JP2006125659A - Fin and tube type heat exchanger - Google Patents

Fin and tube type heat exchanger Download PDF

Info

Publication number
JP2006125659A
JP2006125659A JP2004310511A JP2004310511A JP2006125659A JP 2006125659 A JP2006125659 A JP 2006125659A JP 2004310511 A JP2004310511 A JP 2004310511A JP 2004310511 A JP2004310511 A JP 2004310511A JP 2006125659 A JP2006125659 A JP 2006125659A
Authority
JP
Japan
Prior art keywords
heat exchanger
fin
epoxy resin
coating
urethane
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2004310511A
Other languages
Japanese (ja)
Inventor
Takashi Takano
隆司 高野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP2004310511A priority Critical patent/JP2006125659A/en
Publication of JP2006125659A publication Critical patent/JP2006125659A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Other Surface Treatments For Metallic Materials (AREA)
  • Application Of Or Painting With Fluid Materials (AREA)
  • Paints Or Removers (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To exercise superior adhesiveness and anticorrosive effect even under severe high corrosive environment with respect to the coating of a fin and tube type heat exchanger used in a refrigerator and the like. <P>SOLUTION: This fin and tube type heat exchanger comprises a number of fins 12 arranged in parallel at constant intervals, U-shaped tubes 13 which are inserted into the fins 12 at a right angle and in which fluid flows, and return bends 14 connecting the U-shaped tubes 13 with each other. As surfaces of the fins 12, U-shaped tubes 13 and return bends 14 are coated with urethane modification epoxy resin as a thermosetting resin, superior anticorrosive effect can be exercised as the adhesiveness with a basis material is improved by the effect of an OH group (hydroxyl group) in the coating by urethane bond, while keeping water permeability-proof property of the coating as original properties of the epoxy resin, even when the heat exchanger is placed under severe high corrosive environment, and corrosive substances such as sulfur and carboxylic acid gradually intrude inside of a coating layer, thus the heat exchanger can be operated for a long period as a refrigeration system. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は冷蔵庫等に用いられるフィンアンドチューブ型熱交換器に関するものである。   The present invention relates to a fin-and-tube heat exchanger used for a refrigerator or the like.

一般に冷蔵庫用のフィンアンドチューブ型熱交換器(エバポレータ)は庫内雰囲気環境に曝された状態にあり、特に業務用冷蔵庫は庫内に腐食性の強いガスが発生するような食品を多量に保存し、家庭用冷蔵庫と比べると食品にラップなどをしていない場合が多いため腐食性の強いガスが発生しやすい。例えば、タマゴ、マヨネーズ、チーズ、魚介類などから硫黄系ガスが発生し、マヨネーズ、ソース、パン酵母菌などからカルボン酸(酢酸、蟻酸などの有機酸)が発生する。また食品が腐敗するとき、食品そのものがもつタンパク質及び脂肪質などの有機物が酸化分解や加水分解を起こし、硫黄系ガス、カルボン酸、アンモニアガス、エチレンガスが発生する。   In general, fin-and-tube heat exchangers (evaporators) for refrigerators are exposed to the atmosphere in the cabinet. Especially, commercial refrigerators store a large amount of food that generates highly corrosive gas in the cabinet. However, compared with a refrigerator for home use, there are many cases where food is not wrapped or the like, and thus highly corrosive gas is likely to be generated. For example, sulfur-based gas is generated from eggs, mayonnaise, cheese, seafood, and the like, and carboxylic acids (organic acids such as acetic acid and formic acid) are generated from mayonnaise, sauce, baker's yeast, and the like. In addition, when food rots, proteins and fats and other organic substances possessed by the food itself undergo oxidative decomposition and hydrolysis, generating sulfur-based gas, carboxylic acid, ammonia gas, and ethylene gas.

最近では病原性大腸菌O−157の問題より漂白剤、殺菌剤または消毒用アルコールが使用される頻度が高くなってきている。漂白剤、殺菌剤は次亜塩素酸ナトリウムなどが使われ、塩素系ガスが発生する。消毒用アルコールは酸化分解よりカルボン酸が発生する。このように庫外から冷蔵庫の扉の開け閉めより庫内に腐食性ガスが進入してくる。   Recently, bleaching agents, bactericides, or alcohol for disinfection have been used more frequently than the problem of pathogenic E. coli O-157. Bleaching agents and disinfectants use sodium hypochlorite and generate chlorine-based gases. Disinfecting alcohol generates carboxylic acid by oxidative decomposition. Thus, corrosive gas enters the inside of the refrigerator from the outside of the refrigerator when the refrigerator door is opened and closed.

以上のような腐食環境下に庫内が曝されると冷蔵庫を冷却するときに発生する結露水に腐食媒である硫黄、蟻酸や酢酸などのカルボン酸、塩素などが溶け込み、さらにデフロストなどをすることにより乾湿の繰り返しが起こり、フィンやチューブ腐食が始まる。腐食が始まると白錆、黒錆、緑青などの腐食生成物が発生する。このような腐食生成物が発生するとファンからの風により腐食生成物が剥離して飛ばされ、庫内にある食品に付着して商品価値がなくなるという問題が起こる。さらに腐食が促進されるとチューブが腐食電池作用によって孔食され、ついには冷媒ガスリークに至り、冷えなくなるという致命的な欠陥に繋がるという問題があった。   If the interior is exposed to the corrosive environment as described above, sulfur, which is a corrosion medium, carboxylic acid such as formic acid or acetic acid, chlorine, etc., dissolves in the condensed water generated when the refrigerator is cooled, and further defrosts. This causes repeated drying and wetting, and corrosion of fins and tubes begins. When corrosion begins, corrosion products such as white rust, black rust and patina are generated. When such a corrosion product is generated, the corrosion product is peeled off and blown off by the wind from the fan, and there is a problem that the product value is lost by adhering to the food in the warehouse. Further, when the corrosion is accelerated, the tube is pitted due to the action of the corrosion cell, eventually leading to a refrigerant gas leak, leading to a fatal defect that the tube cannot be cooled.

