectional view of the thermoelectric conversion element module 300 according to the third embodiment.
  • the first metal layer 311 is provided under the first insulating substrate 10.
  • a first insulating layer 12 is provided under the first metal layer 311.
  • the second metal layer 321 is provided on the second insulating substrate 20.
  • a second insulating layer 22 is provided on the second metal layer 321.
  • Other configurations are the same as those in the first embodiment.
  • the first insulating substrate 10 and the second insulating substrate 20 may be metallized.
  • the first metal layer 311 and the second metal layer 321 of the present embodiment may be formed of, for example, gold or nickel. Further, the first metal layer 311 and the second metal layer 321 may each be formed from a plurality of layers. The plurality of layers include, for example, a layer formed of nickel and a layer formed of gold.
  • the insulating substrate may be covered with a metal layer.
  • the metal component of the first layer from the insulating substrate among the metal layers may invade the voids or cracks.
  • the metal components of the first metal layer 311 and the second metal layer 321 may invade the defects of the first insulating substrate 10 and the second insulating substrate 20, respectively. Therefore, in the present embodiment, as compared with the first embodiment, the front and back surfaces of the insulating substrate are more likely to be electrically connected by electromigration.
  • the electric circuit formed by the thermoelectric element by the first insulating layer 12 provided between the first metal layer 311 and the metal layer 14 forms the first insulating substrate 10. It is possible to suppress the electrical connection with the outside through the device. Further, the electric circuit formed by the thermoelectric element is electrically connected to the outside via the second insulating substrate 20 by the second insulating layer 22 provided between the second metal layer 321 and the metal layer 24. Can be suppressed.
  • thermoelectric conversion element module 210a first insulating substrate, 210b first 3 Insulation Substrate, 212a 1st Insulation Layer, 212b 3rd Insulation Layer, 220a 2nd Insulation Substrate, 220b 4th Insulation Substrate, 222a 2nd Insulation Layer, 222b 4th Insulation Layer, 300 Thermoelectric Conversion Element Module, 311 First Metal Layer, 321 second metal layer

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Cooling Or The Like Of Semiconductors Or Solid State Devices (AREA)

Abstract

A thermoelectric conversion element module according to the present invention is provided with: a first insulating substrate; a second insulating substrate that is provided above the first insulating substrate; an n-type thermoelectric element that is provided between the first insulating substrate and the second insulating substrate; a p-type thermoelectric element that is provided between the first insulating substrate and the second insulating substrate; a first electrode that is provided on the back surface of the second insulating substrate, while electrically connecting the top edge of the n-type thermoelectric element and the top edge of the p-type thermoelectric element to each other, said back surface facing the first insulating substrate; a second electrode that is provided on the upper surface of the first insulating substrate, while being electrically connected to the bottom edge of the n-type thermoelectric element; a third electrode that is provided on the upper surface of the first insulating substrate, while being electrically connected to the bottom edge of the p-type thermoelectric element; a first metal layer that is provided beneath the first insulating substrate; a first insulating layer that is provided beneath the first metal layer; a second metal layer that is provided on top of the second insulating substrate; and a second insulating layer that is provided on top of the second metal layer.

