JPH07307495A - Peltier element - Google Patents

Peltier element

Info

Publication number
JPH07307495A
JPH07307495A JP6098713A JP9871394A JPH07307495A JP H07307495 A JPH07307495 A JP H07307495A JP 6098713 A JP6098713 A JP 6098713A JP 9871394 A JP9871394 A JP 9871394A JP H07307495 A JPH07307495 A JP H07307495A
Authority
JP
Japan
Prior art keywords
peltier element
water
current
thermoelectric material
peltier
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP6098713A
Other languages
Japanese (ja)
Inventor
Hisaaki Gyoten
久朗 行天
Akiko Miyake
章子 三宅
Yasushi Nakagiri
康司 中桐
Yoshiaki Yamamoto
義明 山本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP6098713A priority Critical patent/JPH07307495A/en
Publication of JPH07307495A publication Critical patent/JPH07307495A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To obtain a Peltier element which is low-cost, which prevents a thermoelectric material or a metal material constituting the element from being corroded when moisture is interposed and whose durability can be improved sharply by a method wherein a water-repelling treatment is conducted to a current- carrying part and to at least a part on the surface of an electric insulation material surrounding and supporting the current-carrying part. CONSTITUTION:Thermoelectric materials 1, 2, are electrified with DC, and they are heated by heat generated in the inflow part and the outflow part of the current or by absorbing the heat. In such a Peltier element, a water- repelling treatment is conducted to current-carrying parts 1 to 4 and to at least a part on the surface of electric insulation materials 5 surrounding and supporting them. For example, a water-repelling treatment 6 is conducted to the side face of N-type thermoelectric materials 1 and of P-type thermoelectric materials 2, to copper electrodes 3 and to the whole outer surface of solder parts 4 bonding them. A 2% solution of octadecyl trichlorosilane by using chloroform and carbon tetrachloride as solvents is used, it is coated and dried, the Peltier element is cleaned, and it is finally cleaned by running water.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、耐腐食性に優れた実用
的で信頼性の高いペルチェ素子に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a Peltier device which is excellent in corrosion resistance, practical, and highly reliable.

【0002】[0002]

【従来の技術】ペルチェ素子は、熱電材料に直流電流を
通電すると両端に温度差が発生する性質を利用して、セ
ンサの冷却部や冷蔵庫、除湿機等に使用されている。以
下に従来の一般的なペルチェ素子について図2を用いて
説明する。図2において、1および2はそれぞれN型お
よびP型のバルク状の熱電材料であり、室温付近で使用
するペルチェ素子としてはBi−Te−Sb系合金が用
いられている。N型熱電材料1とP型熱電材料2は、金
属電極3を介して交互に電気的に直列に接続されてい
る。これらは二枚のセラミックス基板5に接合されてい
る。セラミックス基板5にはアルミナ基板を、また金属
電極3には銅板電極をそれぞれ用いるのが一般的であ
る。また、金属電極3とセラミックス基板5との接合部
および金属電極3と熱電材料1、2との接合部には、通
常、半田4が用いられている。
2. Description of the Related Art Peltier elements are used in cooling parts of sensors, refrigerators, dehumidifiers, etc., because of the property that a temperature difference occurs at both ends when a direct current is applied to a thermoelectric material. The conventional general Peltier device will be described below with reference to FIG. In FIG. 2, 1 and 2 are N-type and P-type bulk thermoelectric materials, respectively, and a Bi-Te-Sb-based alloy is used as a Peltier element used near room temperature. The N-type thermoelectric material 1 and the P-type thermoelectric material 2 are electrically connected in series alternately via the metal electrode 3. These are bonded to two ceramic substrates 5. Generally, an alumina substrate is used for the ceramic substrate 5, and a copper plate electrode is used for the metal electrode 3. Further, solder 4 is usually used at the joint between the metal electrode 3 and the ceramic substrate 5 and at the joint between the metal electrode 3 and the thermoelectric materials 1 and 2.

