WO2021075325A1 - 潤滑油組成物およびそれを用いた潤滑剤 - Google Patents
潤滑油組成物およびそれを用いた潤滑剤 Download PDFInfo
- Publication number
- WO2021075325A1 WO2021075325A1 PCT/JP2020/037978 JP2020037978W WO2021075325A1 WO 2021075325 A1 WO2021075325 A1 WO 2021075325A1 JP 2020037978 W JP2020037978 W JP 2020037978W WO 2021075325 A1 WO2021075325 A1 WO 2021075325A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- lubricating oil
- oil composition
- mass
- silicone
- oil
- Prior art date
Links
Classifications
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10M—LUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
- C10M105/00—Lubricating compositions characterised by the base-material being a non-macromolecular organic compound
- C10M105/02—Well-defined hydrocarbons
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10M—LUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
- C10M107/00—Lubricating compositions characterised by the base-material being a macromolecular compound
- C10M107/02—Hydrocarbon polymers; Hydrocarbon polymers modified by oxidation
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10M—LUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
- C10M107/00—Lubricating compositions characterised by the base-material being a macromolecular compound
- C10M107/50—Lubricating compositions characterised by the base-material being a macromolecular compound containing silicon
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10M—LUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
- C10M135/00—Lubricating compositions characterised by the additive being an organic non-macromolecular compound containing sulfur, selenium or tellurium
- C10M135/02—Sulfurised compounds
- C10M135/04—Hydrocarbons
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10M—LUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
- C10M135/00—Lubricating compositions characterised by the additive being an organic non-macromolecular compound containing sulfur, selenium or tellurium
- C10M135/32—Heterocyclic sulfur, selenium or tellurium compounds
- C10M135/36—Heterocyclic sulfur, selenium or tellurium compounds the ring containing sulfur and carbon with nitrogen or oxygen
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10M—LUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
- C10M137/00—Lubricating compositions characterised by the additive being an organic non-macromolecular compound containing phosphorus
- C10M137/02—Lubricating compositions characterised by the additive being an organic non-macromolecular compound containing phosphorus having no phosphorus-to-carbon bond
- C10M137/04—Phosphate esters
- C10M137/10—Thio derivatives
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10M—LUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
- C10M169/00—Lubricating compositions characterised by containing as components a mixture of at least two types of ingredient selected from base-materials, thickeners or additives, covered by the preceding groups, each of these compounds being essential
- C10M169/04—Mixtures of base-materials and additives
Definitions
- the present invention relates to a lubricating oil composition containing silicone oil and a lubricant using the same.
- Lubricating oils and lubricating oil compositions are used to reduce friction and wear between moving parts and moving surfaces of various mechanical devices.
- a lubricating oil having a high viscosity index (VI) small change in viscosity with respect to temperature change
- a lubricating oil having a high VI has a low viscosity at a low temperature, and the energy loss due to the viscous resistance of the lubricating oil itself is small, so that it is excellent in terms of energy saving (energy saving).
- the viscosity does not become excessively low as compared with the lubricating oil having a low VI, so that the oil film necessary for lubrication can be retained on the lubricating surface, and the appropriate viscosity is maintained. Therefore, the scattering of lubricating oil is suppressed and the surroundings are less likely to be contaminated.
- Patent Document 1 the lubricating oil using the conventional VI improver described in Patent Document 1 has a problem that it has low resistance to shearing force and cannot maintain the viscosity characteristics at the initial stage of use for a long period of time (the viscosity index decreases). there were.
- Patent Document 2 shows that the shear stability can be improved by using a polymethacrylic acid ester having a specific structure, but since a polymer compound is used, the viscosity at a low temperature is used. An increase in resistance is unavoidable, and there remains the problem of lack of energy saving when used in a low temperature environment.
- a silicone oil and a mineral oil-based or wax-isomerized base oil are used in combination for the purpose of achieving both high VI and lubricity, but the silicone oil is a hydrocarbon-based lubricating oil. Since dimethyl silicone, which has poor compatibility with the above, is used, a large amount of silicone oil having a high VI cannot be blended. Therefore, in order to achieve high VI, it is necessary to use a silicone oil in combination with a conventional VI improver such as polymethacrylic acid ester or polybutene, and a VI improver is blended as compared with the conventional hydrocarbon-based lubricating oil. Although the amount could be reduced, the problems of an increase in low-temperature viscosity and the inability to maintain the viscosity characteristics at the initial stage of use for a long period of time (the viscosity index decreased) remained.
- a conventional VI improver such as polymethacrylic acid ester or polybutene
- the blending amount of the silicone oil can be increased and a high VI can be maintained. ..
- the lubricity of the lubricating oil composition containing a large amount of silicone oil having an aryl group is low, and in order to obtain high lubricity, it is necessary to increase the blending amount of the ester oil of the mating material, and the VI and lubricity are improved. There was a problem that they were incompatible.
- An object of the present invention is to solve the above-mentioned problems. That is, it is a lubricating oil composition that has both excellent lubricity and a high viscosity index (VI), can be used stably for a long period of time, and can be used in a wide temperature range, and imparts higher lubricity (wear resistance). It is an object of the present invention to provide a lubricating oil composition capable of producing a lubricating oil composition.
- the present inventor has found that the above object can be achieved by a lubricating oil composition having the following composition, and has completed the present invention by further studies based on this finding.
- the lubricating oil composition according to one aspect of the present invention is represented by (A) the following formula (1), has a mass average molecular weight of 900 to 4000, and has a ratio of carbon to silicon (C / Si ratio) in the structure. ) Is 3.03 or more and the viscosity index (VI) is 300 or more, 50 to 80% by mass of silicone oil, (B) 10 to 49% by mass of hydrocarbon-based lubricating oil, and (C) sulfur compound. It is characterized by containing at least 0.5 to 15% by mass.
- R 1 and R 2 are alkyl groups or aralkyl groups having 1 to 12 carbon atoms, and n is an integer of 2 to 44).
- the lubricating oil composition of the present invention is represented by (A) the above formula (1), has a mass average molecular weight of 900 to 4000, and has a ratio of carbon to silicon (C / Si ratio) in the structure. Is 3.03 or more, and the viscosity index (VI) is 300 or more, 50 to 80% by mass of silicone oil, (B) 10 to 49% by mass of hydrocarbon-based lubricating oil, and (C) 0 sulfur compound. It is characterized by containing at least 5 to 15% by mass.
- the silicone oil contained in the lubricating oil composition of the present embodiment is represented by the above formula (1), has a mass average molecular weight of 900 to 4000, and has a carbon to silicon ratio (C / Si ratio) of 3 in the structure. It is 0.03 or more and has a viscosity index (VI) of 300 or more.
- a silicone oil By using such a silicone oil, it is possible to provide a lubricating oil composition having excellent low temperature fluidity and a high viscosity index.
- R 1 and R 2 are alkyl groups or aralkyl groups having 1 to 12 carbon atoms.
- the structures of R 1 and R 2 are not particularly limited, and may be linear, branched, or cyclic. Specifically, for example, an alkyl group (methyl, ethyl, propyl, isopropyl, butyl, octyl, nonyl, dodecyl); a cycloalkyl group (cyclohexyl, cycloheptyl); an aralkyl group (benzyl, phenylethyl, isopropylphenyl) and the like. Can be mentioned.
- These functional groups may be contained in the structure alone or in combination of two or more. It is particularly preferable to have an alkyl group.
- the carbon number of R 1 and R 2 is preferably 1 to 12, more preferably 1 to 10, and particularly preferably 1 to 8 from the viewpoint of maintaining a low viscosity at a low temperature. If the number of carbon atoms of R 1 and R 2 exceeds 12, the low temperature characteristics are significantly deteriorated, which makes it difficult to use the lubricating oil composition in a low temperature range.
- n is an integer from 2 to 44.
- n is less than 2
- the mass average molecular weight is less than 900, so that when the lubricating oil composition is used, the flash point becomes low and the use is limited.
- the silicone oil of the present embodiment has a carbon to silicon ratio (C / Si ratio) in the structure of 3.03 or more.
- the C / Si ratio is more preferably 3.05 or more.
- the C / Si ratio is a value obtained by the following mathematical formula (1).
- the / Si ratio is 3.16.
- the silicone oil is a silicone oil having a structure represented by the following formula (3)
- the / Si ratio is 4.18.
- the silicone oil is a silicone oil having a structure represented by the following formula (7)
- the C / Si ratio is less than 3.03, the compatibility with the hydrocarbon-based lubricating oil as the component (B) deteriorates, and there is a problem that stable performance cannot be exhibited as a lubricating oil composition.
- the upper limit of the C / Si ratio is not particularly limited, but it is preferably 9.0 or less from the viewpoint that the viscosity index becomes low when the C / Si ratio becomes too high.
- silicone oil having the above structure examples include methylhexylpolysiloxane and methyloctylpolysiloxane.
- the mass average molecular weight of the silicone oil of this embodiment is 900 to 4000.
- the mass average molecular weight is less than 900, the flash point of the silicone oil falls below 200 ° C., which limits its use as a lubricating oil composition.
- the mass average molecular weight exceeds 4000, the kinematic viscosity at 40 ° C. exceeds 200 mm 2 / s, so that the viscosity of the lubricating oil composition becomes high and energy saving is lacking.
