WO2021075335A1 - Heat exchanger and air conditioning device provided with same - Google Patents

Heat exchanger and air conditioning device provided with same Download PDF

Info

Publication number
WO2021075335A1
WO2021075335A1 PCT/JP2020/038072 JP2020038072W WO2021075335A1 WO 2021075335 A1 WO2021075335 A1 WO 2021075335A1 JP 2020038072 W JP2020038072 W JP 2020038072W WO 2021075335 A1 WO2021075335 A1 WO 2021075335A1
Authority
WO
WIPO (PCT)
Prior art keywords
heat exchanger
coating film
sacrificial anode
brazing sheet
brazing
Prior art date
Application number
PCT/JP2020/038072
Other languages
French (fr)
Japanese (ja)
Inventor
孝仁 中島
広田 正宣
憲昭 山本
Original Assignee
パナソニックIpマネジメント株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by パナソニックIpマネジメント株式会社 filed Critical パナソニックIpマネジメント株式会社
Priority to CN202080015171.5A priority Critical patent/CN113454416A/en
Publication of WO2021075335A1 publication Critical patent/WO2021075335A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F19/00Preventing the formation of deposits or corrosion, e.g. by using filters or scrapers
    • F28F19/02Preventing the formation of deposits or corrosion, e.g. by using filters or scrapers by using coatings, e.g. vitreous or enamel coatings
    • F28F19/06Preventing the formation of deposits or corrosion, e.g. by using filters or scrapers by using coatings, e.g. vitreous or enamel coatings of metal
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K1/00Soldering, e.g. brazing, or unsoldering
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F1/00Room units for air-conditioning, e.g. separate or self-contained units or units receiving primary air from a central station
    • F24F1/0007Indoor units, e.g. fan coil units
    • F24F1/0059Indoor units, e.g. fan coil units characterised by heat exchangers
    • F24F1/0063Indoor units, e.g. fan coil units characterised by heat exchangers by the mounting or arrangement of the heat exchangers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F13/00Details common to, or for air-conditioning, air-humidification, ventilation or use of air currents for screening
    • F24F13/22Means for preventing condensation or evacuating condensate
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B39/00Evaporators; Condensers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B39/00Evaporators; Condensers
    • F25B39/04Condensers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D9/00Heat-exchange apparatus having stationary plate-like or laminated conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F19/00Preventing the formation of deposits or corrosion, e.g. by using filters or scrapers
    • F28F19/004Preventing the formation of deposits or corrosion, e.g. by using filters or scrapers by using protective electric currents, voltages, cathodes, anodes, electric short-circuits
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F19/00Preventing the formation of deposits or corrosion, e.g. by using filters or scrapers
    • F28F19/02Preventing the formation of deposits or corrosion, e.g. by using filters or scrapers by using coatings, e.g. vitreous or enamel coatings
    • F28F19/04Preventing the formation of deposits or corrosion, e.g. by using filters or scrapers by using coatings, e.g. vitreous or enamel coatings of rubber; of plastics material; of varnish
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F21/00Constructions of heat-exchange apparatus characterised by the selection of particular materials
    • F28F21/08Constructions of heat-exchange apparatus characterised by the selection of particular materials of metal
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F21/00Constructions of heat-exchange apparatus characterised by the selection of particular materials
    • F28F21/08Constructions of heat-exchange apparatus characterised by the selection of particular materials of metal
    • F28F21/081Heat exchange elements made from metals or metal alloys
    • F28F21/084Heat exchange elements made from metals or metal alloys from aluminium or aluminium alloys
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2339/00Details of evaporators; Details of condensers
    • F25B2339/04Details of condensers
    • F25B2339/043Condensers made by assembling plate-like or laminated elements