【0003】このペルチェ素子の両端の金属電極3間に
直流電流を流すと、ペルチェ効果によって熱電材料1、
2の両端に温度差が発生する。熱電材料がP型の場合は
電流の流入部が冷却され、流出部が加熱される。また、
N型の場合は逆に電流の流入部が加熱され、流出部が冷
却される。その結果、熱は下面から上面に汲み上げられ
ることになり、下面のセラミックス基板5を通じて物や
空気を冷却することができる。その際、熱電材料の冷却
側端部や冷却側の銅電極は、下面のセラミックス基板よ
りさらに温度が低くなる。ペルチェ素子を通常の室内雰
囲気で使用した場合は、運転条件によってはそれらの冷
却側の温度が露点より低くなり、熱電材料や銅電極の表
面に空気中の水分が結露する。その結果、長期間の運転
を続けると、熱電材料などの金属材料が腐食され、素子
抵抗の増大、吸熱量の低下などペルチェ素子としての性
能が低下する。そこで、ペルチェ素子の側面をシリコン
樹脂などでシールしたり、ペルチェ素子全体をゴムパッ
キン等を用いて外部から湿気が入り込まないようにした
箱体の中に配置し、結露を防ぐ方法も考案されている。
When a direct current is passed between the metal electrodes 3 at both ends of this Peltier element, the Peltier effect causes the thermoelectric material 1,
A temperature difference occurs at both ends of 2. When the thermoelectric material is P-type, the inflow part of the current is cooled and the outflow part is heated. Also,
Conversely, in the case of the N type, the inflow part of the current is heated and the outflow part is cooled. As a result, heat is pumped from the lower surface to the upper surface, and it is possible to cool objects and air through the ceramic substrate 5 on the lower surface. At that time, the temperature of the cooling side end of the thermoelectric material and the temperature of the cooling side copper electrode become lower than that of the lower ceramic substrate. When the Peltier element is used in a normal indoor atmosphere, the temperature on the cooling side thereof becomes lower than the dew point depending on the operating conditions, and the moisture in the air is condensed on the surfaces of the thermoelectric material and the copper electrode. As a result, when the operation is continued for a long time, the metal material such as the thermoelectric material is corroded, the element resistance increases, the heat absorption amount decreases, and the performance as the Peltier element deteriorates. Therefore, a method to prevent dew condensation by sealing the side surface of the Peltier element with silicon resin or placing the whole Peltier element in a box that prevents moisture from entering from the outside by using rubber packing etc. was also devised. There is.

【0004】[0004]

【発明が解決しようとする課題】しかしながら、このよ
うな防湿方法では、箱体の壁面を通って加熱、すなわち
放熱側から冷却側へ熱が還流され、冷却効率の低下をも
たらしていた。また、ペルチェ素子自身のコストアップ
にもつながっていた。
However, in such a moisture-proof method, heating is performed through the wall surface of the box, that is, heat is circulated from the heat radiating side to the cooling side, resulting in a decrease in cooling efficiency. In addition, the cost of the Peltier device itself was increased.

【0005】[0005]

【課題を解決するための手段】本発明は、熱電材料に直
流電流を通電し、電流の流入部と流出部で発生する発熱
もしくは吸熱によって加熱もしくは冷却するペルチェ素
子において、通電部分とそれを取り囲み支える電気絶縁
材料の表面の少なくとも一部を撥水処理したもので、電
流流入部を含む表面と、電流流出部を含む表面とが前記
の撥水処理した表面によって分離されている構造が好ま
しい。また、熱電材料および金属材料の外気と接する表
面を電気絶縁性でかつ水分透過性の低い被膜で被覆した
ものである。
According to the present invention, in a Peltier element in which a direct current is applied to a thermoelectric material and is heated or cooled by heat generation or heat absorption generated in an inflow part and an outflow part of the current, the energized part and the surrounding part are surrounded. It is preferable that at least a part of the surface of the supporting electrical insulating material is treated to be water repellent, and the surface including the current inflow portion and the surface including the current outflow portion are separated by the water repellent surface. Further, the surfaces of the thermoelectric material and the metal material that come into contact with the outside air are coated with a coating that is electrically insulating and has low moisture permeability.

