WO2021078034A1 - 一种防止动力电池多次充电导致过压的方法 - Google Patents

一种防止动力电池多次充电导致过压的方法 Download PDF

Info

Publication number
WO2021078034A1
WO2021078034A1 PCT/CN2020/120517 CN2020120517W WO2021078034A1 WO 2021078034 A1 WO2021078034 A1 WO 2021078034A1 CN 2020120517 W CN2020120517 W CN 2020120517W WO 2021078034 A1 WO2021078034 A1 WO 2021078034A1
Authority
WO
WIPO (PCT)
Prior art keywords
fully charged
power battery
charged state
charging
battery
Prior art date
Application number
PCT/CN2020/120517
Other languages
English (en)
French (fr)
Inventor
时玉帅
张巍
熊金峰
张建利
朱恒
Original Assignee
金龙联合汽车工业(苏州)有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 金龙联合汽车工业(苏州)有限公司 filed Critical 金龙联合汽车工业(苏州)有限公司
Publication of WO2021078034A1 publication Critical patent/WO2021078034A1/zh

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L58/00Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles
    • B60L58/10Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries
    • B60L58/12Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries responding to state of charge [SoC]
    • B60L58/15Preventing overcharging
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries

Definitions

  • the invention belongs to the technical field of power battery management for new energy vehicles, and specifically relates to a method for preventing overvoltage caused by multiple charging of a power battery.
  • the purpose of the present invention is to provide a method for preventing overvoltage caused by multiple charging of the power battery, so as to ensure the safe and good use of the power battery.
  • a method for preventing overvoltage caused by multiple charging of a power battery includes the following steps:
  • Step 1 First identify whether the power battery is fully charged, and only perform the following steps when fully charged; if it is not fully charged, perform the normal charging process when recharging;
  • Step 2 Calculate the ratio Q of the capacity consumed from the fully charged state to the recharging process and the nominal capacity of the battery;
  • Step 3 If Q is less than the set lower limit Q1 during the recharging process from the fully charged state, the charging process is not allowed;
  • Step 4 If Q is within the range of the set lower limit Q1 ⁇ upper limit Q2 during the recharging process from the fully charged state, the appropriate demand current is found through calibration, and the demand current at this time is higher than the demand current value of the normal charging process If it is small, then perform the charging process according to the demand current;
  • Step 5 If Q is greater than the upper limit Q2 from the fully charged state to the recharging process, there is no need to re-calibrate the demand current and perform the normal charging process.
  • the lower limit Q1 is 0.5%.
  • the upper limit Q2 is 2%.
  • step 1 whether the power battery is in a fully charged state is identified according to the state of charge SOC of the power battery, or whether the cut-off voltage is reached during the last charging process.
  • the present invention determines the required current in the recharging condition according to the degree of battery capacity reduction during the recharging process from the fully charged state. If the battery capacity decrease value is small, you can directly disallow the charging process; if the battery capacity decrease value is within a certain range, you can find the appropriate demand current through calibration; if the battery capacity decrease value is large, you only need to charge normally The process is sufficient to ensure the safe and good use of the power battery.
  • Figure 1 Schematic diagram of the charging process of battery management settings after recharging.
  • the method for preventing overvoltage caused by multiple charging of a power battery of the present invention includes the following steps:
  • Step 1 First, identify whether the power battery is fully charged according to the SOC of the power battery state of charge, or whether it reaches the cut-off voltage during the last charging process, and only perform the following steps when the power battery is fully charged; if it is not fully charged, charge again Execute the normal charging process at the time;
  • Step 2 Calculate the ratio Q of the capacity consumed from the fully charged state to the recharging process and the nominal capacity of the battery;
  • Step 3 If the Q is less than 0.5% during the recharging process from the fully charged state, the charging process is not allowed;
  • Step 4 If Q is in the range of 0.5% to 2% during the recharging process from the full charge state, the appropriate demand current is found through calibration. The demand current at this time is smaller than the demand current value of the normal charging process, and then according to the demand current Perform the charging process;
  • Step 5 If Q is greater than the upper limit Q2 from the fully charged state to the recharging process, there is no need to re-calibrate the demand current and perform the normal charging process.
  • a method for preventing overvoltage caused by multiple charging of power battery includes:
  • Step 2 Calculate the ratio Q of the capacity consumed from the fully charged state to the recharging process and the nominal capacity of the battery;
  • Step 3 From the fully charged state to the recharging process Q is 0.3%, the charging process is not allowed directly.
  • a method for preventing overvoltage caused by multiple charging of power battery includes:
  • Step 2 Calculate the ratio Q of the capacity consumed from the fully charged state to the recharging process and the nominal capacity of the battery;
  • Step 3 From the fully charged state to the Q is 1% during the recharging process, find the appropriate demand current through calibration. At this time, the demand current is smaller than the normal charging demand current value. Then follow the charging process.
  • a method for preventing overvoltage caused by multiple charging of power battery includes:
  • Step 2 Calculate the ratio Q of the capacity consumed from the fully charged state to the recharging process and the nominal capacity of the battery;
  • Step 3 The battery capacity is reduced by 5% from the fully charged state to the recharging process.
  • the battery can withstand the impact of larger currents, so there is no need to re-calibrate the demand current, just go through the normal charging process in the normal mode.

