WO2021075391A1 - 除菌組成物及びそれを用いる細菌芽胞の除菌方法 - Google Patents

除菌組成物及びそれを用いる細菌芽胞の除菌方法 Download PDF

Info

Publication number
WO2021075391A1
WO2021075391A1 PCT/JP2020/038418 JP2020038418W WO2021075391A1 WO 2021075391 A1 WO2021075391 A1 WO 2021075391A1 JP 2020038418 W JP2020038418 W JP 2020038418W WO 2021075391 A1 WO2021075391 A1 WO 2021075391A1
Authority
WO
WIPO (PCT)
Prior art keywords
sterilization
composition
cell count
viable cell
germination
Prior art date
Application number
PCT/JP2020/038418
Other languages
English (en)
French (fr)
Inventor
延嶋 浩文
昭博 白井
Original Assignee
タマ化学工業株式会社
国立大学法人徳島大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by タマ化学工業株式会社, 国立大学法人徳島大学 filed Critical タマ化学工業株式会社
Priority to JP2021528335A priority Critical patent/JP7101375B2/ja
Publication of WO2021075391A1 publication Critical patent/WO2021075391A1/ja

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01NPRESERVATION OF BODIES OF HUMANS OR ANIMALS OR PLANTS OR PARTS THEREOF; BIOCIDES, e.g. AS DISINFECTANTS, AS PESTICIDES OR AS HERBICIDES; PEST REPELLANTS OR ATTRACTANTS; PLANT GROWTH REGULATORS
    • A01N33/00Biocides, pest repellants or attractants, or plant growth regulators containing organic nitrogen compounds
    • A01N33/02Amines; Quaternary ammonium compounds
    • A01N33/12Quaternary ammonium compounds
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01NPRESERVATION OF BODIES OF HUMANS OR ANIMALS OR PLANTS OR PARTS THEREOF; BIOCIDES, e.g. AS DISINFECTANTS, AS PESTICIDES OR AS HERBICIDES; PEST REPELLANTS OR ATTRACTANTS; PLANT GROWTH REGULATORS
    • A01N43/00Biocides, pest repellants or attractants, or plant growth regulators containing heterocyclic compounds
    • A01N43/34Biocides, pest repellants or attractants, or plant growth regulators containing heterocyclic compounds having rings with one nitrogen atom as the only ring hetero atom
    • A01N43/40Biocides, pest repellants or attractants, or plant growth regulators containing heterocyclic compounds having rings with one nitrogen atom as the only ring hetero atom six-membered rings
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01NPRESERVATION OF BODIES OF HUMANS OR ANIMALS OR PLANTS OR PARTS THEREOF; BIOCIDES, e.g. AS DISINFECTANTS, AS PESTICIDES OR AS HERBICIDES; PEST REPELLANTS OR ATTRACTANTS; PLANT GROWTH REGULATORS
    • A01N61/00Biocides, pest repellants or attractants, or plant growth regulators containing substances of unknown or undetermined composition, e.g. substances characterised only by the mode of action