Definitions

  • the present disclosure relates to an aluminum heat exchanger and an air conditioner equipped with the heat exchanger.
  • a general heat exchanger is usually provided with a pipe and fins, and has a configuration in which a plurality of fins are attached to the outer circumference of the pipe.
  • As the material of the tube copper (Cu) or an alloy thereof (referred to as “copper material” for convenience) has been used, but in recent years, aluminum (Al) or an alloy thereof (aluminum material) has also been used.
  • As a fin material an aluminum material is generally used.
  • brazing sheet in which a brazing material layer is clad (coated) on at least one surface of a core material made of an aluminum alloy is used.
  • a brazing sheet in which a brazing material is clad on one surface of the core material and a sacrificial anode material layer is clad on the other surface is used.
  • an aluminum-silicon (Si) -based alloy used for brazing an aluminum alloy is generally used, and as a sacrificial anode material, aluminum is generally used in order to make its potential low.
  • An alloy in which zinc (Zn) is added is used.
  • a typical sacrificial anode material a brazing material of a general aluminum-silicon alloy with zinc added can be mentioned. As a result, the sacrificial anode material also functions as a brazing material.
  • Patent Document 1 discloses an aluminum alloy brazing sheet used for a heat exchanger for an automobile, particularly a passage component of a fluid (cooling water, a refrigerant, etc.), and has good brazing property and excellent after brazing.
  • the components of the core material and the sacrificial anode material are adjusted to achieve the strength and corrosion resistance.
  • the content of silicon, iron (Fe) and manganese (Mn) in the sacrificial anode material is regulated to 0.15% by mass or less. This is because the formation of Al—Mn—Si or Al—Fe—Mn—Si compounds is suppressed, and the decrease in strength after brazing is suppressed.
  • the silicon content of the core material is regulated to 0.15% by mass or less, and copper is added to the core material in the range of 0.40 to 1.2% by weight. The reason for adding copper is to improve the strength of the core material, increase the potential difference between the core material and the sacrificial anode layer, and improve the anticorrosion effect due to the sacrificial anode action.
  • Patent Document 2 also discloses an aluminum alloy brazing sheet used for an automobile heat exchanger, particularly a fluid passage component.
  • the brazing sheet not only the core material and the sacrificial anode material but also the brazing material component has a sacrificial anticorrosive effect on both sides and a brazing function on one side thereof and further prevents preferential corrosion of the joint portion. Is also adjusting.
  • zinc (Zn) is added not only to the sacrificial anode material but also to the brazing material, and copper is further added to the brazing material in the range of 0.1 to 0.6 mass%. Copper is also added to the core material in the range of 0.05 to 1.2 mass%. The purpose of adding copper to each material is different, for the brazing material, to make the potential of the brazing material noble, and for the core material, to improve the strength of the core material.
  • the strength is improved by adding copper to the core material, and the anticorrosion effect is improved by the sacrificial anode action.
  • the silicon content of both the sacrificial anode material and the core material is limited to 0.15% by mass or less, and the core material also contains various metal elements other than copper. It is specified in detail. Therefore, the range of material choices that can be used as the core material and the sacrificial anode material is reduced.
  • the silicon content of the sacrificial anode material is regulated to a very small amount. Therefore, it is considered that this sacrificial anode material layer does not have a function as a general brazing material.
  • a structure is included in which when the brazing sheets are joined to each other, the angle formed by the respective joint surfaces becomes an acute angle.
  • an acute-angled joint structure and a surface that is not joined adjacent to the joint surface of the brazing sheet is referred to as a "non-joint adjacent surface"
  • non-joint adjacent surface in such a sharp-angle joint structure, non-joins that form an acute angle with each other Fillets are formed between the adjacent surfaces.
  • This fillet is defined herein as a solidified wax or sacrificial anode material that has flowed out of the joint surface during joining.
  • the purpose of this disclosure is to improve the corrosion resistance of aluminum heat exchangers.
  • the heat exchanger according to the present disclosure is an aluminum heat exchanger, and has an epoxy-based coating film having a thickness in the range of 10 to 50 ⁇ m on a part of the surface of the heat exchanger.
  • the heat exchanger is arranged inside the box so that the coating film is not directly irradiated with ultraviolet rays.
  • FIG. 1A is a schematic cross-sectional view showing a schematic configuration of a brazing sheet according to a typical embodiment of the present disclosure.
  • FIG. 1B is a schematic cross-sectional view showing a schematic configuration of a joining structure of a brazing sheet according to a typical embodiment of the present disclosure.
  • FIG. 2A is a schematic cross-sectional view showing an example of a header of a plate fin laminated heat exchanger constructed by using the brazing sheet shown in FIG. 1A.
  • FIG. 2B is an enlarged schematic partial cross-sectional view of the joining structure of the brazing sheet included in the header shown in FIG. 2A.
  • FIG. 3A is a schematic partial cross-sectional view showing an example of a parallel flow capacitor (PFC) configured using the brazing sheet shown in FIG.
  • PFC parallel flow capacitor
  • FIG. 3B is an enlarged schematic partial cross-sectional view of the joining structure of the brazing sheet included in the PFC shown in FIG. 3A.
  • FIG. 4 is a schematic cross-sectional view showing a schematic configuration in which a plate fin laminated heat exchanger in which the header shown in FIG. 2A is subjected to dipping coating is installed in an air conditioner.
  • FIG. 5 is a diagram showing the molecular structure of epichlorohydrin / bisphenol A type resin.
  • FIG. 6A is a diagram showing the results of a corrosion resistance test of the coating film arranged on the brazing sheet according to Comparative Example 1.
  • FIG. 6B is a diagram showing the results of a corrosion resistance test of the coating film arranged on the brazing sheet according to Comparative Example 2.
  • FIG. 6A is a diagram showing the results of a corrosion resistance test of the coating film arranged on the brazing sheet according to Comparative Example 1.
  • FIG. 6B is a diagram showing the results of a corrosion resistance test of the coating film arranged
  • FIG. 6C is a diagram showing the results of a corrosion resistance test of the coating film arranged on the brazing sheet according to Example 1.
  • FIG. 6D is a diagram showing the results of a corrosion resistance test of the coating film arranged on the brazing sheet according to Example 2.
  • FIG. 7A is a diagram showing the results of an adhesion test after the corrosion resistance test of the coating film arranged on the brazing sheet according to Comparative Example 1.
  • FIG. 7B is a diagram showing the adhesion test result after the corrosion resistance test of the coating film arranged on the brazing sheet according to Comparative Example 2.
  • FIG. 7C is a diagram showing the adhesion test result after the corrosion resistance test of the coating film arranged on the brazing sheet according to Example 1.
  • FIG. 7A is a diagram showing the results of an adhesion test after the corrosion resistance test of the coating film arranged on the brazing sheet according to Comparative Example 1.
  • FIG. 7B is a diagram showing the adhesion test result after the corrosion resistance test of the coating film arranged on the
  • FIG. 8A is a diagram showing the results of an adhesion test after the moisture resistance test of the coating film arranged on the brazing sheet according to Comparative Example 1.
  • FIG. 8B is a diagram showing the results of an adhesion test after the moisture resistance test of the coating film arranged on the brazing sheet according to Comparative Example 2.
  • FIG. 8C is a diagram showing the results of an adhesion test after the moisture resistance test of the coating film arranged on the brazing sheet according to Example 1.
  • FIG. 9 is a graph showing the relationship between the thickness of the coating film and the adhesion according to the present disclosure.
  • the heat exchanger according to the present disclosure is an aluminum heat exchanger, and has an epoxy-based coating film having a thickness in the range of 10 to 50 ⁇ m on a part of the surface of the heat exchanger.
  • the heat exchanger is arranged inside the box so that the coating film is not directly irradiated with ultraviolet rays.
  • the coating film may contain a metal powder having a lower potential than aluminum.
  • the heat exchanger may be configured by using brazing.
  • the joint between the brazing sheets having a relatively low potential is protected by the sacrificial anodic action of the metal particles having a relatively low potential. Therefore, it is possible to effectively suppress or prevent the possibility that corrosion progresses from the fillet generated adjacent to the joint portion between the brazing sheets to the joint portion and causes a decrease in the joint strength of the joint portion, so that the heat exchanger can be joined.
  • Corrosion resistance in the part can be made even better. That is, even when the potential of the fillet is lower than that of its surroundings, the preferential corrosion of the fillet can be easily and effectively suppressed or prevented, and the corrosion resistance of the heat exchanger can be improved.
  • the joint In order to protect the joint between the brazing sheets, the joint is concentrated on the header, and the epoxy-based paint containing metal particles whose potential is lower than that of the joint is applied only to the joint and its surroundings. May be overcoated.
  • the potential evaluation method is not particularly limited, and a known method can be preferably used.
  • a potential measurement sample for example, a brazing sheet 10 or a core material 11, a brazing material, a sacrificial anode material, a fillet 22 or a joint portion 21, or a composition simulating these
  • a potato stat / galvanostat. Alloy, etc.
  • the counter electrode, and the reference electrode for example, silver / silver chloride (Ag / AgCl) electrode
  • an electrolytic solution for example, 5% by weight & sodium chloride (NaCl) solution
  • a method of measuring the potential difference from the electrode can be mentioned.
  • a multi-layer structure is generally composed of an epoxy-based paint that can obtain suitable adhesion strength to an aluminum material as an undercoat, and a urethane-based paint as a topcoat for the purpose of protecting the undercoat coating film from ultraviolet rays. Used.
  • the second and subsequent coats are not desirable from the viewpoint of cost control and environmental protection.
  • a structure that sufficiently suppresses the invasion of ultraviolet rays into the painted portion can sufficiently improve the corrosion resistance life as a heat exchanger.
  • even a complicated shape can be painted at once by dip painting, for example.
  • the heat exchanger can be produced more easily and the burden on the environment can be reduced. Further, the heat exchange efficiency of the header portion is not as good as that of the fin portion and the heat transfer tube portion. Therefore, when the joint portion is arranged in the header portion, the efficiency decrease can be minimized by making the header portion a relative non-ventilated portion in the entire heat exchanger.
  • the dew condensation water generated during the operation of the heat exchanger can more reliably wash away the peeled coating film or the corrosion products. .. As a result, it is possible to effectively suppress or prevent the scattering of the peeled coating film or the corrosion product, and it is possible to suppress the pollution of the surrounding environment.
  • the brazing sheet 10 includes a core material 11, a brazing material layer 12, and a sacrificial anode material layer 13.
  • the brazing material layer 12 is coated (clad) on one surface of the core material 11, and the sacrificial anode material layer 13 is the other surface of the core material 11, that is, the surface opposite to the surface on which the brazing material layer 12 is coated. It is covered with.
  • the core material 11, the brazing material forming the brazing material layer 12, and the sacrificial anode material forming the sacrificial anode material layer 13 are all aluminum alloys.
  • the brazing sheet 10 may have a configuration in which the core material 11 and the sacrificial anode material layer 13 are provided, and the brazing material layer 12 is not provided.
  • a sacrificial anode material layer 13 is formed on both surfaces of the core material 11.
  • the brazing sheet 10 has a joint surface at least on the side of the sacrificial anode material layer 13, and the joint surface is formed by joining the joint surfaces to each other.
  • the structure in which the brazing sheets 10 are joined to each other at the joining surface is the joining structure of the brazing sheets 10.
  • the brazing sheet 10 has a non-joint adjacent surface adjacent to the joint surface. When the brazing sheets 10 are joined together to form a joined structure, the angle formed by the respective non-joined adjacent surfaces is an acute angle.
  • a fillet 22 is formed between the non-joining adjacent surfaces 10b as shown in FIG. 1B.
  • the heat exchanger includes a member or structure on which such a fillet 22 is formed, and in such a member or structure, the non-joined adjacent surfaces 10b often form an acute angle. ..
  • the fillet 22 is defined as a solidified brazing material (or sacrificial anode material) that has flowed out from the joint surface 10a at the time of joining.
  • the joint surface 10a is set at least on the sacrificial anode material layer 13. Therefore, as will be described later, the sacrificial anode material also serves as a brazing material. That is, the sacrificial anode material layer 13 contributes to joining the brazing sheets 10 as a brazing material at the time of joining, and contributes to the anticorrosion effect of the brazing sheet 10 as a sacrificial anode material after joining.
  • a non-joint adjacent surface 10b is set adjacent to the joint surface 10a. Therefore, the non-bonded adjacent surface 10b is also the sacrificial anode material layer 13 like the bonded surface 10a.
  • corrosion may proceed in the directions indicated by the block arrows C1 and C2 in FIG. 1B.
  • the direction of the block arrow C1 is the corrosion direction that progresses from the non-bonded adjacent surface 10b to the direction of the core material 11.
  • the direction of the block arrow C2 is the corrosion direction that progresses along the direction of the joint surface 10a at the joint portion 21 including the fillet 22.
  • the corrosion that progresses in the corrosion direction C1 is suppressed (avoided or prevented) by the sacrificial anode action of the sacrificial anode material layer 13, but the corrosion that progresses in the corrosion direction C2 is that zinc is concentrated in the fillet 22. Therefore, there is a possibility that the potential of the joint portion 21 including the fillet 22 is too low and progresses.
  • the corrosion in the corrosion direction C2 can be effectively suppressed (avoided or prevented) by arranging the epoxy-based coating film 14 on the surfaces of the joint surface 10a and the fillet 22. it can.
  • the brazing sheet 10 can be particularly suitably used for manufacturing a heat exchanger as described above.
  • the bonding structure 20 formed when the brazing sheet 10 is applied to the heat exchanger has a structure as illustrated in FIG. 1B as described above, but more specifically, it is shown in FIGS. 2A and 2B. Examples thereof include a plate fin laminated heat exchanger having such a structure and a parallel flow capacitor (PFC) having a structure as shown in FIGS. 3A and 3B.
  • PFC parallel flow capacitor
  • the plate fin laminated heat exchanger is a plate fin laminated body having a flow path through which a refrigerant, which is a first fluid, flows, and air, which is a second fluid, is flowed between each plate fin laminated body to flow the first fluid. Heat exchange is performed between the fluid and the second fluid.
  • the plate fin included in this heat exchanger has a flow path region having a plurality of first fluid flow paths through which the first fluid flows in parallel, and a header flow path communicating with each first fluid flow path in this flow path region. It has a header area and.
  • FIG. 2A shows a schematic structure of a header portion in the plate fin laminated body 30 as a partial cross section, and a plurality of plate fins 32 are laminated on an end plate 31 located at the uppermost part in the drawing.
  • each of the end plate 31 and the plate fin 32 An opening is provided in each of the end plate 31 and the plate fin 32, and the header opening 33 is formed by laminating these plates to form the plate fin laminated body 30.
  • the refrigerant as the first fluid flows in from the outside of the header opening 33 in the direction indicated by the block arrow in the drawing, and further flows in between the plate fins 32.
  • each plate fin 32 is provided with the first fluid flow path, so that the refrigerant flowing between the plate fins 32 flows through the first fluid flow path.
  • the air which is the second fluid, flows in the space formed between the plate fins 32 so as to intersect the direction in which the refrigerant flows (the direction of the first fluid flow path). As a result, the air is cooled by the refrigerant.
  • FIG. 2B is a partially enlarged view of the plate fin laminate 30 shown in FIG. 2A, and schematically shows an example of the joining structure 20 of the brazing sheet 10.
  • the plate fin 32 is the brazing sheet 10 according to the present disclosure
  • the joint structure 20 is the joint portion 21 located on the header opening 33 side.
  • the plate fin 32, which is the brazing sheet 10 is shown by emphasizing the sacrificial anode material layer 13 with hatching, and also highlighting the fillet 22 with hatching.
  • the joint surfaces 10a of the plate fins 32 are joined to each other, and a fillet 22 is formed between the non-joint adjacent surfaces 10b adjacent to the joint surface 10a.
  • the epoxy coating film 14 is arranged on the surfaces of the joint surface 10a and the fillet 22.
  • Such a plate fin laminated heat exchanger include, for example, JP-A-2017-180856, JP-A-2018-066531, JP-A-2018-066532, and JP-A-2018-066533. It is described in Japanese Patent Application Laid-Open No. 2018-066534, Japanese Patent Application Laid-Open No. 2018-066535, Japanese Patent Application Laid-Open No. 2018-066536, etc. It shall be a part of the description of the specification.
  • a parallel flow condenser is a heat exchanger widely used for car air conditioners (air conditioners for automobiles).
  • a plurality of flat tubes are arranged between a pair of header tubes, and heat is dissipated between these flat tubes.
  • Corrugated fins are arranged. These header pipes, flat pipes, corrugated fins and the like are joined by brazing.
  • FIG. 3A shows a schematic structure of a connecting portion between the header pipe 41 and the flat pipe 42 in the PFC 40 as a partial cross section.
  • Corrugated fins 43 are provided between the flat pipes 42, and these are also joined by brazing, and the joining structure 20 is a connecting portion between the header pipe 41 and the flat pipe 42, as shown in an enlarged view in FIG. 3B. is there.
  • the header tube 41 and the flat tube 42 are both brazing sheets 10, and the header tube 41 and the flat tube 42 are shown by emphasizing the sacrificial anode material layer 13 with hatching.
  • the fillet 22 is also highlighted by hatching. Since the sacrificial anode material layer 13 of the flat tube 42 is flat, the joint surface 10a and the non-joint adjacent surface 10b are set as different regions on a continuous single surface (the surface of the sacrificial anode material layer 13). Therefore, the flat tube 42 has a flat shape such that the brazing sheet 10 does not have a bent portion.
  • the header pipe 41 has an opening for penetrating and inserting the flat pipe 42, and the joint surface 10a and the non-joint adjacent surface 10b are provided in the opening.
  • the joint surface 10a of the header pipe 41 is shown as a surface parallel to the joint surface 10a (outer surface) of the flat pipe 42, but the present invention is not limited to this, and the joint surface 10a is parallel to the outer surface of the flat pipe 42. It may be a surface that does not become.
  • the opening of the header tube 41 has a shape having a one-step bent portion as the brazing sheet 10.
  • a fillet 22 is formed between the non-joint adjacent surface 10b adjacent to the joint surface 10a of the header pipe 41 and the non-joint adjacent surface 10b adjacent to the joint surface 10a of the flat pipe 42.
  • the epoxy coating film 14 is arranged on the surface of the fillet 22.
  • the method for producing the joint structure 20 of the brazing sheet 10 is not particularly limited, and a known brazing method or the like can be preferably used.
  • a method in which a known flux is applied to the joint surface 10a of the brazing sheet 10 and then heated in a nitrogen atmosphere furnace at a temperature of, for example, about 600 ° C. can be mentioned.
  • FIG. 4 shows an example of the mode when the above-mentioned plate fin laminated heat exchanger or PFC is arranged in the air conditioner.
  • the air conditioner has a box body 56, and a heat exchanger 51 and a blower fan 53 are arranged in the box body 56.
  • An epoxy-based coating film installation portion 52 on which the above-mentioned epoxy-based coating film 14 is arranged is arranged in a part of the heat exchanger 51.
  • the epoxy-based coating film installation portion 52 corresponds to the header portion of the heat exchanger 51.
  • the epoxy-based coating film installation portion 52 is provided vertically above the drainage receiver 55.
  • the condensed water generated in the heat exchanger 51 during the operation of the air conditioner is received by the drainage receiver 55 and discharged to the outside of the box body 56.
  • the air passage of the second fluid described above is indicated by a block arrow in the figure.
  • the fluid sucked by the blower fan 53 passes through the air filter 54, is heat exchanged by the heat exchanger 51, and is discharged to the outside of the box body 56.
  • the epoxy-based coating film installation portion 52 constitutes a part of the air passage, but since the air passage is partially blocked by the drainage receiver 55, the epoxy-based coating film installation portion 52 of the heat exchanger 51
  • the air volume in is smaller than the air volume in the non-installed portion of the coating film.
  • the portion where the air passage is relatively blocked is called a non-ventilation portion.
  • the epoxy-based coating film installation portion 52 is arranged inside the box body 56, ultraviolet rays from outside the box body 56 are blocked by the box body 56. Therefore, the epoxy-based coating film setting portion 52 is substantially unaffected by ultraviolet rays. As a result, the deterioration of the epoxy coating film 14 by ultraviolet rays is suppressed and the life of the epoxy coating film 14 is extended. Further, the peeled coating film or the corrosion product due to the deterioration of the epoxy-based coating film 14 is almost certainly washed away by the dew condensation water generated from the heat exchanger 51 because the epoxy-based coating film installation portion 52 is a non-ventilated portion.
  • the heat exchange can be performed by the heat exchanger 51 while avoiding the above-mentioned products and the like from scattering in the environment where the air conditioning is performed by the air conditioning device.
  • the epoxy-based epoxy-based coating material according to the present disclosure has an epoxy group at the terminal and is produced by a ring-opening reaction, and is composed of epichlorohydrin and phenol, alcohol, aldehyde, ester, amine, fatty acid and isocyanate. Refers to the reaction product with one of them (s). The molecular weight is not specified.
  • FIG. 5 shows the molecular structure of epichlorohydrin / bisphenol A type resin, which is a typical epoxy resin.
  • Epichlorohydrin / bisphenol A type resin has a highly reactive epoxy group at both ends, a rigid bisphenol nucleus as a skeleton, and a structure connected by a flexible ether group.
  • the epichlorohydrin / bisphenol A type resin has a structure in which hydroxyl groups contributing to adhesion are arranged at appropriate intervals. Therefore, it exhibits good adhesion, chemical resistance, water resistance and electrical insulation by utilizing various cross-linking reactions.
  • the base of aluminum to be painted is covered with a dense and smooth oxide film, and generally, suitable adhesion cannot be obtained without base treatment such as chromate treatment or blast treatment.
  • the epoxy-based paint has adhesiveness that can withstand the rust-preventive purpose of the heat exchanger without the base treatment for the above-mentioned reason. Therefore, the painting process can be simplified.
  • the epoxy-based paint contains a metal powder having a lower potential than aluminum in a pure water or salt water environment such as zinc oxide or zinc powder for the purpose of improving corrosion resistance.
  • a metal powder having a lower potential than aluminum in a pure water or salt water environment such as zinc oxide or zinc powder for the purpose of improving corrosion resistance.
  • lead or indium can be used instead of zinc, zinc and its alloy (for example, an alloy of aluminum and zinc) are desirable from the viewpoint of environmental protection and cost control.
  • the amount to be added is not particularly specified, but the amount to be added is set so that the sacrificial anodic action can be sufficiently obtained.
  • the particle size of the powder is not particularly specified, but it is desirable that the powder has an order of several ⁇ m or less so that the powder is uniformly dispersed as a paint.
  • the diluting solvent one having high compatibility with the above-mentioned epoxy paint components is selected.
  • Typical examples include, but are not limited to, ethylbenzene, xylene, toluene, methylethylketone and the like. Since the viscosity of the coating material changes depending on the dilution ratio, and as a result, the thickness of the coating film after coating changes, the amount of the diluting solvent is adjusted so as to obtain the desired coating film thickness.
  • a component that improves the durability of the epoxy-based paint for example, various weather-resistant agents for compensating for the fragile weather resistance (ultraviolet ray resistance) that is a drawback of the epoxy-based paint may be added.
  • these weather resistant agents may not be added.
  • the film thickness of the epoxy-based coating film is thin, the above-mentioned drawbacks are eliminated, but the sacrificial anode action acts only for a short period of time because the abundance of metal particles in the coating film is small. Further, it is not possible to effectively suppress the permeation of oxygen, water and the like through the coating film, and the coating film is peeled off due to corrosion under the coating film. Therefore, the effect of improving the corrosion resistance of the heat exchanger cannot be sufficiently obtained.
  • the thickness of the coating film is 10 ⁇ m to 50 ⁇ m, it exhibits a sufficient environmental blocking effect against oxygen, water, etc., a sacrificial anode action, and an early coating. It was clarified that the film peeling can be suppressed. Therefore, the corrosion resistance of the heat exchanger can be effectively improved.
  • Comparative Example 1 As the coating film according to Comparative Example 1, an epichlorohydrin / bisphenol A type coating film containing zinc powder was arranged on a brazing sheet with a film thickness of 80 ⁇ m.
  • Comparative Example 2 As the coating film according to Comparative Example 2, an epichlorohydrin / bisphenol A type coating film containing zinc powder was arranged on a brazing sheet with a film thickness of 5 ⁇ m.
  • Example 1 As the coating film according to Example 1, an epichlorohydrin / bisphenol A type coating film containing zinc powder was arranged on a brazing sheet with a film thickness of 40 ⁇ m.
  • Example 2 As the coating film according to Example 2, an epichlorohydrin / bisphenol A type coating film containing zinc powder was arranged in a fillet portion of a heat exchanger composed of a brazing sheet with a film thickness of 40 ⁇ m.
  • Example and Comparative Example 1 As is clear from the comparison of FIGS. 6A to 6D and 7A, 7B, and 7C, if the coating film is sufficiently thick (Example and Comparative Example 1), the sacrificial anticorrosion function effectively and the coating film is coated. Corrosion does not occur under the coating film, but if the thickness of the coating film is sufficiently thin (Comparative Example 2), corrosion under the coating film occurs due to insufficient blocking of water, oxygen, and the like.
  • Example 1 if the thickness of the coating film is sufficiently thick (Comparative Example 1), stress is generated inside the coating film and at the interface between the coating film and the substrate. As a result, the coating film is easily peeled off. However, if the thickness of the coating film is sufficiently thin (Example and Comparative Example 2), the adhesion of the coating film is ensured.
  • the adhesion of Example 1 and Comparative Example is plotted with the horizontal axis representing the thickness of the coating film and the vertical axis representing the adhesion.
  • the number of remaining coating films in the above-mentioned 100-square grid test is defined as the adhesion and plotted.
  • the thickness of the coating film (epoxy film) in the range of 10 to 50 ⁇ m is the most suitable condition for ensuring the corrosion resistance of the coating film.
  • the present disclosure can be widely and suitably used in the field of aluminum heat exchangers for air conditioners and the like.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Devices For Blowing Cold Air, Devices For Blowing Warm Air, And Means For Preventing Water Condensation In Air Conditioning Units (AREA)
  • Air Filters, Heat-Exchange Apparatuses, And Housings Of Air-Conditioning Units (AREA)
  • Laminated Bodies (AREA)

