WO2021077966A1 - 一种微孔无机滤膜的制备工艺和制备方法 - Google Patents

一种微孔无机滤膜的制备工艺和制备方法 Download PDF

Info

Publication number
WO2021077966A1
WO2021077966A1 PCT/CN2020/116562 CN2020116562W WO2021077966A1 WO 2021077966 A1 WO2021077966 A1 WO 2021077966A1 CN 2020116562 W CN2020116562 W CN 2020116562W WO 2021077966 A1 WO2021077966 A1 WO 2021077966A1
Authority
WO
WIPO (PCT)
Prior art keywords
filter membrane
inorganic filter
urease
urea
calcium carbonate
Prior art date
Application number
PCT/CN2020/116562
Other languages
English (en)
French (fr)
Inventor
成亮
刘俊
周应征
管大为
Original Assignee
江苏大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 江苏大学 filed Critical 江苏大学
Publication of WO2021077966A1 publication Critical patent/WO2021077966A1/zh

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D71/00Semi-permeable membranes for separation processes or apparatus characterised by the material; Manufacturing processes specially adapted therefor
    • B01D71/02Inorganic material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D67/00Processes specially adapted for manufacturing semi-permeable membranes for separation processes or apparatus
    • B01D67/0039Inorganic membrane manufacture
    • B01D67/0044Inorganic membrane manufacture by chemical reaction
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D69/00Semi-permeable membranes for separation processes or apparatus characterised by their form, structure or properties; Manufacturing processes specially adapted therefor
    • B01D69/12Composite membranes; Ultra-thin membranes
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/44Treatment of water, waste water, or sewage by dialysis, osmosis or reverse osmosis