Definitions

  • the present invention relates to a sterilization composition used for sterilizing bacterial spores and a method for sterilizing bacterial spores using the same.
  • sterilizing and sterilizing ingredients are used as a composition for sterilizing or sterilizing tableware, cooking utensils, and various equipment in food handling facilities such as restaurants, nursing homes, hospital kitchens, and food factories.
  • a compounded disinfectant / bactericidal agent is used.
  • Such sterilizing and sterilizing agents include alcohol preparations such as ethanol for disinfection; chlorine-based preparations such as sodium hypochlorite; peroxide preparations such as hydrogen peroxide solution; and cationic surfactants such as benzalkonium chloride. Activators; etc. are widely used.
  • a gas sterilization method using a gas such as ethylene oxide, a gamma ray irradiation method, and a high-pressure steam sterilization (autoclave) method are known.
  • a so-called intermittent sterilization method in which a step of heating to a predetermined temperature, leaving it at room temperature for about overnight, and then reheating is repeated.
  • these methods have problems such as complicated operation, large-scale equipment, or processing of only those having a size that fits inside the equipment.
  • a method capable of effectively eradicating or sterilizing bacterial spores a method of acting with sodium hypochlorite or acetic acid, a method of acting with aldehydes such as glutaraldehyde and phthalal, and the like are known.
  • aldehydes such as glutaraldehyde and phthalal
  • the agents used in these methods have toxicity, skin irritation, or strong odor, there are various problems such as the need to wear protective equipment, and it cannot be said that the method is highly versatile. It was.
  • Patent Document 1 a method for sterilizing bacterial spores treated with a germination-inducing substance such as an amino acid or sugar and then treated with a bactericidal agent, and a two-agent type bactericidal agent used therein have been proposed.
  • Patent Document 2 a spore-killing method having a step of bringing the spore-forming bacterium into contact with dipicolinic acid, a step of bringing the spore-forming bacterium into contact with a cationic surfactant, and a step of heating the spore-forming bacterium, and a composition used therein have been proposed.
  • Patent Document 3 a fungicide composition for bacterial spores having a pH of 12.5 or higher, which contains a specific polyalkylene biguanide compound and an alkaline agent, has been proposed (Patent Document 3).
  • Patent Document 3 since the operation for sterilization and sterilization is multi-step, the operation is complicated and it takes a long time to sterilize and sterilize. was there. Further, the fungicide composition proposed in Patent Document 3 needs to use a compound having a unique structure, and since it is a strongly alkaline composition, it cannot be said that it is easy to handle, and it is not always versatile. It was not a high-quality drug.
  • the present invention has been made in view of the problems of the prior art, and the object thereof is that bacterial spores can be effectively and easily sterilized or sterilized in a relatively short time. At the same time, it is an object of the present invention to provide a one-agent type sterilization composition having excellent safety and versatility. Another object of the present invention is to provide a method for sterilizing bacterial spores using the above-mentioned sterilization composition.
  • a sterilization composition used for sterilizing bacterial spores which is a one-agent type composition containing a germination promoting component and a sterilizing component, wherein the germination promoting component is an amino acid, sugar, and.
  • a sterilizing composition containing an inorganic salt are cetylpyridinium chloride, benzalkonium chloride, benzethonium chloride, ⁇ -polylysine, 1,4-bis (3,3'-(1-decylpyridinium) methyloxy) butanjibromide, sorbin.
  • the amino acid is at least one selected from the group consisting of L-alanine, L-asparagine, L-tyrosine, L-proline, L-valine, L-serine, and casamino acid [1] or The sterilization composition according to [2].
  • the sugar is at least one selected from the group consisting of D-glucose, D-fructose, D-mannose, D-galactose, maltose, lactose, sucrose, and caramelized reactants thereof [1]. ] To [3].
  • the content of the amino acid is 0.0001 to 1% by mass based on the entire sterilization composition, and the content of the sugar is 0.001 to 10 based on the entire sterilization composition.
  • the sterilization composition according to the above [6] or [7], which is by mass% and the content of the inorganic salt is 0.001 to 10% by mass based on the entire sterilization composition.
  • a method for sterilizing bacterial spores which comprises a step of bringing the sterilization composition according to any one of [6] to [8] above into contact with an object to be treated.
  • the present invention it is possible to effectively and easily sterilize or sterilize bacterial spores in a relatively short time, and to provide a one-agent type sterilization composition having excellent safety and versatility. Can be done. Further, according to the present invention, it is possible to provide a method for sterilizing bacterial spores using the above sterilization composition.
  • the sterilization composition according to an embodiment of the present invention is a one-agent type composition containing a germination promoting component and a sterilizing component used for sterilizing bacterial spores.
  • the germination promoting component contains amino acids, sugars, and inorganic salts.
  • "sterilization" in the present specification acts on bacteria (spore-forming bacteria) including bacterial cells (spores) in the state of spores, and significantly reduces the total number of bacteria, or substantially. It means to sterilize (kill).
  • the details of the sterilization composition of the present embodiment will be described.
  • the germination promoting component is a component that acts on bacterial cells in the state of spores (bacterial spores) to promote germination and lead to vegetative cells.
  • the sterilizing component is a component that acts on at least one of bacterial spores, germinating cells, and vegetative cells to significantly reduce the viable cell count or substantially sterilize the cells.
  • the sterilizing composition of the present embodiment is a so-called one-agent type composition in which both the germination promoting component and the sterilizing component are contained in one preparation. Therefore, germination and removal of bacterial spores are performed once by performing an operation for contacting the object to be treated with bacterial spores, such as spraying, spraying, or applying the sterilizing composition of the present embodiment.
  • Bacteria can be allowed to progress and be effectively and easily eradicated in a relatively short time. Further, since the disinfectant composition of the present embodiment can substantially constitute the active ingredient only by the food additive or by the food additive and the disinfectant component for medical use, it may come into contact with the skin or be in the mouth. There is almost no problem even if it is set, and it is excellent in safety.
  • Bacterial spore The bacterial spores to be sterilized by the sterilization composition of the present embodiment show a certain resistance to an environment such as heat and dryness. Such bacterial spores are specific bacteria that form bacterial spores under oligotrophic conditions, commonly referred to as "spore-forming bacteria.” Bacterial spores become vegetative cells by germinating. Spore-forming bacteria capable of forming bacterial spores usually exist in medical facilities and the like as well as facilities that handle food such as kitchens of restaurants and food factories.
  • Examples of the spore-forming bacterium that forms the bacterial spores to be eradicated by the eradication composition of the present embodiment include Bacillus subtilis, Bacillus cereus, Bacillus megaterium and the like. Bacteria of the genus Bacillus; Bacteria of the genus Clostridium such as Clostridium difficile; Bacteria of the genus Amphivacillus; Bacteria of the genus Sporosarcina; Bacteria of the genus Bacillus; Bacteria of the genus (Aeribacillus); bacteria of the genus Alicyclobacillus; bacteria of the genus Sporolactobacillus; and the like.
  • Germination promoting ingredient include amino acids, sugars, and inorganic salts. It is considered that by incorporating a germination promoting component containing these components, bacterial spores can be germinated and the coexisting sterilizing component can effectively act. If any of these three components is not contained, the germination rate is lowered, so that it takes time to sterilize, or bacterial spores are likely to remain due to poor germination, and the sterilizing effect is lowered.
  • L-amino acids constituting the protein
  • L-alanine (Ala), L-asparagine (Asn), L-tyrosine (Tyr), L-proline (Pro), L-valine (Val), L-serine (Ser), and casamino acid are used. Is preferable.
  • These amino acids can be used alone or in combination of two or more.
  • sugars include D-glucose (dextrose), D-fructose (fructose), D-mannose, D-galactose, maltose, lactose (lactose), sucrose (sucrose), and caramelized reactants thereof. Is preferably used. These sugars can be used alone or in combination of two or more.
  • an inorganic salt generally blended in a synthetic medium for culturing spore-forming bacteria can be used.
  • the inorganic salt it is preferable to use at least one selected from the group consisting of ammonium chloride, ammonium sulfate, ammonium nitrate, potassium chloride, sodium chloride, potassium nitrate, and sodium nitrate.
  • the sterilizing component a general sterilizing component that can act on ordinary bacteria to sterilize or sterilize can be used.
  • the sterilizing components include cetylpyridinium chloride (CPC), benzalkonium chloride (BAC), benzethonium chloride, ⁇ -polylysine, and 1,4-bis (3,3'-(1-decylpyridinium) methyloxy.
  • CPC cetylpyridinium chloride
  • BAC benzalkonium chloride
  • benzethonium chloride benzethonium chloride
  • ⁇ -polylysine ⁇ -polylysine
  • 1,4-bis 3,3'-(1-decylpyridinium) methyloxy.
  • cetylpyridinium chloride CPC
  • BAC benzalkonium chloride
  • benzethonium chloride ⁇ -polylysine
  • sorbic acid sorbic acid
  • potassium sorbate is more preferable.
  • the sterilization composition can be used in various forms such as liquid, paste, gel, milky and solid using a liquid carrier, a gel-like carrier, an emulsion, a solid carrier and the like.
  • the sterilization composition of the present embodiment is preferably a liquid composition further containing a liquid medium.
  • the liquid composition can be easily sprayed, sprayed or applied by filling, for example, a bottle with a measuring cap, a trigger type spray container, a squeeze type spray container, a pump spray container, a brushed container, or the like. Can be done.
  • the liquid medium it is preferable to use water or a mixed solvent of water and a water-soluble organic solvent.
  • a liquid medium containing water handleability can be improved and corrosion of the object to be treated can be suppressed.
  • the water-soluble organic solvent for example, lower alcohols such as ethanol, isopropanol and butanol; and polyhydric alcohols such as ethylene glycol, propylene glycol, glycerin and butylene glycol can be used.
  • the content of amino acids in the sterilization composition may be 0.0001 to 1% by mass based on the entire sterilization composition. It is preferably 0.001 to 0.1% by mass, and more preferably 0.001 to 0.1% by mass.
  • the content of sugar in the sterilization composition may be 0.001 to 10% by mass based on the entire sterilization composition. It is preferably 0.1 to 1% by mass, and more preferably 0.1 to 1% by mass.
  • the content of the inorganic salt in the sterilization composition shall be 0.001 to 10% by mass based on the entire sterilization composition. Is preferable, and 0.01 to 1% by mass is more preferable.
  • the content of the sterilization component in the sterilization composition is 0.1 to 1,000 mg / L based on the entire sterilization composition. It is preferably 1 to 500 mg / L, and more preferably 1 to 500 mg / L.
  • the sterilizing efficiency can be further improved. If the content of the sterilizing component is too small, the sterilizing efficiency may be slightly insufficient. On the other hand, if the content of the sterilization component is too large, the sterilization efficiency tends to reach a plateau.
  • the sterilizing composition of the present embodiment may contain components (other components) other than the above-mentioned components, if necessary, as long as the effects of the present invention are not impaired.
  • other components include surfactants, pH adjusters, antifoaming agents, antioxidants, emulsifiers and the like.
  • a general acid or base can be used.
  • the acid include inorganic acids such as hydrochloric acid and sulfuric acid; organic acids such as lactic acid, citric acid and salts thereof; and the like.
  • the base include inorganic bases such as sodium hydroxide and potassium hydroxide; organic bases such as monoethanolamine, triethanolamine and triisopropanolamine; and the like.
  • an inorganic acid such as hydrochloric acid or sulfuric acid
  • an inorganic base such as sodium hydroxide or potassium hydroxide.
  • the pH of the sterilizing composition of the present embodiment at 25 ° C. is not particularly limited, but in consideration of the sterilizing effect, handleability, etc., it is usually in the neutral range, preferably in the range of pH 5-9.
  • the sterilization method of the present embodiment includes a step of bringing the above-mentioned sterilization composition into contact with an object to be treated.
  • the object to be treated is an object, equipment, facility or the like in which bacterial spores to be sterilized by the sterilization composition are present or may be present on the surface thereof.
  • the object to be treated is not particularly limited as long as it is an object, equipment, facility, etc. in which bacterial spores can exist. Specifically, items such as tableware and kitchenware; facilities that mainly handle food such as kitchens of restaurants, food factories, and backyards of supermarkets; various equipment in food processing factories; various items and equipment in medical sites, etc. Can be mentioned.
  • the sterilization composition When the sterilization composition is liquid, for example, the sterilization composition may be applied in an amount sufficient to wet the surface of the object to be treated and brought into contact with the sterilization composition.
  • any method such as spraying, spraying, and coating may be selected.
  • a liquid sterilization composition may be circulated inside (flow path) of the piping or the like.
  • the time for contacting the sterilizing composition with the object to be treated is, for example, 0.5 to 10 hours, preferably 1 to 8 hours, and more preferably 2 to 6 hours.
  • the sterilizing composition may be heated in contact with the object to be treated. Appropriate heating promotes germination of bacterial spores and further enhances sterilization efficiency.
  • the temperature may be, for example, 20 to 40 ° C, preferably 25 to 37 ° C.
  • spore suspension (1) The spores of the Bacillus subtilis ATCC6633 strain were lyophilized and then stored at ⁇ 80 ° C. to obtain spore powder (spore powder). The spore powder was added to 10 mL of ion-exchanged water, suspended, and then heat-treated at 70 ° C. for 20 minutes. After centrifuging at 7,000 rpm and 4 ° C. for 5 minutes to collect the bacteria, the cells were suspended again in ion-exchanged water to adjust the OD 650 to 3.00 to obtain a spore suspension (1).
  • the spore suspension (1) was diluted 1,000-fold with ion-exchanged water to obtain a spore suspension (1-1) (about 6.0 ⁇ 10 4 CFU / mL).
  • spore suspension (2) The spores of the Bacillus cereus strain NBRC15305 were lyophilized and then stored at ⁇ 80 ° C. to obtain spore powder (spore powder). The spore powder was added to 10 mL of ion-exchanged water, suspended, and then heat-treated at 70 ° C. for 20 minutes. After centrifuging at 7,000 rpm and 4 ° C. for 5 minutes to collect the bacteria, the cells were suspended again in ion-exchanged water to adjust the OD 650 to 3.00 to obtain a spore suspension (2).
  • germination promoter (1) After adding 0.5% L-alanine aqueous solution, 10% D-glucose aqueous solution, and 5.35% ammonium chloride aqueous solution to ion-exchanged water, filtration sterilization is performed to add L-alanine, D-glucose, and ammonium chloride.
  • a sprouting accelerator (1) having a pH of 7.0 was prepared, each containing a predetermined concentration.
  • CPC Cetylpyridinium chloride
  • BAC benzalkonium chloride
  • 1,4-bis (3,3'-(1-decylpyridinium) methyloxy) butane dibromide trade name "Hygenia (trade name”) "Registered trademark)", manufactured by Tama Chemical Industry Co., Ltd.
  • ⁇ -polylysine, monolaurin, and nisin were prepared.
