JP3885536B2 - Thermoelectric device - Google Patents

Thermoelectric device Download PDF

Info

Publication number
JP3885536B2
JP3885536B2 JP2001292114A JP2001292114A JP3885536B2 JP 3885536 B2 JP3885536 B2 JP 3885536B2 JP 2001292114 A JP2001292114 A JP 2001292114A JP 2001292114 A JP2001292114 A JP 2001292114A JP 3885536 B2 JP3885536 B2 JP 3885536B2
Authority
JP
Japan
Prior art keywords
insulating substrate
thermoelectric
thermoelectric module
wire
relay
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2001292114A
Other languages
Japanese (ja)
Other versions
JP2003101085A (en
Inventor
勝彦 尾上
星  俊治
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Yamaha Corp
Original Assignee
Yamaha Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yamaha Corp filed Critical Yamaha Corp
Priority to JP2001292114A priority Critical patent/JP3885536B2/en
Publication of JP2003101085A publication Critical patent/JP2003101085A/en
Application granted granted Critical
Publication of JP3885536B2 publication Critical patent/JP3885536B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/44Structure, shape, material or disposition of the wire connectors prior to the connecting process
    • H01L2224/45Structure, shape, material or disposition of the wire connectors prior to the connecting process of an individual wire connector
    • H01L2224/45001Core members of the connector
    • H01L2224/45099Material
    • H01L2224/451Material with a principal constituent of the material being a metal or a metalloid, e.g. boron (B), silicon (Si), germanium (Ge), arsenic (As), antimony (Sb), tellurium (Te) and polonium (Po), and alloys thereof
    • H01L2224/45117Material with a principal constituent of the material being a metal or a metalloid, e.g. boron (B), silicon (Si), germanium (Ge), arsenic (As), antimony (Sb), tellurium (Te) and polonium (Po), and alloys thereof the principal constituent melting at a temperature of greater than or equal to 400°C and less than 950°C
    • H01L2224/45124Aluminium (Al) as principal constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/44Structure, shape, material or disposition of the wire connectors prior to the connecting process
    • H01L2224/45Structure, shape, material or disposition of the wire connectors prior to the connecting process of an individual wire connector
    • H01L2224/45001Core members of the connector
    • H01L2224/45099Material
    • H01L2224/451Material with a principal constituent of the material being a metal or a metalloid, e.g. boron (B), silicon (Si), germanium (Ge), arsenic (As), antimony (Sb), tellurium (Te) and polonium (Po), and alloys thereof
    • H01L2224/45138Material with a principal constituent of the material being a metal or a metalloid, e.g. boron (B), silicon (Si), germanium (Ge), arsenic (As), antimony (Sb), tellurium (Te) and polonium (Po), and alloys thereof the principal constituent melting at a temperature of greater than or equal to 950°C and less than 1550°C
    • H01L2224/45144Gold (Au) as principal constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/44Structure, shape, material or disposition of the wire connectors prior to the connecting process
    • H01L2224/45Structure, shape, material or disposition of the wire connectors prior to the connecting process of an individual wire connector
    • H01L2224/45001Core members of the connector
    • H01L2224/45099Material
    • H01L2224/451Material with a principal constituent of the material being a metal or a metalloid, e.g. boron (B), silicon (Si), germanium (Ge), arsenic (As), antimony (Sb), tellurium (Te) and polonium (Po), and alloys thereof
    • H01L2224/45138Material with a principal constituent of the material being a metal or a metalloid, e.g. boron (B), silicon (Si), germanium (Ge), arsenic (As), antimony (Sb), tellurium (Te) and polonium (Po), and alloys thereof the principal constituent melting at a temperature of greater than or equal to 950°C and less than 1550°C
    • H01L2224/45147Copper (Cu) as principal constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/4805Shape
    • H01L2224/4809Loop shape
    • H01L2224/48091Arched
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/0001Technical content checked by a classifier
    • H01L2924/00011Not relevant to the scope of the group, the symbol of which is combined with the symbol of this group
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01015Phosphorus [P]

Landscapes

  • Cooling Or The Like Of Semiconductors Or Solid State Devices (AREA)
  • Semiconductor Lasers (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a thermoelectric device which can suppress increase in the power consumption of a Peltier module, even when the temperature difference from the outside is large. SOLUTION: Two relay bases (heat conductive member) 7 are jointed on an insulating substrate 2, across an insulating substrate 5 and a Peltier element 6. The repeating bases 7 are made of a metal such as Cu, Cu alloy, Al or Al alloy or ceramic, such as Al2 O3 having an electrical conductive layer formed on its top surface. On the insulating substrate 5, an LD 11 is jointed and one Au wire 12 for power supply connected to an external lead wire is connected to each of the relay bases 7, which are connected to the LD 11 by an Au wire 13. Therefore, even if there is a temperature difference of, for example, 70 deg.C between the inner side and outer side of a package, external heat conducted via the wire for power supply is reduced by the repeating bases 7 cooled by the insulating substrate 2 and then reaches the LD 1.