Landscapes

  • Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Power Engineering (AREA)
  • Transportation (AREA)
  • Mechanical Engineering (AREA)
  • Charge And Discharge Circuits For Batteries Or The Like (AREA)
  • Secondary Cells (AREA)

Abstract

一种防止动力电池多次充电导致过压的方法,首先根据动力电池荷电状态SOC,或者上次充电过程中是否达到截止电压,来识别动力电池是否为满充状态,其次利用满充状态到再次充电过程中电池容量降低程度,决定再次充电情况下上报充电桩的需求电流。若满充状态到再次充电过程中电池未经使用或电池容量降低值小于0.5%,可直接不准许进入充电流程;若满充状态到再次充电过程中电池容量降低值在0.5%-2%之间,可以通过标定找到合适的需求电流,走正常充电流程即可;若满充状态到再次充电过程中电池容量降低值大于2%,则只需正常走充电流程即可。该方法能够保证动力电池安全、良好使用。

Description

一种防止动力电池多次充电导致过压的方法 技术领域
本发明属于新能源汽车动力电池管理技术领域,具体地涉及一种防止动力电池多次充电导致过压的方法。
背景技术
整车终端市场客户存在电池满电状态下再次充电的操作,可能会导致电池过压。因为动力电池在充满电或接近满电状态下,放置一段时间,此时电压会回复至静态电压。若此时再次充电,由于电压回复此时的需求电流将较大,较大电流的作用下将导致已经满充的电池电压快速升高,尽管需求电流快速下降,但电池电压可能已经上升至过压状态,此时将导致过压报警或对电池造成损伤。
由于不能提出不准许充电管理人员再次充电操作,因此为避免满电或接近满电状态下再次充电导致电池过压,需从充电程序入手,通过改进充电程序策略设计,达到改善的目的。
发明内容
针对上述存在的技术需求,本发明的目的是提供一种防止动力电池多次充电导致过压的方法,以保证动力电池安全、良好使用。
本发明的技术方案是:
一种防止动力电池多次充电导致过压的方法,包括以下步骤:
步骤一:首先识别动力电池是否为满充状态,只有满充状态下才进行以下步骤;若没有充满,则再次充电时执行正常充电流程;
步骤二:计算电池满电状态到再次充电过程中消耗的容量与标称容量的比值Q;
步骤三:若满充状态到再次充电过程中Q小于设定的下限值Q1,则不准许进入充电流程;
步骤四:若满充状态到再次充电过程中Q处于设定的下限值Q1~上限值Q2范围内,则通过标定找到合适的需求电流,此时的需求电流比正常充 电流程需求电流值小,接下来按需求电流执行充电流程;
步骤五:若满充状态到再次充电过程中Q大于上限值Q2,则不需要重新标定需求电流,执行正常充电流程。
优选的,所述的步骤三中,下限值Q1取0.5%。
优选的,所述的步骤四、五中,上限值Q2取2%。
优选的,所述步骤一中,根据动力电池荷电状态SOC,或者上次充电过程中是否达到截止电压,来识别动力电池是否为满充状态。