- the mass average molecular weight of the silicone oil in this embodiment is a value measured by 1 H-NMR or 29 Si-NMR as shown in Examples described later. In the following, the mass average molecular weight is also simply referred to as "average molecular weight”.
- the viscosity index (VI) of the silicone oil in this embodiment is set to 300 or more in order to obtain a lubricating oil composition having a high VI. It is more preferably 350 or more, and particularly preferably 400 or more.
- VI is a value measured and calculated based on JIS K 2283 (2000).
- the silicone oil (A) of the present embodiment may be used alone, or a plurality of silicone oils may be used in combination.
- the method for synthesizing the silicone oil as described above is not particularly limited, and for example, a linear polysiloxane having a SiH group in the molecular structure and a polysiloxane having a low degree of polymerization such as hexamethyldisiloxane are used as active white clay or the like.
- a polysiloxane having a SiH group having a low degree of polymerization can be obtained.
- a methyloctylpolysiloxane can be obtained by adding an olefin compound such as 1-octene to a polysiloxane having a SiH group in a nitrogen atmosphere in the presence of a hydrosilylation catalyst.
- the content of the silicone oil (A) with respect to the entire composition is 50 to 80% by mass from the viewpoint of viscosity index and lubricity. In particular, it is preferably 55 to 80% by mass, and even more preferably 65 to 75% by mass. If the content of the component (A) is less than 50% by mass, the effect of improving the viscosity index of the lubricating oil composition is poor, and if it exceeds 80% by mass, the lubricity is lowered, which is not preferable. ..
- the lubricating oil composition of the present embodiment has a hydrocarbon-based lubricating oil.
- the hydrocarbon-based lubricating oil that can be used is not particularly limited as long as it is compatible with the above-mentioned (A) silicone oil, but specifically, for example, ester oil, ether oil, poly- ⁇ -olefin (for example). PAO) Oil, mineral oil and the like can be mentioned.
- ester oil examples include esters of monohydric alcohols or polyhydric alcohols with monobasic acids or polybasic acids.
- Examples of the monohydric alcohol or polyhydric alcohol include monohydric alcohols or polyhydric alcohols having a hydrocarbon group having 1 to 30 carbon atoms, preferably 4 to 20 carbon atoms, and more preferably 6 to 18 carbon atoms. ..
- Specific examples of the multivalent alcohols include trimethylolpropane, pentaerythritol, and dipentaerythritol.
- Examples of the monobasic acid or polybasic acid include monobasic acids or polybasic acids having a hydrocarbon group having 1 to 30 carbon atoms, preferably 4 to 20 carbon atoms, and more preferably 6 to 18 carbon atoms. Be done.
- the hydrocarbon group referred to here may be a straight chain or a branched chain, and for example, an alkyl group, an alkenyl group, a cycloalkyl group, an alkylcycloalkyl group, an aryl group, an alkylaryl group, or an arylalkyl group.
- an alkyl group an alkenyl group
- a cycloalkyl group an alkylcycloalkyl group
- an alkylcycloalkyl group an alkylcycloalkyl group
- an aryl group an alkylaryl group
- arylalkyl group such as hydrocarbon groups.
- ester oil when used as the component (B) in the present embodiment, the above-mentioned ester oil may be used alone or in combination of two or more.
- ester oil a dibasic acid ester or a polyhydric alcohol fatty acid ester having a flash point of 200 ° C. or higher and a pour point of ⁇ 40 ° C. or lower can be used.
- a polyhydric alcohol fatty acid ester such as a fatty acid ester of trimethylolpropane or a fatty acid ester of pentaerythritol is more preferable.
- ether oil examples include polyoxy ether, dialkyl ether, aromatic ether and the like.
- poly- ⁇ -olefin oil examples include polymers of ⁇ -olefins having 2 to 15 carbon atoms such as polybutene, 1-octene oligomer, and 1-decene oligomer, or hydrides thereof.
- the mineral oil is an atmospheric residual oil obtained by atmospheric distillation of crude oils such as paraffinic, naphthenic and intermediate base oils; a distillate obtained by vacuum distillation of the atmospheric residual oil; the distillate.
- Mineral oil refined by performing one or more treatments such as solvent removal, solvent extraction, hydrocracking, solvent dewaxing, catalytic dewaxing, hydrorefining, etc., for example, light neutral oil, medium neutral.
- the hydrocarbon-based lubricating oil as described above can be used alone as the component (B), or two or more of them can be used in combination.
- the content of the (B) hydrocarbon-based lubricating oil in the lubricating oil composition of the present embodiment is 10 to 49% by mass with respect to the entire composition from the viewpoint of lubricity and viscosity index. More preferably, it is 15 to 40% by mass, and further preferably 15 to 25% by mass. If the content of the hydrocarbon-based lubricating oil is less than 10% by mass, it becomes difficult to obtain sufficient lubricity, and if it exceeds 49% by mass, the content of the silicone oil in the lubricating oil composition is low. This is not preferable because the viscosity index of the lubricating oil composition becomes low.
- the lubricating oil composition of the present embodiment further improves the lubricity of the lubricating oil composition by containing 10% by mass or more of ester oil as the (B) hydrocarbon-based lubricating oil. That is, as a preferred embodiment, it is desirable that the (B) hydrocarbon-based lubricating oil contains 10 to 49% by mass of an ester oil.
- sulfur compound of the component (C) of the present embodiment examples include thiasiazol compounds, polysulfides, thiocarbamate compounds, sulfide oils and fats, sulfide olefins, sulfide esters, sulfide fatty acids, thiophosphate esters, thiophosphates, thiophosphite, and dialkylthios.
- Molybdenum carbamate, molybdenum dialkyldithiophosphate, zinc dialkylthiocarbamate, and zinc dialkylthiophosphate can be used without particular limitation. Examples thereof include acid esters and zinc dialkylthiophosphate.
- At least one selected from thiophosphate ester, dithiocarbamate, olefin sulfide, and dimercaptothiadiazole-based compound it is preferable to use at least one selected from thiophosphate ester, dithiocarbamate, olefin sulfide, and dimercaptothiadiazole-based compound.
- the lubricating oil composition of the present embodiment has very high lubricity in addition to the above-mentioned characteristics, and can greatly improve wear resistance. The reason is not clear, but it is presumed that the lubricating film derived from the sulfur compound is formed on the target metal surface from the initial stage of use and exhibits high wear resistance.
- the content of the sulfur compound (C) in the lubricating oil composition of the present embodiment is about 0.5 to 15% by mass with respect to the entire composition from the viewpoint of obtaining sufficient wear resistance. If the content of the sulfur compound is less than 0.5% by mass, sufficient wear resistance may not be obtained, and if it exceeds 15% by mass, the lubricating oil composition evaporates due to the evaporation of the sulfur compound itself. It is not preferable because the amount is increased and the viscosity index of the lubricating oil composition is lowered.
- the more preferable content of the (C) sulfur compound may differ depending on the composition of the base oil, the type of the sulfur compound, the sulfur content, and the like.
- it is more preferably 0.5 to 4.5% by mass with respect to the entire composition
- thiophosphate ester, dithiocarbamate, dimercaptothiadiazole-based compounds and the like 0.5 to 10. It is preferably 0% by mass, and more preferably about 0.5 to 5.0% by mass.
- the lubricating oil composition of the present embodiment preferably further contains (D) an antioxidant in addition to the above components.
- an antioxidant generally used for lubricating oil can be used without particular limitation.
- phenolic compounds, amine compounds, phosphorus compounds and the like can be mentioned.
- alkylphenols such as 2,6-di-tert-butyl-4-methylphenol, methylene-4,4-bisphenol (2,6-di-tert-butyl-4-methylphenol).
- alkylphenols such as 2,6-di-tert-butyl-4-methylphenol, methylene-4,4-bisphenol (2,6-di-tert-butyl-4-methylphenol).
- alkylphenols such as 2,6-di-tert-butyl-4-methylphenol, methylene-4,4-bisphenol (2,6-di-tert-butyl-4-methylphenol).
- naphthylamines such as phenyl- ⁇ -naphthylamine, dialkyldiphenylamines, phosphite esters and the like.
- phosphorus-based compounds such as phosphoric acid esters, phosphite esters, acidic phosphoric acid esters, and phosphonic acid esters.
- the lubricating oil composition of the present embodiment uses two or more kinds of (D) antioxidants in combination.
- D a phenol-based compound or an amine-based compound that functions as a primary antioxidant in combination with a secondary antioxidant such as a phosphorus-based compound.
- the content of the (D) antioxidant in the entire composition is 1 to 10% by mass from the viewpoint of suppressing oxidation and reducing evaporation. And. More preferably, it is 2 to 7% by mass, and further preferably 1 to 5% by mass. If the content of the component (D) is less than 1% by mass, the lubricating oil composition may have high evaporability, and if it exceeds 10% by mass, the antioxidant itself evaporates. It is not preferable because the amount of evaporation of the lubricating oil composition increases and the viscosity index of the lubricating oil composition decreases.
- the total amount of the (C) sulfur compound and (D) antioxidant is preferably about 2.5 to 8.0% by mass with respect to the entire composition. ..
- the lubricating oil composition of the present embodiment contains the metal defoaming agent, for the purpose of further improving its performance or, if necessary, for the purpose of imparting further performance, as long as the effects of the present invention are not impaired.
- Various additives such as defoaming agents, thickeners, and colorants may be blended alone or in combination of two or more.