Description

【0001】
【発明の属する技術分野】
本発明は、レーザダイオード等の発熱性の素子又は一定の温度に保持する必要がある素子の温度制御を行う熱電モジュールを備えた熱電装置に関し、特に、外部からの入熱による消費電力の増加の抑制を図った熱電装置に関する。
【0002】
【従来の技術】
レーザダイオード(LD)は熱電モジュール(TEC;Thermo-Electric Cooler)上に搭載され、この熱電モジュールにより温度制御される。このような熱電装置においては、通常、熱電モジュール上に熱伝導性が優れた例えばCu−W合金からなる支持体を設け、この支持体上に絶縁層を介してLDを設け、更にこのLDからのレーザ照射方向の後方にフォトダイオードを設け、LDの後方に出てくるレーザ光をフォトダイオードによりモニタリングし、このレーザ光の検出結果に基づいて、LDからのレーザ光が一定の光量になるように、LDを電流制御するようになっている。また、LDは波長多重通信に使用されるものもあり、この場合は、LDの温度を変化させることによりLDからのレーザ光の波長を変更するようになっている。従って、LDから出射されるレーザ光の波長を所望の波長に制御するために、サーミスタによりLDの温度がモニタリングされ、熱電モジュールによりLDの温度を制御する。
【0003】
この場合に、LDから出射されるレーザ光の波長を大きく振るためには、LDの温度差を大きくする必要がある。そこで、従来、熱電モジュールを2段構造又はそれ以上の多段構造にすることにより、大きな温度差を得るようにした熱電装置が提案されている。
【0004】
図9は従来の2段構造の熱電モジュールを示す断面図である。パッケージ110のうち底面上に2段熱電モジュール114が搭載されており、この熱電モジュール114上にCu−W合金からなる支持体108及びその上に設けられた絶縁層109を介してLD111が接合されている。このLD111から出射されたレーザ光は、パッケージ110の底面上に立設された側壁に設けられたカップリング(図示せず)に入射し、このカップリングに接続された光ファイバ(図示せず)を経て外部に出力される。
【0005】
熱電モジュール114は、絶縁基板101上に複数個の熱電素子103が配列されて接合され、熱電素子103上に絶縁基板102が接合されて、下段の熱電モジュール114aが形成されており、絶縁基板102上に複数の熱電素子106が配列されて接合され、熱電素子106上に絶縁基板105が接合されて、上段の熱電モジュール114bが形成されている。LD111等が搭載された支持体108は絶縁基板105上に接合されている。各熱電モジュール114a、114bにおいては、複数個の熱電素子103、106が絶縁基板101、102及び105に設けられた複数個の電極(図示せず)により直列に接続されている。また、パッケージ110の側壁には、表面にAuメッキ層が形成された接続基板107が固定されており、そのAuメッキ層に外部から給電用のリード線が接続されると共に、そのメッキ層から支持体108上のLD111にAuワイヤ112が接続されている。
【0006】
また、支持体108上には、サーミスタ及びフォトダイオード(PD:Photo Diode)等のデバイスも搭載されており、サーミスタにはその温度情報を取り出す目的で他のAuワイヤが接続され、PDにはその光量情報を取り出す目的で更に他のAuワイヤが接続されている。そして、これらのAuワイヤは、LD111に接続されたAuワイヤ112と同様に、パッケージ110の側壁に固定された他の接続基板を介して外部のリード線に接続されている。
【0007】
1段の熱電モジュールでは、この熱電モジュールにより得られる温度差は最大でも45℃しかないが、2段構造の熱電モジュール114においては、全体として55℃以上の温度差を得ることができる。このため、支持体108を冷却することにより、LD111を広範囲の温度に制御することができ、LD111から得られる波長特性を向上させることができる。
【0008】
【発明が解決しようとする課題】
しかしながら、パッケージ110の外部の温度が95℃となっている環境下で、LD111の温度を25℃に制御しようとすると、これらの間には70℃の温度差があり、給電用のAuワイヤ112をはじめ、各種用途のワイヤを介して外部の熱が容易に支持体108等まで伝達されるという問題点がある。つまり、このような入熱があると、熱電モジュール114は、LD111自体の発熱だけでなく、この入熱分をも冷却する必要があるため、その消費電力が増大してしまう。
【0009】
本発明はかかる問題点に鑑みてなされたものであって、外部との温度差が大きい場合でも熱電モジュールの消費電力の増加を抑制することができる熱電装置を提供することを目的とする。
【0010】
【課題を解決するための手段】
本発明に係る熱電装置は、複数段に積み重ねられた熱電モジュールと、最上段の熱電モジュールにより冷却又は加熱を受ける対象物と、この対象物と外部のリード線とを接続する接続部材と、前記最上段の熱電モジュール以外のいずれかの段の熱電モジュールの上側の絶縁基板上に接合されると共に、前記接続部材が接続されて前記接続部材の熱を前記絶縁基板まで伝達する伝熱性部材と、を有することを特徴とする。
【0011】
本発明においては、伝熱性部材により対象物に接続されるワイヤ等の接続部材に下段の熱電モジュールの上側の絶縁基板の温度が伝達されるため、外部から接続部材を介してパッケージ内に熱が伝達してきても、対象物までは到達しない。この結果、熱電モジュールの熱負荷が軽減され、消費電力が低下する。なお、対象物には、それ自体が発熱するLD、サーミスタ及びPD等のデバイスのみならず、これらのデバイスと熱電モジュールとの間に介在する支持体等も含まれ、デバイス及び支持体の両方が冷却又は加熱を受ける対象物となっていてもよい。また、接続部材は伝熱性部材から熱電モジュール上のデバイスに直接接続されている必要はなく、例えば支持体上の絶縁層上に電極層を設け、この電極層を介してデバイスに接続されていてもよいし、また、別の電気伝導部材を介して接続されていてもよい。
【0012】
なお、前記絶縁基板の表面に前記伝熱性部材の接合用の金属層のパターンが形成されていてもよい。また、前記伝熱性部材の表面に前記接続部材が接続される金属層のパターンが形成されていてもよい。
【0013】
【発明の実施の形態】
以下、本発明の実施例に係る熱電装置について、添付の図面を参照して具体的に説明する。図1は本発明の第1の実施例に係る熱電装置を示す図であって、(a)は斜視図、(b)は上面図である。
【0014】
第1の実施例においては、長方形状の2枚の絶縁基板1及び2間に複数個の熱電素子3が挟み込まれている。なお、各絶縁基板1及び2と熱電素子3との間には、Cu等からなる電極(図示せず)が介在している。熱電素子3は電極を介して互いに直列に接続されており、その両端に位置するものにリード線4が接続されている。リード線4は、各熱電モジュールへの給電のため、例えば最下段の熱電モジュールに対して複数接続されていてもよい。また、上段の熱電モジュールへの給電のために基板2にスルーホールが設けられ、下段の熱電モジュールから給電されてもよい。また、絶縁基板1及び2よりも小さい絶縁基板5と絶縁基板2との間に複数個の熱電素子6が挟み込まれて2段構成となっている。絶縁基板5は、例えば平面視で絶縁基板1及び2の中央部に位置している。なお、各絶縁基板2及び5と熱電素子6との間には、Cu等からなる電極(図示せず)が介在し、熱電素子6は、この電極を介して互いに直列に接続され、リード線4から給電される。
【0015】
更に、絶縁基板5及び熱電素子6を間に挟むようにして2個の中継台(伝熱性部材)7が絶縁基板2上に接合されている。中継台7は、例えばCu、Cu−W若しくはCu−Zn等のCu合金、Al若しくはAl合金等の金属製であるか、又は少なくとも上面に電気伝導層が形成されたAl若しくはAlN等のセラミックス製であるが、これらに限定されるものではない。また、中継台7の上面及び下面には、Niメッキ層及びAuメッキ層がこの順で形成されていることが好ましい。上面にこのようなメッキ層が積層されていると、Auワイヤ等のボンディング又はワイヤのはんだ付けを行いやすくなり、下面にこのようなメッキ層が積層されていると、絶縁基板2へのはんだ付け又はろう付けを行いやすくなる。
【0016】
このように構成された第1の実施例においては、絶縁基板5上に例えばCu−W合金からなる支持体15が接合され、外部のリード線(図示せず)に接続された接続部材としてのAuワイヤ12が1本ずつ各中継台7に接続され、各中継台7と支持体15上に絶縁層(図示せず)を介して搭載されたLD、サーミスタ又はPD等のデバイス11とがAuワイヤ13により接続される。従って、パッケージの外部と内部との間に、例えば70℃もの温度差があっても、外部からのワイヤを介しての入熱は、絶縁基板2により冷却される中継台7によって緩和されてから、支持体15上のデバイス11まで到達するため、デバイス11への入熱が少ない。従って、従来のように直接支持体上のデバイスまで到達する構造と比較すると、支持体15上のデバイス11の外部からの入熱による温度上昇が低減され、支持体15及びデバイス11を冷却するための消費電力が減少する。なお、中継台7を冷却するためにも下段の熱電モジュールにおいて電力が消費されるが、下段の熱電モジュールの方が支持体15を冷却する上段の熱電モジュールよりも冷却能力が大きく、支持体15及びデバイス11の冷却のための消費電力の減少量の方が大きいため、熱電モジュールの全体的な消費電力は減少する。
【0017】
なお、中継台7の高さは特に限定されるものではなく、図2(a)に示すように、その上面が絶縁基板5の表面よりも低くてもよく、図2(b)に示すように、その上面が絶縁基板5の表面と同等の高さにあってもよく、図2(c)に示すように、その上面が絶縁基板5の表面よりも高くてもよい。また、図2(d)に示すように、一部に段差を設けてもよい。また、接続部材としては、Auワイヤの他に、Cuワイヤ又はAlワイヤ等を使用することができる。更に、導電性を備えた金属の板状材、導電性プラスチック材、又は表面に導電層が形成された絶縁性プラスチック材若しくはセラミック材等を接続部材として使用してもよい。
【0018】
また、中継台7の平面形状、その配設位置及びその数も特に限定されるものではなく、図3(a)に示すように、平面視で長方形状の1個の中継台7がリード線4が延びる方向において絶縁基板5と並ぶようにして配設されていてもよく、図3(b)に示すように、平面視で正方形状の1個の中継台7がリード線4が延びる方向において絶縁基板5と並ぶようにして配設されていてもよい。また、図3(c)に示すように、平面視で長方形状の1個の中継台7がリード線4が延びる方向に対して垂直な方向において絶縁基板5と並ぶようにして配設されていてもよく、図3(d)に示すように、平面視で正方形状の1個の中継台7がリード線4が延びる方向に対して垂直な方向において絶縁基板5と並ぶようにして配設されていてもよい。更に、図3(e)に示すように、平面視で「コ」の字型の1個の中継台7が絶縁基板7を取り囲むようにして配設されていてもよく、図3(f)に示すように、平面視で正方形状の2個の中継台7が絶縁基板5を挟むようにして配設され、更に同様の形状の1個の中継台7がリード線4が延びる方向において絶縁基板5と並ぶようにして配設されていてもよい。
【0019】
次に、本発明の第2の実施例について説明する。図4は本発明の第2の実施例に係る熱電装置を示す上面図である。
【0020】
第2の実施例においては、絶縁基板5よりも小さい絶縁基板8と絶縁基板5との間に複数個の熱電素子(図示せず)が挟み込まれて3段構成となっている。絶縁基板8は、例えば平面視で絶縁基板5の中央部に位置している。なお、各絶縁基板5及び8とこれらの間の熱電素子との間には、Cu等からなる電極(図示せず)が介在し、熱電素子は、この電極を介して互いに直列に接続され、リード線4から給電される。また、本実施例においては、中継台7は絶縁基板8を間に挟むようにして絶縁基板5上に接合されている。
【0021】
このように構成された第2の実施例においては、絶縁基板8上にLD、PD又はサーミスタ等のデバイス11が搭載された支持体15が接合され、Auワイヤ12が1本ずつ各中継台7に接続され、各中継台7と支持体15上のデバイス11とがAuワイヤ13により接続される。従って、第1の実施例と同様に、外部からLD等のデバイス及び支持体15まで到達する入熱が減少して熱電モジュールの全体的な消費電力が減少する。
【0022】
次に、本発明の第3の実施例について説明する。図5は本発明の第3の実施例に係る熱電装置を示す平面図である。
【0023】
第3の実施例においては、絶縁基板1が絶縁基板2よりも大きく形成され、平面視で絶縁基板2からはみ出した領域に、2個のポスト電極9が設けられている。これらのポスト電極9は、絶縁基板1上に形成された導電層(図示せず)を介して、第1の実施例においてリード線4が接続された熱電素子3に接続されており、本実施例では、リード線4は設けられていない。
【0024】
このように構成された第3の実施例においては、ポスト電極9に熱電モジュールへの給電用のAuワイヤ14が接続される。第1の実施例のようにリード線4を使用する場合には、手作業によりリード線を電極にはんだ付けする必要があるが、本実施例によれば、Auワイヤ14をポスト電極9に機械的にワイヤボンディングすることができる。従って、その作業を極めて容易に行うことができる。
【0025】
なお、第2及び第3の実施例においても、第1の実施例と同様に、中継台7の高さ、形状、配設位置及び数等は特に限定されるものではない。
【0026】
また、中継台7を接合する絶縁基板には、中継台7を接合する位置に予めメタライズ層を形成しておくことが好ましい。図6は第1の実施例における絶縁基板2の表面に形成されたメタライズ層のパターンを示す上面図である。絶縁基板2の表面には、予め中継台7専用のメタライズ層のパターン7aを形成しておくことが好ましい。また、熱電素子6(図6に図示せず)が接続される電極用のパターン6a、及び熱電素子6への給電用のパターン4aを形成してもよい。