従来、以上のようなフィンアンドチューブ型熱交換器の腐食を防止する技術としては熱交換器組立て後に熱交換器全面に防錆塗料を塗装することが主体で行われる(例えば、特許文献1参照)。   Conventionally, as a technique for preventing corrosion of the fin-and-tube heat exchanger as described above, a rust preventive paint is mainly applied to the entire surface of the heat exchanger after the heat exchanger is assembled (for example, see Patent Document 1). ).

以下、図面を参照しながら従来の技術を説明する。   Hereinafter, a conventional technique will be described with reference to the drawings.

図3は従来のフィンアンドチューブ型熱交換器の概略構成図、図4は従来のフィンアンドチューブ型熱交換器の要部斜視図である。   FIG. 3 is a schematic configuration diagram of a conventional fin-and-tube heat exchanger, and FIG. 4 is a perspective view of a main part of the conventional fin-and-tube heat exchanger.

図3、図4に示すように、従来のフィンアンドチューブ型熱交換器1は、一定間隔をおいて平行に配置する多数のフィン2と、フィン2に直角に挿入された内部を流体が流動するU字状のチューブ3と、U字状のチューブ3同士を接続するリターンベンド4と、を備え、U字状のチューブ3を拡管することにより、U字状のチューブ3とフィン2を密着させ、さらにU字状のチューブ3の先端とリターンベンド4を接続するために溶接し、流体が流動する回路を形成する。この従来のフィンアンドチューブ型熱交換器1を構成するフィン2とU字状のチューブ3、リターンベンド4の表面に熱硬化性樹脂を塗装した樹脂層5を施した構造を有している。   As shown in FIGS. 3 and 4, the conventional fin-and-tube heat exchanger 1 has a large number of fins 2 arranged in parallel at regular intervals and a fluid flowing through the inside inserted at right angles to the fins 2. A U-shaped tube 3 and a return bend 4 for connecting the U-shaped tubes 3 to each other. By expanding the U-shaped tube 3, the U-shaped tube 3 and the fin 2 are brought into close contact with each other. Further, welding is performed to connect the tip of the U-shaped tube 3 and the return bend 4 to form a circuit through which fluid flows. The fin 2, the U-shaped tube 3, and the return bend 4 constituting the conventional fin-and-tube heat exchanger 1 are provided with a resin layer 5 coated with a thermosetting resin.

塗装はフィンアンドチューブ型熱交換器1を組立て後に熱交換器1全面に熱硬化性樹脂である防錆塗料を浸漬塗装方式またはスプレー塗装方式などの塗装方式で焼付け塗装を行い、樹脂層5を形成する。この樹脂層5の膜厚は5〜25μm、1コート1ベークまたは2コート2ベークで焼付け塗装が行われる。また、熱硬化性樹脂である防錆塗料はポリエステル樹脂、アルキド樹脂、アクリル樹脂、エポキシ樹脂の塗料が使われる。
特開2003−139485号公報
After the fin-and-tube heat exchanger 1 is assembled, a rust preventive paint, which is a thermosetting resin, is baked and applied on the entire surface of the heat exchanger 1 by a coating method such as a dip coating method or a spray coating method. Form. The film thickness of the resin layer 5 is 5 to 25 μm, and the baking coating is performed by 1 coat 1 bake or 2 coat 2 bake. In addition, as a rust preventive paint that is a thermosetting resin, a paint of polyester resin, alkyd resin, acrylic resin, or epoxy resin is used.
JP 2003-139485 A

しかしながら、アルキド樹脂、アクリル樹脂、ポリエステル樹脂の塗装は一般環境下では防食効果はあるが、硫黄系やカルボン酸などの高腐食環境下では架橋した樹脂モノマー同士の架橋部が加水分解し、破壊され、腐食性物質を含んだ結露水を吸水し、防食効果が著しく低下するという問題がある。   However, coating of alkyd resin, acrylic resin, and polyester resin has an anticorrosive effect in a general environment, but in a highly corrosive environment such as sulfur-based or carboxylic acid, the cross-linked portion between cross-linked resin monomers is hydrolyzed and destroyed. There is a problem in that condensed water containing corrosive substances is absorbed and the anticorrosion effect is remarkably lowered.

一方、エポキシ樹脂の塗装はアルキド樹脂、アクリル樹脂、ポリエステル樹脂の塗装に比べて耐水透過性が高いので、硫黄系やカルボン酸などの高腐食環境下でも架橋した樹脂モノマー同士の架橋部が加水分解しにくいので比較的防食効果は維持されるが、反面時間経過とともに密着性が低下していき、防食効果が低下する問題がある。エポキシ樹脂のガラス転移点を高くし、塗膜を硬くすると耐水透過性を高くなるが、反面もろくなり密着性が低下するので総合的にみると十分な防食効果が得られず、苛酷な腐食環境下になるとエポキシ樹脂の塗装でも十分な防食効果が得られないという課題がある。   On the other hand, epoxy resin coating has higher water-resistant permeability than alkyd resin, acrylic resin, and polyester resin coating, so the cross-linked part of crosslinked resin monomers is hydrolyzed even in highly corrosive environment such as sulfur and carboxylic acid. Although the anticorrosion effect is relatively maintained since it is difficult to do, the adhesion is lowered with the passage of time, and there is a problem that the anticorrosion effect is lowered. When the glass transition point of the epoxy resin is increased and the coating film is hardened, the water permeability is increased, but on the other hand, it becomes brittle and the adhesion is lowered. When it is down, there is a problem that sufficient anti-corrosion effect cannot be obtained even with epoxy resin coating.