【0006】[0006]

【作用】一般に金属部分の腐食は、結露によって表面に
付着した水分と空気中の酸素の供給によって発生する。
さらに、結露による水分が熱電材料や銅電極、セラミッ
クス基板の表面を膜状に覆った場合にペルチェ素子に通
電すると、同じ熱電材料表面あるいは隣接する銅電極や
熱電材料の間で発生する電気化学的な腐食によって加速
される。上記のようにペルチェ素子の通電部分とそれを
取り囲み支える電気絶縁材料の表面の少なくとも一部を
撥水処理すると、結露した水分はその表面の撥水性のた
めに表面を覆う液膜とならずに孤立した水滴の状態を維
持し続ける。その結果、腐食が電気化学的な加速を受け
ることがない。
In general, the corrosion of the metal part is caused by the supply of the moisture adhering to the surface due to the dew condensation and the oxygen in the air.
Furthermore, when the Peltier element is energized when moisture due to dew condensation covers the surface of the thermoelectric material, the copper electrode, or the ceramic substrate, an electrochemical reaction occurs on the same thermoelectric material surface or between adjacent copper electrodes or thermoelectric materials. Accelerated by heavy corrosion. As described above, when the current-carrying part of the Peltier element and at least a part of the surface of the electrically insulating material surrounding and supporting it are treated to be water-repellent, the condensed water does not become a liquid film covering the surface due to the water-repellency of the surface. Continue to maintain the state of isolated water drops. As a result, the corrosion is not subject to electrochemical acceleration.

【0007】また、水と空気と金属の三相界面で生じ易
い通常の腐食も抑制される。また、熱電材料や金属材料
の外気と接する表面を水分透過性の低い被膜で覆うと、
水分が遮断されるので、腐食の進行を抑えることができ
るうえ、電気絶縁性なのでペルチェ素子の性能を損なう
ことはない。さらに、本発明のいずれの手段も極薄い膜
状物質による表面処理、および被膜処理なので、熱伝導
による冷却性能の低下はきわめて少ない。また、表面処
理や被膜処理は、一度に大量の処理が可能なので、ペル
チェ素子の側面をシリコン樹脂などでシールしたり、ペ
ルチェ素子全体をゴムパッキン等を用いて防湿する方法
に比べてコスト低減が可能である。
Further, normal corrosion which tends to occur at the three-phase interface of water, air and metal is also suppressed. In addition, if the surface of the thermoelectric material or metal material in contact with the outside air is covered with a film with low moisture permeability,
Since the water is blocked, the progress of corrosion can be suppressed, and the performance of the Peltier element is not impaired because it is electrically insulating. Furthermore, since all the means of the present invention are surface treatment and coating treatment with an extremely thin film-like substance, the cooling performance is not significantly deteriorated by heat conduction. Also, since a large amount of surface treatment and coating treatment can be performed at one time, cost reduction is possible compared to the method of sealing the side surface of the Peltier element with silicone resin or the like, and moisture-proofing the entire Peltier element using rubber packing or the like. It is possible.

【0008】[0008]

【実施例】以下本発明の実施例として、Bi−Te−S
b系合金を熱電材料として用いたペルチェ素子について
図面を参照して説明する。 [実施例1]図1は本発明によるペルチェ素子を示すも
ので、撥水処理を施した部位を6で表している。すなわ
ち、N型の熱電材料1とP型熱電材料2の側面、銅電極
3、およびそれらを接合する半田4の全ての外表面とセ
ラミックス基板5の内側に撥水処理を施した。撥水処理
剤は、クロロホルム−四塩化炭素を溶媒としてオクタデ
シルトリクロロシランの2%溶液を用い、これを塗布・
乾燥後、クロロホルムで洗浄し、最後に流水洗浄した。
撥水処理の効果を調べるため、空気中で水の接触角を測
定し、約145℃の値を得た。処理被膜の厚みや量を測
定しようとしたが検知できなかった。オクタデシルトリ
クロロシランの表面処理機構は、よくわかっていない
が、熱電材料やセラミック表面に吸着した水分子やOH
基とオクタデシルトリクロロシランの塩素が脱塩酸反応
によって結合し、さらに隣接するオクタデシルトリクロ
ロシランの塩素が水分子と反応して脱塩酸反応を起こ
し、結果としてSi−O−Si−O−の結合被膜を形成
すると考えられる。
EXAMPLES As an example of the present invention, Bi-Te-S will be described below.
A Peltier device using a b-based alloy as a thermoelectric material will be described with reference to the drawings. [Embodiment 1] FIG. 1 shows a Peltier device according to the present invention, in which a water-repellent portion is designated by 6. That is, water repellent treatment was performed on the side surfaces of the N-type thermoelectric material 1 and the P-type thermoelectric material 2, all the outer surfaces of the copper electrodes 3 and the solder 4 for joining them, and the inside of the ceramic substrate 5. As the water repellent agent, a 2% solution of octadecyltrichlorosilane was used with chloroform-carbon tetrachloride as a solvent.
After drying, it was washed with chloroform and finally washed with running water.
In order to investigate the effect of the water repellent treatment, the contact angle of water in air was measured and a value of about 145 ° C. was obtained. An attempt was made to measure the thickness and amount of the treated film, but it could not be detected. Although the mechanism of octadecyltrichlorosilane surface treatment is not well understood, water molecules and OH adsorbed on the surface of thermoelectric materials and ceramics.
The group and chlorine of octadecyltrichlorosilane are bound by the dehydrochlorination reaction, and the chlorine of the adjacent octadecyltrichlorosilane reacts with water molecules to cause the dehydrochlorination reaction, resulting in the formation of the Si-O-Si-O-bonded film. Thought to form.