本发明的有益效果:
本发明根据满充状态到再次充电过程中电池容量降低程度,决定再次充电情况下的需求电流。若电池容量降低值较小,可直接不准许进入充电流程;若电池容量降低值在某一范围内,可以通过标定找到合适的需求电流;若电池容量降低值较大,则只需正常走充电流程即可,以保证动力电池安全、良好使用。
附图说明
下面结合附图及实施例对本发明作进一步描述:
图1:再次充电后电池管理设置充电流程示意图。
具体实施方式
为使本发明的目的、技术方案和优点更加清楚明了,下面结合具体实施方式并参照附图,对本发明进一步详细说明。应该理解,这些描述只是示例性的,而并非要限制本发明的范围。此外,在以下说明中,省略了对公知结构和技术的描述,以避免不必要地混淆本发明的概念。
如图1所示,本发明的防止动力电池多次充电导致过压的方法,包括以下步骤:
步骤一:首先根据动力电池荷电状态SOC,或者上次充电过程中是否达到截止电压,来识别动力电池是否为满充状态,只有满充状态下才进行以下步骤;若没有充满,则再次充电时执行正常充电流程;
步骤二:计算电池满电状态到再次充电过程中消耗的容量与标称容量的比值Q;
步骤三:若满充状态到再次充电过程中Q小于0.5%,则不准许进入充电流程;
步骤四:若满充状态到再次充电过程中Q处于0.5%~2%范围内,则通过标定找到合适的需求电流,此时的需求电流比正常充电流程需求电流值小,接下来按需求电流执行充电流程;
步骤五:若满充状态到再次充电过程中Q大于上限值Q2,则不需要重新标定需求电流,执行正常充电流程。
实施例一:
一种防止动力电池多次充电导致过压的方法,包括:
步骤一:通过动力电池荷电状态SOC=100%或上次充电过程中已经达到截止电压,识别电池已经满充状态;
步骤二:计算电池满电状态到再次充电过程中消耗的容量与标称容量的比值Q;
步骤三:满充状态到再次充电过程Q为0.3%,直接不准许进入充电流程。
实施例二:
一种防止动力电池多次充电导致过压的方法,包括:
步骤一:通过动力电池荷电状态SOC=100%或上次充电过程中已经达到截止电压,识别电池已经满充状态;
步骤二:计算电池满电状态到再次充电过程中消耗的容量与标称容量的比值Q;
步骤三:满充状态到再次充电过程中Q为1%,通过标定找到合适的需求电流,此时的需求电流比普通充电需求电流值小,接下来按充电流程执行即可。
实施例三:
一种防止动力电池多次充电导致过压的方法,包括:
步骤一:通过动力电池荷电状态SOC=100%或上次充电过程中已经达到截止电压,识别电池已经满充状态;
步骤二:计算电池满电状态到再次充电过程中消耗的容量与标称容量的比值Q;
步骤三:满充状态到再次充电过程中电池容量降低值为5%,电池可以抗击较大电流冲击,则不需要重新标定需求电流,只需正常按通常模式走充电流程即可。
应当理解的是,本发明的上述具体实施方式仅仅用于示例性说明或解释本发明的原理,而不构成对本发明的限制。因此,在不偏离本发明的精神和范围的情况下所做的任何修改、等同替换、改进等,均应包含在本发明的保护范围之内。此外,本发明所附权利要求旨在涵盖落入所附权利要求范围和边界、或者这种范围和边界的等同形式内的全部变化和修改例。