Description

熱電変換素子モジュールおよび熱電変換素子モジュールの製造方法Thermoelectric conversion element module and manufacturing method of thermoelectric conversion element module
 この発明は、熱電変換素子モジュールおよび熱電変換素子モジュールの製造方法に関する。 The present invention relates to a thermoelectric conversion element module and a method for manufacturing a thermoelectric conversion element module.
 特許文献1には熱電モジュールが開示されている。熱電モジュールは、相対する第1及び第2のセラミック基板を有する。第1及び第2のセラミック基板の各々の内側面には、第1及び第2の電極が接合される。第1及び第2の電極間には、熱電素子が介在する。熱電素子は、第1及び第2の電極に接合されている。 Patent Document 1 discloses a thermoelectric module. The thermoelectric module has first and second ceramic substrates facing each other. The first and second electrodes are bonded to the inner surfaces of the first and second ceramic substrates, respectively. A thermoelectric element is interposed between the first and second electrodes. The thermoelectric element is bonded to the first and second electrodes.
日本特開2012-44133号公報Japanese Patent Application Laid-Open No. 2012-44133
 特許文献1のような熱電変換素子モジュールの製造過程において、セラミック基板にボイドまたはクラックが発生することがある。これにより、セラミック基板を厚さ方向で貫通する経路ができる場合がある。熱電変換素子モジュールには、市場で実稼働する際に、電圧が印加される。これにより、ボイドまたはクラックにより生じた経路でエレクトロマイグレーションが発生するおそれがある。このとき、セラミック基板の表裏間が導通し、熱電素子によって形成される電気回路がセラミック基板を介して外部と電気的に接続されるおそれがある。従って、熱電変換素子モジュールが機能を果たせなくなる可能性がある。 In the manufacturing process of the thermoelectric conversion element module as in Patent Document 1, voids or cracks may occur in the ceramic substrate. This may create a path that penetrates the ceramic substrate in the thickness direction. A voltage is applied to the thermoelectric conversion element module during actual operation in the market. This can lead to electromigration in the path created by voids or cracks. At this time, the front and back surfaces of the ceramic substrate may be electrically connected, and the electric circuit formed by the thermoelectric element may be electrically connected to the outside via the ceramic substrate. Therefore, the thermoelectric conversion element module may not function.
 本発明は上述の問題を解決するためになされたものであり、その目的は、熱電素子によって形成される電気回路が、絶縁基板を介して外部と電気的に接続されることを防止できる熱電変換素子モジュールおよび熱電変換素子モジュールの製造方法を得ることである。 The present invention has been made to solve the above-mentioned problems, and an object of the present invention is a thermoelectric conversion capable of preventing an electric circuit formed by a thermoelectric element from being electrically connected to the outside via an insulating substrate. To obtain a method for manufacturing an element module and a thermoelectric conversion element module.
 本願の発明に係る熱電変換素子モジュールは、第1絶縁基板と、該第1絶縁基板の上方に設けられた第2絶縁基板と、該第1絶縁基板と該第2絶縁基板との間に設けられたn型熱電素子と、該第1絶縁基板と該第2絶縁基板との間に設けられたp型熱電素子と、該第2絶縁基板のうち該第1絶縁基板と対向する面である裏面に設けられ、該n型熱電素子の上端側と該p型熱電素子の上端側とを電気的に接続する第1電極と、該第1絶縁基板の上面に設けられ、該n型熱電素子の下端側と電気的に接続された第2電極と、該第1絶縁基板の該上面に設けられ、該p型熱電素子の下端側と電気的に接続された第3電極と、該第1絶縁基板の下に設けられた第1金属層と、該第1金属層の下に設けられた第1絶縁層と、該第2絶縁基板の上に設けられた第2金属層と、該第2金属層の上に設けられた第2絶縁層と、を備える。 The thermoelectric conversion element module according to the present invention is provided between the first insulating substrate, the second insulating substrate provided above the first insulating substrate, and the first insulating substrate and the second insulating substrate. The n-type thermoelectric element, the p-type thermoelectric element provided between the first insulating substrate and the second insulating substrate, and the surface of the second insulating substrate facing the first insulating substrate. A first electrode provided on the back surface and electrically connecting the upper end side of the n-type thermoelectric element and the upper end side of the p-type thermoelectric element, and an n-type thermoelectric element provided on the upper surface of the first insulating substrate. A second electrode electrically connected to the lower end side of the first insulating substrate, a third electrode provided on the upper surface of the first insulating substrate and electrically connected to the lower end side of the p-type thermoelectric element, and the first electrode. A first metal layer provided under the insulating substrate, a first insulating layer provided under the first metal layer, a second metal layer provided on the second insulating substrate, and the first A second insulating layer provided on the two metal layers is provided.
 本願の発明に係る熱電変換素子モジュールは、第1絶縁基板と、該第1絶縁基板の上方に設けられた第2絶縁基板と、該第1絶縁基板と該第2絶縁基板との間に設けられたn型熱電素子と、該第1絶縁基板と該第2絶縁基板との間に設けられたp型熱電素子と、該第2絶縁基板のうち該第1絶縁基板と対向する面である裏面に設けられ、該n型熱電素子の上端側と該p型熱電素子の上端側とを電気的に接続する第1電極と、該第1絶縁基板の上面に設けられ、該n型熱電素子の下端側と電気的に接続された第2電極と、該第1絶縁基板の該上面に設けられ、該p型熱電素子の下端側と電気的に接続された第3電極と、該第1絶縁基板の下に設けられた第1絶縁層と、該第2絶縁基板の上に設けられた第2絶縁層と、を備え、該第1絶縁基板と該第2絶縁基板はセラミック基板であり、該第1絶縁層と該第2絶縁層は不焼成である。 The thermoelectric conversion element module according to the present invention is provided between the first insulating substrate, the second insulating substrate provided above the first insulating substrate, and the first insulating substrate and the second insulating substrate. The n-type thermoelectric element, the p-type thermoelectric element provided between the first insulating substrate and the second insulating substrate, and the surface of the second insulating substrate facing the first insulating substrate. A first electrode provided on the back surface and electrically connecting the upper end side of the n-type thermoelectric element and the upper end side of the p-type thermoelectric element, and an n-type thermoelectric element provided on the upper surface of the first insulating substrate. A second electrode electrically connected to the lower end side of the first insulating substrate, a third electrode provided on the upper surface of the first insulating substrate and electrically connected to the lower end side of the p-type thermoelectric element, and the first electrode. A first insulating layer provided under the insulating substrate and a second insulating layer provided on the second insulating substrate are provided, and the first insulating substrate and the second insulating substrate are ceramic substrates. The first insulating layer and the second insulating layer are not fired.
 本願の発明に係る熱電変換素子モジュールの製造方法は、第1絶縁基板と該第1絶縁基板の上方に設けられた該第2絶縁基板との間にn型熱電素子とp型熱電素子とを設け、該第2絶縁基板のうち該第1絶縁基板と対向する面である裏面に設けられた第1電極で該n型熱電素子の上端側と該p型熱電素子の上端側とを電気的に接続し、該第1絶縁基板の上面に設けられた第2電極と該n型熱電素子の下端側とを電気的に接続し、該第1絶縁基板の該上面に設けられた第3電極と該p型熱電素子の下端側とを電気的に接続し、該第1絶縁基板と該第2絶縁基板とを焼成した後に、該第1絶縁基板の下に第1絶縁層を設け、該第2絶縁基板の上に第2絶縁層を設ける。 The method for manufacturing a thermoelectric conversion element module according to the present invention is to insert an n-type thermoelectric element and a p-type thermoelectric element between the first insulating substrate and the second insulating substrate provided above the first insulating substrate. The first electrode provided on the back surface of the second insulating substrate facing the first insulating substrate electrically connects the upper end side of the n-type thermoelectric element and the upper end side of the p-type thermoelectric element. The second electrode provided on the upper surface of the first insulating substrate and the lower end side of the n-type thermoelectric element are electrically connected to each other, and the third electrode provided on the upper surface of the first insulating substrate is electrically connected. And the lower end side of the p-type thermoelectric element are electrically connected, and after the first insulating substrate and the second insulating substrate are fired, a first insulating layer is provided under the first insulating substrate. A second insulating layer is provided on the second insulating substrate.