【0009】撥水処理したペルチェ素子の腐食耐久性を
検証するために、4アンペアで順方向と逆方向の交互に
20分ずつ通電を繰り返した。この時の試験雰囲気とし
ては40℃、相対湿度90%とした。4アンペアの通電
時には上下のセラミック基板には約50℃の温度差が認
められた。したがって、熱電素子の両端にはさらに大き
い温度差がついているものと考えられる。1週間にわた
って試験を続け、24時間毎に素子の電気抵抗値と、4
アンペア通電したときの吸熱量の変化を追跡した。撥水
処理を施さなかったペルチェ素子は、4日目から徐々に
抵抗値の増加が観測され、1週間後には当初の1.3倍
の40Ωとなった。一方、撥水処理を施した素子では、
認められる電気抵抗値の変化はなかった。また、撥水処
理を施さない素子は、1週間後に吸熱量が3分の1以下
にまで低下したが、撥水処理を施した素子は、5%程度
の低下にとどまった。いくつかの大きさの異なるペルチ
ェ素子について同じ様な腐食耐久試験を行った結果、そ
の効果について若干のばらつきはあったものの、ほぼ同
様な効果が確認できた。電気抵抗増加や吸熱量の現象が
みられた素子をよく観察すると、熱電材料や半田、銅電
極の近傍から白い粉が吹いており、腐食していることが
確認できた。
In order to verify the corrosion durability of the Peltier element subjected to the water-repellent treatment, electricity was repeatedly applied for 20 minutes at 4 amps alternately in the forward and reverse directions. The test atmosphere at this time was 40 ° C. and 90% relative humidity. A temperature difference of about 50 ° C. was observed between the upper and lower ceramic substrates when a current of 4 amps was applied. Therefore, it is considered that there is a larger temperature difference between both ends of the thermoelectric element. The test was continued for 1 week, and the electrical resistance value of the device was measured every 24 hours and 4
The change of the endotherm when the ampere was energized was traced. The resistance value of the Peltier device that had not been subjected to the water repellent treatment was observed to gradually increase from the 4th day, and one week later, the resistance value was 40 times, which was 1.3 times the initial value. On the other hand, in the element that has been subjected to water repellent treatment,
There was no change in the observed electric resistance value. In addition, the heat absorption amount of the element not subjected to the water repellent treatment decreased to one third or less after one week, but the value of the element subjected to the water repellent treatment decreased to about 5%. As a result of performing the same corrosion durability test on several Peltier devices having different sizes, almost the same effect was confirmed although there was some variation in the effect. By carefully observing the element in which the phenomenon of increase in electric resistance and the amount of heat absorption was observed, it was confirmed that white powder was blown from the vicinity of the thermoelectric material, the solder, and the copper electrode and was corroded.

【0010】撥水処理をしたにも関わらず、腐食が徐々
に進行し、吸熱量が低下していった素子の劣化原因を追
求するために、水の接触角を測定すると、腐食した素子
では特にセラミックス基板の撥水性が損なわれているこ
とが見出された。オクタデシルトリクロロシランによる
撥水処理膜は、高温(〜100℃)で徐々に劣化するこ
とが示唆されたので、他のシリコン系撥水剤やテフロン
系撥水剤を用いて撥水処理を施した素子を作製し、同様
に耐久試験を行った結果では、2週間後も性能の低下は
認められなかった。また、ペルチェ素子の組み立て工程
で熱電素子のみを撥水処理したり、逆にセラミックス基
板のみを撥水処理した素子についても腐食耐久試験を行
った。その結果は、全面に撥水処理を施した素子と比べ
て効果は低かったが、何も処理を施していない素子と比
べると耐食性が向上していた。
In order to investigate the cause of deterioration of the element in which the corrosion gradually progressed due to the water repellent treatment and the heat absorption amount decreased, the contact angle of water was measured. In particular, it was found that the water repellency of the ceramic substrate was impaired. It was suggested that the water repellent film with octadecyltrichlorosilane gradually deteriorates at high temperature (up to 100 ° C.), so it was subjected to water repellent treatment using another silicon water repellent or Teflon water repellent. As a result of manufacturing an element and similarly performing a durability test, no deterioration in performance was observed even after 2 weeks. Further, in a Peltier element assembling process, a corrosion durability test was also performed on an element in which only the thermoelectric element was subjected to water repellent treatment, or conversely, only the ceramic substrate was subjected to water repellent treatment. As a result, the effect was lower than that of the element whose entire surface was subjected to the water repellent treatment, but the corrosion resistance was improved as compared with the element which was not subjected to any treatment.