Abstract

Brazing sheets (10): are each provided with an aluminum alloy core material (11), a brazing material layer (12), and a sacrificial anode material layer (13) that contains zinc; and have bonding surfaces (10a) that constitute a joined section (21) and non-bonding adjacent surfaces (10b) that are adjacent to the bonding surfaces (10a). A fillet (22) is formed at a site that is between the non-bonding adjacent surfaces (10b) and adjacent to the bonding surfaces (10a), and an epoxy-based coating film (14), 10–50 μm in thickness, is disposed on the bonding surfaces (10a) and the fillet (22).

Description

熱交換器及びそれを備えた空気調和装置Heat exchanger and air conditioner equipped with it
 本開示は、アルミニウム製の熱交換器及びそれを備えた空気調和装置に関する。 The present disclosure relates to an aluminum heat exchanger and an air conditioner equipped with the heat exchanger.
 一般的な熱交換器は、通常、管およびフィンを備えており、管の外周に複数のフィンが取り付けられた構成を有している。管の材料としては、銅(Cu)またはその合金(便宜上「銅材」と称する)が用いられてきたが、近年ではアルミニウム(Al)またはその合金(アルミニウム材)も用いられている。フィンの材料としては、一般的にはアルミニウム材が用いられている。 A general heat exchanger is usually provided with a pipe and fins, and has a configuration in which a plurality of fins are attached to the outer circumference of the pipe. As the material of the tube, copper (Cu) or an alloy thereof (referred to as "copper material" for convenience) has been used, but in recent years, aluminum (Al) or an alloy thereof (aluminum material) has also been used. As a fin material, an aluminum material is generally used.
 熱交換器の製造に際して、管にフィンを取り付けるためには、一般的にはろう材による接合が用いられる。管およびフィンのいずれもアルミニウム材製であれば、例えば、アルミニウム合金製の心材の少なくとも一方の面にろう材層がクラッド(被覆)されたブレージングシートが用いられる。管およびフィンの防食性を考慮すれば、心材の一方の面にろう材がクラッドされ他方の面に犠牲陽極材層がクラッドされたブレージングシートが用いられる。 When manufacturing a heat exchanger, joining with brazing material is generally used to attach fins to the pipe. If both the pipe and the fin are made of an aluminum material, for example, a brazing sheet in which a brazing material layer is clad (coated) on at least one surface of a core material made of an aluminum alloy is used. Considering the corrosion resistance of the pipe and fins, a brazing sheet in which a brazing material is clad on one surface of the core material and a sacrificial anode material layer is clad on the other surface is used.
 ろう材としては、一般的には、アルミニウム合金のろう付けに用いられるアルミニウム-シリコン(Si)系合金が用いられ、犠牲陽極材としては、その電位を卑とするために、一般的にはアルミニウム合金に亜鉛(Zn)を添加したものが用いられる。代表的な犠牲陽極材としては、一般的なアルミニウム-シリコン系合金のろう材に亜鉛を添加したものが挙げられる。これにより、犠牲陽極材がろう材としても機能することになる。 As the brazing material, an aluminum-silicon (Si) -based alloy used for brazing an aluminum alloy is generally used, and as a sacrificial anode material, aluminum is generally used in order to make its potential low. An alloy in which zinc (Zn) is added is used. As a typical sacrificial anode material, a brazing material of a general aluminum-silicon alloy with zinc added can be mentioned. As a result, the sacrificial anode material also functions as a brazing material.
 犠牲陽極材層がクラッドされたブレージングシートの一例としては、例えば、特許文献1に開示されるものが知られている。特許文献1は、自動車用熱交換器、特に流体(冷却水または冷媒等)の通路構成材に使用されるアルミニウム合金ブレージングシートを開示しており、良好なろう付け性と、ろう付け後の優れた強度および耐食性を実現するために、心材および犠牲陽極材の成分が調整されている。 As an example of the brazing sheet in which the sacrificial anode material layer is clad, for example, the one disclosed in Patent Document 1 is known. Patent Document 1 discloses an aluminum alloy brazing sheet used for a heat exchanger for an automobile, particularly a passage component of a fluid (cooling water, a refrigerant, etc.), and has good brazing property and excellent after brazing. The components of the core material and the sacrificial anode material are adjusted to achieve the strength and corrosion resistance.
 このブレージングシートでは、犠牲陽極材において、シリコン、鉄(Fe)およびマンガン(Mn)の含有量を0.15質量%以下に規制している。これは、Al-Mn-Si系またはAl-Fe-Mn-Si系の化合物の生成を抑制し、ろう付け後の強度低下を抑制するためである。また、このブレージングシートでは、心材においてもシリコンの含有量が0.15質量%以下に規制されるとともに、心材には銅が0.40~1.2重量%の範囲内で添加されている。銅を添加する理由は、心材の強度向上とともに、心材の電位を貴にして犠牲陽極層等との電位差を大きくし、犠牲陽極作用による防食効果を向上させるためである。 In this brazing sheet, the content of silicon, iron (Fe) and manganese (Mn) in the sacrificial anode material is regulated to 0.15% by mass or less. This is because the formation of Al—Mn—Si or Al—Fe—Mn—Si compounds is suppressed, and the decrease in strength after brazing is suppressed. Further, in this brazing sheet, the silicon content of the core material is regulated to 0.15% by mass or less, and copper is added to the core material in the range of 0.40 to 1.2% by weight. The reason for adding copper is to improve the strength of the core material, increase the potential difference between the core material and the sacrificial anode layer, and improve the anticorrosion effect due to the sacrificial anode action.
 また、犠牲陽極材層がクラッドされたブレージングシートの他の例としては、例えば、特許文献2に開示されるものが知られている。特許文献2も、自動車用熱交換器、特に流体の通路構成材に使用されるアルミニウム合金ブレージングシートを開示している。当該ブレージングシートにおいては、両面に犠牲防食効果を備え、かつ、その片面にろう付機能を有し、さらに接合部の優先腐食を防止するために、心材および犠牲陽極材だけでなくろう材の成分も調整している。 Further, as another example of the brazing sheet in which the sacrificial anode material layer is clad, for example, the one disclosed in Patent Document 2 is known. Patent Document 2 also discloses an aluminum alloy brazing sheet used for an automobile heat exchanger, particularly a fluid passage component. In the brazing sheet, not only the core material and the sacrificial anode material but also the brazing material component has a sacrificial anticorrosive effect on both sides and a brazing function on one side thereof and further prevents preferential corrosion of the joint portion. Is also adjusting.
 このブレージングシートでは、犠牲陽極材だけでなくろう材にも亜鉛(Zn)が添加されているとともに、ろう材にはさらに銅が0.1~0.6mass%の範囲内で添加されており、心材にも銅が0.05~1.2mass%の範囲内で添加されている。それぞれの材料に対する銅の添加目的は異なっており、ろう材については、当該ろう材の電位を貴にするためであり、心材については、当該心材の強度を向上させるためである。 In this brazing sheet, zinc (Zn) is added not only to the sacrificial anode material but also to the brazing material, and copper is further added to the brazing material in the range of 0.1 to 0.6 mass%. Copper is also added to the core material in the range of 0.05 to 1.2 mass%. The purpose of adding copper to each material is different, for the brazing material, to make the potential of the brazing material noble, and for the core material, to improve the strength of the core material.
特開2010-163674号公報Japanese Unexamined Patent Publication No. 2010-163674 特開2013-155404号公報Japanese Unexamined Patent Publication No. 2013-155404
 特許文献1に開示のブレージングシートでは、心材への銅の添加により強度向上と犠牲陽極作用による防食効果の向上とを図っている。しかしながら、このブレージングシートでは、犠牲陽極材および心材のいずれもシリコンの含有量を0.15質量%以下に制限している上に、心材については、銅以外の種々の金属元素の含有量についても細かく特定されている。そのため、心材および犠牲陽極材として用いることが可能な材料の選択肢の幅が小さくなってしまう。しかも、このブレージングシートでは、犠牲陽極材のシリコンの含有量をごく少量に規制している。そのため、この犠牲陽極材層は、一般的なろう材としての機能を有さないと考えられる。 In the brazing sheet disclosed in Patent Document 1, the strength is improved by adding copper to the core material, and the anticorrosion effect is improved by the sacrificial anode action. However, in this brazing sheet, the silicon content of both the sacrificial anode material and the core material is limited to 0.15% by mass or less, and the core material also contains various metal elements other than copper. It is specified in detail. Therefore, the range of material choices that can be used as the core material and the sacrificial anode material is reduced. Moreover, in this brazing sheet, the silicon content of the sacrificial anode material is regulated to a very small amount. Therefore, it is considered that this sacrificial anode material layer does not have a function as a general brazing material.
 特許文献2に開示のブレージングシートでは、ろう材に亜鉛とともに銅を添加することで、ろう付けの接合部に亜鉛が濃縮されるだけでなく銅も同様に濃縮される。ここでは、この銅の濃縮(含有)により、当該接合部の電位が亜鉛により卑化し過ぎることの防止を図っている。しかしながら、銅と亜鉛とを併用すると、本発明者らの鋭意検討の結果、犠牲陽極材層の優先腐食作用が低減して耐食性の低下が生じることが明らかとなった。 In the brazing sheet disclosed in Patent Document 2, by adding copper together with zinc to the brazing material, not only zinc is concentrated at the brazing joint but also copper is concentrated in the same manner. Here, by concentrating (containing) this copper, it is attempted to prevent the potential of the joint portion from being overly based by zinc. However, when copper and zinc are used in combination, as a result of diligent studies by the present inventors, it has been clarified that the preferential corrosive action of the sacrificial anode material layer is reduced and the corrosion resistance is lowered.
 例えば、熱交換器の種類によっては、ブレージングシート同士を互いに接合したときに、それぞれの接合面により形成される角度が鋭角となるような構造が含まれる。便宜上、このような構造を「鋭角接合構造」とし、ブレージングシートの接合面に隣接して接合されない面を「非接合隣接面」とすると、このような鋭角接合構造では、互いに鋭角を成す非接合隣接面の間にフィレットが形成される。このフィレットは、本明細書では、接合時に接合面から流出したろう材または犠牲陽極材が固化したものとして定義する。 For example, depending on the type of heat exchanger, a structure is included in which when the brazing sheets are joined to each other, the angle formed by the respective joint surfaces becomes an acute angle. For convenience, if such a structure is referred to as an "acute-angled joint structure" and a surface that is not joined adjacent to the joint surface of the brazing sheet is referred to as a "non-joint adjacent surface", in such a sharp-angle joint structure, non-joins that form an acute angle with each other Fillets are formed between the adjacent surfaces. This fillet is defined herein as a solidified wax or sacrificial anode material that has flowed out of the joint surface during joining.
 特許文献2のようにろう材において銅と亜鉛とを併用した場合、フィレットには、前述の通り、電位を卑とする亜鉛と電位を貴とする銅とが共存することになる。犠牲陽極材層が予め銅を含有する構成であれば、フィレットにおいては、銅により電位が貴化し過ぎて亜鉛による犠牲陽極作用が低減し、フィレットの耐食性が低下するおそれがある。この場合、フィレットから接合部に向けて腐食が進行して接合部の接合強度の低下を招く可能性がある。 When copper and zinc are used in combination in a brazing material as in Patent Document 2, zinc having a low potential and copper having a noble potential coexist in the fillet as described above. If the sacrificial anode material layer is configured to contain copper in advance, the potential of the fillet may be too noble due to copper, the sacrificial anode action of zinc may be reduced, and the corrosion resistance of the fillet may be lowered. In this case, corrosion may proceed from the fillet toward the joint, resulting in a decrease in the joint strength of the joint.
 本開示は、アルミニウム製の熱交換器の耐食性を良好なものとすることを目的とする。 The purpose of this disclosure is to improve the corrosion resistance of aluminum heat exchangers.
 本開示に係る熱交換器は、アルミニウム製の熱交換器であって、熱交換器の表面の一部に、厚さが10~50μmの範囲内であるエポキシ系の塗膜を有する。熱交換器は、塗膜に紫外線が直接照射されないよう箱体内に配置されている。 The heat exchanger according to the present disclosure is an aluminum heat exchanger, and has an epoxy-based coating film having a thickness in the range of 10 to 50 μm on a part of the surface of the heat exchanger. The heat exchanger is arranged inside the box so that the coating film is not directly irradiated with ultraviolet rays.
 上記構成により、アルミニウム製熱交換器の耐食性を良好なものとすることができる。 With the above configuration, the corrosion resistance of the aluminum heat exchanger can be improved.
図1Aは、本開示の代表的な実施の形態に係るブレージングシートの概略構成を示す模式的断面図である。FIG. 1A is a schematic cross-sectional view showing a schematic configuration of a brazing sheet according to a typical embodiment of the present disclosure. 図1Bは、本開示の代表的な実施の形態に係るブレージングシートの接合構造の概略構成を示す模式的断面図である。FIG. 1B is a schematic cross-sectional view showing a schematic configuration of a joining structure of a brazing sheet according to a typical embodiment of the present disclosure. 図2Aは、図1Aに示すブレージングシートを用いて構成されるプレートフィン積層型熱交換器のヘッダの一例を示す模式的断面図である。FIG. 2A is a schematic cross-sectional view showing an example of a header of a plate fin laminated heat exchanger constructed by using the brazing sheet shown in FIG. 1A. 図2Bは図2Aに示すヘッダが有するブレージングシートの接合構造を拡大した模式的部分断面図である。FIG. 2B is an enlarged schematic partial cross-sectional view of the joining structure of the brazing sheet included in the header shown in FIG. 2A. 図3Aは、図1Aに示すブレージングシートを用いて構成されるパラレルフローコンデンサ(PFC)の一例を示す模式的部分断面図である。FIG. 3A is a schematic partial cross-sectional view showing an example of a parallel flow capacitor (PFC) configured using the brazing sheet shown in FIG. 1A. 図3Bは、図3Aに示すPFCが有するブレージングシートの接合構造を拡大した模式的部分断面図である。FIG. 3B is an enlarged schematic partial cross-sectional view of the joining structure of the brazing sheet included in the PFC shown in FIG. 3A. 図4は、図2Aに示すヘッダに対しディッピング塗装を施したプレートフィン積層型熱交換器を空気調和装置内に設置した概略構成を示す模式的断面図である。FIG. 4 is a schematic cross-sectional view showing a schematic configuration in which a plate fin laminated heat exchanger in which the header shown in FIG. 2A is subjected to dipping coating is installed in an air conditioner. 図5は、エピクロルヒドリン・ビスフェノールA型樹脂の分子構造を示す図である。FIG. 5 is a diagram showing the molecular structure of epichlorohydrin / bisphenol A type resin. 図6Aは、比較例1に係るブレージングシートに配置された塗膜の耐食性試験結果を示す図である。FIG. 6A is a diagram showing the results of a corrosion resistance test of the coating film arranged on the brazing sheet according to Comparative Example 1. 図6Bは、比較例2に係るブレージングシートに配置された塗膜の耐食性試験結果を示す図である。FIG. 6B is a diagram showing the results of a corrosion resistance test of the coating film arranged on the brazing sheet according to Comparative Example 2. 図6Cは、実施例1に係るブレージングシートに配置された塗膜の耐食性試験結果を示す図である。FIG. 6C is a diagram showing the results of a corrosion resistance test of the coating film arranged on the brazing sheet according to Example 1. 図6Dは、実施例2に係るブレージングシートに配置された塗膜の耐食性試験結果を示す図である。FIG. 6D is a diagram showing the results of a corrosion resistance test of the coating film arranged on the brazing sheet according to Example 2. 図7Aは、比較例1に係るブレージングシートに配置された塗膜の耐食性試験後の密着性試験結果を示す図である。FIG. 7A is a diagram showing the results of an adhesion test after the corrosion resistance test of the coating film arranged on the brazing sheet according to Comparative Example 1. 7Bは、比較例2に係るブレージングシートに配置された塗膜の耐食性試験後の密着性試験結果を示す図である。FIG. 7B is a diagram showing the adhesion test result after the corrosion resistance test of the coating film arranged on the brazing sheet according to Comparative Example 2. 7Cは、実施例1に係るブレージングシートに配置された塗膜の耐食性試験後の密着性試験結果を示す図である。FIG. 7C is a diagram showing the adhesion test result after the corrosion resistance test of the coating film arranged on the brazing sheet according to Example 1. 図8Aは、比較例1に係るブレージングシートに配置された塗膜の耐湿性試験後の密着性試験結果を示す図である。FIG. 8A is a diagram showing the results of an adhesion test after the moisture resistance test of the coating film arranged on the brazing sheet according to Comparative Example 1. 図8Bは、比較例2に係るブレージングシートに配置された塗膜の耐湿性試験後の密着性試験結果を示す図である。FIG. 8B is a diagram showing the results of an adhesion test after the moisture resistance test of the coating film arranged on the brazing sheet according to Comparative Example 2. 図8Cは、実施例1に係るブレージングシートに配置された塗膜の耐湿性試験後の密着性試験結果を示す図である。FIG. 8C is a diagram showing the results of an adhesion test after the moisture resistance test of the coating film arranged on the brazing sheet according to Example 1. 図9は、本開示に係る塗膜の厚みと密着性の関係を示すグラフである。FIG. 9 is a graph showing the relationship between the thickness of the coating film and the adhesion according to the present disclosure.