 本願の発明に係る熱電変換素子モジュールおよび熱電変換素子モジュールの製造方法では、第1絶縁基板の下および第2絶縁基板の上に第1絶縁層と第2絶縁層がそれぞれ設けられる。第1絶縁層と第2絶縁層により、熱電素子によって形成される電気回路が、絶縁基板を介して外部と電気的に接続されることを防止できる。 In the method for manufacturing a thermoelectric conversion element module and a thermoelectric conversion element module according to the present invention, a first insulating layer and a second insulating layer are provided below the first insulating substrate and above the second insulating substrate, respectively. The first insulating layer and the second insulating layer can prevent the electric circuit formed by the thermoelectric element from being electrically connected to the outside via the insulating substrate.
実施の形態1に係る熱電変換素子モジュールの断面図である。It is sectional drawing of the thermoelectric conversion element module which concerns on Embodiment 1. FIG. 実施の形態1に係る熱電変換素子モジュールに半導体装置を搭載した状態を示す断面図である。It is sectional drawing which shows the state which mounted the semiconductor device on the thermoelectric conversion element module which concerns on Embodiment 1. FIG. 実施の形態2に係る熱電変換素子モジュールの断面図である。It is sectional drawing of the thermoelectric conversion element module which concerns on Embodiment 2. FIG. 実施の形態3に係る熱電変換素子モジュールの断面図である。It is sectional drawing of the thermoelectric conversion element module which concerns on Embodiment 3. FIG.
 本発明の実施の形態に係る熱電変換素子モジュールおよび熱電変換素子モジュールの製造方法について図面を参照して説明する。同じ又は対応する構成要素には同じ符号を付し、説明の繰り返しを省略する場合がある。 The thermoelectric conversion element module and the method for manufacturing the thermoelectric conversion element module according to the embodiment of the present invention will be described with reference to the drawings. The same or corresponding components may be designated by the same reference numerals and the description may be omitted.
実施の形態1.
 図1は、実施の形態1に係る熱電変換素子モジュール100の断面図である。熱電変換素子モジュール100は、第1絶縁基板10と、第1絶縁基板10の上方に設けられた第2絶縁基板20とを有する。第1絶縁基板10と第2絶縁基板20は対向する。
Embodiment 1.
FIG. 1 is a cross-sectional view of the thermoelectric conversion element module 100 according to the first embodiment. The thermoelectric conversion element module 100 has a first insulating substrate 10 and a second insulating substrate 20 provided above the first insulating substrate 10. The first insulating substrate 10 and the second insulating substrate 20 face each other.
 第1絶縁基板10および第2絶縁基板20は、例えば焼成により形成されたセラミック基板である。第1絶縁基板10と第2絶縁基板20は、例えばグリーンシートから形成される。第1絶縁基板10と第2絶縁基板20は、それぞれ積層した複数のグリーンシートから形成されても良い。第1絶縁基板10および第2絶縁基板20は、例えば酸化アルミニウム質焼結体または窒化アルミニウム質焼結体で形成される。第1絶縁基板10および第2絶縁基板20の厚さは、例えば0.15~0.25mmである。 The first insulating substrate 10 and the second insulating substrate 20 are ceramic substrates formed by, for example, firing. The first insulating substrate 10 and the second insulating substrate 20 are formed of, for example, a green sheet. The first insulating substrate 10 and the second insulating substrate 20 may be formed from a plurality of laminated green sheets. The first insulating substrate 10 and the second insulating substrate 20 are formed of, for example, an aluminum oxide-based sintered body or an aluminum nitride-based sintered body. The thickness of the first insulating substrate 10 and the second insulating substrate 20 is, for example, 0.15 to 0.25 mm.
 第1絶縁基板10と第2絶縁基板20との間には、複数のn型熱電素子31a~31cと複数のp型熱電素子32a~32cが設けられる。第1絶縁基板10と第2絶縁基板20は、n型熱電素子31a~31cとp型熱電素子32a~32cを挟持している。第1絶縁基板10と第2絶縁基板20は、n型熱電素子31a~31cとp型熱電素子32a~32cの支持部材である。 A plurality of n-type thermoelectric elements 31a to 31c and a plurality of p-type thermoelectric elements 32a to 32c are provided between the first insulating substrate 10 and the second insulating substrate 20. The first insulating substrate 10 and the second insulating substrate 20 sandwich the n-type thermoelectric elements 31a to 31c and the p-type thermoelectric elements 32a to 32c. The first insulating substrate 10 and the second insulating substrate 20 are support members for the n-type thermoelectric elements 31a to 31c and the p-type thermoelectric elements 32a to 32c.
 複数のn型熱電素子31a~31cと複数のp型熱電素子32a~32cの各々は、第1絶縁基板10および第2絶縁基板20と垂直に立設される。複数のn型熱電素子31a~31cと複数のp型熱電素子32a~32cは交互に並ぶ。熱電変換素子モジュール100に設けられるn型熱電素子31a~31cとp型熱電素子32a~32cの数は、それぞれ1つ以上であれば良い。 Each of the plurality of n-type thermoelectric elements 31a to 31c and the plurality of p-type thermoelectric elements 32a to 32c is erected perpendicularly to the first insulating substrate 10 and the second insulating substrate 20. The plurality of n-type thermoelectric elements 31a to 31c and the plurality of p-type thermoelectric elements 32a to 32c are arranged alternately. The number of the n-type thermoelectric elements 31a to 31c and the p-type thermoelectric elements 32a to 32c provided in the thermoelectric conversion element module 100 may be one or more, respectively.
 第1絶縁基板10の上面には、電極41a~41dが設けられる。また、第2絶縁基板20のうち第1絶縁基板10と対向する面である裏面には、電極42a~42cが設けられる。n型熱電素子31a~31cとp型熱電素子32a~32cは、電極41a~41dと電極42a~42cとの間に設けられる。 Electrodes 41a to 41d are provided on the upper surface of the first insulating substrate 10. Further, electrodes 42a to 42c are provided on the back surface of the second insulating substrate 20, which is a surface facing the first insulating substrate 10. The n-type thermoelectric elements 31a to 31c and the p-type thermoelectric elements 32a to 32c are provided between the electrodes 41a to 41d and the electrodes 42a to 42c.
 電極41aは、n型熱電素子31aの下端側と電気的に接続される。電極42aは、n型熱電素子31aの上端側とp型熱電素子32aの上端側とを電気的に接続する。電極41bは、p型熱電素子32aの下端側とn型熱電素子31bの下端側とを電気的に接続する。電極42bは、n型熱電素子31bの上端側とp型熱電素子32bの上端側とを電気的に接続する。電極41cは、p型熱電素子32bの下端側とn型熱電素子31cの下端側とを電気的に接続する。電極42cは、n型熱電素子31cの上端側とp型熱電素子32cの上端側とを電気的に接続する。電極41dは、p型熱電素子32cの下端側と電気的に接続される。 The electrode 41a is electrically connected to the lower end side of the n-type thermoelectric element 31a. The electrode 42a electrically connects the upper end side of the n-type thermoelectric element 31a and the upper end side of the p-type thermoelectric element 32a. The electrode 41b electrically connects the lower end side of the p-type thermoelectric element 32a and the lower end side of the n-type thermoelectric element 31b. The electrode 42b electrically connects the upper end side of the n-type thermoelectric element 31b and the upper end side of the p-type thermoelectric element 32b. The electrode 41c electrically connects the lower end side of the p-type thermoelectric element 32b and the lower end side of the n-type thermoelectric element 31c. The electrode 42c electrically connects the upper end side of the n-type thermoelectric element 31c and the upper end side of the p-type thermoelectric element 32c. The electrode 41d is electrically connected to the lower end side of the p-type thermoelectric element 32c.