- metal inactivating agent examples include benzotriazole-based, tolyltriazole-based, and imidazole-based compounds.
- defoaming agent examples include polysiloxane, polyacrylate, styrene ester polymer and the like.
- thickener examples include metal soap (for example, lithium soap), silica, expanded graphite, polyurea, clay (for example, hectorite or bentonite) and the like.
- the amount of the additives added is 0.0 to 10.0% by mass or 0 with respect to the entire lubricating oil composition (total mass). . It can be used in an amount of about 1 to 5% by mass.
- the thickener for producing grease using the lubricating oil composition of the present embodiment can be used in an amount of 5 to 25% by mass with respect to the entire lubricating grease composition (total mass).
- the method for preparing the lubricating oil composition of the present embodiment is not particularly limited, and for example, (A) silicone oil, (B) hydrocarbon-based oil, (C) sulfur compound, and, if necessary, ( D) It can be adjusted by heating the antioxidant and other additives to 100 ° C. and mixing them.
- the lubricating oil composition of the present embodiment is stable for a long period of time and can be used at a wide range of temperatures, it can be used as various lubricants.
- it is suitably used as a lubricant for bearings, a lubricant for impregnated bearings, a grease base oil, a refrigerating machine oil, a plasticizer, and the like.
- it is suitable for high-load applications because it has very excellent lubricity and can impart wear resistance.
- the lubricating oil composition according to one aspect of the present invention is represented by (A) the above formula (1), has a mass average molecular weight of 900 to 4000, and has a carbon to silicon ratio (C / Si ratio) in the structure. 50 to 80% by mass of silicone oil having a viscosity index (VI) of 300 or more and 3.03 or more, (B) 10 to 49% by mass of hydrocarbon-based lubricating oil, and (C) sulfur compound 0. It is characterized by containing at least 5 to 15% by mass.
- the sulfur compound (C) is at least one selected from thiadiazole-based compounds, thiocarbamate-based compounds, olefin sulfides, thiophosphate esters, and zinc dialkylthiophosphates. Thereby, the above effect can be obtained more reliably.
- the lubricating oil composition contains (D) an antioxidant, and it is more preferable that the lubricating oil composition contains two or more kinds of (D) antioxidants. As a result, the above effect can be obtained more reliably, and the amount of evaporation can be further reduced.
- the lubricant according to another aspect of the present invention is characterized by using the above-mentioned lubricating oil composition.
- the present invention includes greases and emulsions using the above-mentioned lubricating compositions and lubricants, lubrication methods using them, and the use of the above-mentioned lubricating compositions and lubricants for bearing applications.
- Silicone oil 1 (octyl silicone) 1125 g of methylhydrogenpolysiloxane (trade name: KF-99) manufactured by Shin-Etsu Chemical Industry Co., Ltd. and 2866 g of decamethylcyclopentasiloxane (trade name: KF-995) manufactured by Shin-Etsu Chemical Industry Co., Ltd. in a 10 L separable flask. , 874 g of hexamethyldisiloxane (trade name: KF-96L-0.65CS) manufactured by Shin-Etsu Chemical Industry Co., Ltd. and 56 g of active white clay were added, and the mixture was stirred at 90 ° C. for 4 hours. After cooling to room temperature, the activated clay was removed by filtration.
- the filtrate is placed in a 10 L four-necked flask, heated and depressurized to remove low molecular weight silicone compounds, and a trimethylsiloxy group-blocked dimethylsiloxane / methylhydrogensiloxane copolymer at both ends of the molecular chain (silicone A). ) 3016 g was obtained.
- the obtained silicone A was reacted with an excess amount of an aqueous sodium hydroxide solution and n-butanol, and the amount of hydrogen gas generated was measured.
- the amount of hydrogen gas generated was 86 mL / g.
- the amount of hydrogen derived from the hydrosilyl group in Silicone A was determined from the obtained amount of hydrogen gas generated and found to be 0.39% by mass.
- the dropping speed was adjusted so as to keep the liquid temperature at 80 to 110 ° C.
- the mixture of 1-octene and platinum catalyst After dropping all the mixture of 1-octene and platinum catalyst, it was aged at 100 ° C. for 2 hours. After completion of aging, 1 H-NMR was used to confirm the disappearance of the SiH group peak. Subsequently, the mixture was heated and depressurized to remove excess 1-octene from the reaction product to obtain 3251 g of a dimethylsiloxane / methyloctylsiloxane copolymer (silicone 1) having both ends of the molecular chain trimethylsiloxy group sealed.
- the average molecular weight was 1741
- the average number of units (n 1 ) having the organic group R 1 (C8) was 4.7
- Silicone oil 2 (octyl silicone) 451 g of methylhydrogenpolysiloxane (trade name: KF-99) manufactured by Shin-Etsu Chemical Industry Co., Ltd. and 1149 g of decamethylcyclopentasiloxane (trade name: KF-995) manufactured by Shin-Etsu Chemical Industry Co., Ltd. in a 2 L separable flask. , 57 g of hexamethyldisiloxane (trade name: KF-96L-0.65CS) manufactured by Shin-Etsu Chemical Industry Co., Ltd. and 10 g of active white clay were added, and the mixture was stirred at 90 ° C. for 4.5 hours. After cooling to room temperature, the activated clay was removed by filtration.
- methylhydrogenpolysiloxane trade name: KF-99
- decamethylcyclopentasiloxane (trade name: KF-995) manufactured by Shin-Etsu Chemical Industry Co., Ltd
- the filtrate is placed in a 2 L four-necked flask, heated and depressurized to remove low molecular weight silicone compounds, and a trimethylsiloxy group-blocked dimethylsiloxane / methylhydrogensiloxane copolymer at both ends of the molecular chain (silicone B). ) 1474 g was obtained.
- the obtained silicone B was reacted with an excess amount of an aqueous sodium hydroxide solution and n-butanol, and the amount of hydrogen gas generated was measured.
- the amount of hydrogen gas generated was 96 mL / g.
- the amount of hydrogen derived from the hydrosilyl group in Silicone B was determined from the obtained amount of hydrogen gas generated and found to be 0.43% by mass.
- the average molecular weight was 3868
- the average number of units (n 1 ) having the organic group R 1 (C8) was 11.1
- kinematic viscosity 12.6 mm 2 / s, VI: 117)
- -PAO oil poly- ⁇ -olefin manufactured by Chevron Phillips, product name: Synfluid PAO 6 cSt (40 ° C. kinematic viscosity: 30.5 mm 2 / s, 100 ° C. kinematic viscosity: 5.9 mm 2 / s, VI: 137) -PAG (polybutylene glycol): "UCON OSP-32" manufactured by DOWN Co., Ltd. (40 ° C. kinematic viscosity: 32.0 mm 2 / s, 100 ° C.
- kinematic viscosity 6.5 mm 2 / s, VI: 146)
- -Mineral oil Mineral oil manufactured by Cosmo Oil Lubricants Co., Ltd., Product name: Cosmo Pure Spin TK (40 ° C kinematic viscosity: 9.3 mm 2 / s, 100 ° C kinematic viscosity: 2.5 mm 2 / s, VI: 94) - Liquid paraffin: manufactured) MORESCO manufactured "Moresco White P-70" (40 ° C. kinematic viscosity: 12.6mm 2 / s, 100 °C kinematic viscosity: 2.9mm 2 / s, VI: 56)
- Antioxidant -Primary Antioxidant 1: BASF's aromatic amine compound, "IRGANOX L-57” -Primary Antioxidant 2: BASF's phenolic compound, "IRGANOX L-135" -Secondary antioxidant: Phosphite ester compound manufactured by Johoku Chemical Industry Co., Ltd., "JP-310"
- (Other) -Phosphorus-based extreme pressure agent Amin salt of fatty acid phosphate, "NA-LUBE AW-64" manufactured by Kingindustries -Metal inactivating agent: Vanderbilt's benzotriazole compound "CUVAN303"
- Examples 1 to 22 and Comparative Examples 1 to 7 Each component is blended so as to have a ratio (mass%) shown in Tables 1 to 3 below, and (A) silicone oil, (B) hydrocarbon oil, (C) sulfur compound, and (D) oxidation.
- Lubricating oil compositions of Examples 1 to 22 and Comparative Examples 1 to 7 were prepared by heating the inhibitor and other additives to 100 ° C. and mixing them.
- the lubricity of each of the obtained lubricating oil compositions of Examples and Comparative Examples was evaluated by the following test method.
- (Lubricity) Lubricity evaluation was performed by a high-speed 4-ball test. Specifically, the evaluation was performed using a Falex lubrication tester (# 6). The test conditions were a rotation speed of 1200 rpm, a temperature of the lubricating oil composition: 75 ° C., a load of 392 N, and a test time of 60 minutes.
- the evaluation criteria based on the wear mark diameter were: over 600 ⁇ m: ⁇ , 550 to 600 ⁇ m: ⁇ , and less than 550 ⁇ m: ⁇ .
- Comparative Examples 1 to 5 were inferior in lubricity to Examples because they did not contain a sulfur compound. Even in Comparative Example 6 containing a phosphorus-based extreme pressure agent instead of the sulfur compound and Comparative Example 7 containing only 0.1% by mass of the sulfur compound, sufficient lubricity could not be obtained.