Definitions

  • the invention relates to a microporous inorganic filter membrane, in particular to a process and method for preparing an inorganic filter membrane by a urease active microbial calcium carbonate composite system, and belongs to the technical fields of microbial chemistry, biological inorganic non-metallic materials and membrane separation.
  • Membrane separation technology is widely used in food and beverage, medical and pharmaceutical, municipal water treatment, industrial high-purity water, boiler water replenishment, desalination, ultra-pure water in the electronics industry, and wastewater treatment due to its advantages of low energy consumption, high treatment efficiency, and high degree of automation. And reuse, material concentration and purification and other industries.
  • sewage treatment by applying a certain pressure on one side of the filter membrane, the sewage flows from one side of the membrane to the other side, and harmful substances and bacteria contained in the sewage are trapped on the membrane surface to achieve sewage purification. the goal of. Compared with traditional chemical treatment methods, membrane separation technology is simpler and more effective.
  • the filter membrane According to the different pore size of the filter membrane, it can be divided into microfiltration membrane, ultrafiltration membrane, nanofiltration membrane and reverse osmosis membrane.
  • membrane separation technology has had significant benefits in all walks of life, but there are still some problems that restrict development. Among them, the most significant problem is membrane pollution.
  • Industrial wastewater contains a large number of harmful pollutants and has various types and components.
  • the effect of using membrane separation technology to intercept is not ideal, and there are pollution problems such as membrane plugging, chemical damage, and bacterial growth; Secondly, in long-term use, the filter membrane is prone to breakage, resulting in a decrease in separation performance.
  • the purpose of the present invention is to provide a process and method for preparing an inorganic filter membrane by a urease active microbial calcium carbonate composite system.
  • a microporous inorganic filter membrane the preparation process is as follows:
  • the above-mentioned microporous inorganic filter membrane includes the following steps:
  • the urease microorganism is placed in an environment containing calcium source and urea to undergo a biomineralization reaction to prepare a calcium carbonate slurry suspension with urease activity;
  • the slurry is compacted and placed in a mineralized cementitious solution for further solidification to form a microbial calcium carbonate pulp fiber composite inorganic filter membrane with a porous structure.
  • the environment containing calcium source and urea in step S1 includes an aqueous solution containing calcium source and urea, and the volume ratio of the urease microorganism to the aqueous solution is 1:10-10:1.
  • the concentration of urea and calcium source in the above step S1 are equal, and both are 0.05-1.5 mol/L.
  • the time of the biomineralization reaction in the above step S1 is 2-24 h; it also includes stirring at a rotation speed of 100-600 rpm.
  • the optical density (OD 600 ) of the urease microorganism in the above step S1 is 0.1-5, and the urease activity is 1-30 U/ml.
  • the calcium source in the above step S1 includes calcium chloride, calcium acetate, and calcium nitrate.
  • the urease activity of the calcium carbonate slurry suspension in the above step S2 is 10-1000 U/g, the amount of pulp fiber added is 0.1-10g/L.
  • the porous medium in the above step S3 may be a pore-reaming material with a pore diameter of less than 1 mm, such as sand column, filter paper, and the like.
  • the mineralized cementing liquid in the above step S4 includes an aqueous solution of a mixture of equimolar calcium source and urea, and the concentration of calcium source and urea is 0.1-2 mol/L.
  • the microporous inorganic filter membrane of the present invention is an inorganic filter membrane prepared by using a urease active microbial calcium carbonate composite system, and has the following advantages:
  • the inorganic filter membrane of the present invention still has better durability in an environment of alternating wet and dry conditions and constant temperature changes;
  • the process of the invention is simple, the raw materials are easily obtained, the urease active microorganisms used are harmless to the human body, and no harmful substances are produced during the metabolism of calcium carbonate, and the prepared inorganic filter membrane is used in sewage treatment, bacterial filtration, etc. In the use of the aspect, there will be no side reactions or toxic effects on bacteria. It is an environmentally friendly filter membrane with good filtering effect, strong practicability and wide applicability.
  • Figure 1 is a test diagram of the urease-active microbial calcium carbonate composite system of the present invention in the reaction phase (a left) and the static phase (a right).
  • Figures 2 and 3 are electron micrographs of the pore size of the inorganic filter membrane.
  • Fig. 4 is a comparison diagram of cell concentration before and after filtration in Experiment 1.
  • Figure 5 is a comparison diagram of bacteria retention efficiency before and after filtration in Experiment 1.
  • Figure 6 is a graph showing the ratio of EPS dry weight to cell concentration before and after filtration in Experiment 2.