 電極41a~41dと電極42a~42cは、n型熱電素子31a~31cとp型熱電素子32a~32cとを交互に直列に接続する。これにより、電極41a~41d、電極42a~42c、n型熱電素子31a~31cおよびp型熱電素子32a~32cは電気回路を形成する。 The electrodes 41a to 41d and the electrodes 42a to 42c alternately connect the n-type thermoelectric elements 31a to 31c and the p-type thermoelectric elements 32a to 32c in series. As a result, the electrodes 41a to 41d, the electrodes 42a to 42c, the n-type thermoelectric elements 31a to 31c, and the p-type thermoelectric elements 32a to 32c form an electric circuit.
 n型熱電素子31a~31cおよびp型熱電素子32a~32cと、電極41a~41dおよび電極42a~42cは、例えばはんだにより接合される。 The n-type thermoelectric elements 31a to 31c and the p-type thermoelectric elements 32a to 32c, and the electrodes 41a to 41d and the electrodes 42a to 42c are joined by, for example, solder.
 第1絶縁基板10の下には、第1絶縁層12が設けられる。第2絶縁基板20の上には第2絶縁層22が設けられる。第1絶縁層12と第2絶縁層22は、酸化アルミニウム、窒化アルミニウム、酸化ケイ素、窒化ケイ素、酸窒化ケイ素、窒化チタンまたは非導電性の有機材料から形成される。第1絶縁層12と第2絶縁層22は、酸化アルミニウム質焼結体または窒化アルミニウム質焼結体等の絶縁体から形成されても良い。 A first insulating layer 12 is provided under the first insulating substrate 10. A second insulating layer 22 is provided on the second insulating substrate 20. The first insulating layer 12 and the second insulating layer 22 are formed of aluminum oxide, aluminum nitride, silicon oxide, silicon nitride, silicon oxynitride, titanium nitride, or a non-conductive organic material. The first insulating layer 12 and the second insulating layer 22 may be formed from an insulator such as an aluminum oxide sintered body or an aluminum nitride material sintered body.
 第1絶縁層12の下には金属層14が設けられる。また、第2絶縁層22の上には金属層24が設けられる。金属層14、24は例えば最表層が金から形成される。金属層14、24は、熱電変換素子モジュール100の上または下に配置される部材をはんだ接合する場合に用いられる。なお、はんだ接合に代えて樹脂による接合を用いても良い。この場合、金属層14、24は設けられなくても良い。 A metal layer 14 is provided under the first insulating layer 12. Further, a metal layer 24 is provided on the second insulating layer 22. The outermost layers of the metal layers 14 and 24 are formed of gold, for example. The metal layers 14 and 24 are used when solder-bonding members arranged above or below the thermoelectric conversion element module 100. In addition, you may use resin bonding instead of solder bonding. In this case, the metal layers 14 and 24 may not be provided.
 次に、熱電変換素子モジュール100の製造方法を説明する。まず、第1絶縁基板10と第2絶縁基板20とを焼成する。その後、第1絶縁基板10の上面と反対側の面に第1絶縁層12を設ける。また、第2絶縁基板20の裏面と反対側の面に第2絶縁層22を設ける。 Next, a method of manufacturing the thermoelectric conversion element module 100 will be described. First, the first insulating substrate 10 and the second insulating substrate 20 are fired. After that, the first insulating layer 12 is provided on the surface opposite to the upper surface of the first insulating substrate 10. Further, the second insulating layer 22 is provided on the surface opposite to the back surface of the second insulating substrate 20.
 第1絶縁層12は、例えばグリーンシート積層体を焼成して第1絶縁基板10を形成した後、第1絶縁基板10にスパッタまたは蒸着を行うことで形成される。第2絶縁層22は、例えばグリーンシート積層体を焼成して第2絶縁基板20を形成した後、第2絶縁基板20にスパッタまたは蒸着を行うことで形成される。このため、第1絶縁層12と第2絶縁層22は、焼成されない。第1絶縁層12と第2絶縁層22の厚さは、スパッタまたは蒸着で形成できる一般的な厚さであれば良い。 The first insulating layer 12 is formed by, for example, firing a green sheet laminate to form the first insulating substrate 10, and then sputtering or vapor-depositing the first insulating substrate 10. The second insulating layer 22 is formed by, for example, firing a green sheet laminate to form a second insulating substrate 20, and then sputtering or vapor-depositing the second insulating substrate 20. Therefore, the first insulating layer 12 and the second insulating layer 22 are not fired. The thickness of the first insulating layer 12 and the second insulating layer 22 may be any general thickness that can be formed by sputtering or vapor deposition.
 次に、第1絶縁層12の第1絶縁基板10と反対側の面に金属層14を形成する。また、第2絶縁層22の第2絶縁基板20と反対側の面に金属層24を形成する。 Next, the metal layer 14 is formed on the surface of the first insulating layer 12 opposite to the first insulating substrate 10. Further, the metal layer 24 is formed on the surface of the second insulating layer 22 opposite to the second insulating substrate 20.
 次に、第1絶縁基板10と第2絶縁基板20との間にn型熱電素子とp型熱電素子とを設ける。このとき、電極41aとn型熱電素子31aの下端側とを電気的に接続する。また、電極42aでn型熱電素子31aの上端側とp型熱電素子32aの上端側とを電気的に接続する。また、電極41bでp型熱電素子32aの下端側とn型熱電素子31bの下端側とを電気的に接続する。また、電極42bでn型熱電素子31bの上端側とp型熱電素子32bの上端側とを電気的に接続する。また、電極41cでp型熱電素子32bの下端側とn型熱電素子31cの下端側とを電気的に接続する。また、電極42cでn型熱電素子31cの上端側とp型熱電素子32cの上端側とを電気的に接続する。また、電極41dとp型熱電素子32cの下端側とを電気的に接続する。 Next, an n-type thermoelectric element and a p-type thermoelectric element are provided between the first insulating substrate 10 and the second insulating substrate 20. At this time, the electrode 41a and the lower end side of the n-type thermoelectric element 31a are electrically connected. Further, the electrode 42a electrically connects the upper end side of the n-type thermoelectric element 31a and the upper end side of the p-type thermoelectric element 32a. Further, the electrode 41b electrically connects the lower end side of the p-type thermoelectric element 32a and the lower end side of the n-type thermoelectric element 31b. Further, the electrode 42b electrically connects the upper end side of the n-type thermoelectric element 31b and the upper end side of the p-type thermoelectric element 32b. Further, the electrode 41c electrically connects the lower end side of the p-type thermoelectric element 32b and the lower end side of the n-type thermoelectric element 31c. Further, the electrode 42c electrically connects the upper end side of the n-type thermoelectric element 31c and the upper end side of the p-type thermoelectric element 32c. Further, the electrode 41d and the lower end side of the p-type thermoelectric element 32c are electrically connected.
 図2は、実施の形態1に係る熱電変換素子モジュール100に半導体装置50を搭載した状態を示す断面図である。半導体装置50は基板51と、基板51の上面に設けられた半導体チップ52を備える。半導体装置50は金属ブロック60を介して熱電変換素子モジュール100の上に設けられる。金属ブロック60は、例えばはんだで金属層24に接合されている。なお、金属ブロック60は設けられなくても良い。 FIG. 2 is a cross-sectional view showing a state in which the semiconductor device 50 is mounted on the thermoelectric conversion element module 100 according to the first embodiment. The semiconductor device 50 includes a substrate 51 and a semiconductor chip 52 provided on the upper surface of the substrate 51. The semiconductor device 50 is provided on the thermoelectric conversion element module 100 via the metal block 60. The metal block 60 is joined to the metal layer 24 with, for example, solder. The metal block 60 may not be provided.
 電極41aと電極41dの間には電源70が接続される。これにより、複数の熱電素子の閉回路が形成される。閉回路において、図2の矢印に示される方向に直流電流が流れる。これにより、n型熱電素子31a~31cとp型熱電素子32a~32cのそれぞれにおいて、第2絶縁基板20から第1絶縁基板10に向かう方向にキャリアが移動する。キャリアの移動に伴い、第2絶縁基板20から吸熱され、第1絶縁基板10に放熱される。従って、半導体装置50を冷却できる。また、電流を逆向きに流すことで、半導体装置50を加熱することもできる。 A power supply 70 is connected between the electrodes 41a and 41d. As a result, a closed circuit of a plurality of thermoelectric elements is formed. In the closed circuit, a direct current flows in the direction indicated by the arrow in FIG. As a result, in each of the n-type thermoelectric elements 31a to 31c and the p-type thermoelectric elements 32a to 32c, the carrier moves in the direction from the second insulating substrate 20 to the first insulating substrate 10. As the carrier moves, heat is absorbed from the second insulating substrate 20 and dissipated to the first insulating substrate 10. Therefore, the semiconductor device 50 can be cooled. Further, the semiconductor device 50 can be heated by passing an electric current in the opposite direction.