- the lubricating oil composition of the present invention can be used as a lubricating oil having excellent lubricity, it can be suitably used as a lubricant for bearings, a lubricant for impregnated bearings, a grease base oil, a refrigerating machine oil, a plasticizer, and the like. it can. Especially suitable for high load applications.
Landscapes
- Chemical & Material Sciences (AREA)
- Oil, Petroleum & Natural Gas (AREA)
- Chemical Kinetics & Catalysis (AREA)
- General Chemical & Material Sciences (AREA)
- Organic Chemistry (AREA)
- Engineering & Computer Science (AREA)
- Lubricants (AREA)
Abstract
本発明の一局面は、(A)式(1)で示され、質量平均分子量が900~4000であり、構造中の炭素とケイ素の比率(C/Si比)が3.03以上であり、かつ、粘度指数(VI)が300以上であるシリコーン油50~80質量%と、(B)炭化水素系潤滑油10~49質量%と、(C)硫黄化合物0.5~15質量%とを少なくとも含む、潤滑油組成物に関する。
Description
本発明は、シリコーン油を含む潤滑油組成物およびそれを用いた潤滑剤に関する。
潤滑油や潤滑油組成物は、様々な機械装置などの可動部や可動面間の摩擦や摩耗を低減するために用いられる。
最近では、輸送機器の使用環境の拡大、過酷化により、機械装置の高度化、小型化が進んでいる。機械装置の高度化、小型化に伴い、幅広い温度範囲で使用できる粘度指数(VI)が高い(温度変化に対する粘度変化が小さい)潤滑油が求められている。VIが高い潤滑油は、低温での粘度が低く、潤滑油自体の粘性抵抗によるエネルギー損失が小さいことから省エネルギー性(省エネ性)の点で優れている。また、高温環境下においては、VIの低い潤滑油と比較し、過度に低粘度化することがないため、潤滑面で潤滑に必要な油膜を保持することができ、また適度な粘性を保持することから潤滑油の飛散が抑えられ周囲を汚染することが少ない。
これまでは、一般に炭化水素系の潤滑油の粘度指数を高くする方法として、ポリメタクリル酸エステルやポリブテンなどの高分子化合物がVI向上剤として使用されてきた(特許文献1および2)。
近年では、VIが高い潤滑油として知られるシリコーン油(以下、Si油とも称す)を潤滑油基材とした潤滑油組成物が提案されている(特許文献3および4)。
しかしながら、特許文献1に記載の従来のVI向上剤を用いた潤滑油は、せん断力に対する耐性が低く、使用初期の粘度特性を長期間維持することができない(粘度指数が低下する)という問題があった。また、特許文献2では、特定の構造を有するポリメタクリル酸エステルを使用することで、せん断安定性を高くできる可能性を示しているが、高分子化合物を使用しているため、低温での粘性抵抗の上昇は避けられず、低温環境下で使用した際に省エネ性が欠けるといった問題が残った。
一方、特許文献3記載の技術は、高いVIと潤滑性を両立する目的で、シリコーン油と鉱油系あるいはワックス異性化系基油を併用しているが、シリコーン油として炭化水素系の潤滑油との相溶性が悪いジメチルシリコーンを使用しているため、高いVIを有するシリコーン油を多量配合することができない。そのため、高いVIを実現するためには、シリコーン油と従来のポリメタクリル酸エステルやポリブテンなどのVI向上剤を併用する必要があり、従来の炭化水素系の潤滑油に比べてVI向上剤の配合量を減らすことはできたが、低温粘度の上昇や使用初期の粘度特性を長期間維持することができない(粘度指数が低下する)という問題は残った。
また、特許文献4記載の技術では、炭化水素系の潤滑油と相溶性が高いアリール基を有するシリコーン油を使用することでシリコーン油の配合量を多くし、高いVIを維持することが出来た。しかし、アリール基を有するシリコーン油を多く配合した潤滑油組成物の潤滑性は低く、高い潤滑性を得るためには、相手材のエステル油の配合量を増やす必要があり、VIと潤滑性が両立できないという問題があった。
さらに、最近では、省エネ性向上のため、潤滑油組成物の低粘度化が求められており、高温環境下かつ高い荷重の用途(例えば、自動車用途で使用される軸受、ギア等)で使用される場合、粘度指数が高い潤滑油組成物であっても潤滑油組成物の粘度低下に伴う油膜形成能の低下が起こり、金属同士の接触による摩耗が問題となる。そのためには、耐摩耗性をより改良できる非常に優れた潤滑性を有する潤滑油組成物や潤滑剤が必要とされる。
本発明の課題は、前記問題点を解決することにある。すなわち、優れた潤滑性と高い粘度指数(VI)を兼ね備え、長期間安定に使用でき、幅広い温度範囲で使用できる潤滑油組成物であって、より高い潤滑性(耐摩耗性)を付与することができる潤滑油組成物を提供することを目的とする。
本発明者は、上記課題を解決すべく鋭意研究した結果、下記構成の潤滑油組成物によって、上記目的を達することを見出し、この知見に基づいて更に検討を重ねることによって本発明を完成した。
すなわち、本発明の一局面に係る潤滑油組成物は、(A)下記式(1)で示され、質量平均分子量が900~4000であり、構造中の炭素とケイ素の比率(C/Si比)が3.03以上であり、かつ、粘度指数(VI)が300以上であるシリコーン油50~80質量%と、(B)炭化水素系潤滑油10~49質量%と、(C)硫黄化合物0.5~15質量%とを少なくとも含むことを特徴とする。
本発明の潤滑油組成物は、上述したように、(A)上記式(1)で示され、質量平均分子量が900~4000であり、構造中の炭素とケイ素の比率(C/Si比)が3.03以上であり、かつ、粘度指数(VI)が300以上であるシリコーン油50~80質量%と、(B)炭化水素系潤滑油10~49質量%と、(C)硫黄化合物0.5~15質量%とを少なくとも含むことを特徴とする。
このような構成とすることによって、非常に優れた潤滑性を有することにより高い耐摩耗性を付与することができ、かつ、長期間安定に使用でき、幅広い温度範囲で使用できる潤滑油組成物となる。
以下、本発明の実施形態について詳細に説明するが、本発明はこれらに限定されるものではない。
((A)シリコーン油)
本実施形態の潤滑油組成物に含まれるシリコーン油は、上記式(1)で示され、質量平均分子量が900~4000であり、構造中の炭素とケイ素の比率(C/Si比)が3.03以上であり、かつ、粘度指数(VI)が300以上である。このようなシリコーン油を使用することによって、優れた低温流動性と高い粘度指数を有する潤滑油組成物を提供することができる。
本実施形態の潤滑油組成物に含まれるシリコーン油は、上記式(1)で示され、質量平均分子量が900~4000であり、構造中の炭素とケイ素の比率(C/Si比)が3.03以上であり、かつ、粘度指数(VI)が300以上である。このようなシリコーン油を使用することによって、優れた低温流動性と高い粘度指数を有する潤滑油組成物を提供することができる。
式(1)中、R1およびR2は炭素数1~12のアルキル基またはアラルキル基である。R1およびR2の構造は特に限定はなく、直鎖でも分枝鎖でも環状でもよい。具体的には、例えば、アルキル基(メチル、エチル、プロピル、イソプロピル、ブチル、オクチル、ノニル、ドデシル);シクロアルキル基(シクロヘキシル、シクロヘプチル);アラルキル基(ベンジル、フェニルエチル、イソプロピルフェニル)等が挙げられる。これらの官能基を構造中に1種単独または2種以上を組み合わせて含んでいてもよい。特にアルキル基を有することが好ましい。
R1およびR2の炭素数としては、低温で低粘度を維持するという観点から1~12が好ましく、1~10がより好ましく、1~8が特に好ましい。R1およびR2の炭素数が12を超えると、低温特性が著しく悪化するため、潤滑油組成物とした場合に低温度域での使用が困難となる。
また、式(1)中、nは2~44の整数である。nが2未満となると、質量平均分子量が900を下回るため、潤滑油組成物とした場合に、引火点が低くなり、用途が制限される。
また、本実施形態のシリコーン油は、構造中の炭素とケイ素の比率(C/Si比)が3.03以上である。後述する(B)炭化水素系潤滑油、(C)硫黄化合物との相溶性をより向上させるという観点からは、C/Si比が3.05以上であることがより好ましい。
本実施形態において、前記C/Si比は、下記の数式(1)で求められる値である。
(式1):C/Si比=(n×(R1の炭素数+1)+R2の炭素数の合計+4)÷(n+2)
(式1):C/Si比=(n×(R1の炭素数+1)+R2の炭素数の合計+4)÷(n+2)
例えば、シリコーン油が下記式(2)で示される構造を有するシリコーン油である場合、R1=C3(n1=6)およびC1(n2=4)、R2=C1であるため、C/Si比は3.16である。
また、例えば、シリコーン油が下記式(3)で示される構造を有するシリコーン油である場合、R1=C2、n=10、R2=C1であるため、C/Si比は3.00である。