【0011】[実施例2]ペルチェ素子の熱電材料と金
属部分を、電気絶縁性でかつ水分透過性の低い被膜とし
てポリビニルブチラールで覆った素子を作製した。ポリ
ビニルブチラール粉末をメタノールに溶解させた0.5
%の溶液中に、図2に示すペルチェ素子をくぐらし、7
0℃の乾燥Ar中で5時間乾燥させた。このポリビニル
ブチラールで被膜処理したペルチエ素子の被膜の性状を
調べるために切断し、熱電材料や電極表面、および半田
表面を顕微鏡で観察したところ、ポリビニルブチラール
の被膜が約20μmの厚みで形成されていることがわか
った。被膜処理したペルチェ素子の腐食耐久性を検証す
るために、実施例1と同様に40℃、相対湿度90%の
空気中で4アンペアの電流で順方向と逆方向の交互に2
0分ずつ通電を繰り返した。1週間にわたって試験を続
け、素子の電気抵抗値と吸熱量の変化を追跡した。この
被膜処理を施したペルチェ素子では、実施例1ものと同
様に、認められる電気抵抗値の変化はなかった。また、
吸熱量についても1週間では検知できる変化は起こらな
かった。さらに、引き続いて行った腐食耐久性試験で
は、3週間目に吸熱量に若干の低下がみられた。素子の
表面状態を観察する半田の部位にわずかばかりの腐食が
みられた。
Example 2 An element was produced in which the thermoelectric material and the metal part of the Peltier element were covered with polyvinyl butyral as a coating having electrical insulation and low water permeability. 0.5 of polyvinyl butyral powder dissolved in methanol
%, And pass the Peltier device shown in FIG.
It was dried in dry Ar at 0 ° C. for 5 hours. The Peltier element coated with polyvinyl butyral was cut to investigate its properties, and the surface of the thermoelectric material, the electrode, and the solder surface were observed with a microscope. As a result, a polyvinyl butyral coating was formed with a thickness of about 20 μm I understood it. In order to verify the corrosion durability of the Peltier element subjected to the coating treatment, as in Example 1, in the air of 40 ° C. and relative humidity of 90%, a forward current and a reverse direction were alternately applied at a current of 4 amperes and 2 times.
The energization was repeated every 0 minutes. The test was continued for one week, and changes in the electric resistance value and the heat absorption amount of the device were traced. In the Peltier device subjected to this coating treatment, as in the case of Example 1, there was no change in the observed electric resistance value. Also,
There was no detectable change in the amount of heat absorption within one week. Furthermore, in the subsequent corrosion durability test, a slight decrease in the heat absorption amount was observed after 3 weeks. A slight amount of corrosion was observed in the solder part where the surface condition of the device was observed.