  • Figure 7 is a graph of the dry weight ratio of EPS cells before and after filtration in Experiment 2.
  • Figure 8 is a comparison diagram of EPS retention efficiency before and after filtration in Experiment 2.
  • Figure 9 is a graph of the proportion of proteoglycans before and after filtration in Experiment 3.
  • a microporous inorganic filter membrane is prepared for the urease active microbial calcium carbonate composite system.
  • the preparation process is: preparing the urease active microbial calcium carbonate composite system to promote the hydrolysis of urea by the urease in the composite system to form a slurry of calcium carbonate Liquid, add a certain amount of pulp fiber to the mixed system, filter the mixed solid phase precipitate through porous media to form a non-strength slurry layer; place the slurry layer in the mineralized cementitious liquid to further mineralize, and then form Microbial calcium carbonate pulp fiber composite inorganic filter membrane with certain strength.
  • the preparation method includes the following steps:
  • Urease-active microbial calcium carbonate composite system composed of urease-active microorganisms
  • pulp fiber is added to the calcium carbonate slurry suspension to prepare a mixed solid phase precipitate composed of calcium carbonate crystal precipitation, microorganisms attached to the surface of the calcium carbonate crystal, and pulp fiber;
  • a porous medium with a pore size of less than 1 mm to filter the above-mentioned sediment to prepare a slurry layer; preferably, it is a hole-reaming material such as sand column and filter paper;
  • the slurry is compacted and placed in a mineralized cementitious solution composed of a mixed aqueous solution of equimolar calcium source and urea with a concentration of 0.1-2 mol/L, and further solidified for 3-48h to form a porous structure
  • a mineralized cementitious solution composed of a mixed aqueous solution of equimolar calcium source and urea with a concentration of 0.1-2 mol/L, and further solidified for 3-48h to form a porous structure
  • the microbial calcium carbonate pulp fiber composite inorganic filter membrane is a mineralized cementitious solution composed of a mixed aqueous solution of equimolar calcium source and urea with a concentration of 0.1-2 mol/L
  • the Bacillus pasteurii isolated from the activated sludge of the sewage treatment plant is used as the basic bacteria source and placed in a culture medium under aerobic and sterile conditions.
  • the medium consisted of 10 g/L ammonium chloride, 20 g/L yeast extract, 0.01 g/L nickel chloride, and the initial pH value was set to 9.
  • the bacterial culture temperature was 28°C, while the culture medium was shaken at a speed of 200 rpm on an orbital shaker. After 48 hours of cultivation, the bacterial culture was collected and stored at 4°C.
  • Gram-negative E. coli Gram-positive Brachybacterium sp.
  • breathe enrichment in the form of acetate from activated sludge There are three types of bacteria used in the test: Gram-negative E. coli, Gram-positive Brachybacterium sp., and breathe enrichment in the form of acetate from activated sludge.
  • the comparison chart of bacteria retention efficiency before and after filtration as shown in Figure 5 shows that with ordinary filter paper, the bacteria removal effect can only reach 20-30%, which is significantly lower than the removal efficiency of inorganic filter membranes for bacteria.
  • the filtration performance of the two filter membranes was compared.
  • the gram-negative Escherichia coli, Gram-positive Brevibacterium and the mixed combination enriched by respiration from activated sludge in the form of acetate with an initial cell density of OD600 of 2.0 were centrifuged, and cells without cells were collected. There is a supernatant of extracellular polymer.
  • Figure 6 shows the filtration efficiency by the ratio of EPS dry weight before and after filtration to cell concentration.
  • Figure 7 shows the filtration efficiency by the ratio of EPS dry weight before and after filtration to the total dry weight of cells.
  • the retention efficiency of the inorganic filter membrane of the comparative example and the ordinary microfiltration membrane filter paper (with a pore size of 1-3 microns) on the EPS retention efficiency the inorganic filter membrane of the present invention has an advantage of 50%-60% retention efficiency.
  • the ratio of filtered proteoglycans can be obtained, as shown in Figure 9.
  • the ratio of proteoglycan extracted by filtration is equal to the ratio of proteoglycan before filtration minus the ratio of proteoglycan after filtration, which can be reflected in the total amount of the main components of EPS intercepted during the filtration process of the filter membrane.
  • the ratio of proteoglycan extracted by the inorganic filter membrane of the present invention is significantly higher than that of ordinary filter paper, and the efficiency is increased by about 4 to 5 times.
  • the inorganic filter membrane of the present invention can exert greater benefits in processes such as protein extraction and purification and sewage treatment due to its small pore size and dense pores.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Inorganic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Hydrology & Water Resources (AREA)
  • Environmental & Geological Engineering (AREA)
  • Water Supply & Treatment (AREA)
  • Organic Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Separation Using Semi-Permeable Membranes (AREA)