例えば、シリコーン油が下記式(4)で示される構造を有するシリコーン油である場合、R1=C8(n1=5)およびC1(n2=10)、R2=C1であるため、C/Si比は4.18である。
また、例えば、シリコーン油が下記式(5)で示される構造を有するシリコーン油である場合、R1=C6(n1=3)、C9(n2=2)、およびC1(n3=11)、R2=C1であるため、C/Si比は3.83である。
例えば、シリコーン油が下記式(6)で示される構造を有するシリコーン油である場合、R1=C8(n1=5)およびC1(n2=10)、R2=C1およびC8であるため、C/Si比は4.59である。
また、例えば、シリコーン油が下記式(7)で示される構造を有するシリコーン油である場合、アルキル基がR1=C1、n=9、R2=C12であるため、C/Si比は4.18である。
前記C/Si比が3.03未満となると、(B)成分である炭化水素系の潤滑油との相溶性が悪くなり、潤滑油組成物として安定した性能を発揮できないという問題がある。一方、前記C/Si比について特に上限値は限定されないが、C/Si比が高くなりすぎると粘度指数が低くなるという観点から9.0以下であることが好ましい。
上記構造を有するシリコーン油としては、例えば、具体的には、メチルヘキシルポリシロキサン、メチルオクチルポリシロキサン等が挙げられる。
本実施形態のシリコーン油の質量平均分子量は、900~4000である。質量平均分子量が900を下回ると、シリコーン油の引火点が200℃を下回り、潤滑油組成物とした場合の用途が制限される。また、質量平均分子量が4000を超えると40℃動粘度が200mm2/sを超えるため、潤滑油組成物の粘度が高くなり、省エネルギー性に欠ける。
なお、本実施形態におけるシリコーン油の質量平均分子量とは、後述の実施例に示すように、1H-NMRまたは29Si-NMRを用いて測定した値である。なお、以下では質量平均分子量を単に「平均分子量」とも称す。
本実施形態におけるシリコーン油の粘度指数(VI)は、VIが高い潤滑油組成物を得るために、300以上とする。より好ましくは350以上であることが好ましく、400以上であることが特に好ましい。本明細書において、VIとは、JIS K 2283(2000年)に基づいて測定・算出した値である。
本実施形態の(A)シリコーン油としては、上述したようなシリコーン油を単独で使用してもよいし、複数を組み合わせて用いることもできる。
上述したようなシリコーン油を合成する方法は特に限定されないが、例えば、分子構造中にSiH基を有する直鎖状のポリシロキサンとヘキサメチルジシロキサン等の低重合度のポリシロキサンを活性白土等の酸触媒存在下で平衡化反応させることで、低重合度化したSiH基を有するポリシロキサンを得ることができる。あるいは、窒素雰囲気下でSiH基を有するポリシロキサンに1-オクテン等のオレフィン化合物をヒドロシリル化触媒存在下で付加反応させることでメチルオクチルポリシロキサンを得ることができる。
本実施形態の潤滑油組成物において、組成物全体に対する前記(A)シリコーン油の含有量は、粘度指数及び潤滑性の観点から50~80質量%である。特に55~80質量%であることが好ましく、65~75質量%であることがさらに好ましい。(A)成分の含有量が50質量%未満であると潤滑油組成物とした場合の粘度指数を向上させる効果が乏しく、また、80質量%を超える場合は、潤滑性が低くなるため好ましくない。
((B)炭化水素系潤滑油)
本実施形態の潤滑油組成物は、炭化水素系潤滑油を有する。使用できる炭化水素系潤滑油としては、上述した(A)シリコーン油との相溶性があるものであれば特に限定はされないが、具体的には、例えば、エステル油、エーテル油、ポリαオレフィン(PAO)油、鉱油等が挙げられる。
本実施形態の潤滑油組成物は、炭化水素系潤滑油を有する。使用できる炭化水素系潤滑油としては、上述した(A)シリコーン油との相溶性があるものであれば特に限定はされないが、具体的には、例えば、エステル油、エーテル油、ポリαオレフィン(PAO)油、鉱油等が挙げられる。
前記エステル油としては、具体的には、1価アルコール類または多価アルコールと1塩基酸または多塩基酸とのエステルが挙げられる。
前記1価アルコールまたは多価アルコールとしては、炭素数1~30、好ましくは炭素数4~20、より好ましくは炭素数6~18の炭化水素基を有する1価アルコールまたは多価アルコール類が挙げられる。前記多価アルコール類としては、具体的には、トリメチロールプロパン、ペンタエリスリトール、ジペンタエリスリトール等が挙げられる。
また、前記1塩基酸または多塩基酸としては、炭素数1~30、好ましくは炭素数4~20、より好ましくは炭素数6~18の炭化水素基を有する1塩基酸または多塩基酸類が挙げられる。
ここでいう炭化水素基は、直鎖であっても分枝鎖であってもよく、例えば、アルキル基、アルケニル基、シクロアルキル基、アルキルシクロアルキル基、アリール基、アルキルアリール基、アリールアルキル基等の炭化水素基が挙げられる。
本実施形態において(B)成分としてエステル油を使用する場合、上記したようなエステル油を単独で用いても、2種以上を混合して用いてもよい。
好ましい実施形態では、エステル油として、引火点が200℃以上であり、流動点が-40℃以下の二塩基酸エステルまたは多価アルコール脂肪酸エステルを使用できる。特に、蒸発性が低いという観点より、トリメチロールプロパンの脂肪酸エステルやペンタエリスリトールの脂肪酸エステルといった多価アルコール脂肪酸エステルであることがより好ましい。
前記エーテル油としては、具体的には、ポリオキシエーテルやジアルキルエーテル、芳香族系エーテル等が挙げられる。
また、前記ポリαオレフィン油としては、ポリブテン、1-オクテンオリゴマー、1-デセンオリゴマー等の炭素数2~15までのαオレフィンの重合物またはその水素化物が挙げられる。
前記鉱油としては、パラフィン系、ナフテン系、中間基系等の原油を常圧蒸留して得られる常圧残油;該常圧残油を減圧蒸留して得られた留出油;該留出油を、溶剤脱れき、溶剤抽出、水素化分解、溶剤脱ろう、接触脱ろう、水素化精製等のうちの1つ以上の処理を行って精製した鉱油、例えば、軽質ニュートラル油、中質ニュートラル油、重質ニュートラル油、ブライトストック等、フィッシャー・トロプシュ法等により製造されるワックス(GTLワックス(Gas To Liquids WAX))を異性化することで得られる鉱油等が挙げられる。
本実施形態では、(B)成分として上述したような炭化水素系潤滑油を単独で用いることもできるし、2種以上を組み合わせて使用することもできる。
本実施形態の潤滑油組成物における(B)炭化水素系潤滑油の含有量は、潤滑性、粘度指数の観点から、組成物全体に対して10~49質量%である。より好ましくは、15~40質量%であり、さらに15~25質量%であることが特に好ましい。炭化水素系潤滑油の含有量が10質量%未満となると、十分な潤滑性を得ることが困難となり、また、49質量%を超える場合は、潤滑油組成物中のシリコーン油の含有量が少なくなり、潤滑油組成物の粘度指数が低くなるため好ましくない。
さらに、本実施形態の潤滑油組成物は、(B)炭化水素系潤滑油として、エステル油を10質量%以上含むことによって、潤滑油組成物の潤滑性がさらに向上する。つまり、好ましい実施形態としては、前記(B)炭化水素系潤滑油として、エステル油を10~49質量%含んでいることが望ましい。
((C)硫黄化合物)
本実施形態の(C)成分の硫黄化合物としては、チアジアゾール系化合物、ポリサルファイド、チオカーバメート系化合物、硫化油脂、硫化オレフィン、硫化エステル、硫化脂肪酸、チオリン酸エステル、チオフォスフェート、チオフォスファイト、ジアルキルチオカルバミン酸モリブデン、ジアルキルジチオリン酸モリブデン、ジアルキルチオカルバミン酸亜鉛、ジアルキルチオリン酸亜鉛であれば特に限定なく使用することができるが、具体的には、チアジアゾール系化合物、チオカーバメート系化合物、硫化オレフィン、チオリン酸エステル、ジアルキルチオリン酸亜鉛等が挙げられる。
本実施形態の(C)成分の硫黄化合物としては、チアジアゾール系化合物、ポリサルファイド、チオカーバメート系化合物、硫化油脂、硫化オレフィン、硫化エステル、硫化脂肪酸、チオリン酸エステル、チオフォスフェート、チオフォスファイト、ジアルキルチオカルバミン酸モリブデン、ジアルキルジチオリン酸モリブデン、ジアルキルチオカルバミン酸亜鉛、ジアルキルチオリン酸亜鉛であれば特に限定なく使用することができるが、具体的には、チアジアゾール系化合物、チオカーバメート系化合物、硫化オレフィン、チオリン酸エステル、ジアルキルチオリン酸亜鉛等が挙げられる。
なかでも、チオリン酸エステル、ジチオカーバメート、硫化オレフィン、及びジメルカプトチアジアゾール系化合物から選択される少なくとも1つを使用することが好ましい。
このような硫黄化合物を含むことにより、本実施形態の潤滑油組成物は、上述したような特性に加えて非常に高い潤滑性を有し、耐摩耗性を大きく向上させることができる。その理由は明らかではないが、硫黄化合物由来の潤滑膜が、使用初期より対象とする金属表面に形成され、高い耐摩耗性を発揮するためと推察される。
本実施形態の潤滑油組成物における、(C)硫黄化合物の含有量は、十分な耐摩耗性を得るという観点、組成物全体に対して0.5~15質量%程度である。硫黄化合物の含有量が0.5質量%未満となると、十分な耐摩耗性を得られない場合があり、また、15質量%を超える場合は、硫黄化合物自体の蒸発により潤滑油組成物の蒸発量が増えること、潤滑油組成物の粘度指数が低くなることより好ましくない。