【0027】
そして、中継台7を絶縁基板2に接合する場合には、中継台7をパターン7a上にはんだ付け又はろう付けすればよい。このように、専用のパターン7a予め形成しておくことにより、接合時に中継台7の位置ずれが生じにくくなると共に、他の領域にはんだが流れ出して短絡が生じることが防止される。
【0028】
なお、本発明において熱電モジュールにより冷却される支持体上のデバイスで、温度制御される素子は、LDに限定されるものではなく、フォトダイオード、サーミスタ又は電荷転送デバイス(CCD:Charge Coupled Device)等であってもよい。また、熱電モジュールにより対象物を加熱するようにしてもよい。更に、中継台は必ずしも上から2段目の熱電モジュールの上側の絶縁基板に接合されている必要はなく、それよりも下位の熱電モジュールの上側の絶縁基板に接合されていてもよい。
【0029】
また、支持体15上には、図7(a)に示すように、複数のデバイス11が搭載されていてもよい。この場合には、例えば、図7(b)に示すように、絶縁体からなる基部7b及びその表面に形成されたデバイス11の数と少なくとも同数の金属層からなるパターン7cが形成されている中継台7を構成してもよく、また、デバイス11の数に合わせて複数の中継台を設置してもよい。更に、ワイヤは中継台からデバイスに直接接続されていなくてもよく、例えば支持体上の絶縁層の表面に電極を形成し、この電極を介してデバイスに接続されていてもよいし、又は別の電気伝導部材を介して接続されていてもよい。
【0030】
【実施例】
以下、本発明の実施例について、その特許請求の範囲から外れる比較例と比較して具体的に説明する。
【0031】
初めに、図8に示すような大きさの部材からなる2段構成の熱電モジュールを用意した。この熱電モジュールのペルチェ素子3及び6の数は、p型素子とn型素子とを1対とすると、下段の熱電モジュールでは47対、上段の熱電モジュールでは18対とした。各素子は、平面形状が一辺の長さが0.65mmの正方形で、その高さが1mmである角柱とした。これを比較例とした。
【0032】
一方、上述の構成の比較例に対し、図1のような中継台を絶縁基板上に接合したものを用意し、これを実施例とした。
【0033】
そして、夫々をパッケージの内部に収容してその底部に接合し、更に上段の熱電モジュール上にCu−W部材を支持体として接合し、その上にLD及びサーミスタを接合した。ワイヤはLD用のもの及びサーミスタ用のものを夫々用意した。図1の中継台においては、図7のように、中継台の表面にLD用の電極パッド及びサーミスタ用の電極パッドを夫々形成した。
【0034】
続いて、パッケージの外部の温度を95℃とし、LDに通電した状態でLDの温度変化を測定するサーミスタが示す温度が25℃となるように熱電モジュールによる温度制御を行い、実施例及び比較例の消費電力を測定した。この結果、比較例の消費電力を100とすると、実施例の消費電力は95まで抑えることができた。
【0035】
【発明の効果】
以上詳述したように、本発明によれば、伝熱性部材により対象物に接続されるワイヤに下段の熱電モジュールの上側の絶縁基板の温度が伝達されるため、外部からワイヤを介してパッケージ内に熱が伝達してきても、対象物に到達する前に熱量を小さくすることができる。この結果、熱電モジュールの熱負荷を軽減して、消費電力を低減することができる。
【図面の簡単な説明】
【図1】 本発明の第1の実施例に係る熱電装置を示す図であって、(a)は斜視図、(b)は上面図である。
【図2】 中継台7の高さのバリエーションを示す断面図である。
【図3】 中継台7の形状、配設位置及び数のバリエーションを示す上面図である。
【図4】 本発明の第2の実施例に係る熱電装置を示す平面図である。
【図5】 本発明の第3の実施例に係る熱電装置を示す平面図である。
【図6】 第1の実施例における絶縁基板2の表面に形成されたメタライズ層のパターンを示す上面図である。
【図7】 複数のデバイスが搭載される例を示す図であって、(a)は熱電装置全体の斜視図、(b)は中継台7を示す斜視図である。
【図8】 消費電力の測定に使用した熱電装置の熱電モジュールの寸法を示す斜視図である。
【図9】 従来の2段構造の熱電モジュールを示す断面図である。
【符号の説明】
1、2、5、8;絶縁基板、 3、6;熱電素子、 4;リード線、 7;中継台、 9;ポスト電極、 4a、6a、7a;パターン、 11;レーザダイオード(LD)、 12、13、14;Auワイヤ
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a thermoelectric device including a thermoelectric module that controls the temperature of a heat-generating element such as a laser diode or an element that needs to be kept at a constant temperature, and in particular, increases in power consumption due to heat input from the outside. It is related with the thermoelectric device which aimed at suppression.
[0002]
[Prior art]
The laser diode (LD) is mounted on a thermoelectric module (TEC; Thermo-Electric Cooler), and the temperature is controlled by the thermoelectric module. In such a thermoelectric device, usually, a support made of, for example, a Cu—W alloy having excellent thermal conductivity is provided on a thermoelectric module, and an LD is provided on the support via an insulating layer. A photodiode is provided behind the laser irradiation direction of the laser, and the laser beam emitted behind the LD is monitored by the photodiode, and based on the detection result of the laser beam, the laser beam from the LD becomes a constant light amount. In addition, the current of the LD is controlled. Some LDs are used for wavelength division multiplexing. In this case, the wavelength of the laser light from the LD is changed by changing the temperature of the LD. Therefore, in order to control the wavelength of the laser light emitted from the LD to a desired wavelength, the temperature of the LD is monitored by the thermistor, and the temperature of the LD is controlled by the thermoelectric module.
[0003]
In this case, in order to greatly vary the wavelength of the laser light emitted from the LD, it is necessary to increase the temperature difference of the LD. Thus, conventionally, a thermoelectric device has been proposed in which a large temperature difference is obtained by making the thermoelectric module into a two-stage structure or a multistage structure having more than that.
[0004]
FIG. 9 is a cross-sectional view showing a conventional two-stage thermoelectric module. A two-stage thermoelectric module 114 is mounted on the bottom surface of the package 110, and the LD 111 is joined to the thermoelectric module 114 via a support body 108 made of a Cu—W alloy and an insulating layer 109 provided thereon. ing. The laser light emitted from the LD 111 is incident on a coupling (not shown) provided on a side wall standing on the bottom surface of the package 110, and an optical fiber (not shown) connected to the coupling. To be output to the outside.
[0005]
In the thermoelectric module 114, a plurality of thermoelectric elements 103 are arranged and bonded on the insulating substrate 101, the insulating substrate 102 is bonded on the thermoelectric element 103, and a lower thermoelectric module 114 a is formed. A plurality of thermoelectric elements 106 are arranged and bonded to each other, and the insulating substrate 105 is bonded to the thermoelectric elements 106 to form the upper thermoelectric module 114b. The support 108 on which the LD 111 and the like are mounted is bonded onto the insulating substrate 105. In each thermoelectric module 114a, 114b, a plurality of thermoelectric elements 103, 106 are connected in series by a plurality of electrodes (not shown) provided on the insulating substrates 101, 102, 105. Further, a connection substrate 107 having an Au plating layer formed on the surface is fixed to the side wall of the package 110, and a lead wire for power feeding is connected to the Au plating layer from the outside and supported from the plating layer. An Au wire 112 is connected to the LD 111 on the body 108.
[0006]
In addition, a device such as a thermistor and a photodiode (PD) is mounted on the support 108, and another Au wire is connected to the thermistor for the purpose of extracting temperature information, and the PD is connected to the device. Still another Au wire is connected for the purpose of extracting light quantity information. These Au wires are connected to external lead wires via other connection substrates fixed to the side wall of the package 110, similarly to the Au wires 112 connected to the LD 111.
[0007]