また、近年ではホルムアルデヒドによるシックハウス問題が社会問題となっており、塗料も環境面で対応が求められている。ポリエステル樹脂、アルキド樹脂、アクリル樹脂、エポキシ樹脂の熱硬化性の防錆塗料には硬化剤にメラミン樹脂やフェノール樹脂を用いるものが多く、この樹脂にはホルムアルデヒドが含まれるため、作業安全性の問題や焼付け乾燥炉の排気問題、またVOC(有機揮発性化合物)規制など一段と環境に対する対応が求められてきている。   In recent years, the problem of sick house due to formaldehyde has become a social problem, and paints are also required to be environmentally friendly. Many thermosetting rust preventive paints such as polyester resin, alkyd resin, acrylic resin, and epoxy resin use melamine resin or phenol resin as a curing agent, and because this resin contains formaldehyde, there is a problem of work safety. There has been a demand for further measures for the environment, such as exhaust problems in baking ovens and baking, and VOC (organic volatile compound) regulations.

本発明は、上記従来の課題を解決するもので、塗料の硬化剤にメラミン樹脂やフェノール樹脂を用いないのでホルムアルデヒドの含有がなく、環境に対応した塗料であると共に苛酷な高腐食環境下に置かれた場合でも塗膜の耐水透過性を維持しつつ、密着性を維持向上させることで優れた防食効果を発揮することができるフィンアンドチューブ型熱交換器を提供することを目的とする。   The present invention solves the above-mentioned conventional problems, and since it does not use melamine resin or phenol resin as a curing agent for the paint, it does not contain formaldehyde, is a paint that is environmentally friendly and is placed in a severe and highly corrosive environment. An object of the present invention is to provide a fin-and-tube heat exchanger capable of exhibiting an excellent anticorrosion effect by maintaining and improving the adhesion while maintaining the water-resistant permeability of the coating film even in the case where it is applied.

上記従来の課題を解決するために、本発明のフィンアンドチューブ型熱交換器は、フィン及びチューブの表面に塗装する熱硬化性樹脂をウレタン変性エポキシ樹脂の塗装にしたものである。   In order to solve the above-described conventional problems, the fin-and-tube heat exchanger of the present invention is obtained by applying a urethane-modified epoxy resin to a thermosetting resin to be coated on the surfaces of fins and tubes.

これによって、ウレタン結合を用いてエポキシ樹脂を変性させることで塗膜中にOH基(水酸基)が多くなり、素地との密着性を向上させることができるので苛酷な高腐食環境下に置かれた場合でも塗膜の耐水透過性を維持しつつ、密着性を維持向上させることができる。   As a result, by modifying the epoxy resin using urethane bonds, the coating film has more OH groups (hydroxyl groups) and can improve adhesion to the substrate, so it was placed in a severely corrosive environment. Even in this case, it is possible to maintain and improve the adhesion while maintaining the water permeability of the coating film.

本発明のフィンアンドチューブ型熱交換器は、フィン及びチューブの表面に塗装する熱硬化性樹脂をウレタン変性エポキシ樹脂の塗装にしたことで、苛酷な高腐食環境下に置かれ、塗膜層内部に硫黄系やカルボン酸などの腐食性物質が徐々に侵入してきた場合でも、エポキシ樹脂本来の塗膜の耐水透過性を維持しつつ、ウレタン結合による塗膜中のOH基(水酸基)の効果により素地との密着性を向上させることができるので、優れた防食効果を発揮することができ、冷凍システムとして長期間運転が維持できる。   The fin-and-tube heat exchanger of the present invention is a urethane-modified epoxy resin coated on the surface of fins and tubes, and is placed in a severe and highly corrosive environment. Even if corrosive substances such as sulfur and carboxylic acid gradually invade into the resin, the effect of OH groups (hydroxyl groups) in the paint film due to urethane bonds is maintained while maintaining the water resistance of the paint film inherent to the epoxy resin. Since the adhesion to the substrate can be improved, an excellent anticorrosion effect can be exhibited, and the operation as a refrigeration system can be maintained for a long period of time.

請求項1に記載の発明は、一定間隔をおいて平行に配置する多数のフィンと、前記フィンに直角に挿入された内部を流体が流動するチューブとから構成され、前記フィン及び前記チューブの表面に熱硬化性樹脂を塗装した熱交換器において、前記熱硬化性樹脂はウレタン変性エポキシ樹脂にしたものであり、苛酷な高腐食環境下に置かれた場合でも、エポキシ樹脂本来の塗膜の耐水透過性を維持しつつ、ウレタン結合による塗膜中のOH基(水酸基)の効果により素地との密着性を向上させることができるので、優れた防食効果を発揮することができる。   The invention according to claim 1 is composed of a large number of fins arranged in parallel at regular intervals, and a tube through which a fluid flows inside the fin inserted at right angles to the fins, and the fin and the surface of the tube In a heat exchanger coated with a thermosetting resin, the thermosetting resin is a urethane-modified epoxy resin, and even when placed in a severe and highly corrosive environment, the water resistance of the original coating film of the epoxy resin Since the adhesion to the substrate can be improved by the effect of the OH group (hydroxyl group) in the coating film due to the urethane bond while maintaining the permeability, an excellent anticorrosive effect can be exhibited.