Abstract

一种微孔无机滤膜,为脲酶活性微生物碳酸钙复合体系制备无机滤膜,通过制备脲酶活性微生物碳酸钙复合体系,促进复合体系中的脲酶水解尿素反应,生成碳酸钙浆状悬浮液,在复合体系中加入一定量的纸浆纤维,将混合固定相沉淀物经多孔介质过滤后形成无强度浆状层,将浆状层置于矿化胶结液中进一步矿化,形成具有一定强度的微生物碳酸钙纸浆纤维复合无机滤膜。

Description

一种微孔无机滤膜的制备工艺和制备方法 技术领域
本发明涉及一种微孔无机滤膜,具体涉及一种脲酶活性微生物碳酸钙复合体系制备无机滤膜的工艺和方法,属于微生物化学、生物无机非金属材料和膜分离技术领域。
背景技术
膜分离技术由于其能耗低、处理效率高、自动化程度高等优点,广泛用于食品饮料、医疗制药、市政工水处理、工业用高纯水、锅炉补水、海水淡化、电子行业超纯水、废水处理与回用、物料浓缩提纯等多种行业。特别在污水处理方面,通过在滤膜一侧施加一定的压力,使污水从膜的一侧流到另一侧,污水中含有的有害物质、细菌等被截留在膜面上,从而达到污水净化的目的。相比与传统的化学处理方法,膜分离技术更加简便、有效。
根据滤膜孔径的不同,可将其分为微滤膜、超滤膜、纳滤膜和反渗透膜。
膜分离技术的应用在各行各业都有了显著的效益,但依然存在着一些限制发展的问题。其中,最显著的问题是膜污染,工业废水含有大量的有害污染物且种类成分多样,利用膜分离技术截留的效果不理想,而且存在着膜面堵漏、化学破坏、细菌生长等污染问题;其次,在长期的使用中,滤膜易发生破损导致分离性能降低的现象。
目前对于膜污染、膜耐久性低等问题的解决方法尚未成熟;因此,亟需研究出一种环境友好、耐久性高且具有自清洁性的新型滤膜。
技术解决方案
为解决现有技术的不足,本发明的目的在于提供一种脲酶活性微生物碳酸钙复合体系制备无机滤膜的工艺和方法。
为了实现上述目标,本发明采用如下的技术方案:
一种微孔无机滤膜,制备工艺如下反应式:
尿素+Ca 2+ +n(CaCO 3-脲酶菌) → NH 4 ++(CaCO 3-CaCO 3n
上述的一种微孔无机滤膜,制备方法包括以下步骤:
S1、把脲酶微生物置于含有钙源和尿素的环境下发生生物矿化反应,制得具有脲酶活性的碳酸钙浆状悬浮液;
S2、往碳酸钙浆状悬浮液中加入一定量的纸浆纤维,制得混合固相沉淀物;
S3、利用多孔介质过滤上述沉淀物,制得浆状层;
S4、将浆状层压实并放置在矿化胶结液中进一步固化,形成具有多孔结构的微生物碳酸钙纸浆纤维复合无机滤膜。
上述步骤S1中含有钙源和尿素的环境包括含有钙源和尿素的水溶液,脲酶微生物与水溶液的体积比为1:10-10:1。
上述步骤S1中的尿素和钙源的浓度相等,且均为0.05-1.5 mol/L。
上述步骤S1的生物矿化反应的时间为2-24h;还包括以100-600rpm的转速搅拌。
上述步骤S1中的脲酶微生物的光密度(OD 600)为0.1-5,脲酶活性为1-30 U/ml。
上述步骤S1中的钙源包括氯化钙、醋酸钙、硝酸钙。
上述步骤S2中的碳酸钙浆状悬浮液的脲酶活性为10-1000 U/g,加入纸浆纤维的量为0.1-10g/L。
上述步骤S3中的多孔介质可为沙柱、滤纸等孔径小于1mm的扩孔材料。
上述步骤S4中的矿化胶结液,包括等摩尔的钙源和尿素混合的水溶液,钙源和尿素的浓度为0.1-2 mol/L。
有益效果
本发明的有益之处在于:
本发明的一种微孔无机滤膜,是一种利用脲酶活性微生物碳酸钙复合体系制备的无机滤膜,具有以下优点:
(1)孔隙小、孔密集且孔径可控:可根据工艺目的调节矿化胶洁液中尿素和氯化钙的浓度来控制孔径的大小,因此其在污水处理、细菌过滤等方面可以发挥较好的效益;
(2)自修复能力:无机滤膜在破损、开裂之后,可通过给复合体系上的活跃细菌提供胶结溶液,进行矿化反应来修补缺口,因此本发明的无机滤膜具有一定的自修复能力;
(3)自清洁能力:在无机滤膜膜面堵塞的情况下,可直接给膜面滴加稀盐酸或者在无氧环境中给膜面滴加葡萄糖的方法,利用盐酸或细菌无氧呼吸产生的乳酸溶解膜表层碳酸钙,释放堵塞物,因此本无机滤膜具有一定的自清洁性;
(4)、耐久性:本发明的无机滤膜,在干湿交替以及温度常变的环境下,依然具有较好的耐久性;
本发明的工艺简单,原材料获取方便,所采用的脲酶活性微生物,对人体无害,在新陈代谢产生碳酸钙的过程中不会产生有害物质,而且制备出的无机滤膜在污水处理、细菌过滤等方面的利用中,不会发生副反应或者对细菌有毒害作用,属于环境友好型滤膜,过滤效果好,具有很强的实用性和广泛的适用性。
附图说明
图1为本发明的脲酶活性微生物碳酸钙复合体系在反应阶段(a左)和静置阶段(a右)的试验图。
图2和图3为无机滤膜的孔径的电镜图。
图4为试验一的过滤前后细胞浓度对比图。
图5为试验一的过滤前后细菌截留效率对比图。
图6为试验二的过滤前后EPS干重与细胞浓度之比图。
图7为试验二的过滤前后EPS细胞干重比图。
图8为试验二的过滤前后EPS截留效率对比图。
图9为试验三的过滤前后蛋白多糖比例图。
本发明的最佳实施方式
以下结合附图和具体实施例对本发明作具体的介绍。
一种微孔无机滤膜,为脲酶活性微生物碳酸钙复合体系制备无机滤膜,制备工艺为:制备脲酶活性微生物碳酸钙复合体系,促进复合体系中的脲酶水解尿素反应,生成碳酸钙浆状悬浮液,在该混合体系中加入一定量的纸浆纤维,将混合固相沉淀物经多孔介质过滤后形成无强度浆状层;将该浆状层置于矿化胶结液中进一步矿化,进而形成具有一定强度的微生物碳酸钙纸浆纤维复合无机滤膜。