In a one-stage thermoelectric module, the temperature difference obtained by this thermoelectric module is only 45 ° C. at maximum, but in the two-stage thermoelectric module 114, a temperature difference of 55 ° C. or more can be obtained as a whole. Therefore, by cooling the support 108, the LD 111 can be controlled in a wide range of temperatures, and the wavelength characteristics obtained from the LD 111 can be improved.
[0008]
[Problems to be solved by the invention]
However, when the temperature of the LD 111 is controlled to 25 ° C. in an environment where the temperature outside the package 110 is 95 ° C., there is a temperature difference of 70 ° C. between them, and the power supply Au wire 112 In addition, there is a problem that external heat is easily transmitted to the support 108 and the like through wires for various purposes. In other words, if there is such heat input, the thermoelectric module 114 needs to cool not only the heat generated by the LD 111 itself, but also the amount of heat input, which increases power consumption.
[0009]
The present invention has been made in view of such problems, and an object of the present invention is to provide a thermoelectric device that can suppress an increase in power consumption of a thermoelectric module even when the temperature difference from the outside is large.
[0010]
[Means for Solving the Problems]
The thermoelectric device according to the present invention includes a thermoelectric module stacked in a plurality of stages, an object that is cooled or heated by the uppermost thermoelectric module, a connection member that connects the object and an external lead wire, A heat transfer member that is bonded onto the upper insulating substrate of any one of the thermoelectric modules other than the uppermost thermoelectric module, and that is connected to the connecting member to transmit the heat of the connecting member to the insulating substrate; It is characterized by having.
[0011]
In the present invention, since the temperature of the insulating substrate on the upper side of the lower thermoelectric module is transmitted to the connecting member such as a wire connected to the object by the heat conductive member, heat is externally transmitted into the package via the connecting member. Even if it is transmitted, it does not reach the object. As a result, the thermal load on the thermoelectric module is reduced and the power consumption is reduced. Note that the object includes not only devices such as LD, thermistor, and PD that generate heat themselves, but also supports that are interposed between these devices and thermoelectric modules. It may be an object to be cooled or heated. Further, the connecting member does not need to be directly connected from the heat conductive member to the device on the thermoelectric module. For example, an electrode layer is provided on the insulating layer on the support, and the connecting member is connected to the device through the electrode layer. Alternatively, they may be connected via another electric conductive member.
[0012]
Note that a metal layer pattern for joining the heat conductive member may be formed on the surface of the insulating substrate. Moreover, the pattern of the metal layer to which the said connection member is connected may be formed in the surface of the said heat conductive member.
[0013]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, a thermoelectric device according to an embodiment of the present invention will be specifically described with reference to the accompanying drawings. 1A and 1B are diagrams showing a thermoelectric device according to a first embodiment of the present invention, in which FIG. 1A is a perspective view and FIG. 1B is a top view.
[0014]
In the first embodiment, a plurality of thermoelectric elements 3 are sandwiched between two rectangular insulating substrates 1 and 2. An electrode (not shown) made of Cu or the like is interposed between the insulating substrates 1 and 2 and the thermoelectric element 3. The thermoelectric elements 3 are connected to each other in series via electrodes, and lead wires 4 are connected to elements located at both ends thereof. For example, a plurality of lead wires 4 may be connected to the lowermost thermoelectric module in order to supply power to each thermoelectric module. Further, a through hole may be provided in the substrate 2 for supplying power to the upper thermoelectric module, and power may be supplied from the lower thermoelectric module. In addition, a plurality of thermoelectric elements 6 are sandwiched between an insulating substrate 5 and an insulating substrate 2 smaller than the insulating substrates 1 and 2 to form a two-stage configuration. For example, the insulating substrate 5 is located at the center of the insulating substrates 1 and 2 in plan view. An electrode (not shown) made of Cu or the like is interposed between each of the insulating substrates 2 and 5 and the thermoelectric element 6, and the thermoelectric elements 6 are connected to each other in series via this electrode, and lead wires Power is supplied from 4.
[0015]
Further, two relay stands (heat transfer members) 7 are bonded onto the insulating substrate 2 so as to sandwich the insulating substrate 5 and the thermoelectric element 6 therebetween. The relay stand 7 is made of a metal such as a Cu alloy such as Cu, Cu—W or Cu—Zn, Al or an Al alloy, or Al 2 O 3 or AlN having an electrically conductive layer formed on at least the upper surface. However, it is not limited to these. Moreover, it is preferable that the Ni plating layer and the Au plating layer are formed in this order on the upper surface and the lower surface of the relay stand 7. When such a plating layer is laminated on the upper surface, it becomes easy to perform bonding or soldering of Au wires or the like, and when such a plating layer is laminated on the lower surface, soldering to the insulating substrate 2 is facilitated. Or it becomes easy to perform brazing.
[0016]