  • Each of these disinfectant components was dissolved in ion-exchanged water to prepare the following types of disinfectant component solutions.
  • Examples 1 and 2 Comparative Example 1
  • the flask was shaken at 37 ° C. and 125 rpm, and the turbidity of the suspension (OD 650 ) was measured over time to confirm the germination state of the spores. The measurement results are shown in FIG.
  • the suspension was taken out over time and diluted stepwise with SCDLP liquid medium to obtain a diluted solution.
  • the cells were cultured at 37 ° C. for 48 hours, the number of grown colonies was measured, and the viable cell count concentration (CFU / mL) was calculated.
  • the results are shown in FIG. Table 1 shows the viable cell count concentration (CFU / mL) at the initial stage and 6 hours after the start of shaking.
  • Example 1 and 2 and Comparative Example 1 As shown in FIG. 1, in all cases (Examples 1 and 2 and Comparative Example 1), the turbidity decreased with time, and germination of spores could be confirmed. Further, as shown in FIGS. 2 and 1, in Examples 1 and 2, the viable cell count concentration decreased sharply with the germination of the spores, and it can be seen that the eradication proceeded efficiently.
  • Examples 3 and 4 Comparative Example 2
  • the turbidity (OD 650 ) of the suspension was changed over time in the same manner as in Examples 1 and 2 described above, except that the BAC aqueous solution (10 mg / mL, 100 mg / mL) was used instead of the CPC aqueous solution.
  • the viable cell count concentration (CFU / mL) was calculated (Examples 3 and 4).
  • the turbidity (OD 650 ) of the suspension was measured over time to confirm the germination state of the spores in the same manner as in Examples 3 and 4 described above, except that the BAC aqueous solution was not used.
  • the viable cell count concentration (CFU / mL) was calculated (Comparative Example 2). The results are shown in FIGS. 3 and 4. Table 2 shows the viable cell count concentration (CFU / mL) at the initial stage and 6 hours after the start of shaking.
  • Example 3 Comparative Example 2
  • the turbidity decreased with time, and germination of spores could be confirmed.
  • FIGS. 4 and 2 in Examples 3 and 4, the viable cell count concentration decreased sharply with the germination of the spores, and it can be seen that the eradication proceeded efficiently.
  • Examples 5 and 6 The turbidity of the suspension (OD 650 ) was changed over time in the same manner as in Examples 1 and 2 described above, except that the Hygenia aqueous solution (5 mg / mL, 100 mg / mL) was used instead of the CPC aqueous solution.
  • the viable cell count concentration (CFU / mL) was calculated (Examples 5 and 6). The results are shown in FIGS. 5 and 6.
  • Table 3 shows the viable cell count concentration (CFU / mL) at the initial stage and 6 hours after the start of shaking.
  • Examples 7 and 8 The turbidity of the suspension (OD 650 ) was aged in the same manner as in Examples 1 and 2 described above, except that the ⁇ -polylysine aqueous solution (10 mg / mL, 100 mg / mL) was used instead of the CPC aqueous solution. The germination state of the spores was confirmed, and the viable cell count concentration (CFU / mL) was calculated (Examples 7 and 8). The results are shown in FIGS. 7 and 8. Table 4 shows the viable cell count concentration (CFU / mL) at the initial stage and 6 hours after the start of shaking.
  • Example 9 Comparative Examples 3 and 4
  • OD 650 viable cell count concentration
  • Example 9 in all cases (Example 9, Comparative Examples 3 and 4), the turbidity decreased with time, and germination of spores could be confirmed. Further, as shown in FIGS. 10 and 5, in Example 9, the viable cell count concentration decreased sharply with the germination of the spores, and it can be seen that the eradication proceeded efficiently. On the other hand, in Comparative Examples 3 and 4 which did not contain any of the germination promoting components, the germination rate was slow, germination was not effective, and the viable cell count concentration did not decrease so much. From this, it can be seen that the germination promoting component was insufficient (deficient).
  • Example 10 Comparative Examples 5 and 6
  • OD 650 viable cell count concentration
  • Example 10 Comparative Examples 5 and 6
  • the turbidity decreased with time, and germination of spores could be confirmed.
  • FIGS. 12 and 6 in Example 10, the viable cell count concentration decreased sharply with the germination of the spores, and it can be seen that the eradication proceeded efficiently.
  • Comparative Examples 5 and 6 which did not contain any of the germination promoting components, the germination rate was slow, germination was not effective, and the viable cell count concentration did not decrease so much. From this, it can be seen that the germination promoting component was insufficient (deficient).
  • Example 11 Comparative Example 7
  • the turbidity (OD 650 ) of the suspension was measured over time in the same manner as in Examples 1 and 2 described above, except that the monolaurin aqueous solution (100 mg / mL) was used instead of the CPC aqueous solution.
  • the viable cell count concentration (CFU / mL) was calculated (Example 11).
  • the turbidity (OD 650 ) of the suspension was measured over time in the same manner as in Example 11 described above to confirm the germination state of the spores and the viable bacteria.
  • the number concentration (CFU / mL) was calculated (Comparative Example 7). The results are shown in FIGS. 13 and 14. Table 7 shows the viable cell count concentration (CFU / mL) at the initial stage and 3 hours after the start of shaking.
  • Example 11 As shown in FIG. 13, in Example 11, the turbidity decreased with time, and germination of spores could be confirmed. Further, as shown in FIGS. 14 and 7, in Example 11, it can be seen that the viable cell count concentration decreased sharply with the germination of the spores, and the sterilization proceeded efficiently.
  • Example 12 The turbidity (OD 650 ) of the suspension was measured over time in the same manner as in Examples 1 and 2 described above, except that a nisin aqueous solution (50 mg / mL) was used instead of the CPC aqueous solution.
  • the viable cell count concentration (CFU / mL) was calculated (Example 12).
  • the turbidity (OD 650 ) of the suspension was measured over time to confirm the germination state of the spores and the viable bacteria in the same manner as in Example 12 described above, except that the aqueous nisin solution was not used.
  • the number concentration (CFU / mL) was calculated (Comparative Example 8). The results are shown in FIGS. 15 and 16. Table 8 shows the viable cell count concentration (CFU / mL) at the initial stage and 3 hours after the start of shaking.
  • Example 12 As shown in FIG. 15, in Example 12, the turbidity decreased with time, and germination of spores could be confirmed. Further, as shown in FIGS. 16 and 8, in Example 12, the viable cell count concentration decreased sharply with the germination of the spores, and it can be seen that the eradication proceeded efficiently.
  • Example 13 Comparative Example 9
  • the turbidity (OD 650 ) of the suspension was measured over time in the same manner as in Examples 1 and 2 described above, except that the aqueous solution of sorbic acid (100 mg / mL) was used instead of the aqueous solution of CPC.
  • the viable cell count concentration (CFU / mL) was calculated (Example 13).
  • the turbidity (OD 650 ) of the suspension was measured over time in the same manner as in Example 13 described above to confirm the germination state of the spores and to confirm the germination state of the spores.
  • the bacterial count concentration (CFU / mL) was calculated (Comparative Example 9). The results are shown in FIGS. 17 and 18. Table 9 shows the viable cell count concentration (CFU / mL) at the initial stage and 3 hours after the start of shaking.
  • Example 13 As shown in FIG. 17, in Example 13, the turbidity decreased with time, and germination of spores could be confirmed. Further, as shown in FIGS. 18 and 9, in Example 13, the viable cell count concentration decreased sharply with the germination of the spores, and it can be seen that the eradication proceeded efficiently.
  • Example 14 Comparative Example 10
  • the turbidity (OD 650 ) of the suspension was measured over time in the same manner as in Examples 1 and 2 described above, except that a protamine aqueous solution (100 mg / mL) was used instead of the CPC aqueous solution.
  • the viable cell count concentration (CFU / mL) was calculated (Example 14).
  • the turbidity (OD 650 ) of the suspension was measured over time to confirm the germination state of the spores and the viable bacteria in the same manner as in Example 14 described above, except that the aqueous protamine solution was not used.
  • the number concentration (CFU / mL) was calculated (Comparative Example 10). The results are shown in FIGS. 19 and 20. Table 10 shows the viable cell count concentration (CFU / mL) at the initial stage and 3 hours after the start of shaking.
  • Example 14 As shown in FIG. 19, in Example 14, the turbidity decreased with time, and germination of spores could be confirmed. Further, as shown in FIGS. 20 and 10, in Example 14, the viable cell count concentration decreased sharply with the germination of the spores, and it can be seen that the eradication proceeded efficiently.
  • Example 15 18 mL of germination accelerator (1-1) and 20 ⁇ L of CPC aqueous solution (50 mg / mL) are placed in a 100 mL Erlenmeyer flask, and then 2 mL of spore suspension (1-1) is added to prepare a suspension for evaluation. Obtained (Example 15). The flask was shaken at 37 ° C. and 125 rpm. The suspension was taken out over time and diluted stepwise with SCDLP liquid medium to obtain a diluted solution. After applying the obtained diluted solution to SCDLP agar medium, the cells were cultured at 37 ° C.
  • Example 11 the viable cell count concentration (CFU / mL) in the suspension was calculated over time in the same manner as in Example 15 above, except that the CPC aqueous solution was not used (Comparative Example 11). The results are shown in FIG. Table 11 shows the viable cell count concentration (CFU / mL) at the initial stage and 3 hours after the start of shaking.
  • Example 16 Comparative Example 12
  • the viable cell count concentration (CFU / mL) in the suspension was calculated over time in the same manner as in Example 15 above, except that the BAC aqueous solution (50 mg / mL) was used instead of the CPC aqueous solution.
  • Example 16 the viable cell count concentration (CFU / mL) in the suspension was calculated over time in the same manner as in Example 16 above, except that the BAC aqueous solution was not used (Comparative Example 12).
  • Table 12 shows the viable cell count concentration (CFU / mL) at the initial stage and 3 hours after the start of shaking.
  • Example 17 Comparative Example 13
  • the viable cell count concentration (CFU / mL) in the suspension was calculated over time in the same manner as in Example 15 above, except that the Hygenia aqueous solution (5 mg / mL) was used instead of the CPC aqueous solution.
  • Example 17 the viable cell count concentration (CFU / mL) in the suspension was calculated over time in the same manner as in Example 17 above, except that the Hygenia aqueous solution was not used (Comparative Example 13).
  • Table 13 shows the viable cell count concentration (CFU / mL) at the initial stage and 3 hours after the start of shaking.
  • Example 18 Comparative Example 14
  • the viable cell count concentration (CFU / mL) in the suspension was changed over time in the same manner as in Example 15 above, except that the ⁇ -polylysine aqueous solution (5 mg / mL) was used instead of the CPC aqueous solution. Calculated (Example 18).
  • the viable cell count concentration (CFU / mL) in the suspension was calculated over time in the same manner as in Example 18 above, except that the ⁇ -polylysine aqueous solution was not used (Comparative Example 14).
  • Table 14 shows the viable cell count concentration (CFU / mL) at the initial stage and 3 hours after the start of shaking.
  • Example 19 Comparative Example 15
  • 18 mL of germination promoter (1) and 20 ⁇ L of nisin aqueous solution (50 mg / mL) were placed in a 100 mL Erlenmeyer flask, and then 2 mL of spore suspension (1-1) was added to obtain a suspension for evaluation.
  • the flask was shaken at 37 ° C. and 125 rpm.
  • the suspension was taken out over time and diluted stepwise with SCDLP liquid medium to obtain a diluted solution. After applying the obtained diluted solution to SCDLP agar medium, the cells were cultured at 37 ° C.
  • Example 15 the viable cell count concentration (CFU / mL) in the suspension was calculated over time in the same manner as in Example 19 above, except that the aqueous nisin solution was not used (Comparative Example 15). The results are shown in FIG. Table 15 shows the viable cell count concentration (CFU / mL) at the initial stage and 3 hours after the start of shaking.
  • Examples 20 and 21 Comparative Example 16
  • the flask was shaken at 37 ° C. and 125 rpm, and the turbidity of the suspension (OD 650 ) was measured over time to confirm the germination state of the spores. The measurement result is shown in FIG.
  • the suspension was taken out over time and diluted stepwise with SCDLP liquid medium to obtain a diluted solution.
  • the cells were cultured at 37 ° C. for 48 hours, the number of grown colonies was measured, and the viable cell count concentration (CFU / mL) was calculated.
  • the results are shown in FIG. Table 16 shows the viable cell count concentration (CFU / mL) at the initial stage and 3 hours after the start of shaking.
  • the turbidity of the suspension (OD 650 ) was measured over time to confirm the germination state of the spores, except that the CPC aqueous solution was not used.
  • the viable cell count concentration (CFU / mL) was calculated (Comparative Example 16). The results are shown in FIGS. 26 and 27. Table 16 shows the viable cell count concentration (CFU / mL) at the initial stage and 3 hours after the start of shaking.
  • Examples 22 and 23, Comparative Example 17 The turbidity (OD 650 ) of the suspension was changed over time in the same manner as in Examples 20 and 21 described above, except that the BAC aqueous solution (5 mg / mL, 50 mg / mL) was used instead of the CPC aqueous solution. Along with the measurement, the viable cell count concentration (CFU / mL) was calculated (Examples 22 and 23). In addition, the turbidity (OD 650 ) of the suspension was measured over time to confirm the germination state of the spores in the same manner as in Examples 22 and 23 described above, except that the BAC aqueous solution was not used.
  • the viable cell count concentration (CFU / mL) was calculated (Comparative Example 17). The results are shown in FIGS. 28 and 29. Table 17 shows the viable cell count concentration (CFU / mL) at the initial stage and 3 hours after the start of shaking.
  • Examples 24 and 25, Comparative Example 18 The turbidity of the suspension (OD 650 ) was changed over time in the same manner as in Examples 20 and 21 described above, except that the Hygenia aqueous solution (5 mg / mL, 50 mg / mL) was used instead of the CPC aqueous solution. Along with the measurement, the viable cell count concentration (CFU / mL) was calculated (Examples 24 and 25). In addition, the turbidity (OD 650 ) of the suspension was measured over time to confirm the germination state of the spores in the same manner as in Examples 24 and 25 described above, except that the Hygenia aqueous solution was not used.
  • the viable cell count concentration (CFU / mL) was calculated (Comparative Example 18). The results are shown in FIGS. 30 and 31. Table 18 shows the viable cell count concentration (CFU / mL) at the initial stage and 3 hours after the start of shaking.
  • Example 26 Comparative Example 19
  • the turbidity (OD 650 ) of the suspension is measured over time in the same manner as in Examples 20 and 21 described above, except that the ⁇ -polylysine aqueous solution (50 mg / mL) was used instead of the CPC aqueous solution.
  • the viable cell count concentration (CFU / mL) was calculated (Example 26).
  • the turbidity (OD 650 ) of the suspension was measured over time to confirm the germination state of the spores in the same manner as in Example 26 described above, except that the ⁇ -polylysine aqueous solution was not used.
  • the viable cell count concentration (CFU / mL) was calculated (Comparative Example 19). The results are shown in FIGS. 32 and 33. Table 19 shows the viable cell count concentration (CFU / mL) at the initial stage and 3 hours after the start of shaking.
  • Example 26 Comparative Example 19
  • the turbidity decreased with time, and germination of spores could be confirmed.
  • the viable cell count concentration decreased sharply with the germination of the spores, and it can be seen that the eradication proceeded efficiently.
  • the sterilization composition of the present invention is useful as a highly safe composition capable of sterilizing bacterial spores, which was conventionally difficult to sterilize, by a simple operation.