 本開示に係る熱交換器は、アルミニウム製の熱交換器であって、熱交換器の表面の一部に、厚さが10~50μmの範囲内であるエポキシ系の塗膜を有する。熱交換器は、塗膜に紫外線が直接照射されないよう箱体内に配置されている。アルミニウム材との良好な密着性を有するエポキシ系塗料を用いることで、アルミニウム材の欠点である耐候性を構造的に保護し、塗膜の劣化及び剥離を抑制することができる。 The heat exchanger according to the present disclosure is an aluminum heat exchanger, and has an epoxy-based coating film having a thickness in the range of 10 to 50 μm on a part of the surface of the heat exchanger. The heat exchanger is arranged inside the box so that the coating film is not directly irradiated with ultraviolet rays. By using an epoxy-based paint having good adhesion to an aluminum material, it is possible to structurally protect the weather resistance, which is a drawback of the aluminum material, and suppress deterioration and peeling of the coating film.
 なお、塗膜は、アルミニウムより電位が卑な金属粉末を含有してもよい。 The coating film may contain a metal powder having a lower potential than aluminum.
 なお、熱交換器はブレージングを用いて構成されていてもよい。この場合、電位が相対的に卑であるブレージングシート同士の接合部が、さらに卑である金属粒子の犠牲陽極作用によって保護される。従って、ブレージングシート同士の接合部に隣接して生じるフィレットから接合部に腐食が進行して接合部の接合強度の低下を招くおそれを有効に抑制または防止することができるので、熱交換器の接合部における耐食性をより一層良好なものとすることができる。すなわち、フィレットの電位がその周囲よりも卑な場合であっても、当該フィレットの優先腐食を簡便かつ有効に抑制または防止して、熱交換器の耐食性を良好なものとすることができる。 The heat exchanger may be configured by using brazing. In this case, the joint between the brazing sheets having a relatively low potential is protected by the sacrificial anodic action of the metal particles having a relatively low potential. Therefore, it is possible to effectively suppress or prevent the possibility that corrosion progresses from the fillet generated adjacent to the joint portion between the brazing sheets to the joint portion and causes a decrease in the joint strength of the joint portion, so that the heat exchanger can be joined. Corrosion resistance in the part can be made even better. That is, even when the potential of the fillet is lower than that of its surroundings, the preferential corrosion of the fillet can be easily and effectively suppressed or prevented, and the corrosion resistance of the heat exchanger can be improved.
 なお、ブレージングシート同士の接合部を保護するため、接合部をヘッダ部に集中させ、当該接合部よりも電位が卑である金属粒子を含有するエポキシ系の塗料が、当該接合部およびその周囲のみに上塗りされてもよい。 In order to protect the joint between the brazing sheets, the joint is concentrated on the header, and the epoxy-based paint containing metal particles whose potential is lower than that of the joint is applied only to the joint and its surroundings. May be overcoated.
 なお、電位の評価方法は特に限定されず、公知の方法を好適に用いることができる。代表的には、ポテンショスタット/ガルバノスタットに、電位測定用の試料(例えば、ブレージングシート10、もしくは、心材11、ろう材、犠牲陽極材、フィレット22または接合部21、あるいはこれらを模擬した組成の合金等)と、対極と、参照電極(例えば銀/塩化銀(Ag/AgCl)電極)とを接続して電解液(例えば5重量&の塩化ナトリウム(NaCl)溶液)に浸漬し、試料と参照電極との電位差を測定する方法を挙げることができる。 The potential evaluation method is not particularly limited, and a known method can be preferably used. Typically, a potential measurement sample (for example, a brazing sheet 10 or a core material 11, a brazing material, a sacrificial anode material, a fillet 22 or a joint portion 21, or a composition simulating these) is used on a potato stat / galvanostat. (Alloy, etc.), the counter electrode, and the reference electrode (for example, silver / silver chloride (Ag / AgCl) electrode) are connected and immersed in an electrolytic solution (for example, 5% by weight & sodium chloride (NaCl) solution) to refer to the sample. A method of measuring the potential difference from the electrode can be mentioned.
 防食塗装としては一般的に、アルミニウム材との好適な密着強度が得られるエポキシ系塗料を下塗りとし、下塗り塗膜を紫外線から保護する目的でウレタン系等の塗料を上塗りとする複数層の構成が用いられる。しかしながら、2コート目以降はコスト抑制及び環境保護の観点から望ましくない。発明者らの検討の結果、塗装部への紫外線の侵入を十分抑制する構造であれば、熱交換器として十分な耐食寿命の向上が図れることが明らかとなった。また、塗装の必要がある接合部をヘッダ部に集中させた場合には、例えばディップ塗装により複雑な形状でも一度に塗装可能である。従って、より簡便に熱交換器を生産でき、環境への負荷も低減することが可能である。また、ヘッダ部は、熱交換効率がフィン部や伝熱管部に比べて良くない。このため、接合部がヘッダ部に配置される場合には、ヘッダ部を熱交換器全体において相対的な非通風部とすることにより効率低下を最小限にすることができる。 As an anticorrosion coating, a multi-layer structure is generally composed of an epoxy-based paint that can obtain suitable adhesion strength to an aluminum material as an undercoat, and a urethane-based paint as a topcoat for the purpose of protecting the undercoat coating film from ultraviolet rays. Used. However, the second and subsequent coats are not desirable from the viewpoint of cost control and environmental protection. As a result of the studies by the inventors, it has been clarified that a structure that sufficiently suppresses the invasion of ultraviolet rays into the painted portion can sufficiently improve the corrosion resistance life as a heat exchanger. Further, when the joints that need to be painted are concentrated on the header portion, even a complicated shape can be painted at once by dip painting, for example. Therefore, the heat exchanger can be produced more easily and the burden on the environment can be reduced. Further, the heat exchange efficiency of the header portion is not as good as that of the fin portion and the heat transfer tube portion. Therefore, when the joint portion is arranged in the header portion, the efficiency decrease can be minimized by making the header portion a relative non-ventilated portion in the entire heat exchanger.
 なお、ヘッダ部が熱交換器の鉛直最下部に位置するよう熱交換器を設置することにより、熱交換器の運転時に生ずる結露水によって剥離塗膜または腐食生成物をより確実に洗い流すことができる。その結果、剥離塗膜又は腐食生成物の飛散を有効に抑制または防止することができ、周囲の環境汚染を抑制することができる。 By installing the heat exchanger so that the header portion is located at the vertical bottom of the heat exchanger, the dew condensation water generated during the operation of the heat exchanger can more reliably wash away the peeled coating film or the corrosion products. .. As a result, it is possible to effectively suppress or prevent the scattering of the peeled coating film or the corrosion product, and it is possible to suppress the pollution of the surrounding environment.
 以下、本開示の代表的な実施の形態を、図面を参照しながら説明する。なお、以下ではすべての図を通じて同一または相当する要素には同一の参照符号を付して、重複する説明を省略する。 Hereinafter, typical embodiments of the present disclosure will be described with reference to the drawings. In the following, the same or corresponding elements will be designated by the same reference numerals throughout all the figures, and duplicate description will be omitted.
 (実施の形態1)
 [ブレージングシート]
 本開示に係る熱交換器は、例えば、アルミニウム合金製のブレージングシートを用いて構成されている。具体的には、例えば、図1Aに示すように、本開示に係るブレージングシート10は、心材11、ろう材層12、および犠牲陽極材層13を備えている。ろう材層12は、心材11の一方の面に被覆(クラッド)され、犠牲陽極材層13は心材11の他方の面、すなわち、ろう材層12が被覆されている面とは反対側の面に被覆されている。心材11、ろう材層12を構成するろう材、および、犠牲陽極材層13を構成する犠牲陽極材はいずれもアルミニウム合金である。
(Embodiment 1)
[Blazing sheet]
The heat exchanger according to the present disclosure is configured by using, for example, a brazing sheet made of an aluminum alloy. Specifically, for example, as shown in FIG. 1A, the brazing sheet 10 according to the present disclosure includes a core material 11, a brazing material layer 12, and a sacrificial anode material layer 13. The brazing material layer 12 is coated (clad) on one surface of the core material 11, and the sacrificial anode material layer 13 is the other surface of the core material 11, that is, the surface opposite to the surface on which the brazing material layer 12 is coated. It is covered with. The core material 11, the brazing material forming the brazing material layer 12, and the sacrificial anode material forming the sacrificial anode material layer 13 are all aluminum alloys.
 あるいは図示しないが、ブレージングシート10は、心材11および犠牲陽極材層13を備え、ろう材層12を備えていない構成でもよい。このようなブレージングシート10では、心材11の両方の面に犠牲陽極材層13が形成されている。 Alternatively, although not shown, the brazing sheet 10 may have a configuration in which the core material 11 and the sacrificial anode material layer 13 are provided, and the brazing material layer 12 is not provided. In such a brazing sheet 10, a sacrificial anode material layer 13 is formed on both surfaces of the core material 11.
 ブレージングシート10は、少なくとも犠牲陽極材層13の側に接合面を有しており、この接合面同士を互いに接合することで接合部を形成する。ブレージングシート10同士を接合面で接合した構造が、ブレージングシート10の接合構造である。ブレージングシート10は、接合面に隣接する非接合隣接面を有する。ブレージングシート10同士を接合して接合構造を形成したときには、それぞれの非接合隣接面により形成される角度は鋭角となっている。 The brazing sheet 10 has a joint surface at least on the side of the sacrificial anode material layer 13, and the joint surface is formed by joining the joint surfaces to each other. The structure in which the brazing sheets 10 are joined to each other at the joining surface is the joining structure of the brazing sheets 10. The brazing sheet 10 has a non-joint adjacent surface adjacent to the joint surface. When the brazing sheets 10 are joined together to form a joined structure, the angle formed by the respective non-joined adjacent surfaces is an acute angle.
 接合構造20では、ブレージングシート10同士を接合して接合部21を構成したときに、図1Bに示すように、非接合隣接面10b同士の間にフィレット22が形成される。熱交換器には、このようなフィレット22が形成される部材または構造等を含んでおり、このような部材または構造等においては、非接合隣接面10b同士が鋭角を成していることが多い。このフィレット22は、本実施の形態では、接合時に接合面10aから流出したろう材(または犠牲陽極材)が固化したものとして定義される。 In the joining structure 20, when the brazing sheets 10 are joined together to form the joining portion 21, a fillet 22 is formed between the non-joining adjacent surfaces 10b as shown in FIG. 1B. The heat exchanger includes a member or structure on which such a fillet 22 is formed, and in such a member or structure, the non-joined adjacent surfaces 10b often form an acute angle. .. In the present embodiment, the fillet 22 is defined as a solidified brazing material (or sacrificial anode material) that has flowed out from the joint surface 10a at the time of joining.
 ブレージングシート10を用いた熱交換器においては、このフィレット22が優先的に腐食することが有効に抑制または回避される。 In the heat exchanger using the brazing sheet 10, it is effectively suppressed or avoided that the fillet 22 is preferentially corroded.
 本実施の形態のブレージングシート10では、接合面10aが少なくとも犠牲陽極材層13の上に設定されている。したがって、後述するように、犠牲陽極材はろう材を兼ねている。すなわち、犠牲陽極材層13は、接合時にはろう材としてブレージングシート10同士の接合に寄与し、接合後には犠牲陽極材としてブレージングシート10の防食効果に寄与する。 In the brazing sheet 10 of the present embodiment, the joint surface 10a is set at least on the sacrificial anode material layer 13. Therefore, as will be described later, the sacrificial anode material also serves as a brazing material. That is, the sacrificial anode material layer 13 contributes to joining the brazing sheets 10 as a brazing material at the time of joining, and contributes to the anticorrosion effect of the brazing sheet 10 as a sacrificial anode material after joining.
 ブレージングシート10において、接合面10aに隣接して非接合隣接面10bが設定されている。それゆえ、非接合隣接面10bも接合面10aと同様に犠牲陽極材層13である。 In the brazing sheet 10, a non-joint adjacent surface 10b is set adjacent to the joint surface 10a. Therefore, the non-bonded adjacent surface 10b is also the sacrificial anode material layer 13 like the bonded surface 10a.
 ブレージングシート10の接合構造20においては、図1Bにおいてブロック矢印C1およびC2に示す方向に腐食が進行する可能性がある。ブロック矢印C1の方向は、非接合隣接面10bから心材11の方向に対して進行する腐食方向である。ブロック矢印C2の方向は、フィレット22を含む接合部21において、接合面10aの方向に沿って進行する腐食方向である。 In the joint structure 20 of the brazing sheet 10, corrosion may proceed in the directions indicated by the block arrows C1 and C2 in FIG. 1B. The direction of the block arrow C1 is the corrosion direction that progresses from the non-bonded adjacent surface 10b to the direction of the core material 11. The direction of the block arrow C2 is the corrosion direction that progresses along the direction of the joint surface 10a at the joint portion 21 including the fillet 22.
 このうち、腐食方向C1に進行する腐食は、犠牲陽極材層13による犠牲陽極作用によって抑制(回避または防止)されるが、腐食方向C2に進行する腐食は、フィレット22に亜鉛が濃縮されることで、当該フィレット22を含む接合部21の電位が卑化され過ぎて進行するおそれがある。本実施の形態に係るブレージングシート10では、接合面10a及びフィレット22の表面に、エポキシ系塗膜14が配置されることにより、腐食方向C2の腐食を有効に抑制(回避または防止)することができる。 Of these, the corrosion that progresses in the corrosion direction C1 is suppressed (avoided or prevented) by the sacrificial anode action of the sacrificial anode material layer 13, but the corrosion that progresses in the corrosion direction C2 is that zinc is concentrated in the fillet 22. Therefore, there is a possibility that the potential of the joint portion 21 including the fillet 22 is too low and progresses. In the brazing sheet 10 according to the present embodiment, the corrosion in the corrosion direction C2 can be effectively suppressed (avoided or prevented) by arranging the epoxy-based coating film 14 on the surfaces of the joint surface 10a and the fillet 22. it can.
 [ブレージングシートの接合構造および熱交換器]
 ブレージングシート10は、前述の通り熱交換器の製造に特に好適に用いることができる。ブレージングシート10を熱交換器に適用した場合に形成される接合構造20は、前述したように、図1Bに例示するような構造であるが、より具体的には、図2A及び図2Bに示すような構造を有するプレートフィン積層型熱交換器、図3A,図3Bに示すような構造を有するパラレルフローコンデンサ(PFC)を挙げることができる。
[Blazing sheet joint structure and heat exchanger]
The brazing sheet 10 can be particularly suitably used for manufacturing a heat exchanger as described above. The bonding structure 20 formed when the brazing sheet 10 is applied to the heat exchanger has a structure as illustrated in FIG. 1B as described above, but more specifically, it is shown in FIGS. 2A and 2B. Examples thereof include a plate fin laminated heat exchanger having such a structure and a parallel flow capacitor (PFC) having a structure as shown in FIGS. 3A and 3B.