In the first embodiment configured as described above, a support 15 made of, for example, a Cu-W alloy is bonded to the insulating substrate 5 and is connected to an external lead wire (not shown). An Au wire 12 is connected to each relay stand 7 one by one, and each relay stand 7 and a device 11 such as an LD, thermistor or PD mounted on the support 15 via an insulating layer (not shown) are Au. They are connected by wires 13. Therefore, even if there is a temperature difference of, for example, 70 ° C. between the outside and inside of the package, the heat input from the outside via the wire is relaxed by the relay stand 7 cooled by the insulating substrate 2. Since it reaches the device 11 on the support 15, the heat input to the device 11 is small. Therefore, compared with the conventional structure that reaches the device on the support directly, the temperature rise due to heat input from the outside of the device 11 on the support 15 is reduced, and the support 15 and the device 11 are cooled. Reduced power consumption. Note that power is also consumed in the lower thermoelectric module to cool the relay stand 7, but the lower thermoelectric module has a larger cooling capacity than the upper thermoelectric module that cools the support 15, and the support 15 And since the amount of power consumption for cooling the device 11 is larger, the overall power consumption of the thermoelectric module is reduced.
[0017]
The height of the relay stand 7 is not particularly limited. As shown in FIG. 2 (a), the upper surface may be lower than the surface of the insulating substrate 5, as shown in FIG. 2 (b). In addition, the upper surface thereof may be at the same height as the surface of the insulating substrate 5, and the upper surface thereof may be higher than the surface of the insulating substrate 5 as shown in FIG. Further, as shown in FIG. 2D, a step may be provided in part. In addition to the Au wire, a Cu wire or an Al wire can be used as the connection member. Further, a metal plate-like material having conductivity, a conductive plastic material, or an insulating plastic material or ceramic material having a conductive layer formed on the surface may be used as the connecting member.
[0018]
Further, the planar shape of the relay stand 7, the position of the relay stand 7, and the number thereof are not particularly limited. As shown in FIG. 3A, one relay stand 7 having a rectangular shape in plan view is connected to the lead wire. 4 may be arranged so as to be aligned with the insulating substrate 5 in the extending direction, and as shown in FIG. 3 (b), the single relay stand 7 having a square shape in a plan view is a direction in which the lead wire 4 extends. 2 may be arranged in line with the insulating substrate 5. Further, as shown in FIG. 3C, one relay base 7 having a rectangular shape in plan view is arranged so as to be aligned with the insulating substrate 5 in a direction perpendicular to the direction in which the lead wires 4 extend. As shown in FIG. 3 (d), one relay base 7 having a square shape in plan view is arranged so as to be aligned with the insulating substrate 5 in a direction perpendicular to the direction in which the lead wires 4 extend. May be. Further, as shown in FIG. 3 (e), a single “U” -shaped relay stand 7 may be disposed so as to surround the insulating substrate 7 in a plan view. As shown in FIG. 2, two relay boards 7 having a square shape in plan view are arranged so as to sandwich the insulating substrate 5, and one relay board 7 having a similar shape is further arranged in the direction in which the lead wire 4 extends. It may be arranged so as to line up.
[0019]
Next, a second embodiment of the present invention will be described. FIG. 4 is a top view showing a thermoelectric device according to a second embodiment of the present invention.
[0020]
In the second embodiment, a plurality of thermoelectric elements (not shown) are sandwiched between an insulating substrate 8 and an insulating substrate 5 which are smaller than the insulating substrate 5 to have a three-stage configuration. The insulating substrate 8 is located at the center of the insulating substrate 5 in a plan view, for example. An electrode (not shown) made of Cu or the like is interposed between each of the insulating substrates 5 and 8 and the thermoelectric element between them, and the thermoelectric elements are connected in series with each other via this electrode, Power is supplied from the lead wire 4. In this embodiment, the relay stand 7 is bonded onto the insulating substrate 5 with the insulating substrate 8 interposed therebetween.
[0021]
In the second embodiment configured as described above, a support body 15 on which a device 11 such as an LD, PD, or thermistor is mounted is joined on an insulating substrate 8, and one Au wire 12 is connected to each relay stand 7 one by one. Each relay stand 7 and the device 11 on the support 15 are connected by an Au wire 13. Accordingly, as in the first embodiment, the heat input reaching the device such as the LD and the support 15 from the outside is reduced, and the overall power consumption of the thermoelectric module is reduced.
[0022]
Next, a third embodiment of the present invention will be described. FIG. 5 is a plan view showing a thermoelectric device according to a third embodiment of the present invention.
[0023]
In the third embodiment, the insulating substrate 1 is formed larger than the insulating substrate 2, and two post electrodes 9 are provided in a region protruding from the insulating substrate 2 in plan view. These post electrodes 9 are connected to the thermoelectric element 3 to which the lead wire 4 is connected in the first embodiment through a conductive layer (not shown) formed on the insulating substrate 1. In the example, the lead wire 4 is not provided.
[0024]
In the third embodiment configured as described above, an Au wire 14 for supplying power to the thermoelectric module is connected to the post electrode 9. When the lead wire 4 is used as in the first embodiment, it is necessary to solder the lead wire to the electrode manually. According to this embodiment, the Au wire 14 is mechanically attached to the post electrode 9. Wire bonding can be performed. Therefore, the operation can be performed very easily.
[0025]