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Agronomy & Crop Science (AREA)
  • Pest Control & Pesticides (AREA)
  • Plant Pathology (AREA)
  • Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Dentistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Wood Science & Technology (AREA)
  • Zoology (AREA)
  • Environmental Sciences (AREA)
  • Agricultural Chemicals And Associated Chemicals (AREA)

Abstract

細菌芽胞を比較的短時間で有効かつ容易に除菌又は殺菌することが可能であるとともに、安全性及び汎用性に優れた一剤型の除菌組成物、及びこの除菌組成物を用いる細菌芽胞の除菌方法を提供する。細菌芽胞を除菌するために用いる除菌組成物である。発芽促進成分、並びに塩化セチルピリジニウム、塩化ベンザルコニウム、及びε-ポリリジン等の除菌成分を含有する一剤型の組成物であり、発芽促進成分が、アミノ酸、糖、及び無機塩を含む。また、この除菌組成物を被処理物に接触させる工程を有する細菌芽胞の除菌方法である。

Description

除菌組成物及びそれを用いる細菌芽胞の除菌方法
 本発明は、細菌芽胞を除菌するために用いる除菌組成物、及びそれを用いる細菌芽胞の除菌方法に関する。
 飲食店、介護施設、病院の厨房や食品工場等の食品を取り扱う施設において、食器、調理器具、及び各種の設備等を除菌又は殺菌するための組成物として、各種の除菌・殺菌成分を配合した除菌・殺菌剤が用いられている。このような除菌・殺菌剤としては、消毒用エタノール等のアルコール製剤;次亜塩素酸ナトリウム等の塩素系製剤;過酸化水素水等の過酸化物製剤;塩化ベンザルコニウム等の陽イオン界面活性剤;等が汎用されている。しかしながら、これまで汎用されてきた上記の除菌・殺菌剤は、一般的な細菌やカビ類に対して効果を示す一方で、バチルス属やクロストリジウム属等の細菌芽胞に対しては十分な効果が期待されるものではなかった。
 一方、細菌芽胞を有効に除菌又は殺菌しうる方法として、エチレンオキサイド等のガスを用いるガス滅菌方法、ガンマ線照射方法、及び高圧蒸気滅菌(オートクレーブ)方法等が知られている。また、所定の温度に加熱してから常温で一晩程度放置した後、再加熱する工程を繰り返す、いわゆる間欠滅菌方法が知られている。しかしながら、これらの方法は、操作が煩雑である、装置が大掛かりである、又は装置内に入る大きさのものしか処理できない等の課題があった。
 また、細菌芽胞を有効に除菌又は殺菌しうる方法としては、次亜塩素酸ナトリウムや加酢酸を作用させる方法、グルタルアルデヒドやフタラール等のアルデヒド類を作用させる方法等が知られている。しかしながら、これらの方法に用いる薬剤は毒性や、皮膚刺激性、又は強い臭気を有するため、保護具の着用が必要になる等の種々の課題があり、汎用性が高い方法であるとは言えなかった。
 関連する方法及びそれに用いる薬剤として、例えば、アミノ酸や糖等の発芽誘起物質で処理した後、殺菌剤で処理する細菌芽胞の殺菌方法、及びそれに用いる2剤型の殺菌剤が提案されている(特許文献1)。また、芽胞形成菌とジピコリン酸を接触させる工程、芽胞形成菌とカチオン界面活性剤を接触させる工程、及び芽胞形成菌を加熱する工程を有する殺芽方法、及びそれに用いる組成物が提案されている(特許文献2)。さらに、特定のポリアルキレンビグアナイド化合物及びアルカリ剤を含有する、そのpHが12.5以上の細菌芽胞用の殺菌剤組成物が提案されている(特許文献3)。
特開2004-2229号公報 国際公開第2017/017810号 特許第6409201号公報
 しかしながら、特許文献1及び2で提案された方法では、除菌・殺菌のための操作が多段階であることから、操作が煩雑であるとともに、除菌・殺菌するのに長時間を要するといった課題があった。また、特許文献3で提案された殺菌剤組成物は、特異な構造を有する化合物を用いる必要があるとともに、強アルカリ性の組成物であることから取り扱いが容易であるとは言えず、必ずしも汎用性の高い薬剤ではなかった。
 本発明は、このような従来技術の有する問題点に鑑みてなされたものであり、その課題とするところは、細菌芽胞を比較的短時間で有効かつ容易に除菌又は殺菌することが可能であるとともに、安全性及び汎用性に優れた一剤型の除菌組成物を提供することにある。また、本発明の課題とするところは、上記の除菌組成物を用いる細菌芽胞の除菌方法を提供することにある。
 すなわち、本発明によれば、以下に示す除菌組成物が提供される。
 [1]細菌芽胞を除菌するために用いる除菌組成物であって、発芽促進成分及び除菌成分を含有する一剤型の組成物であり、前記発芽促進成分が、アミノ酸、糖、及び無機塩を含む除菌組成物。
 [2]前記除菌成分が、塩化セチルピリジニウム、塩化ベンザルコニウム、塩化ベンゼトニウム、ε-ポリリジン、1,4-ビス(3,3’-(1-デシルピリジニウム)メチルオキシ)ブタンジブロマイド、ソルビン酸、ソルビン酸カリウム、プロタミン、モノラウリン、及びナイシンからなる群より選択される少なくとも一種である前記[1]に記載の除菌組成物。
 [3]前記アミノ酸が、L-アラニン、L-アスパラギン、L-チロシン、L-プロリン、L-バリン、L-セリン、及びカザミノ酸からなる群より選択される少なくとも一種である前記[1]又は[2]に記載の除菌組成物。
 [4]前記糖が、D-グルコース、D-フルクトース、D-マンノース、D-ガラクトース、マルトース、ラクトース、スクロース、及びこれらのカラメル化反応物からなる群より選択される少なくとも一種である前記[1]~[3]のいずれかに記載の除菌組成物。
 [5]前記無機塩が、塩化アンモニウム、硫酸アンモニウム、硝酸アンモニウム、塩化カリウム、塩化ナトリウム、硝酸カリウム、及び硝酸ナトリウムからなる群より選択される少なくとも一種である前記[1]~[4]のいずれかに記載の除菌組成物。
 [6]水を含む液媒体をさらに含有する液状組成物である前記[1]~[5]のいずれかに記載の除菌組成物。
 [7]前記除菌成分の含有量が、除菌組成物全体を基準として、0.1~1,000mg/Lである前記[6]に記載の除菌組成物。
 [8]前記アミノ酸の含有量が、除菌組成物全体を基準として、0.0001~1質量%であり、前記糖の含有量が、除菌組成物全体を基準として、0.001~10質量%であり、前記無機塩の含有量が、除菌組成物全体を基準として、0.001~10質量%である前記[6]又は[7]に記載の除菌組成物。
 また、本発明によれば、以下に示す細菌芽胞の除菌方法が提供される。
 [9]前記[6]~[8]のいずれかに記載の除菌組成物を被処理物に接触させる工程を有する細菌芽胞の除菌方法。
 本発明によれば、細菌芽胞を比較的短時間で有効かつ容易に除菌又は殺菌することが可能であるとともに、安全性及び汎用性に優れた一剤型の除菌組成物を提供することができる。また、本発明によれば、上記の除菌組成物を用いる細菌芽胞の除菌方法を提供することができる。
実施例1及び2、比較例1の除菌効果確認試験(濁度減少)の結果を示すグラフである。 実施例1及び2、比較例1の除菌効果確認試験(生菌数濃度減少)の結果を示すグラフである。 実施例3及び4、比較例2の除菌効果確認試験(濁度減少)の結果を示すグラフである。 実施例3及び4、比較例2の除菌効果確認試験(生菌数濃度減少)の結果を示すグラフである。 実施例5及び6の除菌効果確認試験(濁度減少)の結果を示すグラフである。 実施例5及び6の除菌効果確認試験(生菌数濃度減少)の結果を示すグラフである。 実施例7及び8の除菌効果確認試験(濁度減少)の結果を示すグラフである。 実施例7及び8の除菌効果確認試験(生菌数濃度減少)の結果を示すグラフである。 実施例9、比較例3及び4の除菌効果確認試験(濁度減少)の結果を示すグラフである。 実施例9、比較例3及び4の除菌効果確認試験(生菌数濃度減少)の結果を示すグラフである。 実施例10、比較例5及び6の除菌効果確認試験(濁度減少)の結果を示すグラフである。 実施例10、比較例5及び6の除菌効果確認試験(生菌数濃度減少)の結果を示すグラフである。 実施例11、比較例7の除菌効果確認試験(濁度減少)の結果を示すグラフである。 実施例11、比較例7の除菌効果確認試験(生菌数濃度減少)の結果を示すグラフである。 実施例12、比較例8の除菌効果確認試験(濁度減少)の結果を示すグラフである。 実施例12、比較例8の除菌効果確認試験(生菌数濃度減少)の結果を示すグラフである。 実施例13、比較例9の除菌効果確認試験(濁度減少)の結果を示すグラフである。 実施例13、比較例9の除菌効果確認試験(生菌数濃度減少)の結果を示すグラフである。 実施例14、比較例10の除菌効果確認試験(濁度減少)の結果を示すグラフである。 実施例14、比較例10の除菌効果確認試験(生菌数濃度減少)の結果を示すグラフである。 実施例15、比較例11の除菌効果確認試験(生菌数濃度減少)の結果を示すグラフである。 実施例16、比較例12の除菌効果確認試験(生菌数濃度減少)の結果を示すグラフである。 実施例17、比較例13の除菌効果確認試験(生菌数濃度減少)の結果を示すグラフである。 実施例18、比較例14の除菌効果確認試験(生菌数濃度減少)の結果を示すグラフである。 実施例19、比較例15の除菌効果確認試験(生菌数濃度減少)の結果を示すグラフである。 実施例20及び21、比較例16の除菌効果確認試験(濁度減少)の結果を示すグラフである。 実施例20及び21、比較例16の除菌効果確認試験(生菌数濃度減少)の結果を示すグラフである。 実施例22及び23、比較例17の除菌効果確認試験(濁度減少)の結果を示すグラフである。 実施例22及び23、比較例17の除菌効果確認試験(生菌数濃度減少)の結果を示すグラフである。 実施例24及び25、比較例18の除菌効果確認試験(濁度減少)の結果を示すグラフである。 実施例24及び25、比較例18の除菌効果確認試験(生菌数濃度減少)の結果を示すグラフである。 実施例26、比較例19の除菌効果確認試験(濁度減少)の結果を示すグラフである。 実施例26、比較例19の除菌効果確認試験(生菌数濃度減少)の結果を示すグラフである。
<除菌組成物>
 以下、本発明の実施の形態について説明するが、本発明は以下の実施の形態に限定されるものではない。本発明の一実施形態である除菌組成物は、細菌芽胞を除菌するために用いる、発芽促進成分及び除菌成分を含有する一剤型の組成物である。そして、発芽促進成分が、アミノ酸、糖、及び無機塩を含む。なお、本明細書における「除菌」とは、芽胞の状態の菌体(細菌芽胞)を含む細菌(芽胞形成菌)に作用し、全体の菌数を顕著に減少させること、又は実質的に殺菌する(死滅させる)ことを意味する。以下、本実施形態の除菌組成物の詳細について説明する。