請求項2に記載の発明は、請求項1記載の発明において、前記ウレタン変性エポキシ樹脂のエポキシ樹脂平均分子量を5000〜15000にしたものであり、エポキシ樹脂平均分子量を高分子化することにより塗膜の耐水透過性を高めることができる。エポキシ樹脂平均分子量が15000越えると、塗料粘度が高くなり、強力溶剤しか塗料化できなくなり、浸漬用塗料としては適さなくなる。エポキシ樹脂平均分子量が5000未満になると、塗膜の耐水透過性が低くなり、苛酷な高腐食環境下では防食効果は発揮できなくなる。   The invention according to claim 2 is the invention according to claim 1, wherein the urethane-modified epoxy resin has an epoxy resin average molecular weight of 5000 to 15000, and the coating film is obtained by polymerizing the epoxy resin average molecular weight. The water permeation resistance can be increased. When the average molecular weight of the epoxy resin exceeds 15000, the viscosity of the coating becomes high, and only a strong solvent can be made into a coating, which makes it unsuitable as a coating for immersion. When the average molecular weight of the epoxy resin is less than 5000, the water permeability of the coating film becomes low, and the anticorrosion effect cannot be exhibited in a severe and highly corrosive environment.

請求項3に記載の発明は、請求項1記載の発明において、前記ウレタン変性エポキシ樹脂の塗膜のガラス転移点を80〜120度にしたものであり、塗膜のガラス転移点を高くしたことにより塗膜が硬くなり、塗膜層内部に硫黄系やカルボン酸などの腐食性物質を含んだ水が浸入しにくくなり耐水透過性を高めることができる。ガラス転移点が120度を越えると塗膜が非常に硬くなるが反面もろく密着性が低下し、耐水透過性と密着性のバランスが崩れる。ガラス転移点が80度未満になると塗膜層内部に硫黄系やカルボン酸などの腐食性物質を含んだ水が浸入しやすくなり、耐水透過性が低くなる。   Invention of Claim 3 made the glass transition point of the coating film of the said urethane modified epoxy resin 80-120 degree | times in the invention of Claim 1, and made the glass transition point of the coating film high. As a result, the coating film becomes hard, and it becomes difficult for water containing corrosive substances such as sulfur and carboxylic acid to penetrate into the coating film layer, thereby improving water permeability. When the glass transition point exceeds 120 degrees, the coating film becomes very hard, but on the other hand, it is brittle and the adhesiveness is lowered, and the balance between water permeation resistance and adhesiveness is lost. When the glass transition point is less than 80 degrees, water containing a corrosive substance such as sulfur or carboxylic acid easily enters the coating layer, resulting in low water permeability.

請求項4に記載の発明は、請求項1記載の発明において、前記ウレタン変性エポキシ樹脂に防錆顔料を添加したものであり、塗膜層内部に硫黄系やカルボン酸などの腐食性物質を含んだ水が浸入してきた場合、その水に溶け込み腐食進行を遅らせたり、顔料成分との反応によりフィン及びチューブが保護される効果があり、フィン及びチューブの腐食を防止でき、さらに防食効果を発揮することができる。   Invention of Claim 4 adds the antirust pigment to the said urethane modified epoxy resin in invention of Claim 1, and contains corrosive substances, such as sulfur type and carboxylic acid, in the coating-film layer inside. When water enters, it dissolves in the water, delays the progress of corrosion, and has the effect of protecting the fins and tubes by reaction with the pigment component, preventing corrosion of the fins and tubes, and further exhibiting an anticorrosive effect be able to.

請求項5に記載の発明は、請求項4記載の発明において、前記防錆顔料は亜鉛末を用いたものであり、亜鉛末のガルバニック作用(犠牲陽極作用)によりフィン及びチューブを保護するとともに発生する腐食生成物により腐食進行を大幅に遅らせる効果があり、さらに防食効果が期待できる。   The invention according to claim 5 is the invention according to claim 4, wherein the rust preventive pigment uses zinc dust, and is generated while protecting fins and tubes by galvanic action (sacrificial anodic action) of zinc dust. The corrosion product has the effect of greatly delaying the progress of corrosion, and further anticorrosion effect can be expected.

請求項6に記載の発明は、請求項5記載の発明において、前記亜鉛末の添加量は塗膜の固形分重量比で5〜20%にしたものであり、亜鉛末のガルバニック作用の効果を発揮しながら、ウレタン変性エポキシ樹脂の耐水透過性、密着性を維持したまま、防食効果を発揮することができる。亜鉛末の添加量が20%を越えるとウレタン変性エポキシ樹脂の耐水透過性、密着性を維持できなくなり、防食効果を発揮できなくなる。亜鉛末の添加量が5%未満になると亜鉛末のガルバニック作用の効果が十分発揮できなくなる。   The invention according to claim 6 is the invention according to claim 5, wherein the added amount of the zinc powder is 5 to 20% by weight ratio of the solid content of the coating film, and the effect of the galvanic action of the zinc powder is reduced. While exhibiting, the anti-corrosion effect can be exhibited while maintaining the water-resistant permeability and adhesion of the urethane-modified epoxy resin. If the added amount of zinc powder exceeds 20%, the water-resistant permeability and adhesion of the urethane-modified epoxy resin cannot be maintained, and the anticorrosive effect cannot be exhibited. If the amount of zinc powder added is less than 5%, the effect of galvanic action of zinc powder cannot be sufficiently exhibited.