工艺反应如下式:
尿素+Ca 2+ +n(CaCO 3-脲酶菌) →  NH 4 ++(CaCO 3-CaCO 3n
制备方法,包括以下步骤:
S1、按1:10-10:1的体积比,把光密度(OD 600)为0.1-5、脲酶活性为1-30 U/ml的脲酶微生物,置于含有等摩尔且浓度均为0.05-1.5 mol/L的钙源(氯化钙、醋酸钙、硝酸钙)和尿素的混合水溶液中,然后以100-600 rpm的转速搅拌混合溶液2-24h,使得脲酶微生物持续水解尿素产生碳酸根,并与溶液中的钙离子反应,从而进行持续的生物矿化反应,制得具有脲酶活性为10-1000 U/g的碳酸钙浆状悬浮液;即由碳酸钙和附着在碳酸钙晶体上的脲酶活性微生物组成的脲酶活性微生物碳酸钙复合体系;
S2、往碳酸钙浆状悬浮液中加入0.1-10g/L的纸浆纤维,制得由碳酸钙晶体沉淀、附载在碳酸钙晶体表面的微生物、以及纸浆纤维共同组成的混合固相沉淀物;
S3、利用孔径小于1mm的多孔介质过滤上述沉淀物,制得浆状层;优选为沙柱、滤纸等扩孔材料;
S4、将浆状层压实,并放置在由等摩尔且浓度均为0.1-2 mol/L钙源和尿素的混合水溶液组成的矿化胶结液中,进一步固化3-48h,形成具有多孔结构的微生物碳酸钙纸浆纤维复合无机滤膜。
实施例:
脲酶活性微生物碳酸钙复合体系的制备。
以从污水处理厂的活性污泥中分离出来的巴氏芽孢杆菌作为基本菌源,在好氧无菌的条件下置于培养基中培养。培养基由10 g/L氯化铵、20 g/L酵母提取物、0.01 g/L氯化镍组成,初始pH值设为9。细菌培养温度为28℃,同时在轨道振动筛上以200转/分的速度振动培养基。培养48小时后收取细菌培养物,并在4℃的条件下保存。收获的细菌培养物的光密度(OD 600)从2到3不等,使用前用电导率仪测量尿素酶活性并调整到大约10 U/ml(1 U=1μmol尿素水解/分钟)左右。
往1L的调配好的细菌培养物中加入44.4g氯化钙和24g尿素,然后以200 rpm的速度搅拌混合液24h。随着生物矿化反应,逐渐生成具有脲酶活性微生物的碳酸钙浆状悬浮液,如图1。
向上述的碳酸钙浆状悬浮液中加入2克纸浆纤维,用普通滤纸过滤碳酸钙纸浆纤维浆状悬浮液,制成具有3mm的碳酸钙纸浆纤维滤渣,然后将该滤渣压实并且放置在1摩尔每升的尿素-氯化钙矿化胶结液中固化48小时,获得3mm厚的孔径在30-100纳米左右的无机滤膜(图2和图3)。
试验一:
使用本实施例的无机滤膜和普通微滤膜滤纸(孔径在1-3微米)进行细菌过滤试验:
试验中采用的细菌有三种:革兰氏阴性大肠杆菌(Gram-negative E. coli)、革兰氏阳性短杆菌(Gram-positive Brachybacterium sp.)、以醋酸盐形式从活性污泥中呼吸富集的混合联合体(Mixed consortium in form of acetate respiring enrichment from activated sludge),过滤前的初始细胞密度均保持在约10 10 cfu/ml。
过滤前后溶液中的菌落浓度差异结果,见如图4和图5。
如图4所示的过滤前后细胞浓度对比图,基于脲酶活性微生物碳酸钙复合体系制备的无机滤膜在过滤方面表现出了更优的效率。经其过滤后的液体中含有的三种菌落浓度在对数坐标上约为10 6 CFU/mL,比用普通滤纸过滤后的菌落浓度低10 4倍,这说明本专利的无机滤膜具有更小的孔隙,截留细菌的效果更优,过滤效率更高。
如图5所示的过滤前后细菌截留效率对比图,说明了用普通滤纸过滤,细菌的去除效果只能达到20~30%,明显低于无机滤膜对于细菌的去除效率。
试验二:
使用本实施例的无机滤膜和通微滤膜滤纸(孔径在1-3微米)对从细菌中提取出的胞外聚合物(EPS)进行过滤试验,比较两种滤膜的过滤性能。
分别对初始细胞密浓度0D600为2.0的革兰氏阴性大肠杆菌、革兰氏阳性短杆菌和以醋酸盐形式从活性污泥中呼吸富集的混合联合体进行离心,并收集不含细胞而有胞外聚合物的上清液。
过滤前后E干重对比以及EPS去除效率的结果,见图6、图7、图8。
图6以过滤前后EPS干重与细胞浓度比来体现过滤效率。
图7以过滤前后EPS干重与细胞总干重之比来体现过滤效率。
图6、图7中,三种细菌的胞外聚合物经本发明的无机滤膜过滤后,滤液中剩余的EPS量明显低于经由普通滤纸过滤的剩余量。
图8中,对比实施例的无机滤膜和普通微滤膜滤纸(孔径在1-3微米)对EPS的截留效率,本发明的无机滤膜以50%~60%的截留效率占据优势。
试验三:
利用苯酚-硫酸法测定过滤前后EPS中的多糖含量以及用BCA法测定蛋白质的组分,可得到过滤提取蛋白多糖比例图,如图9所示。
过滤提取蛋白多糖比等于过滤前的蛋白多糖比减去过滤后的蛋白多糖比,可以体现在滤膜过滤过程中,EPS主要组分被截留的总量。
用本发明的无机滤膜提取的蛋白多糖比明显高于普通滤纸,约增加了4~5倍的效率。
以上结果说明,对于比细菌尺寸更小的物质如EPS等,本发明的无机滤膜由于其孔径小、孔隙密的特点,在蛋白质提取提纯、污水处理等工艺上可以发挥较大的效益。
以上显示和描述了本发明的基本原理、主要特征和优点。本行业的技术人员应该了解,上述实施例不以任何形式限制本发明,凡采用等同替换或等效变换的方式所获得的技术方案,均落在本发明的保护范围内。