In the second and third embodiments, as in the first embodiment, the height, shape, arrangement position, number, etc. of the relay stand 7 are not particularly limited.
[0026]
Further, it is preferable that a metallized layer is formed in advance on the insulating substrate to which the relay table 7 is bonded at the position where the relay table 7 is bonded. FIG. 6 is a top view showing the pattern of the metallized layer formed on the surface of the insulating substrate 2 in the first embodiment. On the surface of the insulating substrate 2, it is preferable to form a metallized layer pattern 7a for the relay stand 7 in advance. Alternatively, an electrode pattern 6a to which a thermoelectric element 6 (not shown in FIG. 6) is connected and a power supply pattern 4a to the thermoelectric element 6 may be formed.
[0027]
And when joining the relay stand 7 to the insulated substrate 2, the relay stand 7 should just be soldered or brazed on the pattern 7a. In this way, by forming the dedicated pattern 7a in advance, it is difficult for the relay stand 7 to be misaligned at the time of joining, and it is possible to prevent the solder from flowing out to other regions and causing a short circuit.
[0028]
In the present invention, the temperature-controlled element on the support cooled by the thermoelectric module is not limited to the LD, but may be a photodiode, thermistor, charge transfer device (CCD) or the like. It may be. Moreover, you may make it heat a target object with a thermoelectric module. Furthermore, the relay stand does not necessarily have to be joined to the upper insulating substrate of the second-stage thermoelectric module from the top, and may be joined to the upper insulating substrate of the lower thermoelectric module.
[0029]
Further, a plurality of devices 11 may be mounted on the support 15 as shown in FIG. In this case, for example, as shown in FIG. 7B, the relay is formed with the base 7 b made of an insulator and the pattern 7 c made of at least the same number of metal layers as the number of devices 11 formed on the surface. The stand 7 may be configured, and a plurality of relay stands may be installed according to the number of devices 11. Further, the wire may not be directly connected to the device from the relay stand, for example, an electrode may be formed on the surface of the insulating layer on the support and connected to the device via this electrode, or alternatively It may be connected via the electric conduction member.
[0030]
【Example】
Examples of the present invention will be specifically described below in comparison with comparative examples that depart from the scope of the claims.
[0031]
First, a two-stage thermoelectric module composed of members having a size as shown in FIG. 8 was prepared. The number of Peltier elements 3 and 6 of this thermoelectric module is 47 pairs for the lower thermoelectric module and 18 pairs for the upper thermoelectric module, with one pair of p-type element and n-type element. Each element was a square column with a planar shape of a square having a side length of 0.65 mm and a height of 1 mm. This was used as a comparative example.
[0032]
On the other hand, what the junction stand like FIG. 1 joined on the insulated substrate with respect to the comparative example of the above-mentioned structure was prepared, and this was made into the Example.
[0033]
And each was accommodated in the inside of a package, and it joined to the bottom part, and also joined the Cu-W member on the upper stage thermoelectric module as a support body, and joined LD and thermistor on it. Wires for LD and thermistor were prepared. In the relay stand of FIG. 1, as shown in FIG. 7, an electrode pad for LD and an electrode pad for the thermistor are respectively formed on the surface of the relay stand.
[0034]
Subsequently, the temperature outside the package is set to 95 ° C., and the temperature control by the thermoelectric module is performed so that the temperature indicated by the thermistor for measuring the temperature change of the LD is 25 ° C. while the LD is energized. The power consumption of was measured. As a result, assuming that the power consumption of the comparative example is 100, the power consumption of the example could be reduced to 95.
[0035]
【The invention's effect】
As described above in detail, according to the present invention, the temperature of the insulating substrate on the upper side of the lower thermoelectric module is transmitted to the wire connected to the object by the heat conductive member. Even if heat is transmitted to the object, the amount of heat can be reduced before reaching the object. As a result, the thermal load of the thermoelectric module can be reduced and the power consumption can be reduced.
[Brief description of the drawings]
FIG. 1 is a view showing a thermoelectric device according to a first embodiment of the present invention, in which (a) is a perspective view and (b) is a top view.
FIG. 2 is a cross-sectional view showing variations in the height of the relay stand 7;
FIG. 3 is a top view showing variations in the shape, arrangement position, and number of the relay stand 7;
FIG. 4 is a plan view showing a thermoelectric device according to a second embodiment of the present invention.
FIG. 5 is a plan view showing a thermoelectric device according to a third embodiment of the present invention.
FIG. 6 is a top view showing a pattern of a metallized layer formed on the surface of an insulating substrate 2 in the first embodiment.
7A and 7B are diagrams illustrating an example in which a plurality of devices are mounted, in which FIG. 7A is a perspective view of the entire thermoelectric device, and FIG. 7B is a perspective view of a relay stand 7;
FIG. 8 is a perspective view showing dimensions of a thermoelectric module of a thermoelectric device used for measuring power consumption.
FIG. 9 is a cross-sectional view showing a conventional thermoelectric module having a two-stage structure.
[Explanation of symbols]
1, 2, 5, 8; Insulating substrate, 3, 6; Thermoelectric element, 4; Lead wire, 7; Relay stand, 9; Post electrode, 4a, 6a, 7a; Pattern, 11; Laser diode (LD), 12 , 13, 14; Au wire