以下、本発明によるフィンアンドチューブ型熱交換器の実施の形態について、図面を参照しながら説明する。なお、この実施の形態によってこの発明が限定されるものではない。   Hereinafter, embodiments of the fin-and-tube heat exchanger according to the present invention will be described with reference to the drawings. The present invention is not limited to the embodiments.

(実施の形態1)
図1は、本発明の実施の形態1におけるフィンアンドチューブ型熱交換器の概略構成図、図2は、同実施の形態のフィンアンドチューブ型熱交換器の要部斜視図である。
(Embodiment 1)
FIG. 1 is a schematic configuration diagram of a fin-and-tube heat exchanger according to Embodiment 1 of the present invention, and FIG. 2 is a perspective view of a main part of the fin-and-tube heat exchanger according to the embodiment.

図1、図2に示すように、フィンアンドチューブ型熱交換器11は、一定間隔をおいて平行に配置する多数のフィン12と、フィン12に直角に挿入された内部を流体が流動するU字状のチューブ13と、U字状のチューブ13同士を接続するリターンベンド14と、を備え、U字状のチューブ13を拡管することにより、U字状のチューブ13とフィン12を密着させ、さらにU字状のチューブ13の先端とリターンベンド14を接続するために溶接し、流体が流動する回路を形成する。このフィンアンドチューブ型熱交換器11を構成するフィン12とU字状のチューブ13、リターンベンド14の表面に熱硬化性樹脂を塗装した樹脂層15を施した構造を有している。   As shown in FIGS. 1 and 2, the fin-and-tube heat exchanger 11 includes a large number of fins 12 arranged in parallel at regular intervals, and a U flow through which fluid flows through the inside inserted at right angles to the fins 12. A U-shaped tube 13 and a return bend 14 for connecting the U-shaped tubes 13 to each other; by expanding the U-shaped tube 13, the U-shaped tube 13 and the fin 12 are brought into close contact with each other; Further, welding is performed to connect the distal end of the U-shaped tube 13 and the return bend 14 to form a circuit through which the fluid flows. The fin and tube heat exchanger 11 has a structure in which a fin 12, a U-shaped tube 13, and a return bend 14 are coated with a resin layer 15 coated with a thermosetting resin.

塗装はフィンアンドチューブ型熱交換器11を組立て後に熱交換器11全面に熱硬化性樹脂である防錆塗料を浸漬塗装方式またはスプレー塗装方式などの塗装方式で焼付け塗装を行い、樹脂層15を形成する。この樹脂層15の膜厚は5〜25μm、1コート1ベークまたは2コート2ベークで焼付け塗装が行われる。この熱硬化性樹脂である防錆塗料はウレタン変性エポキシ樹脂の塗料が使われ、塗装された樹脂層15はウレタン変性されたエポキシ樹脂が塗布されている。   After the fin-and-tube heat exchanger 11 is assembled, the entire surface of the heat exchanger 11 is baked with a rust preventive paint, which is a thermosetting resin, by a coating method such as a dip coating method or a spray coating method, and the resin layer 15 is coated. Form. The film thickness of the resin layer 15 is 5 to 25 μm, and the baking coating is performed by 1 coat 1 bake or 2 coat 2 bake. A rust-proof paint, which is a thermosetting resin, is a urethane-modified epoxy resin paint, and the painted resin layer 15 is coated with a urethane-modified epoxy resin.

以上のように、本実施の形態においては、フィン及びチューブの表面に塗装する熱硬化性樹脂をウレタン変性エポキシ樹脂の塗装にしたことで、苛酷な高腐食環境下に置かれ、塗膜層内部に硫黄系やカルボン酸などの腐食性物質が徐々に侵入してきた場合でも、エポキシ樹脂本来の塗膜の耐水透過性を維持しつつ、ウレタン結合による塗膜中のOH基(水酸基)の効果により素地との密着性を向上させることができるので、優れた防食効果を発揮することができ、冷凍システムとして長期間運転が維持できる。   As described above, in the present embodiment, the thermosetting resin to be applied to the surfaces of the fins and tubes is made of urethane-modified epoxy resin, so that it is placed in a severe and highly corrosive environment, and the inside of the coating layer Even if corrosive substances such as sulfur and carboxylic acid gradually invade into the resin, the effect of OH groups (hydroxyl groups) in the paint film due to urethane bonds is maintained while maintaining the water resistance of the paint film inherent to the epoxy resin. Since the adhesion to the substrate can be improved, an excellent anticorrosion effect can be exhibited, and the operation as a refrigeration system can be maintained for a long period of time.

このウレタン変性エポキシ樹脂のエポキシ樹脂平均分子量を5000〜15000にして樹脂を高分子化したことにより、塗膜の耐水透過性が高まり、基本的防食効果が高くなる。エポキシ樹脂平均分子量が15000越えると、塗料粘度が非常に高くなり、流動性がなくなり浸漬用の塗料化ができなくなる。エポキシ樹脂平均分子量が5000未満になると、塗膜の耐水透過性が低くなり、苛酷な高腐食環境下では防食効果は発揮できなくなる(従来のエポキシ樹脂の平均分子量は500〜3000程度であり、苛酷な環境では塗膜の耐水透過性が十分ではなかった)。   When the urethane-modified epoxy resin has an average epoxy resin molecular weight of 5000 to 15000 and the resin is polymerized, the water permeability of the coating film is increased and the basic anticorrosive effect is enhanced. When the average molecular weight of the epoxy resin exceeds 15,000, the viscosity of the coating becomes very high, the fluidity is lost, and it becomes impossible to make a coating for immersion. If the average molecular weight of the epoxy resin is less than 5,000, the water permeability of the coating film becomes low, and the anticorrosion effect cannot be exhibited in a severe and highly corrosive environment (the average molecular weight of the conventional epoxy resin is about 500 to 3000, In such an environment, the water permeability of the coating film was not sufficient).