Claims (10)

  1. 一种微孔无机滤膜,其特征在于,制备工艺如下反应式:
    尿素+Ca 2+ +n(CaCO 3-脲酶菌)  →   NH 4 ++(CaCO 3-CaCO 3n
  2. 根据权利要求1所述的一种微孔无机滤膜,其特征在于,制备方法包括以下步骤:
    S1、把脲酶微生物置于含有钙源和尿素的环境下发生生物矿化反应,制得具有脲酶活性的碳酸钙浆状悬浮液;
    S2、往碳酸钙浆状悬浮液中加入一定量的纸浆纤维,制得混合固相沉淀物;
    S3、利用多孔介质过滤上述沉淀物,制得浆状层;
    S4、将浆状层压实并放置在矿化胶结液中进一步固化,形成具有多孔结构的微生物碳酸钙纸浆纤维复合无机滤膜。
  3. 根据权利要求2所述的一种微孔无机滤膜,其特征在于,所述步骤S1中含有钙源和尿素的环境包括含有钙源和尿素的水溶液,
    所述脲酶微生物与水溶液的体积比为1:10-10:1。
  4. 根据权利要求2所述的一种微孔无机滤膜,其特征在于,所述步骤S1中的尿素和钙源的浓度相等,且均为0.05-1.5 mol/L。
  5. 根据权利要求2所述的一种微孔无机滤膜,其特征在于,所述步骤S1的生物矿化反应的时间为2-24h;还包括以100-600rpm的转速搅拌。
  6. 根据权利要求2所述的一种微孔无机滤膜,其特征在于,所述步骤S1中的脲酶微生物的光密度(OD 600)为0.1-5,脲酶活性为1-30 U/ml。
  7. 根据权利要求2所述的一种微孔无机滤膜,其特征在于,所述步骤S1中的钙源包括氯化钙、醋酸钙、硝酸钙。
  8. 根据权利要求2所述的一种微孔无机滤膜,其特征在于,所述步骤S2中的碳酸钙浆状悬浮液的脲酶活性为10-1000 U/g,加入纸浆纤维的量为0.1-10g/L。
  9. 根据权利要求2所述的一种微孔无机滤膜,其特征在于,所述步骤S3中的多孔介质可为沙柱、滤纸等孔径小于1mm的扩孔材料。
  10. 根据权利要求2所述的一种微孔无机滤膜,其特征在于,所述步骤S4中的矿化胶结液,包括等摩尔的钙源和尿素混合的水溶液,钙源和尿素的浓度为0.1-2 mol/L。
PCT/CN2020/116562 2019-10-25 2020-09-21 一种微孔无机滤膜的制备工艺和制备方法 WO2021077966A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201911025347.0 2019-10-25
CN201911025347.0A CN110860216B (zh) 2019-10-25 2019-10-25 一种微孔无机滤膜的制备工艺和制备方法