【0012】さらに、耐久性の向上を目指して、ブタジ
エンゴムを溶剤に溶かして素子の表面に被膜形成したペ
ルチェ素子について腐食試験を行った。その結果、吸熱
量は試験当初よりやや低かったが、その低下は4週間後
も見られず、耐食性が向上したことがわかった。しかし
ながら、吸熱量が低かったのはブタジエンゴムの被膜の
厚みが厚かったためと考えられ、被膜形成方法に改善が
必要である。つぎに、無機材料による被膜処理としてア
ルミナのゲル化剤を用いてアルミナ被膜をペルチェ素子
の導電部に形成した。耐食試験では被膜処理をしていな
いブランクの素子に比べて耐食性は大幅に改善されたも
のの、有機の被膜形成素子には及ばなかった。しかしな
がら、最適な無機被膜材料を選定することによって耐食
性はさらに改善できると考えられる。
Further, in order to improve the durability, a corrosion test was conducted on a Peltier device in which butadiene rubber was dissolved in a solvent to form a film on the surface of the device. As a result, the heat absorption amount was slightly lower than at the beginning of the test, but the decrease was not observed even after 4 weeks, indicating that the corrosion resistance was improved. However, it is considered that the heat absorption amount was low because the thickness of the film of butadiene rubber was large, and it is necessary to improve the film forming method. Next, as a coating treatment with an inorganic material, an alumina gelling agent was used to form an alumina coating on the conductive portion of the Peltier device. In the corrosion resistance test, the corrosion resistance was significantly improved as compared with the blank element which was not subjected to the film treatment, but it was not as high as the organic film forming element. However, it is considered that the corrosion resistance can be further improved by selecting the optimum inorganic coating material.

【0013】[0013]

【発明の効果】以上のように本発明によれば、低コスト
でペルチェ素子を構成する熱電材料や金属材料の水分が
介在する腐食を防ぎ、耐久性を大幅に改善することがで
きる。
As described above, according to the present invention, it is possible to prevent the corrosion of the thermoelectric material and the metal material which compose the Peltier element due to the water content at a low cost, and to greatly improve the durability.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の一実施例におけるペルチェ素子の縦断
面図である。
FIG. 1 is a vertical cross-sectional view of a Peltier device according to an embodiment of the present invention.

【図2】従来のペルチェ素子の縦断面図である。FIG. 2 is a vertical sectional view of a conventional Peltier device.

【符号の説明】[Explanation of symbols]

1 N型熱電材料 2 P型熱電材料 3 金属電極 4 半田 5 セラミックス基板 6 撥水処理を施した部位 1 N-type thermoelectric material 2 P-type thermoelectric material 3 Metal electrode 4 Solder 5 Ceramics substrate 6 Water-repellent treated part

───────────────────────────────────────────────────── フロントページの続き (72)発明者 山本 義明 大阪府門真市大字門真1006番地 松下電器 産業株式会社内 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Yoshiaki Yamamoto 1006 Kadoma, Kadoma City, Osaka Prefecture Matsushita Electric Industrial Co., Ltd.

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 熱電材料に直流電流を通電し、電流の流
入部と流出部で発生する発熱もしくは吸熱によって加熱
もしくは冷却するペルチェ素子であって、通電部分とそ
れを取り囲み支える電気絶縁材料の表面の少なくとも一
部を撥水処理したことを特徴とするペルチェ素子。
1. A Peltier element for supplying a direct current to a thermoelectric material and heating or cooling by heat generation or heat absorption generated at an inflow part and an outflow part of the current, the surface of an electrically insulating material surrounding the energized part and supporting it. A Peltier element characterized in that at least a part of the water-repellent treatment is performed.
【請求項2】 熱電材料に直流電流を通電し、電流の流
入部と流出部で発生する発熱もしくは吸熱によって加熱
もしくは冷却するペルチェ素子であって、熱電材料およ
び金属材料の外気と接する表面を電気絶縁性でかつ水分
透過性の低い被膜で覆ったことを特徴とするペルチェ素
子。
2. A Peltier element for applying a direct current to a thermoelectric material and heating or cooling by heat generation or heat absorption generated at an inflow part and an outflow part of the current, wherein the surface of the thermoelectric material and the metal material in contact with the outside air is electrically charged. A Peltier element characterized by being covered with a film that is insulating and has low moisture permeability.
JP6098713A 1994-05-12 1994-05-12 Peltier element Pending JPH07307495A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6098713A JPH07307495A (en) 1994-05-12 1994-05-12 Peltier element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6098713A JPH07307495A (en) 1994-05-12 1994-05-12 Peltier element

Publications (1)

Publication Number Publication Date
JPH07307495A true JPH07307495A (en) 1995-11-21

Family

ID=14227163

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6098713A Pending JPH07307495A (en) 1994-05-12 1994-05-12 Peltier element

Country Status (1)