また、ウレタン変性エポキシ樹脂の塗膜のガラス転移点を80〜120度にして塗膜のガラス転移点を高くしたことにより、塗膜が硬くなり、塗膜層内部に硫黄系やカルボン酸などの腐食性物質を含んだ水が浸入しにくくなり耐水透過性が高まり、防食効果はさらに高くなる。塗膜が硬くなると反面密着性が低下するが、ウレタン結合の作用で密着性が大幅に向上することができるので塗膜硬化とともに密着性も向上させることが可能となる。ガラス転移点が120度を越えると塗膜が非常に硬くなるが反面もろく密着性が極端に低下し、ウレタン結合の密着性向上の効果も見られなくなり、耐水透過性と密着性のバランスが崩れる。ガラス転移点が80度未満になると塗膜層内部に硫黄系やカルボン酸などの腐食性物質を含んだ水が浸入しやすくなり、耐水透過性が低くなる。   In addition, by increasing the glass transition point of the coating film of urethane-modified epoxy resin to 80 to 120 degrees and increasing the glass transition point of the coating film, the coating film becomes hard, such as sulfur-based or carboxylic acid inside the coating film layer Water containing a corrosive substance is difficult to enter, and water permeability is increased, and the anticorrosion effect is further enhanced. When the coating film becomes hard, the adhesiveness decreases, but the adhesiveness can be greatly improved by the action of the urethane bond, so that the adhesiveness can be improved together with the curing of the coating film. When the glass transition point exceeds 120 degrees, the coating becomes very hard, but on the other hand, it is fragile and the adhesion is extremely lowered, and the effect of improving the adhesion of urethane bonds is not seen, and the balance between water permeability and adhesion is lost. . When the glass transition point is less than 80 degrees, water containing a corrosive substance such as sulfur or carboxylic acid easily enters the coating layer, resulting in low water permeability.

さらに、ウレタン変性エポキシ樹脂に防錆顔料を添加したことにより、塗膜層内部に硫黄系やカルボン酸などの腐食性物質を含んだ水が浸入してきた場合、その水に溶け込み腐食進行を遅らせたり、顔料成分との反応によりフィン及びチューブが保護される効果があり、フィン及びチューブの腐食を防止でき、さらに防食効果を発揮することができる。   In addition, by adding anti-corrosive pigments to urethane-modified epoxy resins, if water containing corrosive substances such as sulfur and carboxylic acid infiltrates inside the coating layer, it dissolves in the water and delays the progress of corrosion. The fin and the tube are protected by the reaction with the pigment component, the corrosion of the fin and the tube can be prevented, and the anticorrosive effect can be exhibited.

この防錆顔料は亜鉛末を用いたことにより、亜鉛末のガルバニック作用(犠牲陽極作用)によりフィン及びチューブを保護するとともに発生する腐食生成物により腐食進行を大幅に遅らせる効果があり、さらに防食効果が期待できる。   By using zinc dust, this rust preventive pigment protects the fins and tubes by the galvanic action (sacrificial anodic action) of the zinc dust, and has the effect of greatly delaying the corrosion progression due to the generated corrosion products. Can be expected.

この亜鉛末の添加量は塗膜の固形分重量比で5〜20%にしたことにより、亜鉛末のガルバニック作用の効果を発揮しながら、ウレタン変性エポキシ樹脂の耐水透過性、密着性を維持したまま、防食効果を発揮することができる。亜鉛末の添加量が20%を越えるとウレタン変性エポキシ樹脂の耐水透過性、密着性を維持できなくなり、防食効果を発揮できなくなる。亜鉛末の添加量が5%未満になると亜鉛末のガルバニック作用の効果が十分発揮できなくなる。   The amount of zinc powder added is 5 to 20% by weight ratio of the solid content of the coating, thereby maintaining the water permeability and adhesion of the urethane-modified epoxy resin while demonstrating the galvanic effect of the zinc powder. The anticorrosion effect can be exhibited as it is. If the added amount of zinc powder exceeds 20%, the water-resistant permeability and adhesion of the urethane-modified epoxy resin cannot be maintained, and the anticorrosive effect cannot be exhibited. If the amount of zinc powder added is less than 5%, the effect of galvanic action of zinc powder cannot be sufficiently exhibited.

このウレタン変性エポキシ樹脂は塗料の硬化剤にホルムアルデヒドの含有があるメラミン樹脂やフェノール樹脂を用いないので、塗装作業者の安全性を確保でき、また焼付け乾燥炉の排気にホルムアルデヒドが含有することもなく、社会問題となっているシックハウス問題が起こる心配がない。環境面にも対応した塗料である。   This urethane-modified epoxy resin does not use melamine resin or phenol resin that contains formaldehyde as a curing agent for paints, so it can ensure the safety of painters, and there is no formaldehyde contained in the exhaust of the baking and drying furnace. There is no worry that the sick house problem that is a social problem will occur. The paint is also environmentally friendly.