Publications (1)

Publication Number Publication Date
WO2021077966A1 true WO2021077966A1 (zh) 2021-04-29

Family

ID=69653282

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/116562 WO2021077966A1 (zh) 2019-10-25 2020-09-21 一种微孔无机滤膜的制备工艺和制备方法

Country Status (2)

Country Link
CN (1) CN110860216B (zh)
WO (1) WO2021077966A1 (zh)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114671529A (zh) * 2022-03-03 2022-06-28 广西大学 一种高钙有机废水厌氧处理前微生物诱导碳酸钙沉淀除钙新方法
CN115928495A (zh) * 2022-11-25 2023-04-07 复旦大学 一种纸质文物预防性保护用矿化细菌纤维素多功能保护衬纸及其制备方法和应用
CN116622554A (zh) * 2023-04-20 2023-08-22 福州大学 一种简便快速浓缩产脲酶菌的方法及其应用
WO2023216674A1 (zh) * 2022-05-10 2023-11-16 江苏大学 具有脲酶活性的多孔生物碳酸钙钝化材料及其制备方法和应用

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110860216B (zh) * 2019-10-25 2021-10-01 江苏大学 一种微孔无机滤膜的制备工艺和制备方法
CN113914094B (zh) * 2021-10-13 2023-12-22 江苏大学 一种碳酸钙/聚合物纳米纤维复合膜的制备方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5582128A (en) * 1978-12-15 1980-06-20 Kanebo Ltd Preparation of making film containing enzyme
CN101869810A (zh) * 2010-05-24 2010-10-27 南京林业大学 一种新型复合微滤膜的制备方法
CN107441946A (zh) * 2017-09-15 2017-12-08 北京工业大学 一种酶诱导制备有机无机杂化膜的方法
CN108975787A (zh) * 2018-08-29 2018-12-11 中国矿业大学(北京) 一种煤矿用微生物胶结充填材料及其制备方法
CN110860216A (zh) * 2019-10-25 2020-03-06 江苏大学 一种微孔无机滤膜的制备工艺和制备方法

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100357444C (zh) * 2005-10-10 2007-12-26 东南大学 利用微生物沉积制备碳酸钙的方法
NO326444B1 (no) * 2005-11-09 2009-01-19 Temasi As Fremgangsmate og middel for stabilisering og tetting av underjordiske formasjoner eller forhindring av jorderosjon
CN102758262B (zh) * 2011-04-29 2014-08-13 中国科学院化学研究所 超疏油的水下自清洁的矿化纤维膜及其制备方法
CN105521769B (zh) * 2016-01-20 2017-08-29 中南大学 一种生物复合膜材料的应用方法
CN106552519B (zh) * 2016-08-05 2019-07-12 四川大学 一种超亲水及水下超疏油碳酸钙杂化膜及制备方法和应用
WO2019088925A1 (en) * 2017-10-31 2019-05-09 Nanyang Technological University Bioslurry-induced water barrier and process of forming thereof
CN109012213A (zh) * 2018-07-09 2018-12-18 绍兴齐英膜科技有限公司 高通量有机-无机复合过滤膜的制备方法、过滤膜及膜组件