 発芽促進成分は、芽胞の状態の菌体(細菌芽胞)に作用し、発芽を促進させて栄養型の菌体へと導く成分である。そして、除菌成分は、細菌芽胞、発芽途中の菌体、及び栄養型の菌体の少なくともいずれかに作用し、生菌数を顕著に減少させる、又は実質的に殺菌する成分である。本実施形態の除菌組成物は、一の製剤中に発芽促進成分及び除菌成分のいずれもが含まれる、いわゆる一剤型の組成物である。このため、細菌芽胞が存在する被処理物に、本実施形態の除菌組成物を噴霧、散布、又は塗布する等の接触させるための操作を一回実施することで、細菌芽胞の発芽と除菌を進行させ、比較的短時間で有効かつ容易に除菌することができる。さらに、本実施形態の除菌組成物は、食品添加物のみ又は食品添加物と医療用の除菌成分によって有効成分を実質的に構成することが可能であるため、皮膚に接触したり、口にしたりしてもほとんど問題を生ずることがなく、安全性に優れている。
(細菌芽胞)
 本実施形態の除菌組成物の除菌対象となる細菌芽胞は、熱や乾燥等の環境に対して一定の抵抗性を示す。このような細菌芽胞は、一般的に「芽胞形成菌」と呼ばれる、貧栄養下で細菌芽胞を形成する特定の細菌である。細菌芽胞は、発芽することで栄養型の菌体となる。細菌芽胞を形成しうる芽胞形成菌は、通常、飲食店の厨房や食品工場等の食品を取り扱う施設の他、医療施設等にも存在する。本実施形態の除菌組成物が除菌対象とする細菌芽胞を形成する芽胞形成菌としては、例えば、バチルス サブチリス(Bacillus subtilis)、バチルス セレウス(Bacillus cereus)、バチルス メガテリウム(Bacillus megaterium)等のバチルス(Bacillus)属の細菌;クロストリジウム デフィシル(Clostridium difficile)等のクロストリジウム(Clostridium)属の細菌;アンフィバチルス(Amphibacillus)属の細菌;スポロサルシナ(Sporosarcina)属の細菌;ジオバチルス(Geobacillus)属の細菌;エアリバチルス(Aeribacillus)属の細菌;アリサイクロバチルス(Alicyclobacillus)属の細菌;スポロラクトバチルス(Sporolactobacillus)属の細菌;等を挙げることができる。
(発芽促進成分)
 発芽促進成分は、アミノ酸、糖、及び無機塩を含む。これらの成分を含む発芽促進成分を含有させることで、細菌芽胞を発芽させ、共存する除菌成分が有効に作用する状態とすることができると考えられる。なお、これらの三成分のうちのいずれかを含有しない場合には、発芽速度が低下するため除菌に時間がかかるか、又は発芽不良で細菌芽胞が残りやすくなり、除菌効果が低下する。
 アミノ酸としては、タンパク質を構成する20種類のL-アミノ酸を用いることができる。なかでも、L-アラニン(Ala)、L-アスパラギン(Asn)、L-チロシン(Tyr)、L-プロリン(Pro)、L-バリン(Val)、L-セリン(Ser)、及びカザミノ酸を用いることが好ましい。これらのアミノ酸は、一種単独で又は二種以上を組み合わせて用いることができる。
 糖としては、芽胞形成菌を培養するための合成培地に一般的に配合される糖類を用いることができる。なかでも、糖としては、D-グルコース(ブドウ糖)、D-フルクトース(果糖)、D-マンノース、D-ガラクトース、マルトース、ラクトース(乳糖)、スクロース(ショ糖)、及びこれらのカラメル化反応物等を用いることが好ましい。これらの糖は、一種単独で又は二種以上を組み合わせて用いることができる。
 無機塩としては、芽胞形成菌を培養するための合成培地に一般的に配合される無機塩を用いることができる。なかでも、無機塩としては、塩化アンモニウム、硫酸アンモニウム、硝酸アンモニウム、塩化カリウム、塩化ナトリウム、硝酸カリウム、及び硝酸ナトリウムからなる群より選択される少なくとも一種を用いることが好ましい。
(除菌成分)
 除菌成分としては、通常の細菌に作用して除菌又は殺菌しうる一般的な除菌成分を用いることができる。なかでも、除菌成分としては、塩化セチルピリジニウム(CPC)、塩化ベンザルコニウム(BAC)、塩化ベンゼトニウム、ε-ポリリジン、1,4-ビス(3,3’-(1-デシルピリジニウム)メチルオキシ)ブタンジブロマイド、ソルビン酸、ソルビン酸カリウム、プロタミン、モノラウリン、及びナイシンからなる群より選択される少なくとも一種を用いることが好ましい。さらに、人体への影響や安全性等を考慮すると、塩化セチルピリジニウム(CPC)、塩化ベンザルコニウム(BAC)、塩化ベンゼトニウム、ε-ポリリジン、ソルビン酸、及びソルビン酸カリウムがより好ましい。
(液媒体)
 除菌組成物は、液状担体、ゲル状担体、エマルション、固体担体等を用いて、液状、ペースト状、ゲル状、乳状、固形状等の種々の形態で使用することができる。なかでも、本実施形態の除菌組成物は、液媒体をさらに含有する液状組成物であることが好ましい。液状組成物とすることで、短時間で広範囲の被処理物を除菌することができる。なお、本明細書における「液状」の概念には、「ペースト状、ゲル状、乳状」等の液状に準ずる性状が包含される。液状組成物は、例えば、計量キャップ付きボトル、トリガータイプのスプレー容器、スクイーズタイプのスプレー容器、ポンプスプレー容器、刷毛付き容器等に充填することで、容易に散布、噴霧又は塗布等して用いることができる。
 液媒体としては、水、又は水と水溶性有機溶媒の混合溶媒を用いることが好ましい。水を含む液媒体を用いることで、取り扱い性を向上させることができるとともに、被処理物の腐食を抑制することができる。水溶性有機溶媒としては、例えば、エタノール、イソプロパノール、ブタノール等の低級アルコール;エチレングリコール、プロピレングリコール、グリセリン、ブチレングリコール等の多価アルコール等を用いることができる。
 除菌組成物が液媒体を含有する液状組成物である場合に、除菌組成物中のアミノ酸の含有量は、除菌組成物全体を基準として、0.0001~1質量%であることが好ましく、0.001~0.1質量%であることがさらに好ましい。アミノ酸の含有量を上記の範囲内とすることで、細菌芽胞をより効率的に発芽させることができ、除菌効率をさらに高めることができる。
 除菌組成物が液媒体を含有する液状組成物である場合に、除菌組成物中の糖の含有量は、除菌組成物全体を基準として、0.001~10質量%であることが好ましく、0.1~1質量%であることがさらに好ましい。糖の含有量を上記の範囲内とすることで、細菌芽胞をより効率的に発芽させることができ、除菌効率をさらに高めることができる。
 除菌組成物が液媒体を含有する液状組成物である場合に、除菌組成物中の無機塩の含有量は、除菌組成物全体を基準として、0.001~10質量%であることが好ましく、0.01~1質量%であることがさらに好ましい。無機塩の含有量を上記の範囲内とすることで、細菌芽胞をより効率的に発芽させることができ、除菌効率をさらに高めることができる。
 除菌組成物が液媒体を含有する液状組成物である場合に、除菌組成物中の除菌成分の含有量は、除菌組成物全体を基準として、0.1~1,000mg/Lであることが好ましく、1~500mg/Lであることがさらに好ましい。除菌成分の含有量を上記の範囲内とすることで、除菌効率をさらに高めることができる。除菌成分の含有量が少なすぎると、除菌効率がやや不十分になることがある。一方、除菌成分の含有量が多すぎると、除菌効率が頭打ちになる傾向にある。
(その他の成分)
 本実施形態の除菌組成物には、本発明の効果を損なわない範囲で、必要に応じて、上記各成分以外の成分(その他の成分)を含有させることができる。その他の成分としては、界面活性剤、pH調整剤、消泡剤、酸化防止剤、乳化剤等を挙げることができる。
 pH調整剤としては、一般的な酸や塩基を用いることができる。酸としては、塩酸、硫酸等の無機酸;乳酸、クエン酸、これらの塩等の有機酸;等を挙げることができる。塩基としては、水酸化ナトリウム、水酸化カリウム等の無機塩基;モノエタノールアミン、トリエタノールアミン、トリイソプロパノールアミン等の有機塩基;等を挙げることができる。なかでも、pH調整剤としては、塩酸、硫酸等の無機酸;水酸化ナトリウム、水酸化カリウム等の無機塩基;を用いることが好ましい。
 本実施形態の除菌組成物の25℃におけるpHは特に限定されないが、除菌効果や取り扱い性等を考慮すると、通常、中性域であり、好ましくはpH5~9の範囲である。
<除菌方法>
 次に、本発明の一実施形態である除菌方法について説明する。本実施形態の除菌方法は、前述の除菌組成物を被処理物に接触させる工程を有する。被処理物は、除菌組成物が除菌対象とする細菌芽胞がその表面に付着する等して存在する、又は存在する可能性のある物、設備、施設等である。前述の除菌組成物を被処理物に接触させることで、細菌芽胞を除菌し、全体の菌数を顕著に減少させる、又は実質的に殺菌する(死滅させる)ことができる。
 被処理物は、細菌芽胞が存在しうる物、設備、施設等であれば特に限定されない。具体的には、食器、調理器具等の物品;飲食店の厨房、食品工場、スーパーのバックヤード等の主として食品を取り扱う施設;食品加工工場内の各種設備;医療現場内の各種物品や設備等を挙げることができる。
 除菌組成物が液状である場合には、例えば、被処理物の表面が全体的に濡れる程度の量の除菌組成物を付与して接触させればよい。液状の除菌組成物を被処理物に接触させる方法としては、噴霧、散布、及び塗布等の任意の方法を選択すればよい。また、被処理物が設備の配管等であれば、配管等の内部(流路)に液状の除菌組成物を流通させてもよい。除菌組成物を被処理物に接触させる時間は、例えば、0.5~10時間、好ましくは1~8時間、さらに好ましくは2~6時間である。除菌組成物を被処理物に上記の時間範囲内で接触させることで、十分な除菌効果を得ることができる。また、必要に応じて、除菌組成物を被処理物に接触させた状態で加温してもよい。適度に加温することで細菌芽胞の発芽が促進され、除菌効率をさらに高めることができる。除菌組成物を被処理物に接触させた状態で加温する場合の温度は、例えば、20~40℃であればよく、25~37℃とすることが好ましい。
 以下、本発明を実施例に基づいて具体的に説明するが、本発明はこれらの実施例に限定されるものではない。なお、実施例、比較例中の「部」及び「%」は、特に断らない限り質量基準である。また、試験には滅菌済の試薬及び器具を使用した。
<芽胞懸濁液の調製>
(芽胞懸濁液(1))
 バチルス サブチリス(Bacillus subtilis) ATCC6633株の芽胞を凍結乾燥した後、-80℃で保存して、芽胞の粉末(芽胞粉末)を得た。芽胞粉末をイオン交換水10mLに添加して懸濁した後、70℃で20分間加熱処理した。7,000rpm、4℃で5分間遠心分離して集菌した後、イオン交換水に再度懸濁してOD650を3.00に調整し、芽胞懸濁液(1)を得た。
(芽胞懸濁液(1-1))
 芽胞懸濁液(1)をイオン交換水で1,000倍に希釈し、芽胞懸濁液(1-1)(約6.0×10CFU/mL)を得た。
(芽胞懸濁液(2))
 バチルス セレウス(Bacillus cereus) NBRC15305株の芽胞を凍結乾燥した後、-80℃で保存して、芽胞の粉末(芽胞粉末)を得た。芽胞粉末をイオン交換水10mLに添加して懸濁した後、70℃で20分間加熱処理した。7,000rpm、4℃で5分間遠心分離して集菌した後、イオン交換水に再度懸濁してOD650を3.00に調整し、芽胞懸濁液(2)を得た。
<発芽促進液の調製>
(発芽促進液(1))
 0.5%L-アラニン水溶液、10%D-グルコース水溶液、及び5.35%塩化アンモニウム水溶液をイオン交換水に添加した後、ろ過滅菌して、L-アラニン、D-グルコース、及び塩化アンモニウムをそれぞれ所定の濃度で含有する、pH7.0の発芽促進液(1)を調製した。