 このように、熱電変換素子モジュール100は、ゼーベック効果あるいはペルチエ効果を利用して冷却または加熱用モジュールとして用いられる。 As described above, the thermoelectric conversion element module 100 is used as a cooling or heating module by utilizing the Seebeck effect or the Peltier effect.
 セラミック基板では、ボイドまたはクラックにより、基板を厚さ方向に貫通する経路が発生することがある。特に、グリーンシートから形成されたセラミック基板は、製造過程において、ボイドまたはクラックが発生し易い傾向にある。このようなセラミック基板に電圧が印加されると、ボイドまたはクラックにより生じた経路でエレクトロマイグレーションが発生するおそれがある。このとき、セラミック基板の表裏間が導通し、熱電素子によって形成される電気回路がセラミック基板を介して外部と電気的に接続されるおそれがある。従って、熱電変換素子モジュールが機能を果たせなくなる可能性がある。 In a ceramic substrate, voids or cracks may cause a path that penetrates the substrate in the thickness direction. In particular, a ceramic substrate formed from a green sheet tends to have voids or cracks in the manufacturing process. When a voltage is applied to such a ceramic substrate, electromigration may occur in the path created by voids or cracks. At this time, the front and back surfaces of the ceramic substrate may be electrically connected, and the electric circuit formed by the thermoelectric element may be electrically connected to the outside via the ceramic substrate. Therefore, the thermoelectric conversion element module may not function.
 セラミック基板の表裏間での導通は、一般に製造過程では発生せず、市場での実稼働時に発生することが多い。また、このような不良の発生率は一般に低い。このため、事前に不良の発生する可能性のある熱電変換素子モジュールを排除することは一般に困難である。 Continuity between the front and back of a ceramic substrate generally does not occur in the manufacturing process, but often occurs during actual operation in the market. Moreover, the incidence of such defects is generally low. For this reason, it is generally difficult to eliminate thermoelectric conversion element modules that may cause defects in advance.
 これに対し、本実施の形態では第1絶縁基板10の電極41a~41dが設けられる面と対向する面に第1絶縁層12が設けられる。同様に、第2絶縁基板20の電極42a~42cが設けられる面と対向する面に第2絶縁層22が設けられる。従って、第1絶縁基板10または第2絶縁基板20に厚さ方向に貫通する経路が形成された場合にも、熱電素子によって形成される電気回路が外部と電気的に接続されることを抑制できる。従って、熱電変換素子モジュール100が製品に実装され市場で稼働している状態において、熱電変換素子モジュール100の機能を確実に実現できる。 On the other hand, in the present embodiment, the first insulating layer 12 is provided on the surface of the first insulating substrate 10 facing the surface on which the electrodes 41a to 41d are provided. Similarly, the second insulating layer 22 is provided on the surface of the second insulating substrate 20 facing the surface on which the electrodes 42a to 42c are provided. Therefore, even when a path penetrating in the thickness direction is formed in the first insulating substrate 10 or the second insulating substrate 20, it is possible to prevent the electric circuit formed by the thermoelectric element from being electrically connected to the outside. .. Therefore, the function of the thermoelectric conversion element module 100 can be surely realized in a state where the thermoelectric conversion element module 100 is mounted on the product and is in operation in the market.
 特に本実施の形態では、第1絶縁基板10と第2絶縁基板20の焼成後に第1絶縁層12と第2絶縁層22が形成される。このため、第1絶縁層12と第2絶縁層22は不焼成である。第1絶縁層12と第2絶縁層22では、焼成された第1絶縁基板10と第2絶縁基板20と比較してボイドまたはクラックの発生を抑制できる。 In particular, in the present embodiment, the first insulating layer 12 and the second insulating layer 22 are formed after the first insulating substrate 10 and the second insulating substrate 20 are fired. Therefore, the first insulating layer 12 and the second insulating layer 22 are not fired. In the first insulating layer 12 and the second insulating layer 22, the occurrence of voids or cracks can be suppressed as compared with the fired first insulating substrate 10 and the second insulating substrate 20.
 また、一般に、スパッタまたは蒸着により形成される絶縁層にはボイドまたはクラックが発生しない。このため、第1絶縁層12および第2絶縁層22をスパッタまたは蒸着により形成することで、ボイドまたはクラックの発生を抑制できる。 Also, in general, voids or cracks do not occur in the insulating layer formed by sputtering or vapor deposition. Therefore, by forming the first insulating layer 12 and the second insulating layer 22 by sputtering or vapor deposition, the occurrence of voids or cracks can be suppressed.
 また、第1絶縁層12と第2絶縁層22は、第1絶縁基板10または第2絶縁基板20と比較してボイドまたはクラックの発生を抑制できれば、第1絶縁基板10または第2絶縁基板20と同じ材料から形成されても良い。例えば、第1絶縁層12および第2絶縁層22と、第1絶縁基板10および第2絶縁基板20とを熱伝導率の高い同じ材料から形成しても良い。これにより、熱電変換素子モジュール100の温度調節機能を向上できる。 Further, if the first insulating layer 12 and the second insulating layer 22 can suppress the occurrence of voids or cracks as compared with the first insulating substrate 10 or the second insulating substrate 20, the first insulating substrate 10 or the second insulating substrate 20 It may be formed from the same material as. For example, the first insulating layer 12 and the second insulating layer 22 and the first insulating substrate 10 and the second insulating substrate 20 may be formed of the same material having high thermal conductivity. Thereby, the temperature control function of the thermoelectric conversion element module 100 can be improved.
 また、第1絶縁層12は第1絶縁基板10よりもボイドまたはクラックが発生しにくい材料から形成されても良い。同様に、第2絶縁層22は第2絶縁基板20よりもボイドまたはクラックが発生しにくい材料から形成されても良い。 Further, the first insulating layer 12 may be formed of a material that is less likely to generate voids or cracks than the first insulating substrate 10. Similarly, the second insulating layer 22 may be formed of a material that is less likely to generate voids or cracks than the second insulating substrate 20.
 また、本実施の形態では、第1絶縁基板10と第2絶縁基板20の焼成後に、第1絶縁層12と第2絶縁層22が形成される。このため、第1絶縁層12と第2絶縁層22の焼成温度は第1絶縁基板10と第2絶縁基板20の焼成温度によって制限されない。例えば、本実施の形態では、第1絶縁層12の焼成温度は、第1絶縁基板10の焼成温度以下であっても良い。また、第2絶縁層22の焼成温度は、第2絶縁基板20の焼成温度以下であっても良い。このように、本実施の形態では第1絶縁層12と第2絶縁層22の材料の自由度を向上できる。 Further, in the present embodiment, the first insulating layer 12 and the second insulating layer 22 are formed after the first insulating substrate 10 and the second insulating substrate 20 are fired. Therefore, the firing temperatures of the first insulating layer 12 and the second insulating layer 22 are not limited by the firing temperatures of the first insulating substrate 10 and the second insulating substrate 20. For example, in the present embodiment, the firing temperature of the first insulating layer 12 may be equal to or lower than the firing temperature of the first insulating substrate 10. Further, the firing temperature of the second insulating layer 22 may be equal to or lower than the firing temperature of the second insulating substrate 20. As described above, in the present embodiment, the degree of freedom of the materials of the first insulating layer 12 and the second insulating layer 22 can be improved.
 これらの変形は以下の実施の形態に係る熱電変換素子モジュールおよび熱電変換素子モジュールの製造方法について適宜応用することができる。なお、以下の実施の形態に係る熱電変換素子モジュールおよび熱電変換素子モジュールの製造方法については実施の形態1との共通点が多いので、実施の形態1との相違点を中心に説明する。 These modifications can be appropriately applied to the thermoelectric conversion element module and the method for manufacturing the thermoelectric conversion element module according to the following embodiments. Since the thermoelectric conversion element module and the method for manufacturing the thermoelectric conversion element module according to the following embodiments have much in common with the first embodiment, the differences from the first embodiment will be mainly described.
実施の形態2.