尚、実施の形態を組み合わせて使用しても上記実施の形態と同じ効果が期待できる。   Even when the embodiments are used in combination, the same effect as the above embodiments can be expected.

以上のように、本発明のフィンアンドチューブ型熱交換器は、フィン及びチューブの表面に塗装する熱硬化性樹脂をウレタン変性エポキシ樹脂の塗装にしたことで、苛酷な高腐食環境下に置かれ、塗膜層内部に硫黄系やカルボン酸などの腐食性物質が徐々に侵入してきた場合でも、エポキシ樹脂本来の塗膜の耐水透過性を維持しつつ、ウレタン結合による塗膜中のOH基(水酸基)の効果により素地との密着性を向上させることができるので、優れた防食効果を発揮することができ、冷凍システムとして長期間運転が維持できる。   As described above, the fin-and-tube heat exchanger of the present invention is placed in a severe and highly corrosive environment by applying urethane-modified epoxy resin to the thermosetting resin to be applied to the surfaces of the fins and tubes. Even when corrosive substances such as sulfur and carboxylic acid gradually infiltrate into the coating layer, the OH groups in the coating due to urethane bonds ( Adhesion with the substrate can be improved by the effect of the hydroxyl group), so that an excellent anticorrosion effect can be exhibited, and the operation as a refrigeration system can be maintained for a long time.

よって、冷凍冷蔵庫用、ショーケース等のフィンアンドチューブ型熱交換器として適用できる。   Therefore, it can be applied as a fin-and-tube heat exchanger for a refrigerator-freezer or a showcase.

本発明の実施の形態1におけるフィンアンドチューブ型熱交換器の概略構成図Schematic configuration diagram of a fin-and-tube heat exchanger in Embodiment 1 of the present invention 同実施の形態のフィンアンドチューブ型熱交換器の要部斜視図The principal part perspective view of the fin and tube type heat exchanger of the embodiment 従来のフィンアンドチューブ型熱交換器の概略構成図Schematic configuration diagram of a conventional fin-and-tube heat exchanger 従来のフィンアンドチューブ型熱交換器の要部斜視図Main part perspective view of a conventional fin and tube heat exchanger

符号の説明Explanation of symbols

11 フィンアンドチューブ型熱交換器
12 フィン
13 U字状のチューブ
14 リターンベンド
15 樹脂層(塗膜)
DESCRIPTION OF SYMBOLS 11 Fin and tube type heat exchanger 12 Fin 13 U-shaped tube 14 Return bend 15 Resin layer (coating film)

Claims (6)

一定間隔をおいて平行に配置する多数のフィンと、前記フィンに直角に挿入された内部を流体が流動するチューブとから構成され、前記フィン及び前記チューブの表面に熱硬化性樹脂を塗装した熱交換器において、前記熱硬化性樹脂はウレタン変性エポキシ樹脂にしたフィンアンドチューブ型熱交換器。   The heat is composed of a large number of fins arranged in parallel at regular intervals, and a tube through which fluid flows through the inside inserted at right angles to the fins, and the surface of the fin and the tube is coated with a thermosetting resin. The exchanger is a fin-and-tube heat exchanger in which the thermosetting resin is a urethane-modified epoxy resin. 前記ウレタン変性エポキシ樹脂のエポキシ樹脂平均分子量を5000〜15000にした請求項1に記載のフィンアンドチューブ型熱交換器。   The fin-and-tube heat exchanger according to claim 1, wherein the urethane-modified epoxy resin has an average epoxy resin molecular weight of 5000 to 15000. 前記ウレタン変性エポキシ樹脂の塗膜のガラス転移点を80〜120度にした請求項1に記載のフィンアンドチューブ型熱交換器。   The fin-and-tube heat exchanger according to claim 1, wherein a glass transition point of the urethane-modified epoxy resin coating film is 80 to 120 degrees. 前記ウレタン変性エポキシ樹脂に防錆顔料を添加した請求項1に記載のフィンアンドチューブ型熱交換器。   The fin-and-tube heat exchanger according to claim 1, wherein a rust preventive pigment is added to the urethane-modified epoxy resin. 前記防錆顔料は亜鉛末を用いた請求項4に記載のフィンアンドチューブ型熱交換器。   The fin-and-tube heat exchanger according to claim 4, wherein the antirust pigment uses zinc dust. 前記亜鉛末の添加量は塗膜の固形分重量比で5〜20%にした請求項5に記載のフィンアンドチューブ型熱交換器。   The fin-and-tube heat exchanger according to claim 5, wherein the amount of zinc powder added is 5 to 20% in terms of the solid content weight ratio of the coating film.
JP2004310511A 2004-10-26 2004-10-26 Fin and tube type heat exchanger Pending JP2006125659A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004310511A JP2006125659A (en) 2004-10-26 2004-10-26 Fin and tube type heat exchanger

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004310511A JP2006125659A (en) 2004-10-26 2004-10-26 Fin and tube type heat exchanger

Publications (1)

Publication Number Publication Date
JP2006125659A true JP2006125659A (en) 2006-05-18

Family

ID=36720573

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004310511A Pending JP2006125659A (en) 2004-10-26 2004-10-26 Fin and tube type heat exchanger

Country Status (1)