 プレートフィン積層型熱交換器は、図示しないが、第1流体である冷媒が流れる流路を有するプレートフィン積層体において、各プレートフィン積層間に第2流体である空気を流して、これら第1流体と第2流体との間で熱交換を行うものである。この熱交換器が備えるプレートフィンは、第1流体が並行に流れる複数の第1流体流路を有する流路領域と、この流路領域における各第1流体流路に連通するヘッダ流路を有するヘッダ領域と、を備えている。 Although not shown, the plate fin laminated heat exchanger is a plate fin laminated body having a flow path through which a refrigerant, which is a first fluid, flows, and air, which is a second fluid, is flowed between each plate fin laminated body to flow the first fluid. Heat exchange is performed between the fluid and the second fluid. The plate fin included in this heat exchanger has a flow path region having a plurality of first fluid flow paths through which the first fluid flows in parallel, and a header flow path communicating with each first fluid flow path in this flow path region. It has a header area and.
 プレートフィン積層型熱交換器では、プレートフィン積層体の積層方向の両側に、当該プレートフィンと平面視が略同一形状のエンドプレートが設けられており、これら一対のエンドプレートとこれらの間に介在する複数のプレートフィンとは、積層された状態でろう付けにより接合されて一体化されている。図2Aは、このプレートフィン積層体30におけるヘッダ部分の概略構造を部分断面として示しており、図中最上部に位置するエンドプレート31に対して複数のプレートフィン32が積層されている。 In the plate fin laminated heat exchanger, end plates having substantially the same shape as the plate fins in a plan view are provided on both sides of the plate fin laminated body in the laminating direction, and are interposed between these pair of end plates. The plurality of plate fins to be formed are joined and integrated by brazing in a laminated state. FIG. 2A shows a schematic structure of a header portion in the plate fin laminated body 30 as a partial cross section, and a plurality of plate fins 32 are laminated on an end plate 31 located at the uppermost part in the drawing.
 エンドプレート31およびプレートフィン32には、それぞれ開口部が設けられており、これらプレートが積層されてプレートフィン積層体30を形成することにより、ヘッダ開口33が形成される。図2Aに示す構成では、ヘッダ開口33の外側から図中ブロック矢印で示す方向に第1流体である冷媒が流入し、さらにプレートフィン32の間に冷媒が流入する。各プレートフィン32には、前述の通り、第1流体流路が設けられているので、プレートフィン32の間に流入した冷媒は、第1流体流路を流れる。また、第2流体である空気は、プレートフィン32の間に形成される空間を、冷媒の流れる方向(第1流体流路の方向)に交差するように流れる。これにより、空気が冷媒により冷却される。 An opening is provided in each of the end plate 31 and the plate fin 32, and the header opening 33 is formed by laminating these plates to form the plate fin laminated body 30. In the configuration shown in FIG. 2A, the refrigerant as the first fluid flows in from the outside of the header opening 33 in the direction indicated by the block arrow in the drawing, and further flows in between the plate fins 32. As described above, each plate fin 32 is provided with the first fluid flow path, so that the refrigerant flowing between the plate fins 32 flows through the first fluid flow path. Further, the air, which is the second fluid, flows in the space formed between the plate fins 32 so as to intersect the direction in which the refrigerant flows (the direction of the first fluid flow path). As a result, the air is cooled by the refrigerant.
 図2Bは、図2Aに示すプレートフィン積層体30の部分拡大図であり、ブレージングシート10の接合構造20の一例を模式的に示す。図2A及び図2Bに示す例では、プレートフィン32が本開示に係るブレージングシート10であり、接合構造20は、ヘッダ開口33側に位置する接合部21である。図2Bでは、ブレージングシート10であるプレートフィン32について、犠牲陽極材層13をハッチングで強調して図示するとともに、フィレット22もハッチングで強調して図示している。 FIG. 2B is a partially enlarged view of the plate fin laminate 30 shown in FIG. 2A, and schematically shows an example of the joining structure 20 of the brazing sheet 10. In the examples shown in FIGS. 2A and 2B, the plate fin 32 is the brazing sheet 10 according to the present disclosure, and the joint structure 20 is the joint portion 21 located on the header opening 33 side. In FIG. 2B, the plate fin 32, which is the brazing sheet 10, is shown by emphasizing the sacrificial anode material layer 13 with hatching, and also highlighting the fillet 22 with hatching.
 ヘッダ開口33側の接合部21では、プレートフィン32の接合面10a同士が接合されており、この接合面10aに隣接する非接合隣接面10bの間にフィレット22が形成されている。本実施の形態では、接合面10aおよびフィレット22の表面にエポキシ系塗膜14が配置されている。これにより接合部21の優先腐食が良好に抑制(回避または防止)されるので、プレートフィン積層型熱交換器の耐食寿命を向上することができる。 At the joint portion 21 on the header opening 33 side, the joint surfaces 10a of the plate fins 32 are joined to each other, and a fillet 22 is formed between the non-joint adjacent surfaces 10b adjacent to the joint surface 10a. In the present embodiment, the epoxy coating film 14 is arranged on the surfaces of the joint surface 10a and the fillet 22. As a result, the preferential corrosion of the joint portion 21 is satisfactorily suppressed (avoided or prevented), so that the corrosion resistance life of the plate fin laminated heat exchanger can be improved.
 このようなプレートフィン積層型熱交換器の具体的な構成例としては、例えば、特開2017-180856号公報、特開2018-066531号公報、特開2018-066532号公報、特開2018-066533号公報、特開2018-066534号公報、特開2018-066535号公報、特開2018-066536号公報等に記載されており、これら公開公報の記載内容は、本明細書で参照することにより本明細書の記載の一部とする。 Specific configuration examples of such a plate fin laminated heat exchanger include, for example, JP-A-2017-180856, JP-A-2018-066531, JP-A-2018-066532, and JP-A-2018-066533. It is described in Japanese Patent Application Laid-Open No. 2018-066534, Japanese Patent Application Laid-Open No. 2018-066535, Japanese Patent Application Laid-Open No. 2018-066536, etc. It shall be a part of the description of the specification.
 パラレルフローコンデンサ(PFC)は、カーエアコン(自動車用空気調和装置)用に広く用いられる熱交換器であり、一対のヘッダ管の間に複数の扁平管が配置され、これら扁平管の間に放熱用のコルゲートフィンが配置されている。これらヘッダ管、扁平管、コルゲートフィン等がろう付けにより接合されている。図3Aは、このPFC40におけるヘッダ管41と扁平管42との連結部分の概略構造を部分断面として示している。扁平管42の間にはコルゲートフィン43が設けられ、これらもろう付けにより接合されており、接合構造20は、図3Bに拡大図示するように、ヘッダ管41と扁平管42との連結部分である。 A parallel flow condenser (PFC) is a heat exchanger widely used for car air conditioners (air conditioners for automobiles). A plurality of flat tubes are arranged between a pair of header tubes, and heat is dissipated between these flat tubes. Corrugated fins are arranged. These header pipes, flat pipes, corrugated fins and the like are joined by brazing. FIG. 3A shows a schematic structure of a connecting portion between the header pipe 41 and the flat pipe 42 in the PFC 40 as a partial cross section. Corrugated fins 43 are provided between the flat pipes 42, and these are also joined by brazing, and the joining structure 20 is a connecting portion between the header pipe 41 and the flat pipe 42, as shown in an enlarged view in FIG. 3B. is there.
 図3Bに示す例では、ヘッダ管41および扁平管42がいずれもブレージングシート10であり、ヘッダ管41および扁平管42については、犠牲陽極材層13をハッチングで強調して図示している。また、フィレット22もハッチングで強調して図示している。扁平管42の犠牲陽極材層13は平坦であるため、接合面10aと非接合隣接面10bとは連続した単一面(犠牲陽極材層13の面)において異なる領域として設定される。したがって、扁平管42は、ブレージングシート10としては、曲げ部を有さないような平坦な形状のものである。 In the example shown in FIG. 3B, the header tube 41 and the flat tube 42 are both brazing sheets 10, and the header tube 41 and the flat tube 42 are shown by emphasizing the sacrificial anode material layer 13 with hatching. The fillet 22 is also highlighted by hatching. Since the sacrificial anode material layer 13 of the flat tube 42 is flat, the joint surface 10a and the non-joint adjacent surface 10b are set as different regions on a continuous single surface (the surface of the sacrificial anode material layer 13). Therefore, the flat tube 42 has a flat shape such that the brazing sheet 10 does not have a bent portion.
 ヘッダ管41は、扁平管42を貫通挿入するための開口部を有しており、この開口部に接合面10aおよび非接合隣接面10bが設けられている。図3Bでは、ヘッダ管41の接合面10aは、扁平管42の接合面10a(外面)と平行になるような面として図示しているが、これに限定されず、扁平管42の外面に平行にならない面であってもよい。ヘッダ管41の開口部は、ブレージングシート10としては、1段階の曲げ部を有する形状のものである。 The header pipe 41 has an opening for penetrating and inserting the flat pipe 42, and the joint surface 10a and the non-joint adjacent surface 10b are provided in the opening. In FIG. 3B, the joint surface 10a of the header pipe 41 is shown as a surface parallel to the joint surface 10a (outer surface) of the flat pipe 42, but the present invention is not limited to this, and the joint surface 10a is parallel to the outer surface of the flat pipe 42. It may be a surface that does not become. The opening of the header tube 41 has a shape having a one-step bent portion as the brazing sheet 10.
 図3Bに示す接合構造20では、ヘッダ管41の接合面10aに隣接する非接合隣接面10bと、扁平管42の接合面10aに隣接する非接合隣接面10bとの間に、フィレット22が形成されている。本実施の形態では、フィレット22の表面にエポキシ系塗膜14が配置されている。これにより接合部21の優先腐食が良好に抑制(回避または防止)されるので、PFCの耐食寿命を向上することができる。 In the joint structure 20 shown in FIG. 3B, a fillet 22 is formed between the non-joint adjacent surface 10b adjacent to the joint surface 10a of the header pipe 41 and the non-joint adjacent surface 10b adjacent to the joint surface 10a of the flat pipe 42. Has been done. In the present embodiment, the epoxy coating film 14 is arranged on the surface of the fillet 22. As a result, the preferential corrosion of the joint portion 21 is satisfactorily suppressed (avoided or prevented), so that the corrosion resistance life of the PFC can be improved.
 このようなブレージングシート10の接合構造20の製造方法は特に限定されず、公知のろう付け方法等を好適に用いることができる。例えば、ブレージングシート10の接合面10aに対して公知のフラックスを塗布し、その後、窒素雰囲気炉において例えば600℃程度の温度で加熱する方法が挙げられる。 The method for producing the joint structure 20 of the brazing sheet 10 is not particularly limited, and a known brazing method or the like can be preferably used. For example, a method in which a known flux is applied to the joint surface 10a of the brazing sheet 10 and then heated in a nitrogen atmosphere furnace at a temperature of, for example, about 600 ° C. can be mentioned.
 [熱交換器の配置形態]
 前述したプレートフィン積層型熱交換器またはPFCを空気調和装置に配置する際の形態について、一例を図4に示す。空気調和装置は、箱体56を有し、当該箱体56内に熱交換器51及び送風ファン53が配置される。熱交換器51の一部には前述したエポキシ系塗膜14の配置されるエポキシ系塗膜設置部52が配置されている。このエポキシ系塗膜設置部52は、図4の例では、熱交換器51のヘッダ部に相当する。本実施の形態では、図4に示すように、エポキシ系塗膜設置部52は、排水受け55の鉛直直上に設けられている。空気調和装置の運転時に熱交換器51において発生した結露水は、排水受け55によって受けられるとともに、箱体56外に排出される。前述した第2流体である空気の風路は、図中のブロック矢印で示されている。送風ファン53によって吸い込まれた流体は、エアフィルタ54を通り、熱交換器51によって熱交換され、箱体56外へ排出される。このとき、エポキシ系塗膜設置部52は、風路の一部を構成するが、排水受け55によって風路が部分的に遮断されているため、熱交換器51のエポキシ系塗膜設置部52における風量は塗膜の非設置部における風量と比較して小さい。このように風路が相対的に遮断されている部分を便宜上、非通風部と呼ぶ。
[Arrangement form of heat exchanger]
FIG. 4 shows an example of the mode when the above-mentioned plate fin laminated heat exchanger or PFC is arranged in the air conditioner. The air conditioner has a box body 56, and a heat exchanger 51 and a blower fan 53 are arranged in the box body 56. An epoxy-based coating film installation portion 52 on which the above-mentioned epoxy-based coating film 14 is arranged is arranged in a part of the heat exchanger 51. In the example of FIG. 4, the epoxy-based coating film installation portion 52 corresponds to the header portion of the heat exchanger 51. In the present embodiment, as shown in FIG. 4, the epoxy-based coating film installation portion 52 is provided vertically above the drainage receiver 55. The condensed water generated in the heat exchanger 51 during the operation of the air conditioner is received by the drainage receiver 55 and discharged to the outside of the box body 56. The air passage of the second fluid described above is indicated by a block arrow in the figure. The fluid sucked by the blower fan 53 passes through the air filter 54, is heat exchanged by the heat exchanger 51, and is discharged to the outside of the box body 56. At this time, the epoxy-based coating film installation portion 52 constitutes a part of the air passage, but since the air passage is partially blocked by the drainage receiver 55, the epoxy-based coating film installation portion 52 of the heat exchanger 51 The air volume in is smaller than the air volume in the non-installed portion of the coating film. For convenience, the portion where the air passage is relatively blocked is called a non-ventilation portion.
 このような構造において、エポキシ系塗膜設置部52は箱体56内に配置されているため、箱体56外からの紫外線は箱体56によって遮られる。このため、エポキシ系塗膜設置部52は実質的に紫外線の影響を受けない。これにより、エポキシ系塗膜14の紫外線劣化が抑制されて寿命が長くなる。また、エポキシ系塗膜14の劣化に伴う剥離塗膜又は腐食生成物は、エポキシ系塗膜設置部52が非通風部であるがゆえに、熱交換器51から発生する結露水によってほぼ確実に洗い流され、排水受け55に受けられて結露水とともに箱体56外に排出される。そのため、当該空気調和装置によって空気調和の行われる環境中に前述の生成物等が飛散することを回避しつつ、熱交換器51による熱交換を行うことができる。 In such a structure, since the epoxy-based coating film installation portion 52 is arranged inside the box body 56, ultraviolet rays from outside the box body 56 are blocked by the box body 56. Therefore, the epoxy-based coating film setting portion 52 is substantially unaffected by ultraviolet rays. As a result, the deterioration of the epoxy coating film 14 by ultraviolet rays is suppressed and the life of the epoxy coating film 14 is extended. Further, the peeled coating film or the corrosion product due to the deterioration of the epoxy-based coating film 14 is almost certainly washed away by the dew condensation water generated from the heat exchanger 51 because the epoxy-based coating film installation portion 52 is a non-ventilated portion. Then, it is received by the drainage receiver 55 and discharged to the outside of the box 56 together with the condensed water. Therefore, the heat exchange can be performed by the heat exchanger 51 while avoiding the above-mentioned products and the like from scattering in the environment where the air conditioning is performed by the air conditioning device.
 [エポキシ系塗料]
 本開示に係るエポキシ系塗料のエポキシ系とは、末端にエポキシ基を持ち、開環反応によって生成されるもので、エピクロロヒドリンと、フェノール、アルコール、アルデヒド、エステル、アミン、脂肪酸及びイソシアネートのうちいずれか(複数でも可)との反応生成物のことを指す。分子量については特に規定しない。
[Epoxy paint]
The epoxy-based epoxy-based coating material according to the present disclosure has an epoxy group at the terminal and is produced by a ring-opening reaction, and is composed of epichlorohydrin and phenol, alcohol, aldehyde, ester, amine, fatty acid and isocyanate. Refers to the reaction product with one of them (s). The molecular weight is not specified.
 図5に代表的なエポキシ系樹脂であるエピクロルヒドリン・ビスフェノールA型樹脂の分子構造を示す。エピクロルヒドリン・ビスフェノールA型樹脂は両端に反応性の高いエポキシ基をもち、剛直なビスフェノール核を骨格とし、可とう性の良いエーテル基でつながれた構造を有する。また、エピクロルヒドリン・ビスフェノールA型樹脂は、密着性に寄与する水酸基が適度な間隔で配置される構造を持っている。そのため、多様な架橋反応を利用した、良好な密着性、耐薬品性、耐水性及び電気絶縁性を示す。塗装の対象となるアルミニウムの下地は、緻密かつ平滑な酸化被膜で覆われており、一般的にクロメート処理又はブラスト処理などの下地処理無しで好適な密着性は得られない。しかしながら、エポキシ系塗料であれば、前述の理由により下地処理無しで熱交換器の防錆目的に耐えうるような密着性を有する。そのため、塗装工程を簡略化できうる。 FIG. 5 shows the molecular structure of epichlorohydrin / bisphenol A type resin, which is a typical epoxy resin. Epichlorohydrin / bisphenol A type resin has a highly reactive epoxy group at both ends, a rigid bisphenol nucleus as a skeleton, and a structure connected by a flexible ether group. Further, the epichlorohydrin / bisphenol A type resin has a structure in which hydroxyl groups contributing to adhesion are arranged at appropriate intervals. Therefore, it exhibits good adhesion, chemical resistance, water resistance and electrical insulation by utilizing various cross-linking reactions. The base of aluminum to be painted is covered with a dense and smooth oxide film, and generally, suitable adhesion cannot be obtained without base treatment such as chromate treatment or blast treatment. However, the epoxy-based paint has adhesiveness that can withstand the rust-preventive purpose of the heat exchanger without the base treatment for the above-mentioned reason. Therefore, the painting process can be simplified.