Claims (3)

複数段に積み重ねられた熱電モジュールと、最上段の熱電モジュールにより冷却又は加熱を受ける対象物と、この対象物と外部のリード線とを接続する接続部材と、前記最上段の熱電モジュール以外のいずれかの段の熱電モジュールの上側の絶縁基板上に接合されると共に、前記接続部材が接続されて前記接続部材の熱を前記絶縁基板まで伝達する伝熱性部材と、を有することを特徴とする熱電装置。Thermoelectric modules stacked in multiple stages, an object to be cooled or heated by the uppermost thermoelectric module, a connecting member for connecting the object and an external lead wire, and any one other than the uppermost thermoelectric module And a heat transfer member which is bonded onto an insulating substrate on the upper side of the thermoelectric module of the stage and is connected to the connecting member and transfers heat of the connecting member to the insulating substrate. apparatus. 前記絶縁基板の表面に前記伝熱性部材の接合用の金属層のパターンが形成されていることを特徴とする請求項1に記載の熱電装置。The thermoelectric device according to claim 1, wherein a pattern of a metal layer for joining the heat conductive member is formed on a surface of the insulating substrate. 前記伝熱性部材の表面に前記接続部材が接続される金属層のパターンが形成されていることを特徴とする請求項1又は2に記載の熱電装置。The thermoelectric device according to claim 1, wherein a pattern of a metal layer to which the connection member is connected is formed on a surface of the heat conductive member.
JP2001292114A 2001-09-25 2001-09-25 Thermoelectric device Expired - Fee Related JP3885536B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001292114A JP3885536B2 (en) 2001-09-25 2001-09-25 Thermoelectric device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001292114A JP3885536B2 (en) 2001-09-25 2001-09-25 Thermoelectric device