(発芽促進液(1-1))
 0.5%L-アラニン水溶液、10%D-グルコース水溶液、5.35%塩化アンモニウム水溶液、及び1mol/L塩化カリウム水溶液をイオン交換水に添加した後、ろ過滅菌して、L-アラニン、D-グルコース、塩化アンモニウム、及び塩化カリウムをそれぞれ所定の濃度で含有する、pH7.0の発芽促進液(1-1)を調製した。
(発芽促進液(2))
 10%D-グルコース水溶液をイオン交換水に添加した後、ろ過滅菌して、D-グルコースを所定の濃度で含有する、pH7.0の発芽促進液(2)を調製した。
(発芽促進液(3))
 0.5%L-アラニン水溶液及び10%D-グルコース水溶液をイオン交換水に添加した後、ろ過滅菌して、L-アラニン及びD-グルコースをそれぞれ所定の濃度で含有する、pH7.0の発芽促進液(3)を調製した。
(発芽促進液(4))
 0.5%L-アラニン水溶液をイオン交換水に添加した後、ろ過滅菌して、L-アラニンを所定の濃度で含有する、pH7.0の発芽促進液(4)を調製した。
(発芽促進液(5))
 0.5%L-アラニン水溶液及び5.35%塩化アンモニウム水溶液をイオン交換水に添加した後、ろ過滅菌して、L-アラニン及び塩化アンモニウムをそれぞれ所定の濃度で含有する、pH7.0の発芽促進液(5)を調製した。
<除菌成分液の調製>
 除菌成分として、塩化セチルピリジニウム(CPC)、及び塩化ベンザルコニウム(BAC)、1,4-ビス(3,3’-(1-デシルピリジニウム)メチルオキシ)ブタンジブロマイド(商品名「ハイジェニア(登録商標)」、タマ化学工業社製)、ε-ポリリジン、モノラウリン、及びナイシンを用意した。これらの除菌成分をイオン交換水にそれぞれ溶解させて、以下に示す種類の除菌成分液を調製した。
 ・5mg/mL CPC水溶液
 ・10mg/mL CPC水溶液
 ・50mg/mL CPC水溶液
 ・100mg/mL CPC水溶液
 ・5mg/mL BAC水溶液
 ・10mg/mL BAC水溶液
 ・50mg/mL BAC水溶液
 ・100mg/mL BAC水溶液
 ・5mg/mL ハイジェニア水溶液
 ・50mg/mL ハイジェニア水溶液
 ・100mg/mL ハイジェニア水溶液
 ・10mg/mL ε-ポリリジン水溶液
 ・50mg/mL ε-ポリリジン水溶液
 ・100mg/mL ε-ポリリジン水溶液
 ・100mg/mL モノラウリン水溶液
 ・50mg/mL ナイシン水溶液
 ・100mg/mL ソルビン酸水溶液
 ・100mg/mL プロタミン水溶液
<除菌効果確認試験>
(実施例1及び2、比較例1)
 発芽促進液(1)18mL及びCPC水溶液(10mg/mL、100mg/mL)20μLを100mL容の三角フラスコに入れた後、芽胞懸濁液(1)2mLを添加して評価用の懸濁液を得た(実施例1及び2)。37℃、125rpmでフラスコを振とうし、懸濁液の濁度(OD650)を経時的に測定して芽胞の発芽状態を確認した。測定結果を図1に示す。
 また、経時的に懸濁液を取り出し、SCDLP液体培地で段階的に希釈して希釈液を得た。得られた希釈液をSCDLP寒天培地に塗布した後、37℃で48時間培養し、生育したコロニー数を計測して、生菌数濃度(CFU/mL)を算出した。結果を図2に示す。また、初期及び振とう開始から6時間後の生菌数濃度(CFU/mL)を表1に示す。
 さらに、CPC水溶液を用いなかったこと以外は、上記の実施例1及び2と同様にして、懸濁液の濁度(OD650)を経時的に測定して芽胞の発芽状態を確認するとともに、生菌数濃度(CFU/mL)を算出した(比較例1)。結果を図1及び2に示す。また、初期及び振とう開始から6時間後の生菌数濃度(CFU/mL)を表1に示す。
Figure JPOXMLDOC01-appb-I000001
 図1に示すように、いずれの場合(実施例1及び2、比較例1)も経時的に濁度が低下しており、芽胞の発芽を確認することができた。また、図2及び表1に示すように、実施例1及び2では、芽胞の発芽に伴って生菌数濃度が急激に低下しており、効率的に除菌が進行したことが分かる。
(実施例3及び4、比較例2)
 CPC水溶液に代えて、BAC水溶液(10mg/mL、100mg/mL)を用いたこと以外は、前述の実施例1及び2と同様にして、懸濁液の濁度(OD650)を経時的に測定するとともに、生菌数濃度(CFU/mL)を算出した(実施例3及び4)。また、BAC水溶液を用いなかったこと以外は、前述の実施例3及び4と同様にして、懸濁液の濁度(OD650)を経時的に測定して芽胞の発芽状態を確認するとともに、生菌数濃度(CFU/mL)を算出した(比較例2)。結果を図3及び4に示す。また、初期及び振とう開始から6時間後の生菌数濃度(CFU/mL)を表2に示す。
Figure JPOXMLDOC01-appb-I000002
 図3に示すように、いずれの場合(実施例3及び4、比較例2)も経時的に濁度が低下しており、芽胞の発芽を確認することができた。また、図4及び表2に示すように、実施例3及び4では、芽胞の発芽に伴って生菌数濃度が急激に低下しており、効率的に除菌が進行したことが分かる。
(実施例5及び6)
 CPC水溶液に代えて、ハイジェニア水溶液(5mg/mL、100mg/mL)を用いたこと以外は、前述の実施例1及び2と同様にして、懸濁液の濁度(OD650)を経時的に測定するとともに、生菌数濃度(CFU/mL)を算出した(実施例5及び6)。結果を図5及び6に示す。また、初期及び振とう開始から6時間後の生菌数濃度(CFU/mL)を表3に示す。
Figure JPOXMLDOC01-appb-I000003
 図5に示すように、いずれの場合(実施例5及び6)も経時的に濁度が低下しており、芽胞の発芽を確認することができた。また、図6及び表3に示すように、芽胞の発芽に伴って生菌数濃度が急激に低下しており、効率的に除菌が進行したことが分かる。
(実施例7及び8)
 CPC水溶液に代えて、ε-ポリリジン水溶液(10mg/mL、100mg/mL)を用いたこと以外は、前述の実施例1及び2と同様にして、懸濁液の濁度(OD650)を経時的に測定して芽胞の発芽状態を確認するとともに、生菌数濃度(CFU/mL)を算出した(実施例7及び8)。結果を図7及び8に示す。また、初期及び振とう開始から6時間後の生菌数濃度(CFU/mL)を表4に示す。
Figure JPOXMLDOC01-appb-I000004
 図7に示すように、いずれの場合(実施例7及び8)も経時的に濁度が低下しており、芽胞の発芽を確認することができた。また、図8及び表4に示すように、芽胞の発芽に伴って生菌数濃度が急激に低下しており、効率的に除菌が進行したことが分かる。
(実施例9、比較例3及び4)
 100mg/mL CPC水溶液を用いて、前述の実施例1及び2と同様にして、懸濁液の濁度(OD650)を経時的に測定するとともに、生菌数濃度(CFU/mL)を算出した(実施例9)。また、発芽促進液(1)に代えて、発芽促進液(2)及び発芽促進液(3)をそれぞれ用いたこと以外は、前述の実施例9と同様にして、懸濁液の濁度(OD650)を経時的に測定して芽胞の発芽状態を確認するとともに、生菌数濃度(CFU/mL)を算出した(比較例3及び4)。結果を図9及び10に示す。また、初期及び振とう開始から6時間後の生菌数濃度(CFU/mL)を表5に示す。
Figure JPOXMLDOC01-appb-I000005
 図9に示すように、いずれの場合(実施例9、比較例3及び4)も経時的に濁度が低下しており、芽胞の発芽を確認することができた。また、図10及び表5に示すように、実施例9では、芽胞の発芽に伴って生菌数濃度が急激に低下しており、効率的に除菌が進行したことが分かる。これに対して、発芽促進成分のうちのいずれかを含有しない比較例3及び4では、発芽速度が遅く、有効に発芽しておらず、生菌数濃度はさほど低下しなかった。このことから、発芽促進成分が不十分であった(不足していた)ことがわかる。
(実施例10、比較例5及び6)
 100mg/mL CPC水溶液を用いて、前述の実施例1及び2と同様にして、懸濁液の濁度(OD650)を経時的に測定するとともに、生菌数濃度(CFU/mL)を算出した(実施例10)。また、発芽促進液(1)に代えて、発芽促進液(4)及び発芽促進液(5)をそれぞれ用いたこと以外は、前述の実施例10と同様にして、懸濁液の濁度(OD650)を経時的に測定して芽胞の発芽状態を確認するとともに、生菌数濃度(CFU/mL)を算出した(比較例5及び6)。結果を図11及び12に示す。また、初期及び振とう開始から6時間後の生菌数濃度(CFU/mL)を表6に示す。
Figure JPOXMLDOC01-appb-I000006
 図11に示すように、いずれの場合(実施例10、比較例5及び6)も経時的に濁度が低下しており、芽胞の発芽を確認することができた。また、図12及び表6に示すように、実施例10では、芽胞の発芽に伴って生菌数濃度が急激に低下しており、効率的に除菌が進行したことが分かる。これに対して、発芽促進成分のうちのいずれかを含有しない比較例5及び6では、発芽速度が遅く、有効に発芽しておらず、生菌数濃度はさほど低下しなかった。このことから、発芽促進成分が不十分であった(不足していた)ことがわかる。
(実施例11、比較例7)
 CPC水溶液に代えて、モノラウリン水溶液(100mg/mL)を用いたこと以外は、前述の実施例1及び2と同様にして、懸濁液の濁度(OD650)を経時的に測定するとともに、生菌数濃度(CFU/mL)を算出した(実施例11)。また、モノラウリン水溶液を用いなかったこと以外は、前述の実施例11と同様にして、懸濁液の濁度(OD650)を経時的に測定して芽胞の発芽状態を確認するとともに、生菌数濃度(CFU/mL)を算出した(比較例7)。結果を図13及び14に示す。また、初期及び振とう開始から3時間後の生菌数濃度(CFU/mL)を表7に示す。
Figure JPOXMLDOC01-appb-I000007
 図13に示すように、実施例11では経時的に濁度が低下しており、芽胞の発芽を確認することができた。また、図14及び表7に示すように、実施例11では、芽胞の発芽に伴って生菌数濃度が急激に低下しており、効率的に除菌が進行したことが分かる。
(実施例12、比較例8)
 CPC水溶液に代えて、ナイシン水溶液(50mg/mL)を用いたこと以外は、前述の実施例1及び2と同様にして、懸濁液の濁度(OD650)を経時的に測定するとともに、生菌数濃度(CFU/mL)を算出した(実施例12)。また、ナイシン水溶液を用いなかったこと以外は、前述の実施例12と同様にして、懸濁液の濁度(OD650)を経時的に測定して芽胞の発芽状態を確認するとともに、生菌数濃度(CFU/mL)を算出した(比較例8)。結果を図15及び16に示す。また、初期及び振とう開始から3時間後の生菌数濃度(CFU/mL)を表8に示す。
Figure JPOXMLDOC01-appb-I000008
 図15に示すように、実施例12では経時的に濁度が低下しており、芽胞の発芽を確認することができた。また、図16及び表8に示すように、実施例12では、芽胞の発芽に伴って生菌数濃度が急激に低下しており、効率的に除菌が進行したことが分かる。
(実施例13、比較例9)