 また、当該エポキシ系塗料に対して、耐食性向上を目的に酸化亜鉛又は亜鉛粉末等の純水もしくは塩水環境下でアルミニウムより電位が卑な金属粉末を含有させることが望ましい。亜鉛以外でも鉛又はインジウム等で代替可能であるが、環境保護及びコスト抑制等の観点から、亜鉛及びその合金(例えば、アルミニウムと亜鉛の合金)が望ましい。添加量については特に規定されないが、犠牲陽極作用が十分に得られるような添加量に設定される。粉末の粒子径についても特に規定されないが、塗料として均一に分散するよう数μm以下のオーダーにすることが望ましい。 Further, it is desirable that the epoxy-based paint contains a metal powder having a lower potential than aluminum in a pure water or salt water environment such as zinc oxide or zinc powder for the purpose of improving corrosion resistance. Although lead or indium can be used instead of zinc, zinc and its alloy (for example, an alloy of aluminum and zinc) are desirable from the viewpoint of environmental protection and cost control. The amount to be added is not particularly specified, but the amount to be added is set so that the sacrificial anodic action can be sufficiently obtained. The particle size of the powder is not particularly specified, but it is desirable that the powder has an order of several μm or less so that the powder is uniformly dispersed as a paint.
 希釈溶剤としては、前述のエポキシ系塗料の成分との相溶性の高いものが選択される。代表的なものとして、エチルベンゼン、キシレン、トルエン、又はメチルエチルケトン等が挙げられるが、これらに限定されるものではない。希釈倍率によって塗料の粘度が変わり、その結果塗装後の塗膜の厚みが変化するため、所望の塗膜厚みとなるよう希釈溶剤の量が調整される。 As the diluting solvent, one having high compatibility with the above-mentioned epoxy paint components is selected. Typical examples include, but are not limited to, ethylbenzene, xylene, toluene, methylethylketone and the like. Since the viscosity of the coating material changes depending on the dilution ratio, and as a result, the thickness of the coating film after coating changes, the amount of the diluting solvent is adjusted so as to obtain the desired coating film thickness.
 その他、エポキシ系塗料の耐久性を向上させる成分、例えばエポキシ系塗料の欠点である脆弱な耐候性(耐紫外線)を補うための種々の耐候剤が添加されてもよい。なお、本開示においては構造的な工夫により耐候性を向上させているため、これらの耐侯剤は添加されていなくてもよい。 In addition, a component that improves the durability of the epoxy-based paint, for example, various weather-resistant agents for compensating for the fragile weather resistance (ultraviolet ray resistance) that is a drawback of the epoxy-based paint may be added. In this disclosure, since the weather resistance is improved by structural ingenuity, these weather resistant agents may not be added.
 [塗膜の厚み]
 エポキシ系塗膜の膜厚が厚い場合、塗膜中の金属粒子の存在量が多いため犠牲陽極作用が長期間作用し、また塗膜中の酸素及び水等の透過を有効に抑制することにより周囲環境との遮断能力が向上するという利点がある。一方で、エポキシ系塗膜の膜厚が厚いと、熱交換器の運転等に伴う熱膨張により、塗膜内部およびアルミニウム材との密着面に対して応力負荷がかかるため、容易に塗膜が剥離して熱交換器の耐食寿命向上の効果を著しく損なう虞がある。また、熱交換器のヘッダ部において温度の異なる流体間の断熱を目的とした微小空間が設けられている場合には、エポキシ系塗膜の膜厚が厚いと当該微小空間が塗膜で埋められることになり、熱交換器としての性能を著しく低下させる虞がある。さらには、使用される塗料の量が増えることによってコストが増加する。
[Thickness of coating film]
When the film thickness of the epoxy coating film is thick, the sacrificial anodic action acts for a long period of time because the abundance of metal particles in the coating film is large, and the permeation of oxygen, water, etc. in the coating film is effectively suppressed. It has the advantage of improving the ability to block from the surrounding environment. On the other hand, if the film thickness of the epoxy-based coating film is thick, stress load is applied to the inside of the coating film and the contact surface with the aluminum material due to thermal expansion due to the operation of the heat exchanger, etc. There is a risk of peeling and significantly impairing the effect of improving the corrosion resistance of the heat exchanger. Further, when a minute space is provided in the header portion of the heat exchanger for the purpose of heat insulation between fluids having different temperatures, if the film thickness of the epoxy-based coating film is thick, the minute space is filled with the coating film. Therefore, there is a risk that the performance as a heat exchanger will be significantly reduced. In addition, the cost increases as the amount of paint used increases.
 エポキシ系塗膜の膜厚が薄い場合、前述の欠点は解消されるものの、塗膜中の金属粒子の存在量が少ないため犠牲陽極作用が短期間しか作用しない。また、塗膜中を酸素及び水等が透過するのを有効に抑制できず、塗膜下腐食による塗膜の剥離が起こる。従って、熱交換器の耐食寿命向上の効果が十分に得られない。 When the film thickness of the epoxy-based coating film is thin, the above-mentioned drawbacks are eliminated, but the sacrificial anode action acts only for a short period of time because the abundance of metal particles in the coating film is small. Further, it is not possible to effectively suppress the permeation of oxygen, water and the like through the coating film, and the coating film is peeled off due to corrosion under the coating film. Therefore, the effect of improving the corrosion resistance of the heat exchanger cannot be sufficiently obtained.
 発明者らの検討の結果、後述のように、塗膜の厚みが10μm~50μmであれば、酸素及び水等に対する十分な環境遮断の効果、および犠牲陽極作用を発揮し、且つ、早期の塗膜剥離を抑制できることが明らかとなった。従って、熱交換器の耐食性を有効に向上させることができる。 As a result of the examination by the inventors, as described later, when the thickness of the coating film is 10 μm to 50 μm, it exhibits a sufficient environmental blocking effect against oxygen, water, etc., a sacrificial anode action, and an early coating. It was clarified that the film peeling can be suppressed. Therefore, the corrosion resistance of the heat exchanger can be effectively improved.
 なお、後述の実施例および比較例における耐食性試験、耐湿性試験および密着性試験は次に示すようにして行った。 The corrosion resistance test, moisture resistance test and adhesion test in Examples and Comparative Examples described later were carried out as shown below.
 [耐食性試験]
 熱交換器の塗膜の耐食性については、ASTM G85-A3で規定されるSWAAT試験(Sea Water Acidified Test)に基づいて評価した。
[Corrosion resistance test]
The corrosion resistance of the coating film of the heat exchanger was evaluated based on the SWAAT test (Sea Water Acidified Test) defined by ASTM G85-A3.
 [耐湿性試験]
 熱交換器の塗膜の耐湿性については、雰囲気温度40℃、相対湿度98%に設定した恒温恒湿層内にサンプルを保持し評価した。
[Moisture resistance test]
The moisture resistance of the coating film of the heat exchanger was evaluated by holding the sample in a constant temperature and humidity layer set at an ambient temperature of 40 ° C. and a relative humidity of 98%.
 [密着性試験]
 耐久試験後の塗膜の密着性については、JIS K5400で規定される100マス碁盤目試験に基づいて評価した。
[Adhesion test]
The adhesion of the coating film after the durability test was evaluated based on the 100-square grid test defined by JIS K5400.
 (比較例1)
 比較例1に係る塗膜としては、ブレージングシートに亜鉛粉末を含有するエピクロルヒドリン・ビスフェノールA型塗膜を80μmの膜厚で配置したものを用いた。
(Comparative Example 1)
As the coating film according to Comparative Example 1, an epichlorohydrin / bisphenol A type coating film containing zinc powder was arranged on a brazing sheet with a film thickness of 80 μm.
 当該塗膜に対し、前述した耐食性試験およびその後の密着性試験を実施した。その結果、図6Aの断面写真に示すように、耐食性については、ブレージングシートへの腐食進行はほとんどなく亜鉛粉末による犠牲防食機能が認められた。一方で、密着性については、図7Aに示すように著しい塗膜の剥離が確認された。 The above-mentioned corrosion resistance test and subsequent adhesion test were carried out on the coating film. As a result, as shown in the cross-sectional photograph of FIG. 6A, with respect to the corrosion resistance, there was almost no progress of corrosion on the brazing sheet, and the sacrificial anticorrosion function by the zinc powder was recognized. On the other hand, as for the adhesiveness, remarkable peeling of the coating film was confirmed as shown in FIG. 7A.
 当該塗膜に対し、前述した耐湿性試験およびその後の密着性試験を実施した。その結果、図8Aに示すように、著しい塗膜の剥離が確認された。 The above-mentioned moisture resistance test and subsequent adhesion test were carried out on the coating film. As a result, as shown in FIG. 8A, remarkable peeling of the coating film was confirmed.
 (比較例2)
 比較例2に係る塗膜としては、ブレージングシートに亜鉛粉末を含有するエピクロルヒドリン・ビスフェノールA型塗膜を5μmの膜厚で配置したものを用いた。
(Comparative Example 2)
As the coating film according to Comparative Example 2, an epichlorohydrin / bisphenol A type coating film containing zinc powder was arranged on a brazing sheet with a film thickness of 5 μm.
 当該塗膜に対し、前述した耐食性試験およびその後の密着性試験を実施した。その結果、図6Bの断面写真に示すように、耐食性については、塗膜下でのブレージングシートへの腐食進行が認められた。その後の密着性については、図7Bに示すように著しい剥離が確認された。 The above-mentioned corrosion resistance test and subsequent adhesion test were carried out on the coating film. As a result, as shown in the cross-sectional photograph of FIG. 6B, as for the corrosion resistance, the progress of corrosion to the brazing sheet under the coating film was observed. As for the subsequent adhesion, remarkable peeling was confirmed as shown in FIG. 7B.
 当該塗膜に対し、前述した耐湿性試験およびその後の密着性試験を実施した。その結果、図8Bに示すように、塗膜の剥離は確認されなかった。 The above-mentioned moisture resistance test and subsequent adhesion test were carried out on the coating film. As a result, as shown in FIG. 8B, no peeling of the coating film was confirmed.
 (実施例1)
 実施例1に係る塗膜としては、ブレージングシートに亜鉛粉末を含有するエピクロルヒドリン・ビスフェノールA型塗膜を40μmの膜厚で配置したものを用いた。
(Example 1)
As the coating film according to Example 1, an epichlorohydrin / bisphenol A type coating film containing zinc powder was arranged on a brazing sheet with a film thickness of 40 μm.
 当該塗膜に対し、前述した耐食性試験およびその後の密着性試験を実施した。その結果、図6Cの断面写真に示すように、耐食性については、ブレージングシートへの腐食進行は認められず亜鉛粉末による犠牲防食機能が認められた。その後の密着性については、図7Cに示すように剥離は確認されなかった。 The above-mentioned corrosion resistance test and subsequent adhesion test were carried out on the coating film. As a result, as shown in the cross-sectional photograph of FIG. 6C, with respect to the corrosion resistance, the progress of corrosion to the brazing sheet was not observed, and the sacrificial anticorrosion function by the zinc powder was observed. As for the subsequent adhesion, no peeling was confirmed as shown in FIG. 7C.
 当該塗膜に対し、前述した耐湿性試験およびその後の密着性試験を実施した。その結果、図8Cに示すように、塗膜の剥離は確認されなかった。 The above-mentioned moisture resistance test and subsequent adhesion test were carried out on the coating film. As a result, as shown in FIG. 8C, no peeling of the coating film was confirmed.
 (実施例2)
 実施例2に係る塗膜としては、ブレージングシートで構成された熱交換器のフィレット部に亜鉛粉末を含有するエピクロルヒドリン・ビスフェノールA型塗膜を40μmの膜厚で配置したものを用いた。
(Example 2)
As the coating film according to Example 2, an epichlorohydrin / bisphenol A type coating film containing zinc powder was arranged in a fillet portion of a heat exchanger composed of a brazing sheet with a film thickness of 40 μm.
 当該塗膜に対し、前述した耐食性試験を実施した。その結果、図6Dの断面写真に示すように、耐食性についてはヘッダ部の優先腐食が有効に抑制されていることが認められた。 The above-mentioned corrosion resistance test was carried out on the coating film. As a result, as shown in the cross-sectional photograph of FIG. 6D, it was confirmed that the preferential corrosion of the header portion was effectively suppressed in terms of corrosion resistance.
 (実施例および比較例の対比)
 図6A~図6Dおよび図7A、図7B、図7Cの対比で明らかなように、塗膜の厚みが十分厚ければ(実施例および比較例1)、犠牲防食が有効に機能して塗膜下での腐食は発生しないが、塗膜の厚みが十分薄ければ(比較例2)、水及び酸素等の遮断が不十分なため塗膜下での腐食が発生する。
(Comparison between Examples and Comparative Examples)
As is clear from the comparison of FIGS. 6A to 6D and 7A, 7B, and 7C, if the coating film is sufficiently thick (Example and Comparative Example 1), the sacrificial anticorrosion function effectively and the coating film is coated. Corrosion does not occur under the coating film, but if the thickness of the coating film is sufficiently thin (Comparative Example 2), corrosion under the coating film occurs due to insufficient blocking of water, oxygen, and the like.
 また、図8A、図8B及び図8Cの対比で明らかなように、塗膜の厚みが十分厚ければ(比較例1)、塗膜の内部、および塗膜と下地との界面での応力発生により、塗膜は容易に剥離する。しかしながら、塗膜の厚みが十分薄ければ(実施例および比較例2)、塗膜の密着性が担保される。 Further, as is clear from the comparison of FIGS. 8A, 8B and 8C, if the thickness of the coating film is sufficiently thick (Comparative Example 1), stress is generated inside the coating film and at the interface between the coating film and the substrate. As a result, the coating film is easily peeled off. However, if the thickness of the coating film is sufficiently thin (Example and Comparative Example 2), the adhesion of the coating film is ensured.
 図9は、横軸を塗膜の厚みとし、縦軸を密着性として実施例1および比較例の密着性をプロットしている。縦軸の密着性については、前述の100マス碁盤目試験における塗膜残数を密着性と定義してプロットしている。図9に示すように、塗膜(エポキシ系膜)の厚みが10~50μmの範囲が最も好適に塗膜の耐食性を確保できる条件であることがわかる。 In FIG. 9, the adhesion of Example 1 and Comparative Example is plotted with the horizontal axis representing the thickness of the coating film and the vertical axis representing the adhesion. Regarding the adhesion on the vertical axis, the number of remaining coating films in the above-mentioned 100-square grid test is defined as the adhesion and plotted. As shown in FIG. 9, it can be seen that the thickness of the coating film (epoxy film) in the range of 10 to 50 μm is the most suitable condition for ensuring the corrosion resistance of the coating film.
 なお、本開示は上記実施の形態の記載に限定されるものではなく、請求の範囲に示した範囲内で種々の変更が可能であり、異なる実施の形態又は複数の変形例にそれぞれ開示された技術的手段を適宜組み合わせて得られる実施の形態についても本開示の技術的範囲に含まれる。 It should be noted that the present disclosure is not limited to the description of the above-described embodiment, and various changes can be made within the scope of the claims, and the disclosure is disclosed in different embodiments or a plurality of modifications. Embodiments obtained by appropriately combining technical means are also included in the technical scope of the present disclosure.
 本開示は、空気調和装置用等のアルミニウム熱交換器の分野に広く好適に用いることができる。 The present disclosure can be widely and suitably used in the field of aluminum heat exchangers for air conditioners and the like.
 10  ブレージングシート
 10a  接合面
 10b  非接合隣接面
 11  心材
 12  ろう材層
 13  犠牲陽極材層
 14  エポキシ系塗膜
 20  ブレージングシートの接合構造
 21  接合部
 22  フィレット
 30  プレートフィン積層体
 31  エンドプレート
 32  プレートフィン
 33  ヘッダ開口
 40  パラレルフローコンデンサ(PFC)
 41  ヘッダ管
 42  扁平管
 43  コルゲートフィン
 51  熱交換器
 52  エポキシ系塗膜設置部
 53  送風ファン
 54  エアフィルタ
 55  排水受け
10 Brazing sheet 10a Joint surface 10b Non-bonded adjacent surface 11 Core material 12 Wax layer 13 Sacrificial anode material layer 14 Epoxy coating film 20 Brazing sheet joint structure 21 Joint 22 Fillet 30 Plate fin laminate 31 End plate 32 Plate fin 33 Header opening 40 Parallel flow capacitor (PFC)
41 Header pipe 42 Flat pipe 43 Corrugated fin 51 Heat exchanger 52 Epoxy coating film installation part 53 Blower fan 54 Air filter 55 Drainage receiver