 図3は、実施の形態2に係る熱電変換素子モジュール200の断面図である。熱電変換素子モジュール200は、第1絶縁基板210aと第2絶縁基板220aを備える。第1絶縁基板210aと第2絶縁基板220aの間には、実施の形態1と同様に、電極41a~41d、電極42a~42c、n型熱電素子31a~31cおよびp型熱電素子32a~32cにより電気回路が形成される。
Embodiment 2.
FIG. 3 is a cross-sectional view of the thermoelectric conversion element module 200 according to the second embodiment. The thermoelectric conversion element module 200 includes a first insulating substrate 210a and a second insulating substrate 220a. Between the first insulating substrate 210a and the second insulating substrate 220a, as in the first embodiment, electrodes 41a to 41d, electrodes 42a to 42c, n-type thermoelectric elements 31a to 31c, and p-type thermoelectric elements 32a to 32c are used. An electric circuit is formed.
 第1絶縁基板210aの下には第1絶縁層212aが設けられる。第1絶縁層212aの下には第3絶縁基板210bが設けられる。第3絶縁基板210bの下には第3絶縁層212bが設けられる。第3絶縁層212bの下には金属層14が設けられる。 A first insulating layer 212a is provided under the first insulating substrate 210a. A third insulating substrate 210b is provided below the first insulating layer 212a. A third insulating layer 212b is provided below the third insulating substrate 210b. A metal layer 14 is provided under the third insulating layer 212b.
 第2絶縁基板220aの上には第2絶縁層222aが設けられる。第2絶縁層222aの上には第4絶縁基板220bが設けられる。第4絶縁基板220bの上には第4絶縁層222bが設けられる。第4絶縁層222bの上には金属層24が設けられる。 A second insulating layer 222a is provided on the second insulating substrate 220a. A fourth insulating substrate 220b is provided on the second insulating layer 222a. A fourth insulating layer 222b is provided on the fourth insulating substrate 220b. A metal layer 24 is provided on the fourth insulating layer 222b.
 本実施の形態では、複数の絶縁基板が積層する。また、各々の絶縁基板の熱電素子と反対側の面には絶縁層が設けられる。複数の絶縁基板および複数の絶縁層が積層することで、絶縁基板に発生したボイドまたはクラックを介して、熱電素子によって形成される電気回路が外部と電気的に接続されることをさらに抑制できる。 In this embodiment, a plurality of insulating substrates are laminated. Further, an insulating layer is provided on the surface of each insulating substrate opposite to the thermoelectric element. By stacking the plurality of insulating substrates and the plurality of insulating layers, it is possible to further suppress that the electric circuit formed by the thermoelectric element is electrically connected to the outside through voids or cracks generated in the insulating substrate.
 第1絶縁基板210a、第2絶縁基板220a、第3絶縁基板210b、第4絶縁基板220bは、それぞれが単体のグリーンシートであっても良い。また、第1絶縁基板210a、第2絶縁基板220a、第3絶縁基板210b、第4絶縁基板220bは、それぞれがグリーンシート積層体であっても良い。また、本実施の形態では、絶縁基板は2重に積層しているが、3重以上に積層しても良い。 The first insulating substrate 210a, the second insulating substrate 220a, the third insulating substrate 210b, and the fourth insulating substrate 220b may each be a single green sheet. Further, the first insulating substrate 210a, the second insulating substrate 220a, the third insulating substrate 210b, and the fourth insulating substrate 220b may each be a green sheet laminate. Further, in the present embodiment, the insulating substrates are laminated in two layers, but may be laminated in three or more layers.
実施の形態3.
 図4は、実施の形態3に係る熱電変換素子モジュール300の断面図である。本実施の形態では、第1絶縁基板10の下に第1金属層311が設けられる。第1金属層311の下には第1絶縁層12が設けられる。また、第2絶縁基板20の上に第2金属層321が設けられる。第2金属層321の上には第2絶縁層22が設けられる。これ以外の構成は、実施の形態1と同様である。このように、第1絶縁基板10および第2絶縁基板20には、メタライズが施されていても良い。
Embodiment 3.
FIG. 4 is a cross-sectional view of the thermoelectric conversion element module 300 according to the third embodiment. In the present embodiment, the first metal layer 311 is provided under the first insulating substrate 10. A first insulating layer 12 is provided under the first metal layer 311. Further, the second metal layer 321 is provided on the second insulating substrate 20. A second insulating layer 22 is provided on the second metal layer 321. Other configurations are the same as those in the first embodiment. As described above, the first insulating substrate 10 and the second insulating substrate 20 may be metallized.
 本実施の形態の第1金属層311および第2金属層321は、例えば金またはニッケルから形成されても良い。また、第1金属層311および第2金属層321は、それぞれ複数の層から形成されても良い。複数の層は、例えばニッケルから形成される層および金から形成される層を含む。 The first metal layer 311 and the second metal layer 321 of the present embodiment may be formed of, for example, gold or nickel. Further, the first metal layer 311 and the second metal layer 321 may each be formed from a plurality of layers. The plurality of layers include, for example, a layer formed of nickel and a layer formed of gold.
 一般に、絶縁基板には金属層が被着されている場合がある。このような絶縁基板にボイドまたはクラックが形成されると、金属層のうち絶縁基板から1層目の金属成分がボイドまたはクラックに侵入することがある。本実施の形態においても、第1金属層311および第2金属層321の金属成分が、それぞれ第1絶縁基板10および第2絶縁基板20の欠陥に侵入するおそれがある。このため、本実施の形態では、実施の形態1と比較して、エレクトロマイグレーションにより絶縁基板の表裏間が導通し易い。 In general, the insulating substrate may be covered with a metal layer. When voids or cracks are formed in such an insulating substrate, the metal component of the first layer from the insulating substrate among the metal layers may invade the voids or cracks. Also in this embodiment, the metal components of the first metal layer 311 and the second metal layer 321 may invade the defects of the first insulating substrate 10 and the second insulating substrate 20, respectively. Therefore, in the present embodiment, as compared with the first embodiment, the front and back surfaces of the insulating substrate are more likely to be electrically connected by electromigration.
 本実施の形態では、このような場合においても、第1金属層311と金属層14の間に設けられた第1絶縁層12により、熱電素子によって形成される電気回路が第1絶縁基板10を介して外部と電気的に接続されることを抑制できる。また、第2金属層321と金属層24の間に設けられた第2絶縁層22により、熱電素子によって形成される電気回路が第2絶縁基板20を介して外部と電気的に接続されることを抑制できる。 In the present embodiment, even in such a case, the electric circuit formed by the thermoelectric element by the first insulating layer 12 provided between the first metal layer 311 and the metal layer 14 forms the first insulating substrate 10. It is possible to suppress the electrical connection with the outside through the device. Further, the electric circuit formed by the thermoelectric element is electrically connected to the outside via the second insulating substrate 20 by the second insulating layer 22 provided between the second metal layer 321 and the metal layer 24. Can be suppressed.
 なお、各実施の形態で説明した技術的特徴は適宜に組み合わせて用いても良い。 Note that the technical features described in each embodiment may be used in combination as appropriate.
 10 第1絶縁基板、12 第1絶縁層、14 金属層、20 第2絶縁基板、22 第2絶縁層、24 金属層、31a、31b、31c n型熱電素子、32a、32b、32c p型熱電素子、41a、41b、41c、41d、42a、42b、42c、50 半導体装置、51 基板、52 半導体チップ、60 金属ブロック、70 電源、100、200 熱電変換素子モジュール、210a 第1絶縁基板、210b 第3絶縁基板、212a 第1絶縁層、212b 第3絶縁層、220a 第2絶縁基板、220b 第4絶縁基板、222a 第2絶縁層、222b 第4絶縁層、300 熱電変換素子モジュール、311 第1金属層、321 第2金属層 10 first insulating substrate, 12 first insulating layer, 14 metal layer, 20 second insulating substrate, 22 second insulating layer, 24 metal layer, 31a, 31b, 31c n-type thermoelectric element, 32a, 32b, 32c p-type thermoelectric element Element, 41a, 41b, 41c, 41d, 42a, 42b, 42c, 50 semiconductor device, 51 substrate, 52 semiconductor chip, 60 metal block, 70 power supply, 100, 200 thermoelectric conversion element module, 210a first insulating substrate, 210b first 3 Insulation Substrate, 212a 1st Insulation Layer, 212b 3rd Insulation Layer, 220a 2nd Insulation Substrate, 220b 4th Insulation Substrate, 222a 2nd Insulation Layer, 222b 4th Insulation Layer, 300 Thermoelectric Conversion Element Module, 311 First Metal Layer, 321 second metal layer