Publications (2)

Publication Number Publication Date
JP2003101085A JP2003101085A (en) 2003-04-04
JP3885536B2 true JP3885536B2 (en) 2007-02-21

Family

ID=19114141

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001292114A Expired - Fee Related JP3885536B2 (en) 2001-09-25 2001-09-25 Thermoelectric device

Country Status (1)

Country Link
JP (1) JP3885536B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106024732A (en) * 2016-05-31 2016-10-12 科大国盾量子技术股份有限公司 Device for temperature control and manufacturing method of device

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4813829B2 (en) * 2005-06-27 2011-11-09 リコー光学株式会社 Heat dissipation device and heat dissipation method
JP2008211025A (en) * 2007-02-27 2008-09-11 Yamaha Corp Electronic module
JP5282753B2 (en) * 2010-03-29 2013-09-04 ブラザー工業株式会社 Piezoelectric actuator, optical scanner, optical scanning image display device, image forming apparatus
JP6412042B2 (en) 2016-03-29 2018-10-24 ファナック株式会社 Laser oscillator
JP6940750B2 (en) * 2017-04-28 2021-09-29 日亜化学工業株式会社 Laser device
JP6597817B2 (en) * 2018-03-08 2019-10-30 セイコーエプソン株式会社 Light emitting device module, quantum interference device, atomic oscillator, electronic device, and moving object
JP6822609B1 (en) * 2019-10-24 2021-01-27 三菱電機株式会社 Thermoelectric conversion element module and manufacturing method of thermoelectric conversion element module

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106024732A (en) * 2016-05-31 2016-10-12 科大国盾量子技术股份有限公司 Device for temperature control and manufacturing method of device

Also Published As

Publication number Publication date
JP2003101085A (en) 2003-04-04

Similar Documents

Publication Publication Date Title
US5032897A (en) Integrated thermoelectric cooling
US7078801B2 (en) Thermoelectric module package
US5012325A (en) Thermoelectric cooling via electrical connections
KR20060134969A (en) Surface mount light emitting chip package
JP2003060283A (en) Two-dimensional ld array light emitting device
CN114514663B (en) Base with housing for electronic components for high-frequency signal transmission
JP2004055621A (en) Thermomodule and semiconductor laser module employing the same
JP4218241B2 (en) Optical module and optical transmission or reception device
JP3885536B2 (en) Thermoelectric device
JP2018195752A (en) Light emitting device
KR100254176B1 (en) Laser apparatus
JP3820942B2 (en) Thermoelectric module mounting apparatus and temperature control method thereof
KR100663117B1 (en) Thermoelectric module
JP2006261221A (en) Electronic circuit and electronic apparatus
JP2007067231A (en) Thermoelectric module
JP2015135932A (en) Peltier cooling type IC package
JP2001332773A (en) Multi-layer substrate for thermoelectric module and method of manufacturing the same, and thermoelectric module using multi-layer substrate
JP4325246B2 (en) Thermoelectric device package and manufacturing method thereof
JP2010034137A (en) Semiconductor laser device
CN104718672B (en) photoelectric subassembly
JP2002314154A (en) Thermoelectric apparatus
JPH09148681A (en) Semiconductor module
JP4712948B2 (en) Semiconductor device
CN112952548A (en) Thin VCSEL laser packaging structure capable of accurately controlling temperature
JP2011086737A (en) Thermoelectric conversion module

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040315

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20051114

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20061031

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20061113

R150 Certificate of patent or registration of utility model

Ref document number: 3885536

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313532

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101201

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101201

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111201

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111201

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121201

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131201

Year of fee payment: 7

LAPS Cancellation because of no payment of annual fees