Claims (11)

  1. アルミニウム製の熱交換器であって、
    前記熱交換器の表面の一部に、厚さが10~50μmの範囲内である一層のエポキシ系の塗膜を有し、
    前記熱交換器は、前記塗膜に紫外線が直接照射されないよう箱体内に配置されている、
    熱交換器。
    It ’s an aluminum heat exchanger.
    A part of the surface of the heat exchanger has a layer of epoxy-based coating having a thickness in the range of 10 to 50 μm.
    The heat exchanger is arranged inside the box so that the coating film is not directly irradiated with ultraviolet rays.
    Heat exchanger.
  2. 前記塗膜は、アルミニウムより電位が卑な金属粉末を含有する、
    請求項1に記載の熱交換器。
    The coating film contains a metal powder having a lower potential than aluminum.
    The heat exchanger according to claim 1.
  3. 前記塗膜は、亜鉛粉末を含有する、
    請求項1に記載の熱交換器。
    The coating film contains zinc powder.
    The heat exchanger according to claim 1.
  4. 前記塗膜は、前記箱体内において非通風部に配置されている、
    請求項1から3のいずれか1項に記載の熱交換器。
    The coating film is arranged in a non-ventilated portion inside the box.
    The heat exchanger according to any one of claims 1 to 3.
  5. 前記塗膜は、前記塗膜の劣化に伴う生成物が前記熱交換器の動作時に生ずる結露水により除去されるように配置されている、
    請求項1から4のいずれか1項に記載の熱交換器。
    The coating film is arranged so that products associated with deterioration of the coating film are removed by dew condensation water generated during the operation of the heat exchanger.
    The heat exchanger according to any one of claims 1 to 4.
  6. 前記熱交換器はブレージングシートを用いて構成され、
    前記ブレージングシートは、
     アルミニウム合金製の心材と、
     前記心材の片面もしくは両方の面に被覆され、亜鉛(Zn)およびシリコン(Si)を含有するアルミニウム合金製の犠牲陽極材からなる犠牲陽極材層と、
    を備える、
    請求項1から5のいずれか1項に記載の熱交換器。
    The heat exchanger is configured using a brazing sheet.
    The brazing sheet is
    Aluminum alloy core material and
    A sacrificial anode material layer made of an aluminum alloy sacrificial anode material coated on one or both sides of the core material and containing zinc (Zn) and silicon (Si).
    To prepare
    The heat exchanger according to any one of claims 1 to 5.
  7. 前記熱交換器は前記犠牲陽極材層を含む接合部を有し、
    前記塗膜は前記接合部に施されている、
    請求項6に記載の熱交換器。
    The heat exchanger has a joint that includes the sacrificial anode layer.
    The coating film is applied to the joint portion,
    The heat exchanger according to claim 6.
  8. 前記熱交換器はアルミニウム合金製のアルミ管を用いて構成され、
    前記アルミ管は、前記アルミ管の表面に、亜鉛(Zn)または亜鉛(Zn)およびシリコン(Si)を含有するアルミニウム合金製の犠牲陽極材からなる犠牲陽極材層を備えた、
    請求項1から5のいずれか1項に記載の熱交換器。
    The heat exchanger is configured by using an aluminum tube made of an aluminum alloy.
    The aluminum tube is provided with a sacrificial anode material layer made of a sacrificial anode material made of an aluminum alloy containing zinc (Zn) or zinc (Zn) and silicon (Si) on the surface of the aluminum tube.
    The heat exchanger according to any one of claims 1 to 5.
  9. 前記熱交換器はブレージングシートを用いて構成され、
    前記ブレージングシートは、
     アルミニウム合金製の心材と、
     前記心材の片面もしくは両方の面に被覆され、亜鉛(Zn)または亜鉛(Zn)およびシリコン(Si)を含有するアルミニウム合金製の犠牲陽極材からなる犠牲陽極材層と、を備える、
    請求項1から8のいずれか1項に記載の熱交換器。
    The heat exchanger is configured using a brazing sheet.
    The brazing sheet is
    Aluminum alloy core material and
    A sacrificial anode material layer comprising a sacrificial anode material made of an aluminum alloy coated on one or both sides of the core material and containing zinc (Zn) or zinc (Zn) and silicon (Si).
    The heat exchanger according to any one of claims 1 to 8.
  10. 前記熱交換器は前記犠牲陽極材層を含む接合部を有し、
    前記塗膜は前記接合部に施されている、
    請求項8又は請求項9に記載の熱交換器。
    The heat exchanger has a joint that includes the sacrificial anode layer.
    The coating film is applied to the joint portion,
    The heat exchanger according to claim 8 or 9.
  11. 請求項1~10のいずれか一項に記載の熱交換器を具備した空気調和装置であって、
    前記熱交換器から生ずる結露水を受ける排水受けを備え、
    前記塗膜は、前記排水受けの鉛直直上に設けられた、
    空気調和装置。
    An air conditioner including the heat exchanger according to any one of claims 1 to 10.
    It is equipped with a drainage receiver that receives the condensed water generated from the heat exchanger.
    The coating film was provided vertically above the drainage receiver.
    Air conditioner.
PCT/JP2020/038072 2019-10-15 2020-10-08 Heat exchanger and air conditioning device provided with same WO2021075335A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202080015171.5A CN113454416A (en) 2019-10-15 2020-10-08 Heat exchanger and air conditioning device with same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019-188327 2019-10-15
JP2019188327A JP7442033B2 (en) 2019-10-15 2019-10-15 Heat exchanger and air conditioner equipped with the same