Claims (8)

  1.  第1絶縁基板と、
     前記第1絶縁基板の上方に設けられた第2絶縁基板と、
     前記第1絶縁基板と前記第2絶縁基板との間に設けられたn型熱電素子と、
     前記第1絶縁基板と前記第2絶縁基板との間に設けられたp型熱電素子と、
     前記第2絶縁基板のうち前記第1絶縁基板と対向する面である裏面に設けられ、前記n型熱電素子の上端側と前記p型熱電素子の上端側とを電気的に接続する第1電極と、
     前記第1絶縁基板の上面に設けられ、前記n型熱電素子の下端側と電気的に接続された第2電極と、
     前記第1絶縁基板の前記上面に設けられ、前記p型熱電素子の下端側と電気的に接続された第3電極と、
     前記第1絶縁基板の下に設けられた第1金属層と、
     前記第1金属層の下に設けられた第1絶縁層と、
     前記第2絶縁基板の上に設けられた第2金属層と、
     前記第2金属層の上に設けられた第2絶縁層と、
     を備えることを特徴とする熱電変換素子モジュール。
    With the first insulating substrate
    A second insulating substrate provided above the first insulating substrate and
    An n-type thermoelectric element provided between the first insulating substrate and the second insulating substrate,
    A p-type thermoelectric element provided between the first insulating substrate and the second insulating substrate,
    A first electrode provided on the back surface of the second insulating substrate, which is a surface facing the first insulating substrate, and electrically connects the upper end side of the n-type thermoelectric element and the upper end side of the p-type thermoelectric element. When,
    A second electrode provided on the upper surface of the first insulating substrate and electrically connected to the lower end side of the n-type thermoelectric element, and
    A third electrode provided on the upper surface of the first insulating substrate and electrically connected to the lower end side of the p-type thermoelectric element.
    A first metal layer provided under the first insulating substrate and
    A first insulating layer provided under the first metal layer and
    A second metal layer provided on the second insulating substrate and
    A second insulating layer provided on the second metal layer and
    A thermoelectric conversion element module characterized by being equipped with.
  2.  第1絶縁基板と、
     前記第1絶縁基板の上方に設けられた第2絶縁基板と、
     前記第1絶縁基板と前記第2絶縁基板との間に設けられたn型熱電素子と、
     前記第1絶縁基板と前記第2絶縁基板との間に設けられたp型熱電素子と、
     前記第2絶縁基板のうち前記第1絶縁基板と対向する面である裏面に設けられ、前記n型熱電素子の上端側と前記p型熱電素子の上端側とを電気的に接続する第1電極と、
     前記第1絶縁基板の上面に設けられ、前記n型熱電素子の下端側と電気的に接続された第2電極と、
     前記第1絶縁基板の前記上面に設けられ、前記p型熱電素子の下端側と電気的に接続された第3電極と、
     前記第1絶縁基板の下に設けられた第1絶縁層と、
     前記第2絶縁基板の上に設けられた第2絶縁層と、
     を備え、
     前記第1絶縁基板と前記第2絶縁基板はセラミック基板であり、
     前記第1絶縁層と前記第2絶縁層は不焼成であることを特徴とする熱電変換素子モジュール。
    With the first insulating substrate
    A second insulating substrate provided above the first insulating substrate and
    An n-type thermoelectric element provided between the first insulating substrate and the second insulating substrate,
    A p-type thermoelectric element provided between the first insulating substrate and the second insulating substrate,
    A first electrode provided on the back surface of the second insulating substrate, which is a surface facing the first insulating substrate, and electrically connects the upper end side of the n-type thermoelectric element and the upper end side of the p-type thermoelectric element. When,
    A second electrode provided on the upper surface of the first insulating substrate and electrically connected to the lower end side of the n-type thermoelectric element, and
    A third electrode provided on the upper surface of the first insulating substrate and electrically connected to the lower end side of the p-type thermoelectric element.
    A first insulating layer provided under the first insulating substrate and
    A second insulating layer provided on the second insulating substrate and
    With
    The first insulating substrate and the second insulating substrate are ceramic substrates.
    A thermoelectric conversion element module characterized in that the first insulating layer and the second insulating layer are not fired.
  3.  前記第1絶縁基板と前記第2絶縁基板はセラミック基板であり、
     前記第1絶縁層と前記第2絶縁層は不焼成であることを特徴とする請求項1に記載の熱電変換素子モジュール。
    The first insulating substrate and the second insulating substrate are ceramic substrates.
    The thermoelectric conversion element module according to claim 1, wherein the first insulating layer and the second insulating layer are not fired.
  4.  前記第1絶縁層の焼成温度は、前記第1絶縁基板の焼成温度以下であることを特徴とする請求項1から3の何れか1項に記載の熱電変換素子モジュール。 The thermoelectric conversion element module according to any one of claims 1 to 3, wherein the firing temperature of the first insulating layer is equal to or lower than the firing temperature of the first insulating substrate.
  5.  前記第1絶縁基板と前記第2絶縁基板は、グリーンシートから形成されることを特徴とする請求項1から4の何れか1項に記載の熱電変換素子モジュール。 The thermoelectric conversion element module according to any one of claims 1 to 4, wherein the first insulating substrate and the second insulating substrate are formed of a green sheet.
  6.  前記第1絶縁層と前記第2絶縁層は、酸化アルミニウム、窒化アルミニウム、酸化ケイ素、窒化ケイ素、酸窒化ケイ素、窒化チタンまたは非導電性の有機材料から形成されることを特徴とする請求項1から5の何れか1項に記載の熱電変換素子モジュール。 The first insulating layer and the second insulating layer are formed of aluminum oxide, aluminum nitride, silicon oxide, silicon nitride, silicon oxynitride, titanium nitride, or a non-conductive organic material. The thermoelectric conversion element module according to any one of 5 to 5.
  7.  前記第1絶縁層の下に設けられた第3絶縁基板と、
     前記第3絶縁基板の下に設けられた第3絶縁層と、
     前記第2絶縁層の上に設けられた第4絶縁基板と、
     前記第4絶縁基板の上に設けられた第4絶縁層と、
     を備えることを特徴とする請求項1から6の何れか1項に記載の熱電変換素子モジュール。
    A third insulating substrate provided under the first insulating layer and
    A third insulating layer provided under the third insulating substrate and
    A fourth insulating substrate provided on the second insulating layer and
    With the fourth insulating layer provided on the fourth insulating substrate,
    The thermoelectric conversion element module according to any one of claims 1 to 6, wherein the thermoelectric conversion element module is provided.
  8.  第1絶縁基板と前記第1絶縁基板の上方に設けられた第2絶縁基板との間にn型熱電素子とp型熱電素子とを設け、前記第2絶縁基板のうち前記第1絶縁基板と対向する面である裏面に設けられた第1電極で前記n型熱電素子の上端側と前記p型熱電素子の上端側とを電気的に接続し、前記第1絶縁基板の上面に設けられた第2電極と前記n型熱電素子の下端側とを電気的に接続し、前記第1絶縁基板の前記上面に設けられた第3電極と前記p型熱電素子の下端側とを電気的に接続し、
     前記第1絶縁基板と前記第2絶縁基板とを焼成した後に、前記第1絶縁基板の下に第1絶縁層を設け、前記第2絶縁基板の上に第2絶縁層を設けることを特徴とする熱電変換素子モジュールの製造方法。
    An n-type thermoelectric element and a p-type thermoelectric element are provided between the first insulating substrate and the second insulated substrate provided above the first insulated substrate, and the first insulated substrate of the second insulated substrate is provided. The upper end side of the n-type thermoelectric element and the upper end side of the p-type thermoelectric element are electrically connected by a first electrode provided on the back surface, which is a facing surface, and provided on the upper surface of the first insulating substrate. The second electrode and the lower end side of the n-type thermoelectric element are electrically connected, and the third electrode provided on the upper surface of the first insulating substrate and the lower end side of the p-type thermoelectric element are electrically connected. And
    After the first insulating substrate and the second insulating substrate are fired, a first insulating layer is provided under the first insulating substrate, and a second insulating layer is provided on the second insulating substrate. A method of manufacturing a thermoelectric conversion element module.
PCT/JP2019/041709 2019-10-24 2019-10-24 Thermoelectric conversion element module and method for producing thermoelectric conversion element module WO2021079462A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN201980101378.1A CN114556600B (en) 2019-10-24 2019-10-24 Thermoelectric conversion element module and method for manufacturing thermoelectric conversion element module
JP2020519157A JP6822609B1 (en) 2019-10-24 2019-10-24 Thermoelectric conversion element module and manufacturing method of thermoelectric conversion element module
PCT/JP2019/041709 WO2021079462A1 (en) 2019-10-24 2019-10-24 Thermoelectric conversion element module and method for producing thermoelectric conversion element module