Country Link
JP (1) JPH07307495A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000164942A (en) * 1998-11-25 2000-06-16 Matsushita Electric Works Ltd Thermoelectric module
JP2004228293A (en) * 2003-01-22 2004-08-12 Toyota Motor Corp Thermoelectric module
JP2007123530A (en) * 2005-10-27 2007-05-17 Denso Corp Thermoelectric conversion device and manufacturing method thereof
WO2011118341A1 (en) * 2010-03-25 2011-09-29 京セラ株式会社 Thermoelectric element and thermoelectric module
JP2012523110A (en) * 2009-04-02 2012-09-27 ビーエーエスエフ ソシエタス・ヨーロピア Thermoelectric material coated with protective layer
JP6822609B1 (en) * 2019-10-24 2021-01-27 三菱電機株式会社 Thermoelectric conversion element module and manufacturing method of thermoelectric conversion element module

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60254677A (en) * 1984-05-30 1985-12-16 Ricoh Co Ltd Peltier effect element
JPH02113348U (en) * 1989-02-23 1990-09-11
JPH06237019A (en) * 1993-02-10 1994-08-23 Matsushita Electric Works Ltd Electronic heating and cooling apparatus

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60254677A (en) * 1984-05-30 1985-12-16 Ricoh Co Ltd Peltier effect element
JPH02113348U (en) * 1989-02-23 1990-09-11
JPH06237019A (en) * 1993-02-10 1994-08-23 Matsushita Electric Works Ltd Electronic heating and cooling apparatus

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000164942A (en) * 1998-11-25 2000-06-16 Matsushita Electric Works Ltd Thermoelectric module
DE19946700B4 (en) * 1998-11-25 2007-12-06 Matsushita Electric Works, Ltd., Kadoma Thermoelectric modules and method for their production
JP2004228293A (en) * 2003-01-22 2004-08-12 Toyota Motor Corp Thermoelectric module
JP2007123530A (en) * 2005-10-27 2007-05-17 Denso Corp Thermoelectric conversion device and manufacturing method thereof
JP2012523110A (en) * 2009-04-02 2012-09-27 ビーエーエスエフ ソシエタス・ヨーロピア Thermoelectric material coated with protective layer
WO2011118341A1 (en) * 2010-03-25 2011-09-29 京セラ株式会社 Thermoelectric element and thermoelectric module
JPWO2011118341A1 (en) * 2010-03-25 2013-07-04 京セラ株式会社 Thermoelectric element and thermoelectric module
JP5377753B2 (en) * 2010-03-25 2013-12-25 京セラ株式会社 Thermoelectric element and thermoelectric module
JP6822609B1 (en) * 2019-10-24 2021-01-27 三菱電機株式会社 Thermoelectric conversion element module and manufacturing method of thermoelectric conversion element module

Similar Documents

Publication Publication Date Title
Appleyard et al. Organic electroluminescent devices: enhanced carrier injection using SAM derivatized ITO electrodes
US9347911B2 (en) Fluid sensor chip and method for manufacturing the same
US6754062B2 (en) Hybrid ceramic electrostatic clamp
EP1617494A2 (en) Organic photovoltaic component with encapsulation
EP2849534A1 (en) Organic el device and method for manufacturing same
Koelmans Metallization corrosion in silicon devices by moisture-induced electrolysis
JP5236927B2 (en) Corrosion-resistant laminated ceramic members
KR20140113437A (en) Sensor and sensing method
WO2015189889A1 (en) Gas sensor and sensor device
JPH07307495A (en) Peltier element
JP3323924B2 (en) Electrostatic chuck
RU2658323C2 (en) Corona shielding system, in particular external corona shielding system for an electric machine
KR102066271B1 (en) Sealing method of electrostatic chuck
Domanský et al. Selective doping of chemically sensitive layers on a multisensing chip
WO2015189888A1 (en) Gas sensor and sensor device
JP3852963B2 (en) Microelectronic devices
JP2009525608A (en) Metal-insulator transition element with parallel conductive layer structure
Miyoshi et al. Electrical Conductivity of Hydrogen-Bonded Polymers
JP4894351B2 (en) Semiconductor substrate evaluation method
WO2016125283A1 (en) Gas sensor and sensor device
Iwamoto et al. A measurement of induced charge in CnTCNQ Langmuir-Blodgett films sandwiched between aluminum electrodes
JP2756944B2 (en) Ceramic electrostatic chuck
RU2570429C1 (en) Thermoelectric module
US10458025B2 (en) Moisture removing apparatus using electric discharge
CN114152646B (en) Molybdate volatile organic compound detection device

Legal Events

Date Code Title Description
A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20040212