Publications (1)

Publication Number Publication Date
WO2021075335A1 true WO2021075335A1 (en) 2021-04-22

Family

ID=75488011

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/038072 WO2021075335A1 (en) 2019-10-15 2020-10-08 Heat exchanger and air conditioning device provided with same

Country Status (3)

Country Link
JP (1) JP7442033B2 (en)
CN (1) CN113454416A (en)
WO (1) WO2021075335A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS647466B2 (en) * 1980-09-11 1989-02-08 Meishin Denki Kk
JP2006125659A (en) * 2004-10-26 2006-05-18 Matsushita Electric Ind Co Ltd Fin and tube type heat exchanger
JP2008014571A (en) * 2006-07-06 2008-01-24 Sumitomo Light Metal Ind Ltd Heat exchanger for refrigerator and its manufacturing method
JP2014208905A (en) * 2013-03-26 2014-11-06 株式会社神戸製鋼所 Aluminum alloy blazing sheet
JP2015224330A (en) * 2014-05-29 2015-12-14 日本電化工機株式会社 Corrosion protection method for mechanical facility and anti-corrosive mechanical facility

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09248521A (en) * 1996-03-13 1997-09-22 Kobe Steel Ltd Aluminum alloy brazing member having excellent corrosion resistance and its production
JPH11304395A (en) * 1998-04-22 1999-11-05 Furukawa Electric Co Ltd:The Member for heat exchanger and heat exchanger using it
JP4460941B2 (en) * 2003-05-13 2010-05-12 ホシザキ電機株式会社 Heat exchange mechanism with corrosion prevention function
JP2005147588A (en) * 2003-11-18 2005-06-09 Denso Corp Heat exchanger and manufacturing method therefor
JP5334086B2 (en) * 2007-12-10 2013-11-06 三菱アルミニウム株式会社 Aluminum heat exchanger having excellent corrosion resistance and method for producing the same
JP5155006B2 (en) * 2008-05-01 2013-02-27 三菱アルミニウム株式会社 Aluminum alloy brazing paint excellent in moisture brazing resistance, aluminum alloy plate for brazing, aluminum alloy member for automobile heat exchanger using the same, and method for producing automobile heat exchanger
CN102574152A (en) * 2009-09-28 2012-07-11 开利公司 Dual powder coating method and system
JP5595071B2 (en) * 2010-03-01 2014-09-24 住友精密工業株式会社 HEAT EXCHANGER AND HEAT EXCHANGER MANUFACTURING METHOD
US9433996B2 (en) 2011-04-25 2016-09-06 Mahle International Gmbh Method of making a heat exchanger with an enhanced material system
JP2013204076A (en) * 2012-03-28 2013-10-07 Mitsubishi Alum Co Ltd Fin material for air-conditioning heat exchanger and air-conditioning heat exchanger
JP6155156B2 (en) * 2013-09-30 2017-06-28 株式会社Uacj Aluminum alloy heat exchanger
JP2015078789A (en) * 2013-10-16 2015-04-23 三菱電機株式会社 Heat exchanger and air conditioning device including heat exchanger
JP2015218907A (en) * 2014-05-14 2015-12-07 パナソニックIpマネジメント株式会社 Heat exchanger
JP6407466B1 (en) * 2018-04-19 2018-10-17 株式会社 エコファクトリー Outside air conditioner and ventilation system

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS647466B2 (en) * 1980-09-11 1989-02-08 Meishin Denki Kk
JP2006125659A (en) * 2004-10-26 2006-05-18 Matsushita Electric Ind Co Ltd Fin and tube type heat exchanger
JP2008014571A (en) * 2006-07-06 2008-01-24 Sumitomo Light Metal Ind Ltd Heat exchanger for refrigerator and its manufacturing method
JP2014208905A (en) * 2013-03-26 2014-11-06 株式会社神戸製鋼所 Aluminum alloy blazing sheet
JP2015224330A (en) * 2014-05-29 2015-12-14 日本電化工機株式会社 Corrosion protection method for mechanical facility and anti-corrosive mechanical facility

Also Published As

Publication number Publication date
JP7442033B2 (en) 2024-03-04
JP2021063612A (en) 2021-04-22
CN113454416A (en) 2021-09-28

Similar Documents

Publication Publication Date Title
CN107428128B (en) Multilayer aluminum brazing sheet material
CN103492174A (en) Multi-layer brazing sheet
US5005285A (en) Method of producing an aluminum heat exchanger
EP2565573A1 (en) Heat exchanger and method for producing heat exchanger
JP7281866B2 (en) Fin-and-tube heat exchanger and manufacturing method thereof
WO2021075335A1 (en) Heat exchanger and air conditioning device provided with same
EP3234490B1 (en) Aluminum alloy finned heat exchanger
JPH10265882A (en) Aluminum alloy heat exchanger
JP2019070499A (en) Method of manufacturing heat exchanger
WO2017141943A1 (en) Heat exchanger
JP2018536088A (en) High strength and corrosion resistant alloys for use in HVAC & R systems
JPH09137245A (en) Aluminum tubular body for heat exchanger and aluminum-made heat exchanger using the same body
JP2009269042A (en) Coating material for aluminum alloy brazing, excellent in moisture resistant brazing, and aluminum alloy plate for brazing, aluminum alloy member for automobile heat exchanger using the plate, and automobile heat exchanger
US6422451B2 (en) Interconnection of aluminum components
JPH11325792A (en) Heat exchanger
JP3704178B2 (en) Aluminum material for brazing and drone cup type heat exchanger using the material and excellent in corrosion resistance
JP2017155973A (en) Fin material for heat exchanger and heat exchanger
JP2842666B2 (en) High strength and high corrosion resistance clad material for A1 heat exchanger
CN113453839B (en) Brazing sheet for heat exchanger and heat exchanger for air conditioning device
JPH09138093A (en) Drawn cup type heat exchanger
JP3929854B2 (en) Extruded flat tube for heat exchanger and heat exchanger using the same
JP2842667B2 (en) High strength and high corrosion resistance A1 alloy clad material for A1 heat exchanger
WO2021070793A1 (en) Brazing sheet for heat exchanger, joint structure of brazing sheet for heat exchanger, method for joining brazing sheet for heat exchanger, and heat exchanger
WO1999016920A1 (en) Heat exchanger
JP5597518B2 (en) Aluminum clad material for heat exchanger

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20875867

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20875867

Country of ref document: EP

Kind code of ref document: A1