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2019/041709 WO2021079462A1 (en) 2019-10-24 2019-10-24 Thermoelectric conversion element module and method for producing thermoelectric conversion element module

Publications (1)

Publication Number Publication Date
WO2021079462A1 true WO2021079462A1 (en) 2021-04-29

Family

ID=74200254

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/041709 WO2021079462A1 (en) 2019-10-24 2019-10-24 Thermoelectric conversion element module and method for producing thermoelectric conversion element module

Country Status (3)

Country Link
JP (1) JP6822609B1 (en)
CN (1) CN114556600B (en)
WO (1) WO2021079462A1 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007063755A1 (en) * 2005-11-29 2007-06-07 Kabushiki Kaisha Toshiba Thermoelectric conversion module and heat exchanger and thermoelectric power generator using it
JP2012044133A (en) * 2010-08-18 2012-03-01 Samsung Electro-Mechanics Co Ltd Thermoelectric module and method of manufacturing the same
WO2019009202A1 (en) * 2017-07-05 2019-01-10 三菱マテリアル株式会社 Thermoelectric conversion module and method for producing thermoelectric conversion module

Family Cites Families (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3400479B2 (en) * 1993-02-10 2003-04-28 松下電工株式会社 Electronic heating and cooling equipment
JPH07307495A (en) * 1994-05-12 1995-11-21 Matsushita Electric Ind Co Ltd Peltier element
JPH0959406A (en) * 1995-08-23 1997-03-04 Nippon Pariren Kk Method for forming polyaraxylylene coating film
JP2000003909A (en) * 1998-06-15 2000-01-07 Kishimoto Sangyo Co Ltd Semiconductor device and insulating film for the device
JP4200256B2 (en) * 1999-08-10 2008-12-24 パナソニック電工株式会社 Thermoelectric conversion module
JP2002164585A (en) * 2000-11-22 2002-06-07 Hitachi Ltd Thermoelectric conversion module
JP3885536B2 (en) * 2001-09-25 2007-02-21 ヤマハ株式会社 Thermoelectric device
JP2003163409A (en) * 2001-11-26 2003-06-06 Eco 21 Inc Semiconductor laser module
JP2007067231A (en) * 2005-08-31 2007-03-15 Aisin Seiki Co Ltd Thermoelectric module
JP2008016598A (en) * 2006-07-05 2008-01-24 Yamaha Corp Thermoelectric module
US20080017238A1 (en) * 2006-07-21 2008-01-24 Caterpillar Inc. Thermoelectric device
JP2009164498A (en) * 2008-01-10 2009-07-23 Yamaha Corp Thermoelectric module
JP5384954B2 (en) * 2009-01-20 2014-01-08 株式会社ユニバーサルエンターテインメント Thermoelectric conversion module
WO2011118341A1 (en) * 2010-03-25 2011-09-29 京セラ株式会社 Thermoelectric element and thermoelectric module
JP5598152B2 (en) * 2010-08-09 2014-10-01 富士通株式会社 Thermoelectric conversion module and manufacturing method thereof
KR101844478B1 (en) * 2011-06-30 2018-04-02 엘지이노텍 주식회사 Thermoelectric module comprising thermoelectric element based on template and manufacturing method of the same
JP5794872B2 (en) * 2011-09-16 2015-10-14 京セラ株式会社 Thermoelectric module
KR20130035016A (en) * 2011-09-29 2013-04-08 삼성전기주식회사 Thermoelectric module
JP2016029695A (en) * 2014-07-25 2016-03-03 日立化成株式会社 Thermoelectric conversion module and manufacturing method for the same
JP2016157749A (en) * 2015-02-23 2016-09-01 日立化成株式会社 Thermoelectric conversion module
JP6750404B2 (en) * 2015-09-18 2020-09-02 三菱マテリアル株式会社 Thermoelectric conversion module, thermoelectric conversion device, and method for manufacturing thermoelectric conversion module
JP6759784B2 (en) * 2016-07-12 2020-09-23 三菱電機株式会社 Semiconductor module
JP6822227B2 (en) * 2017-03-07 2021-01-27 三菱マテリアル株式会社 Thermoelectric conversion module
JP7163631B2 (en) * 2017-07-05 2022-11-01 三菱マテリアル株式会社 Thermoelectric conversion module and method for manufacturing thermoelectric conversion module
KR102395226B1 (en) * 2017-11-28 2022-05-04 주식회사 엘지화학 Flexible thermoelectric module

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007063755A1 (en) * 2005-11-29 2007-06-07 Kabushiki Kaisha Toshiba Thermoelectric conversion module and heat exchanger and thermoelectric power generator using it
JP2012044133A (en) * 2010-08-18 2012-03-01 Samsung Electro-Mechanics Co Ltd Thermoelectric module and method of manufacturing the same
WO2019009202A1 (en) * 2017-07-05 2019-01-10 三菱マテリアル株式会社 Thermoelectric conversion module and method for producing thermoelectric conversion module

Also Published As

Publication number Publication date
JPWO2021079462A1 (en) 2021-11-18
CN114556600B (en) 2024-10-22
JP6822609B1 (en) 2021-01-27
CN114556600A (en) 2022-05-27

Similar Documents

Publication Publication Date Title
JP6750404B2 (en) Thermoelectric conversion module, thermoelectric conversion device, and method for manufacturing thermoelectric conversion module
JP5788501B2 (en) Thermoelectric element
JP3927784B2 (en) Method for manufacturing thermoelectric conversion member
WO2014034245A1 (en) Power module substrate and power module
JP2011009715A (en) Semiconductor device
WO2020116116A1 (en) Semiconductor device
JP2018148064A (en) Board for power module with heat sink
JP5707896B2 (en) Power module substrate with heat sink, power module, and method of manufacturing power module substrate
JP5640610B2 (en) Power module substrate manufacturing equipment
JP2016174114A (en) Thermoelectric conversion module
JP6822609B1 (en) Thermoelectric conversion element module and manufacturing method of thermoelectric conversion element module
JP2016167502A (en) Power module substrate with heat sink and power module
KR102374415B1 (en) Thermo electric device
JP6850988B2 (en) Thermoelectric conversion module
KR20200125672A (en) Thermoelectric module for power generation and its manufacturing method
JP5869781B2 (en) Method for manufacturing laminated material for insulating substrate
JPH0992891A (en) Thermoelectric element and thermoelectric module
WO2019167931A1 (en) Insulated circuit board
TWI758431B (en) Thermoelectric conversion module and its manufacturing method
JP6237058B2 (en) Power module substrate with copper plate and method for manufacturing power module substrate with copper plate
JPH02178958A (en) Electronic cooling element and manufacture thereof
JP2018098488A (en) Photoelectric element package structure by metallic bond and manufacturing method thereof
JP2007335795A (en) Substrate for power module, and power module
JP2003234515A (en) Thermoelectric module
JP3975862B2 (en) Power module substrate and manufacturing method thereof

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2020519157

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19949650

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19949650

Country of ref document: EP

Kind code of ref document: A1