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5582128A (en) * 1978-12-15 1980-06-20 Kanebo Ltd Preparation of making film containing enzyme
CN101869810A (zh) * 2010-05-24 2010-10-27 南京林业大学 一种新型复合微滤膜的制备方法
CN107441946A (zh) * 2017-09-15 2017-12-08 北京工业大学 一种酶诱导制备有机无机杂化膜的方法
CN108975787A (zh) * 2018-08-29 2018-12-11 中国矿业大学(北京) 一种煤矿用微生物胶结充填材料及其制备方法
CN110860216A (zh) * 2019-10-25 2020-03-06 江苏大学 一种微孔无机滤膜的制备工艺和制备方法

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114671529A (zh) * 2022-03-03 2022-06-28 广西大学 一种高钙有机废水厌氧处理前微生物诱导碳酸钙沉淀除钙新方法
WO2023216674A1 (zh) * 2022-05-10 2023-11-16 江苏大学 具有脲酶活性的多孔生物碳酸钙钝化材料及其制备方法和应用
CN115928495A (zh) * 2022-11-25 2023-04-07 复旦大学 一种纸质文物预防性保护用矿化细菌纤维素多功能保护衬纸及其制备方法和应用
CN116622554A (zh) * 2023-04-20 2023-08-22 福州大学 一种简便快速浓缩产脲酶菌的方法及其应用

Also Published As

Publication number Publication date
CN110860216B (zh) 2021-10-01
CN110860216A (zh) 2020-03-06

Similar Documents

Publication Publication Date Title
WO2021077966A1 (zh) 一种微孔无机滤膜的制备工艺和制备方法
Liao et al. A review of membrane fouling and its control in algal-related membrane processes
Tu et al. Performance and fouling characteristics in a membrane sequence batch reactor (MSBR) system coupled with aerobic granular sludge
Ueda et al. Treatment of domestic sewage from rural settlements by a membrane bioreactor
Lim et al. Membrane fouling and cleaning in microfiltration of activated sludge wastewater
CN105036495B (zh) 一种离子交换与反硝化集成去除水中硝态氮的方法
JP5850441B2 (ja) 生物膜形成抑制微生物固定化容器及びこれを利用した分離膜水処理装置
CN105384316B (zh) 一种电子工业含氟含氨氮废水的处理方法
Ye et al. Study on the suitable thickness of a PAC-precoated dynamic membrane coupled with a bioreactor for municipal wastewater treatment
BR112013024628B1 (pt) método e sistema para tratamento de água usada para fins industriais
Jiang et al. Membrane fouling in a powdered activated carbon–membrane bioreactor (PAC-MBR) for micro-polluted water purification: fouling characteristics and the roles of PAC
Alsalhy et al. A new Sponge-GAC-Sponge membrane module for submerged membrane bioreactor use in hospital wastewater treatment
JP6621342B2 (ja) 硝化細菌が付着した生物活性炭の製造方法及び高度浄水処理方法
Armah et al. Emerging trends in wastewater treatment technologies: the current perspective
Shao et al. Biofouling layer maintains low hydraulic resistances and high ammonia removal in the UF process operated at low flux
Zhou et al. Effects of sulfate on activated sludge characteristics and membrane fouling in membrane bioreactor treating penicillin wastewater
CN100534922C (zh) 用耐氧化复合反渗透膜进行水处理的方法及处理系统
Davies et al. Fabrication of catalytic ceramic membranes for water filtration
Ugarte et al. Low-cost ceramic membrane bioreactor: Effect of backwashing, relaxation and aeration on fouling. Protozoa and bacteria removal
CN206886885U (zh) 一种热膜耦合海水淡化装置
Tian et al. Alleviated membrane fouling of corundum ceramic membrane in MBR: As compared with alumina membrane
CN113171686A (zh) 一种季铵盐表面改性的醋酸纤维素反渗透膜的制备方法
Shao et al. A pilot-scale study of a powdered activated carbon-membrane bioreactor for the treatment of water with a high concentration of ammonia
KR101170073B1 (ko) 자연정화습지 조성방법
Koyuncu et al. Applications of ceramic membrane bioreactors in water treatment

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20880027

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20880027

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 20880027

Country of ref document: EP

Kind code of ref document: A1