なお、(C)硫黄化合物のより好適な含有量は、基油の組成、硫黄化合物の種類や硫黄含有量等によって異なる場合がある。例えば、硫化オレフィン等では、組成物全体に対して0.5~4.5質量%であることがより好ましく、チオリン酸エステル、ジチオカーバメート、及びジメルカプトチアジアゾール系化合物等では0.5~10.0質量%であることが好ましく、0.5~5.0質量%程度であることがさらに好ましい。
((D)酸化防止剤)
本実施形態の潤滑油組成物は、上記成分に加えて、さらに(D)酸化防止剤を含むことが好ましい。それにより、潤滑油組成物の寿命を延長できるという利点がある。
本実施形態の潤滑油組成物は、上記成分に加えて、さらに(D)酸化防止剤を含むことが好ましい。それにより、潤滑油組成物の寿命を延長できるという利点がある。
本実施形態に用いられる(D)酸化防止剤としては、一般的に潤滑油に使用される酸化防止剤を特に限定なく使用することができる。例えば、フェノール系化合物やアミン系化合物、リン系化合物等が挙げられる。
より具体的には、例えば、2,6-ジ-tert-ブチル-4-メチルフェノールなどのアルキルフェノール類、メチレン-4,4-ビスフェノール(2,6-ジ-tert-ブチル-4-メチルフェノール)等のビスフェノール類、フェニル-α-ナフチルアミン等のナフチルアミン類、ジアルキルジフェニルアミン類、亜リン酸エステル類等が挙げられる。
これらの中でも、潤滑性のさらなる向上という観点から、リン酸エステル、亜リン酸エステル類、酸性リン酸エステル、ホスホン酸エステル等のリン系化合物を含むことが好ましい。
さらに、本実施形態の潤滑油組成物は2種以上の(D)酸化防止剤を併用することが好ましい。例えば、一次酸化防止剤として機能するフェノール系化合物やアミン系化合物と、リン系化合物といった二次酸化防止剤を併用することが特に好ましい。
本実施形態の潤滑油組成物が(D)酸化防止剤を含む場合、組成物全体に対する前記(D)酸化防止剤の含有量は、酸化抑制と蒸発量低減の観点から、1~10質量%とする。より好ましくは、2~7質量%であり、さらには1~5質量%であることが特に好ましい。前記(D)成分の含有量が1質量%未満であると潤滑油組成物とした場合に蒸発性が高くなるおそれがあり、また、10質量%を超える場合は、酸化防止剤自体の蒸発により潤滑油組成物の蒸発量が増えること、潤滑油組成物の粘度指数が低くなることより好ましくない。
より潤滑性を高めるという観点からは、上記(C)硫黄化合物と(D)酸化防止剤の合計量が、組成物全体に対して、2.5~8.0質量%程度であることが好ましい。
(その他の添加剤)
本実施形態の潤滑油組成物には、その性能をさらに向上させる目的で、または、必要に応じてさらなる性能を付与するために、本発明の効果を損なわない範囲で、金属不活性化剤、消泡剤、増粘剤、着色剤等の各種添加剤を単独でまたは複数を組み合わせて配合しても良い。
本実施形態の潤滑油組成物には、その性能をさらに向上させる目的で、または、必要に応じてさらなる性能を付与するために、本発明の効果を損なわない範囲で、金属不活性化剤、消泡剤、増粘剤、着色剤等の各種添加剤を単独でまたは複数を組み合わせて配合しても良い。
金属不活性化剤としては、例えば、ベンゾトリアゾール系、トリルトリアゾール系、及びイミダゾール系化合物等が挙げられる。
消泡剤としては、例えば、ポリシロキサン、ポリアクリレート、及びスチレンエステルポリマー等が挙げられる。
増粘剤としては、例えば、金属石鹸(例えば、リチウム石鹸)、シリカ、膨張黒鉛、ポリ尿素、粘土(例えば、ヘクトライトまたはベントナイト)等が挙げられる。
本実施形態に潤滑油組成物に上記したような添加剤を配合する場合、その添加量は、潤滑剤組成物全体(総質量)に対して、0.0~10.0質量%、あるいは0.1~5質量%程度の量で使用され得る。本実施形態の潤滑油組成物を用いてグリースを生成するための増粘剤は、潤滑剤グリース組成物全体(総質量)に対して、5~25質量%の量で使用され得る。
(調製方法)
本実施形態の潤滑油組成物を調製する方法としては、特に限定はなく、例えば、(A)シリコーン油と(B)炭化水素系油、及び(C)硫黄化合物、並びに、必要に応じて(D)酸化防止剤やその他添加剤を100℃に加熱して混合することによって調整することができる。
本実施形態の潤滑油組成物を調製する方法としては、特に限定はなく、例えば、(A)シリコーン油と(B)炭化水素系油、及び(C)硫黄化合物、並びに、必要に応じて(D)酸化防止剤やその他添加剤を100℃に加熱して混合することによって調整することができる。
(用途)
本実施形態の潤滑油組成物は、長期間安定して、幅広い温度で使用することが可能であるため、各種潤滑剤として使用することができる。例えば、軸受用潤滑剤、含浸軸受用の潤滑剤、グリース基油、冷凍機油、可塑剤等として好適に使用される。特に、非常に優れた潤滑性を有し耐摩耗性を付与することができるため、高荷重の用途に好適である。
本実施形態の潤滑油組成物は、長期間安定して、幅広い温度で使用することが可能であるため、各種潤滑剤として使用することができる。例えば、軸受用潤滑剤、含浸軸受用の潤滑剤、グリース基油、冷凍機油、可塑剤等として好適に使用される。特に、非常に優れた潤滑性を有し耐摩耗性を付与することができるため、高荷重の用途に好適である。
本明細書は、上述したように様々な態様の技術を開示しているが、そのうち主な技術を以下に纏める。
本発明の一局面に係る潤滑油組成物は、(A)上記式(1)で示され、質量平均分子量が900~4000であり、構造中の炭素とケイ素の比率(C/Si比)が3.03以上であり、かつ、粘度指数(VI)が300以上であるシリコーン油50~80質量%と、(B)炭化水素系潤滑油10~49質量%と、(C)硫黄化合物0.5~15質量%とを少なくとも含むことを特徴とする。
このような構成により、非常に優れた潤滑性を有することにより高い耐摩耗性を付与することができ、かつ、長期間安定に使用でき、幅広い温度範囲で使用できる潤滑油組成物を提供することができる。
さらに、前記潤滑油組成物において、前記(C)硫黄化合物が、チアジアゾール系化合物、チオカーバメート系化合物、硫化オレフィン、チオリン酸エステル、ジアルキルチオリン酸亜鉛から選ばれる少なくとも1つであることが好ましい。それにより、上記効果をより確実に得ることができる。
さらに、前記潤滑油組成物が(D)酸化防止剤を含むことが好ましく、2種以上の(D)酸化防止剤を含むことがより好ましい。それにより、上記効果をより確実に得ることができ、さらに蒸発量を低減させることもできる。
本発明の他の局面に関する潤滑剤は、上述の潤滑油組成物を用いることを特徴とする。
また、本発明には、上記潤滑組成物や潤滑剤を用いたグリース及びエマルション、並びに、それらを使用した潤滑方法、及び、上記潤滑組成物や潤滑剤の軸受用途への使用が包含される。
以下、本発明の実施例について説明するが、本発明はこれらに限定されるものではない。
まず、本実施例で使用した各原料を以下に示す。
〔シリコーン油の合成〕
・シリコーン油1(オクチルシリコーン)
10Lセパラブルフラスコに信越化学工業(株)製のメチルハイドロジェンポリシロキサン(商品名:KF-99)1125gと信越化学工業(株)製のデカメチルシクロペンタシロキサン(商品名:KF-995)2866g、信越化学工業(株)製のヘキサメチルジシロキサン(商品名:KF-96L-0.65CS)874g、活性白土56gを入れ、90℃で4時間撹拌した。室温に冷却した後、ろ過によって活性白土を取り除いた。
・シリコーン油1(オクチルシリコーン)
10Lセパラブルフラスコに信越化学工業(株)製のメチルハイドロジェンポリシロキサン(商品名:KF-99)1125gと信越化学工業(株)製のデカメチルシクロペンタシロキサン(商品名:KF-995)2866g、信越化学工業(株)製のヘキサメチルジシロキサン(商品名:KF-96L-0.65CS)874g、活性白土56gを入れ、90℃で4時間撹拌した。室温に冷却した後、ろ過によって活性白土を取り除いた。
続いて、ろ液を10Lの四つ口フラスコに入れ、加熱・減圧し、低分子量のシリコーン化合物を除去し、分子鎖両末端トリメチルシロキシ基封鎖ジメチルシロキサン・メチルハイドロジェンシロキサン共重合体(シリコーンA)3016gを得た。得られたシリコーンAと過剰量の水酸化ナトリウム水溶液及びn-ブタノールを反応させ、水素ガス発生量を測定した。水素ガス発生量は86mL/gであった。得られた水素ガス発生量からシリコーンA中のヒドロシリル基由来の水素量を求めると0.39質量%であった。
得られたシリコーンAを5Lの四つ口フラスコに2319g(2.16mol)入れ、滴下ロートに出光興産(株)製の1-オクテン(商品名:リニアレン8)1221g(10.88mol)とエヌ・イー・ケムキャット(株)製の白金触媒であるPt-CTS-トルエン溶液0.3mL(Pt換算:4ppm)入れ、窒素置換を行った。シリコーンAを加熱し、液温が60℃に到達した後、1-オクテンと白金触媒の混合物の滴下を開始した。この時、液温を80~110℃に保つよう滴下の速度を調節した。1-オクテンと白金触媒の混合物をすべて滴下した後、100℃で2時間熟成した。熟成終了後、1H-NMRを使用してSiH基のピークの消失を確認した。続いて、加熱・減圧し、反応物から過剰の1-オクテンを除去し、分子鎖両末端トリメチルシロキシ基封鎖ジメチルシロキサン・メチルオクチルシロキサン共重合体(シリコーン1)を3251g得た。
1H-NMRを使用して得られたシリコーン1を解析した結果、平均分子量1741、有機基R1(C8)を持つユニット(n1)の平均個数4.7個、有機基R1’(C1)を持つユニット(n2)の平均個数10.3個、分子構造中のC/Si比は4.05であることがわかった。