 CPC水溶液に代えて、ソルビン酸水溶液(100mg/mL)を用いたこと以外は、前述の実施例1及び2と同様にして、懸濁液の濁度(OD650)を経時的に測定するとともに、生菌数濃度(CFU/mL)を算出した(実施例13)。また、ソルビン酸水溶液を用いなかったこと以外は、前述の実施例13と同様にして、懸濁液の濁度(OD650)を経時的に測定して芽胞の発芽状態を確認するとともに、生菌数濃度(CFU/mL)を算出した(比較例9)。結果を図17及び18に示す。また、初期及び振とう開始から3時間後の生菌数濃度(CFU/mL)を表9に示す。
Figure JPOXMLDOC01-appb-I000009
 図17に示すように、実施例13では経時的に濁度が低下しており、芽胞の発芽を確認することができた。また、図18及び表9に示すように、実施例13では、芽胞の発芽に伴って生菌数濃度が急激に低下しており、効率的に除菌が進行したことが分かる。
(実施例14、比較例10)
 CPC水溶液に代えて、プロタミン水溶液(100mg/mL)を用いたこと以外は、前述の実施例1及び2と同様にして、懸濁液の濁度(OD650)を経時的に測定するとともに、生菌数濃度(CFU/mL)を算出した(実施例14)。また、プロタミン水溶液を用いなかったこと以外は、前述の実施例14と同様にして、懸濁液の濁度(OD650)を経時的に測定して芽胞の発芽状態を確認するとともに、生菌数濃度(CFU/mL)を算出した(比較例10)。結果を図19及び20に示す。また、初期及び振とう開始から3時間後の生菌数濃度(CFU/mL)を表10に示す。
Figure JPOXMLDOC01-appb-I000010
 図19に示すように、実施例14では経時的に濁度が低下しており、芽胞の発芽を確認することができた。また、図20及び表10に示すように、実施例14では、芽胞の発芽に伴って生菌数濃度が急激に低下しており、効率的に除菌が進行したことが分かる。
(実施例15、比較例11)
 発芽促進液(1-1)18mL及びCPC水溶液(50mg/mL)20μLを100mL容の三角フラスコに入れた後、芽胞懸濁液(1-1)2mLを添加して評価用の懸濁液を得た(実施例15)。37℃、125rpmでフラスコを振とうした。経時的に懸濁液を取り出し、SCDLP液体培地で段階的に希釈して希釈液を得た。得られた希釈液をSCDLP寒天培地に塗布した後、37℃で48時間培養し、生育したコロニー数を計測して、生菌数濃度(CFU/mL)を算出した。結果を図21に示す。また、初期及び振とう開始から3時間後の生菌数濃度(CFU/mL)を表11に示す。
 さらに、CPC水溶液を用いなかったこと以外は、上記の実施例15と同様にして、懸濁液中の生菌数濃度(CFU/mL)を経時的に算出した(比較例11)。結果を図21に示す。また、初期及び振とう開始から3時間後の生菌数濃度(CFU/mL)を表11に示す。
Figure JPOXMLDOC01-appb-I000011
 図21及び表11に示すように、より現実的な生菌数濃度(約6.0×10CFU/mL)とした場合であっても、実施例15では生菌数濃度が急激に低下しており、効率的に除菌が進行したことが分かる。
(実施例16、比較例12)
 CPC水溶液に代えて、BAC水溶液(50mg/mL)を用いたこと以外は、前述の実施例15と同様にして、懸濁液中の生菌数濃度(CFU/mL)を経時的に算出した(実施例16)。また、BAC水溶液を用いなかったこと以外は、上記の実施例16と同様にして、懸濁液中の生菌数濃度(CFU/mL)を経時的に算出した(比較例12)。結果を図22に示す。また、初期及び振とう開始から3時間後の生菌数濃度(CFU/mL)を表12に示す。
Figure JPOXMLDOC01-appb-I000012
 図22及び表12に示すように、より現実的な生菌数濃度(約6.0×10CFU/mL)とした場合であっても、実施例16では生菌数濃度が急激に低下しており、効率的に除菌が進行したことが分かる。
(実施例17、比較例13)
 CPC水溶液に代えて、ハイジェニア水溶液(5mg/mL)を用いたこと以外は、前述の実施例15と同様にして、懸濁液中の生菌数濃度(CFU/mL)を経時的に算出した(実施例17)。また、ハイジェニア水溶液を用いなかったこと以外は、上記の実施例17と同様にして、懸濁液中の生菌数濃度(CFU/mL)を経時的に算出した(比較例13)。結果を図23に示す。また、初期及び振とう開始から3時間後の生菌数濃度(CFU/mL)を表13に示す。
Figure JPOXMLDOC01-appb-I000013
 図23及び表13に示すように、より現実的な生菌数濃度(約6.0×10CFU/mL)とした場合であっても、実施例17では生菌数濃度が急激に低下しており、効率的に除菌が進行したことが分かる。
(実施例18、比較例14)
 CPC水溶液に代えて、ε-ポリリジン水溶液(5mg/mL)を用いたこと以外は、前述の実施例15と同様にして、懸濁液中の生菌数濃度(CFU/mL)を経時的に算出した(実施例18)。また、ε-ポリリジン水溶液を用いなかったこと以外は、上記の実施例18と同様にして、懸濁液中の生菌数濃度(CFU/mL)を経時的に算出した(比較例14)。結果を図24に示す。また、初期及び振とう開始から3時間後の生菌数濃度(CFU/mL)を表14に示す。
Figure JPOXMLDOC01-appb-I000014
 図24及び表14に示すように、より現実的な生菌数濃度(約6.0×10CFU/mL)とした場合であっても、実施例18では生菌数濃度が急激に低下しており、効率的に除菌が進行したことが分かる。
(実施例19、比較例15)
 発芽促進液(1)18mL及びナイシン水溶液(50mg/mL)20μLを100mL容の三角フラスコに入れた後、芽胞懸濁液(1-1)2mLを添加して評価用の懸濁液を得た(実施例19)。37℃、125rpmでフラスコを振とうした。経時的に懸濁液を取り出し、SCDLP液体培地で段階的に希釈して希釈液を得た。得られた希釈液をSCDLP寒天培地に塗布した後、37℃で48時間培養し、生育したコロニー数を計測して、生菌数濃度(CFU/mL)を算出した。結果を図25に示す。また、初期及び振とう開始から3時間後の生菌数濃度(CFU/mL)を表15に示す。
 さらに、ナイシン水溶液を用いなかったこと以外は、上記の実施例19と同様にして、懸濁液中の生菌数濃度(CFU/mL)を経時的に算出した(比較例15)。結果を図25に示す。また、初期及び振とう開始から3時間後の生菌数濃度(CFU/mL)を表15に示す。
Figure JPOXMLDOC01-appb-I000015
 図25及び表15に示すように、より現実的な生菌数濃度(約6.0×10CFU/mL)とした場合であっても、実施例19では生菌数濃度が急激に低下しており、効率的に除菌が進行したことが分かる。
(実施例20及び21、比較例16)
 発芽促進液(1)18mL及びCPC水溶液(5mg/mL、50mg/mL)20μLを100mL容の三角フラスコに入れた後、芽胞懸濁液(2)2mLを添加して評価用の懸濁液を得た(実施例20及び21)。37℃、125rpmでフラスコを振とうし、懸濁液の濁度(OD650)を経時的に測定して芽胞の発芽状態を確認した。測定結果を図26に示す。
 また、経時的に懸濁液を取り出し、SCDLP液体培地で段階的に希釈して希釈液を得た。得られた希釈液をSCDLP寒天培地に塗布した後、37℃で48時間培養し、生育したコロニー数を計測して、生菌数濃度(CFU/mL)を算出した。結果を図27に示す。また、初期及び振とう開始から3時間後の生菌数濃度(CFU/mL)を表16に示す。
 さらに、CPC水溶液を用いなかったこと以外は、上記の実施例20及び21と同様にして、懸濁液の濁度(OD650)を経時的に測定して芽胞の発芽状態を確認するとともに、生菌数濃度(CFU/mL)を算出した(比較例16)。結果を図26及び27に示す。また、初期及び振とう開始から3時間後の生菌数濃度(CFU/mL)を表16に示す。
Figure JPOXMLDOC01-appb-I000016
 図26に示すように、いずれの場合(実施例20及び21、比較例16)も経時的に濁度が低下しており、芽胞の発芽を確認することができた。また、図27及び表16に示すように、実施例20及び21では、芽胞の発芽に伴って生菌数濃度が急激に低下しており、効率的に除菌が進行したことが分かる。
(実施例22及び23、比較例17)
 CPC水溶液に代えて、BAC水溶液(5mg/mL、50mg/mL)を用いたこと以外は、前述の実施例20及び21と同様にして、懸濁液の濁度(OD650)を経時的に測定するとともに、生菌数濃度(CFU/mL)を算出した(実施例22及び23)。また、BAC水溶液を用いなかったこと以外は、前述の実施例22及び23と同様にして、懸濁液の濁度(OD650)を経時的に測定して芽胞の発芽状態を確認するとともに、生菌数濃度(CFU/mL)を算出した(比較例17)。結果を図28及び29に示す。また、初期及び振とう開始から3時間後の生菌数濃度(CFU/mL)を表17に示す。
Figure JPOXMLDOC01-appb-I000017
 図28に示すように、いずれの場合(実施例22及び23、比較例17)も経時的に濁度が低下しており、芽胞の発芽を確認することができた。また、図29及び表17に示すように、実施例22及び23では、芽胞の発芽に伴って生菌数濃度が急激に低下しており、効率的に除菌が進行したことが分かる。
(実施例24及び25、比較例18)
 CPC水溶液に代えて、ハイジェニア水溶液(5mg/mL、50mg/mL)を用いたこと以外は、前述の実施例20及び21と同様にして、懸濁液の濁度(OD650)を経時的に測定するとともに、生菌数濃度(CFU/mL)を算出した(実施例24及び25)。また、ハイジェニア水溶液を用いなかったこと以外は、前述の実施例24及び25と同様にして、懸濁液の濁度(OD650)を経時的に測定して芽胞の発芽状態を確認するとともに、生菌数濃度(CFU/mL)を算出した(比較例18)。結果を図30及び31に示す。また、初期及び振とう開始から3時間後の生菌数濃度(CFU/mL)を表18に示す。
Figure JPOXMLDOC01-appb-I000018
 図30に示すように、いずれの場合(実施例24及び25、比較例18)も経時的に濁度が低下しており、芽胞の発芽を確認することができた。また、図31及び表18に示すように、実施例24及び25では、芽胞の発芽に伴って生菌数濃度が急激に低下しており、効率的に除菌が進行したことが分かる。
(実施例26、比較例19)
 CPC水溶液に代えて、ε-ポリリジン水溶液(50mg/mL)を用いたこと以外は、前述の実施例20及び21と同様にして、懸濁液の濁度(OD650)を経時的に測定するとともに、生菌数濃度(CFU/mL)を算出した(実施例26)。また、ε-ポリリジン水溶液を用いなかったこと以外は、前述の実施例26と同様にして、懸濁液の濁度(OD650)を経時的に測定して芽胞の発芽状態を確認するとともに、生菌数濃度(CFU/mL)を算出した(比較例19)。結果を図32及び33に示す。また、初期及び振とう開始から3時間後の生菌数濃度(CFU/mL)を表19に示す。
Figure JPOXMLDOC01-appb-I000019
 図32に示すように、いずれの場合(実施例26、比較例19)も経時的に濁度が低下しており、芽胞の発芽を確認することができた。また、図33及び表19に示すように、実施例26では、芽胞の発芽に伴って生菌数濃度が急激に低下しており、効率的に除菌が進行したことが分かる。
 本発明の除菌組成物は、除菌することが従来困難であった細菌芽胞を簡易な操作で除菌しうる安全性の高い組成物として有用である。