Claims (4)

  1. 一种防止动力电池多次充电导致过压的方法,其特征在于,包括以下步骤:
    步骤一:首先识别动力电池是否为满充状态,只有满充状态下才进行以下步骤;若没有充满,则再次充电时执行正常充电流程;
    步骤二:计算电池满电状态到再次充电过程中消耗的容量与标称容量的比值Q;
    步骤三:若满充状态到再次充电过程中Q小于设定的下限值Q1,则不准许进入充电流程;
    步骤四:若满充状态到再次充电过程中Q处于设定的下限值Q1~上限值Q2范围内,则通过标定找到合适的需求电流,此时的需求电流比正常充电流程需求电流值小,接下来按需求电流执行充电流程;
    步骤五:若满充状态到再次充电过程中Q大于上限值Q2,则不需要重新标定需求电流,执行正常充电流程。
  2. 根据权利要求1所述的防止动力电池多次充电导致过压的方法,其特征在于,所述的步骤三中,下限值Q1取0.5%。
  3. 根据权利要求1所述的防止动力电池多次充电导致过压的方法,其特征在于,所述的步骤四、五中,上限值Q2取2%。
  4. 根据权利要求1所述的防止动力电池多次充电导致过压的方法,其特征在于,所述步骤一中,根据动力电池荷电状态SOC,或者上次充电过程中是否达到截止电压,来识别动力电池是否为满充状态。
PCT/CN2020/120517 2019-10-24 2020-10-13 一种防止动力电池多次充电导致过压的方法 WO2021078034A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201911015744.XA CN110843604B (zh) 2019-10-24 2019-10-24 一种防止动力电池多次充电导致过压的方法
CN201911015744.X 2019-10-24

Publications (1)

Publication Number Publication Date
WO2021078034A1 true WO2021078034A1 (zh) 2021-04-29

Family

ID=69597796

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/120517 WO2021078034A1 (zh) 2019-10-24 2020-10-13 一种防止动力电池多次充电导致过压的方法

Country Status (2)

Country Link
CN (1) CN110843604B (zh)
WO (1) WO2021078034A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113459898A (zh) * 2021-06-24 2021-10-01 云度新能源汽车有限公司 一种电动汽车电池过充智能远程诊断方法及系统

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110843604B (zh) * 2019-10-24 2022-10-14 金龙联合汽车工业(苏州)有限公司 一种防止动力电池多次充电导致过压的方法

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101651240A (zh) * 2009-08-19 2010-02-17 江苏春兰清洁能源研究院有限公司 一种镍氢电池组恒压充电方法
CN101816092A (zh) * 2007-10-05 2010-08-25 松下电器产业株式会社 二次电池的充电控制方法及充电控制电路
CN104300183A (zh) * 2014-07-07 2015-01-21 惠州市亿能电子有限公司 一种电动汽车的智能充电方法
CN105048014A (zh) * 2015-06-05 2015-11-11 哈尔滨理工大学 一种带温度补偿的锂离子动力电池快速充电方法
US20170158079A1 (en) * 2014-08-01 2017-06-08 Lg Innotek Co., Ltd. Electric vehicle quick charge control apparatus
CN107611510A (zh) * 2017-08-31 2018-01-19 苏州新中能源科技有限公司 充电控制方法及充电控制装置
CN109148986A (zh) * 2017-06-28 2019-01-04 宁德新能源科技有限公司 一种充电方法及装置
CN110843604A (zh) * 2019-10-24 2020-02-28 金龙联合汽车工业(苏州)有限公司 一种防止动力电池多次充电导致过压的方法