シリコーン1のNMRデータは以下の通りであった。
1H-NMR(溶媒:重クロロホルム、基準物質:TMS)
δ=0.40~0.60ppmの積分値を10.0とすると、
δ=0.01~0.08ppmの積分値は80.8
δ=0.08~0.10ppmの積分値は19.1
1H-NMR(溶媒:重クロロホルム、基準物質:TMS)
δ=0.40~0.60ppmの積分値を10.0とすると、
δ=0.01~0.08ppmの積分値は80.8
δ=0.08~0.10ppmの積分値は19.1
・シリコーン油2(オクチルシリコーン)
2Lセパラブルフラスコに信越化学工業(株)製のメチルハイドロジェンポリシロキサン(商品名:KF-99)451gと信越化学工業(株)製のデカメチルシクロペンタシロキサン(商品名:KF-995)1149g、信越化学工業(株)製のヘキサメチルジシロキサン(商品名:KF-96L-0.65CS)57g、活性白土10gを入れ、90℃で4.5時間撹拌した。室温に冷却した後、ろ過によって活性白土を取り除いた。
2Lセパラブルフラスコに信越化学工業(株)製のメチルハイドロジェンポリシロキサン(商品名:KF-99)451gと信越化学工業(株)製のデカメチルシクロペンタシロキサン(商品名:KF-995)1149g、信越化学工業(株)製のヘキサメチルジシロキサン(商品名:KF-96L-0.65CS)57g、活性白土10gを入れ、90℃で4.5時間撹拌した。室温に冷却した後、ろ過によって活性白土を取り除いた。
続いて、ろ液を2Lの四つ口フラスコに入れ、加熱・減圧し、低分子量のシリコーン化合物を除去し、分子鎖両末端トリメチルシロキシ基封鎖ジメチルシロキサン・メチルハイドロジェンシロキサン共重合体(シリコーンB)1474gを得た。得られたシリコーンBと過剰量の水酸化ナトリウム水溶液及びn-ブタノールを反応させ、水素ガス発生量を測定した。水素ガス発生量は96mL/gであった。得られた水素ガス発生量からシリコーンB中のヒドロシリル基由来の水素量を求めると0.43質量%であった。
シリコーンBを2Lの四つ口フラスコに641g入れ、滴下ロートに出光興産(株)製の1-オクテン(商品名:リニアレン8)382g(3.41mol)とエヌ・イー・ケムキャット(株)製の白金触媒であるPt-CTS-トルエン溶液80μL(Pt換算:3ppm)入れ、窒素置換を行った。シリコーンBを加熱し、液温が60℃に到達した後、1-オクテンと白金触媒の混合物の滴下を開始した。この時、液温を80~110℃に保つよう滴下の速度を調節した。1-ヘキセンと白金触媒の混合物をすべて滴下した後、100℃で2時間熟成した。熟成終了後、1H-NMRを使用してSiH基のピークの消失を確認した。続いて、加熱・減圧し、反応物から過剰の1-オクテンを除去し、分子鎖両末端トリメチルシロキシ基封鎖ジメチルシロキサン・メチルオクチルシロキサン共重合体(シリコーン2)を906g得た。
1H-NMRを使用して得られたシリコーン2を解析した結果、平均分子量3868、有機基R1(C8)を持つユニット(n1)の平均個数11.1個、有機基R1’(C1)を持つユニット(n2)の平均個数24.1個、分子構造中のC/Si比は4.14であることがわかった。
シリコーン2のNMRデータは以下の通りであった。
1H-NMR(溶媒:重クロロホルム、基準物質:TMS)
δ=0.40~0.60ppmの積分値を10.0とすると、
δ=0.01~0.08ppmの積分値は80.2
δ=0.08~0.10ppmの積分値は8.1
1H-NMR(溶媒:重クロロホルム、基準物質:TMS)
δ=0.40~0.60ppmの積分値を10.0とすると、
δ=0.01~0.08ppmの積分値は80.2
δ=0.08~0.10ppmの積分値は8.1
(炭化水素系潤滑油)
・エステル油:日油(株)製のペンタエリスリトール脂肪酸エステル、製品名:ユニスター HR-32(40℃動粘度:33.5:mm2/s、100℃動粘度:5.8mm2/s、VI:115、引火点:274℃、流動点:-50℃)
・エーテル油:(株)MORESCO製のアルキルジフェニルエーテル「モレスコハイルーブ LB-100」(40℃動粘度:102.6mm2/s、100℃動粘度:12.6mm2/s、VI:117)
・PAO油:Chevron Phillips製のポリαオレフィン、製品名:Synfluid PAO 6 cSt(40℃動粘度:30.5mm2/s、100℃動粘度:5.9mm2/s、VI:137)
・PAG(ポリブチレングリコール):DOW株式会社製「UCON OSP-32」(40℃動粘度:32.0mm2/s、100℃動粘度:6.5mm2/s、VI:146)
・鉱油:コスモ石油ルブリカンツ(株)製の鉱油、製品名:コスモピュアスピンTK(40℃動粘度:9.3mm2/s、100℃動粘度:2.5mm2/s、VI:94)
・流動パラフィン:(株)MORESCO製の「モレスコホワイト P-70」(40℃動粘度:12.6mm2/s、100℃動粘度:2.9mm2/s、VI:56)
・エステル油:日油(株)製のペンタエリスリトール脂肪酸エステル、製品名:ユニスター HR-32(40℃動粘度:33.5:mm2/s、100℃動粘度:5.8mm2/s、VI:115、引火点:274℃、流動点:-50℃)
・エーテル油:(株)MORESCO製のアルキルジフェニルエーテル「モレスコハイルーブ LB-100」(40℃動粘度:102.6mm2/s、100℃動粘度:12.6mm2/s、VI:117)
・PAO油:Chevron Phillips製のポリαオレフィン、製品名:Synfluid PAO 6 cSt(40℃動粘度:30.5mm2/s、100℃動粘度:5.9mm2/s、VI:137)
・PAG(ポリブチレングリコール):DOW株式会社製「UCON OSP-32」(40℃動粘度:32.0mm2/s、100℃動粘度:6.5mm2/s、VI:146)
・鉱油:コスモ石油ルブリカンツ(株)製の鉱油、製品名:コスモピュアスピンTK(40℃動粘度:9.3mm2/s、100℃動粘度:2.5mm2/s、VI:94)
・流動パラフィン:(株)MORESCO製の「モレスコホワイト P-70」(40℃動粘度:12.6mm2/s、100℃動粘度:2.9mm2/s、VI:56)
(硫黄化合物)
・硫黄系化合物1:イソブテン硫化物、RheinChemie製、「RC 2545」・硫黄系化合物2:ジチオカーバメート、DOG DEUTSCHE OELFABRIK製「DeoAdd V 300」
・硫黄系化合物3:ジメルカプトチアジアゾール系化合物、RheinChemie製「RC 8213」
・硫黄系化合物4:チオリン酸エステル、LUBRIZOL製「LUBRIZOL IC9AW31」
・硫黄系化合物5:ジアルキルジチオリン酸亜鉛、ADEKA製「アデカキクルーブ Z-112」
・硫黄系化合物1:イソブテン硫化物、RheinChemie製、「RC 2545」・硫黄系化合物2:ジチオカーバメート、DOG DEUTSCHE OELFABRIK製「DeoAdd V 300」
・硫黄系化合物3:ジメルカプトチアジアゾール系化合物、RheinChemie製「RC 8213」
・硫黄系化合物4:チオリン酸エステル、LUBRIZOL製「LUBRIZOL IC9AW31」
・硫黄系化合物5:ジアルキルジチオリン酸亜鉛、ADEKA製「アデカキクルーブ Z-112」
(酸化防止剤)
・一次酸化防止剤1:BASF製の芳香族アミン系化合物、「IRGANOX L-57」
・一次酸化防止剤2:BASF製のフェノール系化合物、「IRGANOX L-135」
・二次酸化防止剤:城北化学工業(株)製の亜リン酸エステル系化合物、「JP-310」
・一次酸化防止剤1:BASF製の芳香族アミン系化合物、「IRGANOX L-57」
・一次酸化防止剤2:BASF製のフェノール系化合物、「IRGANOX L-135」
・二次酸化防止剤:城北化学工業(株)製の亜リン酸エステル系化合物、「JP-310」
(その他)
・リン系極圧剤:脂肪酸リン酸エステルのアミン塩、Kingindustries製「NA-LUBE AW-64」
・金属不活性剤:VANDERBILT製のベンゾトリアゾール化合物「CUVAN303」
・リン系極圧剤:脂肪酸リン酸エステルのアミン塩、Kingindustries製「NA-LUBE AW-64」
・金属不活性剤:VANDERBILT製のベンゾトリアゾール化合物「CUVAN303」
〔実施例1~22および比較例1~7〕
それぞれの成分を、下記表1~3に示す割合(質量%)となるように配合して、(A)シリコーン油と(B)炭化水素系油、(C)硫黄化合物、及び(D)酸化防止剤、その他添加剤を100℃に加熱して混合することによって実施例1~22および比較例1~7の潤滑油組成物を調製した。
それぞれの成分を、下記表1~3に示す割合(質量%)となるように配合して、(A)シリコーン油と(B)炭化水素系油、(C)硫黄化合物、及び(D)酸化防止剤、その他添加剤を100℃に加熱して混合することによって実施例1~22および比較例1~7の潤滑油組成物を調製した。
得られた各実施例および各比較例の潤滑油組成物について、潤滑性を以下の試験方法で評価した。
(潤滑性)
潤滑性評価を、高速4球試験で行った。具体的には、Falex潤滑試験機(#6)を使用して評価した。試験条件は、回転速度:1200rpm、潤滑油組成物の温度:75℃、荷重:392N、試験時間:60分として、摩耗痕径で評価を行った。摩耗痕径による評価基準は、600μm超:×、550~600μm:○、550μm未満:◎とした。
(潤滑性)