Country Link
JP (1) JP2006125659A (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009063281A (en) * 2007-09-10 2009-03-26 Panasonic Corp Fin and tube type heat exchanger and its manufacturing method
JP2010138955A (en) * 2008-12-10 2010-06-24 Panasonic Corp Connection structure of aluminum tube, connection method therefor, and heat exchanger
JP2010190531A (en) * 2009-02-20 2010-09-02 Panasonic Corp Hot air heater
US8001675B2 (en) 2007-06-12 2011-08-23 Denso Corporation Apparatus for manufacturing heat exchanger
CN102601024A (en) * 2012-01-16 2012-07-25 华南理工大学 Method for preparing adsorbent coating of pipe casing fin type heat exchanger
JP2013174413A (en) * 2012-02-27 2013-09-05 Mitsubishi Heavy Ind Ltd Steel member covering layer and surface treatment method for heat transfer tube
JP2017082187A (en) * 2015-03-30 2017-05-18 ナガセケムテックス株式会社 Coating composition
WO2021029556A1 (en) * 2019-08-14 2021-02-18 엘지전자 주식회사 Heat exchanger and method for manufacturing home appliance including heat exchanger
JP2021063612A (en) * 2019-10-15 2021-04-22 パナソニックIpマネジメント株式会社 Heat exchanger and air conditioning device provided with same

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8001675B2 (en) 2007-06-12 2011-08-23 Denso Corporation Apparatus for manufacturing heat exchanger
JP2009063281A (en) * 2007-09-10 2009-03-26 Panasonic Corp Fin and tube type heat exchanger and its manufacturing method
JP2010138955A (en) * 2008-12-10 2010-06-24 Panasonic Corp Connection structure of aluminum tube, connection method therefor, and heat exchanger
JP2010190531A (en) * 2009-02-20 2010-09-02 Panasonic Corp Hot air heater
CN102601024A (en) * 2012-01-16 2012-07-25 华南理工大学 Method for preparing adsorbent coating of pipe casing fin type heat exchanger
JP2013174413A (en) * 2012-02-27 2013-09-05 Mitsubishi Heavy Ind Ltd Steel member covering layer and surface treatment method for heat transfer tube
US10024609B2 (en) 2012-02-27 2018-07-17 Mitsubishi Heavy Industries, Ltd. Steel covering layer and method of surface treatment of heat transfer tube
JP2017082187A (en) * 2015-03-30 2017-05-18 ナガセケムテックス株式会社 Coating composition
WO2021029556A1 (en) * 2019-08-14 2021-02-18 엘지전자 주식회사 Heat exchanger and method for manufacturing home appliance including heat exchanger
EP3795739A3 (en) * 2019-08-14 2021-04-07 LG Electronics Inc. Clothes dryer
CN114270127A (en) * 2019-08-14 2022-04-01 Lg电子株式会社 Heat exchanger and method for manufacturing household electrical appliance comprising same
CN114270127B (en) * 2019-08-14 2023-07-07 Lg电子株式会社 Heat exchanger and method for manufacturing household electrical appliance comprising same
US11913163B2 (en) 2019-08-14 2024-02-27 Lg Electronics Inc. Heat exchanger and manufacturing method of home appliance including the heat exchanger
EP4293306A3 (en) * 2019-08-14 2024-02-28 LG Electronics Inc. Clothes dryer
JP2021063612A (en) * 2019-10-15 2021-04-22 パナソニックIpマネジメント株式会社 Heat exchanger and air conditioning device provided with same
WO2021075335A1 (en) * 2019-10-15 2021-04-22 パナソニックIpマネジメント株式会社 Heat exchanger and air conditioning device provided with same
JP7442033B2 (en) 2019-10-15 2024-03-04 パナソニックIpマネジメント株式会社 Heat exchanger and air conditioner equipped with the same

Similar Documents

Publication Publication Date Title
JP5160857B2 (en) Aluminum alloy material with excellent corrosion resistance, plate fin type heat exchanger, plate heat exchanger
JP5136495B2 (en) Heat exchanger
JP5160981B2 (en) Aluminum alloy material with excellent corrosion resistance and plate heat exchanger
JP2008224204A (en) Aluminum fin material for heat exchanger
JP2006125659A (en) Fin and tube type heat exchanger
WO2010110332A1 (en) Aluminum fin material for heat exchanger
JP5129464B2 (en) Heat exchanger for refrigerator and method for manufacturing the same
JP5217309B2 (en) Fin and tube heat exchanger
JP5380033B2 (en) Painted metal material with excellent corrosion resistance and paint adhesion
BR112016002239B1 (en) METHOD FOR MANUFACTURING AN ARTICLE OF CORROSION RESISTANT METAL
JP2009091648A (en) Aluminum alloy material having excellent sea water corrosion resistance and plate heat exchanger
JP4598703B2 (en) Chrome-free pre-coated steel sheet
JP2011202723A (en) Aluminum tube connecting structure and heat exchanger having the same
JP5398310B2 (en) Painted steel sheet and exterior member
JP5278098B2 (en) Aluminum tube connection structure, connection method and heat exchanger
JP5056739B2 (en) Aluminum tube connection structure, connection method and heat exchanger
JP5189823B2 (en) Aluminum alloy material with excellent corrosion resistance, plate fin type heat exchanger, plate heat exchanger
JP6061894B2 (en) Anticorrosion method for machinery
JP2005308292A (en) Fin and tube type heat exchanger and its manufacturing method
CN104878374A (en) Aluminum alloy low chromium passivation solution and preparation method of passivation solution
JP5117812B2 (en) Manufacturing method of heat exchanger
JPH06212113A (en) Heat-resistant coating material
JP2006023019A (en) Fin-and-tube type heat exchanger and manufacturing method thereof
JP3993809B2 (en) Aqueous protective agent composition for metal substrate
JP2008195839A (en) Anti-corrosion coating

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070116

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070316

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20070508