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3905219B2 (ja) * 1998-04-09 2007-04-18 トヨタ自動車株式会社 充電制御装置および制御方法並びに動力出力装置
JP2005294141A (ja) * 2004-04-02 2005-10-20 Matsushita Electric Ind Co Ltd リチウムイオン二次電池パックの充電制御方法
CN102790243A (zh) * 2012-08-28 2012-11-21 江苏力天新能源科技有限公司 基站用磷酸铁锂电池组充电方法
CN103326432B (zh) * 2013-06-20 2016-05-04 广东欧珀移动通信有限公司 一种电子设备的电池充电控制方法及系统
CN206432703U (zh) * 2016-11-30 2017-08-22 比亚迪股份有限公司 过充过放保护电路、保护装置、电池管理系统及电动汽车

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101816092A (zh) * 2007-10-05 2010-08-25 松下电器产业株式会社 二次电池的充电控制方法及充电控制电路
CN101651240A (zh) * 2009-08-19 2010-02-17 江苏春兰清洁能源研究院有限公司 一种镍氢电池组恒压充电方法
CN104300183A (zh) * 2014-07-07 2015-01-21 惠州市亿能电子有限公司 一种电动汽车的智能充电方法
US20170158079A1 (en) * 2014-08-01 2017-06-08 Lg Innotek Co., Ltd. Electric vehicle quick charge control apparatus
CN105048014A (zh) * 2015-06-05 2015-11-11 哈尔滨理工大学 一种带温度补偿的锂离子动力电池快速充电方法
CN109148986A (zh) * 2017-06-28 2019-01-04 宁德新能源科技有限公司 一种充电方法及装置
CN107611510A (zh) * 2017-08-31 2018-01-19 苏州新中能源科技有限公司 充电控制方法及充电控制装置
CN110843604A (zh) * 2019-10-24 2020-02-28 金龙联合汽车工业(苏州)有限公司 一种防止动力电池多次充电导致过压的方法

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113459898A (zh) * 2021-06-24 2021-10-01 云度新能源汽车有限公司 一种电动汽车电池过充智能远程诊断方法及系统

Also Published As

Publication number Publication date
CN110843604A (zh) 2020-02-28
CN110843604B (zh) 2022-10-14

Similar Documents

Publication Publication Date Title
US10358047B2 (en) Electric power storage system
WO2018103604A1 (zh) 功率输出控制方法及装置、功率回馈控制方法及装置
WO2021078034A1 (zh) 一种防止动力电池多次充电导致过压的方法
CN111002873B (zh) 一种燃料电池汽车能量管理方法
US9929674B2 (en) Power supply system for vehicle
US20140022681A1 (en) Power supply system, vehicle incorporating the same and method for controlling power supply system
JP2011205758A (ja) 充電装置
CN103107572A (zh) 一种电池管理系统的功率控制方法
CN102479983A (zh) 用于电动汽车动力电池的充电控制方法及装置
US8324864B2 (en) Battery fast charging current control algorithm
CN110635527B (zh) 控制电动车辆蓄电池充电的方法和系统以及电动车辆
WO2018095415A1 (zh) 一种基于电池电压的电池保护方法及装置
CN110015158A (zh) 车辆低压电池管理系统以及车辆低压电池管理方法
JP2012244663A (ja) 電気自動車の充電システム
CN109301908A (zh) 快速充电系统、充电方法及高空作业设备
CN103296726B (zh) 电池储能模组及其控制方法和储能供电系统
CN107612007A (zh) 一种光储独立微电网中储能变流器直流欠压保护方法
CN104882947A (zh) 电动汽车交流充电模式一控制装置及控制方法
CN214314619U (zh) 电池加热装置及锂电池
CN103633718A (zh) 一种混合反馈式充电电路、充电器以及充电方法
CN106374556A (zh) 一种电池充电方法及装置
CN103730703B (zh) 一种低容量电池的充电方法
CN110970670A (zh) 动力电池管理方法、装置及计算机可读存储介质
CN205811622U (zh) 一种充电器
CN101860059B (zh) 电池管理方法和装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20880128

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20880128

Country of ref document: EP

Kind code of ref document: A1