Claims (9)

  1.  細菌芽胞を除菌するために用いる除菌組成物であって、
     発芽促進成分及び除菌成分を含有する一剤型の組成物であり、
     前記発芽促進成分が、アミノ酸、糖、及び無機塩を含む除菌組成物。
  2.  前記除菌成分が、塩化セチルピリジニウム、塩化ベンザルコニウム、塩化ベンゼトニウム、ε-ポリリジン、1,4-ビス(3,3’-(1-デシルピリジニウム)メチルオキシ)ブタンジブロマイド、ソルビン酸、ソルビン酸カリウム、プロタミン、モノラウリン、及びナイシンからなる群より選択される少なくとも一種である請求項1に記載の除菌組成物。
  3.  前記アミノ酸が、L-アラニン、L-アスパラギン、L-チロシン、L-プロリン、L-バリン、L-セリン、及びカザミノ酸からなる群より選択される少なくとも一種である請求項1又は2に記載の除菌組成物。
  4.  前記糖が、D-グルコース、D-フルクトース、D-マンノース、D-ガラクトース、マルトース、ラクトース、スクロース、及びこれらのカラメル化反応物からなる群より選択される少なくとも一種である請求項1~3のいずれか一項に記載の除菌組成物。
  5.  前記無機塩が、塩化アンモニウム、硫酸アンモニウム、硝酸アンモニウム、塩化カリウム、塩化ナトリウム、硝酸カリウム、及び硝酸ナトリウムからなる群より選択される少なくとも一種である請求項1~4のいずれか一項に記載の除菌組成物。
  6.  水を含む液媒体をさらに含有する液状組成物である請求項1~5のいずれか一項に記載の除菌組成物。
  7.  前記除菌成分の含有量が、除菌組成物全体を基準として、0.1~1,000mg/Lである請求項6に記載の除菌組成物。
  8.  前記アミノ酸の含有量が、除菌組成物全体を基準として、0.0001~1質量%であり、
     前記糖の含有量が、除菌組成物全体を基準として、0.001~10質量%であり、
     前記無機塩の含有量が、除菌組成物全体を基準として、0.001~10質量%である請求項6又は7に記載の除菌組成物。
  9.  請求項6~8のいずれか一項に記載の除菌組成物を被処理物に接触させる工程を有する細菌芽胞の除菌方法。

     
PCT/JP2020/038418 2019-10-17 2020-10-12 除菌組成物及びそれを用いる細菌芽胞の除菌方法 WO2021075391A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2021528335A JP7101375B2 (ja) 2019-10-17 2020-10-12 除菌組成物及びそれを用いる細菌芽胞の除菌方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019190206 2019-10-17
JP2019-190206 2019-10-17

Publications (1)

Publication Number Publication Date
WO2021075391A1 true WO2021075391A1 (ja) 2021-04-22

Family

ID=75538495

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/038418 WO2021075391A1 (ja) 2019-10-17 2020-10-12 除菌組成物及びそれを用いる細菌芽胞の除菌方法

Country Status (3)

Country Link
JP (1) JP7101375B2 (ja)
TW (1) TW202128017A (ja)
WO (1) WO2021075391A1 (ja)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6656919B1 (en) * 2002-01-11 2003-12-02 Clarence L. Baugh Method and a product for the rapid decontamination and sterilization of bacterial endospores
JP2004002229A (ja) * 2002-05-31 2004-01-08 Kao Corp 殺菌方法
JP2013519720A (ja) * 2010-02-16 2013-05-30 インサイト ヘルス リミテッド 発芽誘導物質と抗菌剤とを含む組成物
JP2018199632A (ja) * 2017-05-26 2018-12-20 花王株式会社 芽胞発芽抑制剤

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08175921A (ja) * 1994-12-22 1996-07-09 Idemitsu Kosan Co Ltd 農園芸用殺菌剤組成物
US6506803B1 (en) * 1999-04-28 2003-01-14 Regents Of The University Of Michigan Methods of preventing and treating microbial infections
US9629875B2 (en) * 2014-04-11 2017-04-25 Microdermis Corporation Clostridium difficile sporicidal compositions

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6656919B1 (en) * 2002-01-11 2003-12-02 Clarence L. Baugh Method and a product for the rapid decontamination and sterilization of bacterial endospores
JP2004002229A (ja) * 2002-05-31 2004-01-08 Kao Corp 殺菌方法
JP2013519720A (ja) * 2010-02-16 2013-05-30 インサイト ヘルス リミテッド 発芽誘導物質と抗菌剤とを含む組成物
JP2018199632A (ja) * 2017-05-26 2018-12-20 花王株式会社 芽胞発芽抑制剤

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
AOYAMA, YOSHIO: "Germinants and inhibition of germination of moorella thermoacetica spores, Report of Toyo Institute of Food Technology", MOORELLA THERMOACETICA, vol. 30, 2014, pages 55 - 61 *

Also Published As

Publication number Publication date
JPWO2021075391A1 (ja) 2021-11-11
JP7101375B2 (ja) 2022-07-15
TW202128017A (zh) 2021-08-01

Similar Documents

Publication Publication Date Title
JP5829293B2 (ja) カリシウイルス不活化方法
EP1064845B1 (en) Virucidal and sporicidal composition
US7087190B2 (en) Composition for the production of chlorine dioxide using non-iodo interhalides or polyhalides and methods of making and using the same
US20090274772A1 (en) Disinfectant compositions and methods of use thereof
US20050226972A1 (en) Acidic solution of sparingly-soluble group IIA complexes
WO2007076125A2 (en) Zinc compositions and their use in anti-microbial applications
CA2829449A1 (en) A stable composition of hoci, processes for its production and uses thereof
AU771148B2 (en) Adduct having an acidic solution of sparingly-soluble group IIA complexes
KR20140078680A (ko) 펠라르곤산을 포함하는 항미생물성 제형
JP2014530176A (ja) 消毒組成物及びそれらの使用
EP2965624A1 (en) Concentrate for a disinfectant, disinfectant and process for disinfecting a surface
EP1738758A1 (en) Antimicrobial combination of amine and oxygen compounds
JP7058490B2 (ja) ウイルス、細菌および真菌を抑える抗菌組成物
WO2021075391A1 (ja) 除菌組成物及びそれを用いる細菌芽胞の除菌方法
JP2004002229A (ja) 殺菌方法
JP2020033279A (ja) 抗ノロウイルス剤、消毒剤及び洗浄剤
JP3944080B2 (ja) 液状抗菌組成物
JP4228175B2 (ja) 殺菌剤組成液及び殺菌方法
JP2002322009A (ja) 殺菌用組成物及びその使用方法
JP2001178433A (ja) 殺菌剤組成物
JP7381251B2 (ja) 抗ノロウイルス剤、消毒剤及び洗浄剤
JP2023028568A (ja) 除菌・ウイルス不活性化剤
TWI241168B (en) Adduct having an acidic solution of sparingly-soluble group IIA complexes
JP2004010564A (ja) 殺菌剤組成物
JP2014047180A (ja) 可食性除菌剤及び可食性除菌剤セット

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2021528335

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20877398

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20877398

Country of ref document: EP

Kind code of ref document: A1