潤滑性評価を、高速4球試験で行った。具体的には、Falex潤滑試験機(#6)を使用して評価した。試験条件は、回転速度:1200rpm、潤滑油組成物の温度:75℃、荷重:392N、試験時間:60分として、摩耗痕径で評価を行った。摩耗痕径による評価基準は、600μm超:×、550~600μm:○、550μm未満:◎とした。
結果を表1~3に示す。
(考察)
実施例1~22より、シリコーン油、炭化水素系潤滑油、および硫黄化合物を含む本発明の潤滑油組成物によって、非常に高い潤滑性(耐摩耗性)を達成できることが示された。特に、硫黄化合物の種類や含有量、酸化防止剤との併用によっては、摩耗痕径を550μm未満、さらには500μm未満とできる実施例もあった。
実施例1~22より、シリコーン油、炭化水素系潤滑油、および硫黄化合物を含む本発明の潤滑油組成物によって、非常に高い潤滑性(耐摩耗性)を達成できることが示された。特に、硫黄化合物の種類や含有量、酸化防止剤との併用によっては、摩耗痕径を550μm未満、さらには500μm未満とできる実施例もあった。
一方、比較例1~5では、硫黄化合物を含んでいないため、実施例より潤滑性に劣っていた。硫黄化合物の代わりにリン系極圧剤を含む比較例6や、硫黄化合物を0.1質量%しか含んでいない比較例7でも、十分な潤滑性を得ることができなかった。
この出願は、2019年10月18日に出願された日本国特許出願特願2019-190818を基礎とするものであり、その内容は、本願に含まれるものである。
本発明を表現するために、前述において具体例等を参照しながら実施形態を通して本発明を適切かつ十分に説明したが、当業者であれば前述の実施形態を変更及び/又は改良することは容易になし得ることであると認識すべきである。したがって、当業者が実施する変更形態又は改良形態が、請求の範囲に記載された請求項の権利範囲を離脱するレベルのものでない限り、当該変更形態又は当該改良形態は、当該請求項の権利範囲に包括されると解釈される。
本発明の潤滑油組成物は、優れた潤滑性を有する潤滑油として使用できるため、軸受用潤滑剤、含浸軸受用の潤滑剤、グリース基油、冷凍機油、可塑剤等として好適に用いることができる。特に高荷重の用途に好適である。
Claims (9)
- 前記(C)硫黄化合物が、チアジアゾール系化合物、チオカーバメート系化合物、硫化オレフィン、チオリン酸エステル、ジアルキルチオリン酸亜鉛から選ばれる少なくとも1つである、請求項1に記載の潤滑油組成物。
- さらに、(D)酸化防止剤を含む、請求項1または2に記載の潤滑油組成物。
- 2種以上の(D)酸化防止剤を含む、請求項3に記載の潤滑油組成物。
- 請求項1~4のいずれかに記載の潤滑油組成物を用いた、潤滑剤。
- 請求項1~4のいずれかに記載の潤滑油組成物又は請求項5に記載の潤滑剤を用いた、グリース。
- 請求項1~4のいずれかに記載の潤滑油組成物又は請求項5に記載の潤滑剤を用いた、エマルション。
- 請求項1~4のいずれかに記載の潤滑油組成物を使用した、潤滑方法。
- 軸受用である、請求項1~4のいずれかに記載の潤滑油組成物。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2021552346A JP7282907B2 (ja) | 2019-10-18 | 2020-10-07 | 潤滑油組成物およびそれを用いた潤滑剤 |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2019-190818 | 2019-10-18 | ||
JP2019190818 | 2019-10-18 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2021075325A1 true WO2021075325A1 (ja) | 2021-04-22 |
Family
ID=75538462
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2020/037978 WO2021075325A1 (ja) | 2019-10-18 | 2020-10-07 | 潤滑油組成物およびそれを用いた潤滑剤 |
Country Status (3)
Country | Link |
---|---|
JP (1) | JP7282907B2 (ja) |
TW (1) | TW202116993A (ja) |
WO (1) | WO2021075325A1 (ja) |
Citations (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH09188887A (ja) * | 1995-12-29 | 1997-07-22 | Tonen Corp | 耐熱性潤滑油組成物 |
JP2000063866A (ja) * | 1998-08-20 | 2000-02-29 | Showa Shell Sekiyu Kk | 潤滑油組成物 |
JP2002069471A (ja) * | 2000-08-28 | 2002-03-08 | Japan Energy Corp | 潤滑油組成物 |
JP2003253281A (ja) * | 2002-02-27 | 2003-09-10 | Yushiro Chem Ind Co Ltd | 非鉄金属塑性加工用潤滑油組成物 |
JP2003261892A (ja) * | 2002-03-11 | 2003-09-19 | Japan Energy Corp | 焼結含油軸受用潤滑油組成物 |
JP2005248034A (ja) * | 2004-03-04 | 2005-09-15 | Ntn Corp | グリース組成物およびその製造方法ならびに該グリース組成物封入転がり軸受 |
JP2005331013A (ja) * | 2004-05-19 | 2005-12-02 | Nsk Ltd | 一方向クラッチ内蔵型回転伝達装置 |
JP2009019703A (ja) * | 2007-07-12 | 2009-01-29 | Ntn Corp | 車輪支持装置 |
JP2016500131A (ja) * | 2012-11-28 | 2016-01-07 | ダウ コーニング コーポレーションDow Corning Corporation | 高荷重条件下での面の間の摩擦及び摩耗を低減する方法 |
-
2020
- 2020-10-07 JP JP2021552346A patent/JP7282907B2/ja active Active
- 2020-10-07 WO PCT/JP2020/037978 patent/WO2021075325A1/ja active Application Filing
- 2020-10-13 TW TW109135320A patent/TW202116993A/zh unknown
Patent Citations (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH09188887A (ja) * | 1995-12-29 | 1997-07-22 | Tonen Corp | 耐熱性潤滑油組成物 |
JP2000063866A (ja) * | 1998-08-20 | 2000-02-29 | Showa Shell Sekiyu Kk | 潤滑油組成物 |
JP2002069471A (ja) * | 2000-08-28 | 2002-03-08 | Japan Energy Corp | 潤滑油組成物 |
JP2003253281A (ja) * | 2002-02-27 | 2003-09-10 | Yushiro Chem Ind Co Ltd | 非鉄金属塑性加工用潤滑油組成物 |
JP2003261892A (ja) * | 2002-03-11 | 2003-09-19 | Japan Energy Corp | 焼結含油軸受用潤滑油組成物 |
JP2005248034A (ja) * | 2004-03-04 | 2005-09-15 | Ntn Corp | グリース組成物およびその製造方法ならびに該グリース組成物封入転がり軸受 |
JP2005331013A (ja) * | 2004-05-19 | 2005-12-02 | Nsk Ltd | 一方向クラッチ内蔵型回転伝達装置 |
JP2009019703A (ja) * | 2007-07-12 | 2009-01-29 | Ntn Corp | 車輪支持装置 |
JP2016500131A (ja) * | 2012-11-28 | 2016-01-07 | ダウ コーニング コーポレーションDow Corning Corporation | 高荷重条件下での面の間の摩擦及び摩耗を低減する方法 |
Also Published As
Publication number | Publication date |
---|---|
JPWO2021075325A1 (ja) | 2021-04-22 |
TW202116993A (zh) | 2021-05-01 |
JP7282907B2 (ja) | 2023-05-29 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2014028632A1 (en) | Lubricant compositions | |
US20070129268A1 (en) | Lubricating oil composition | |
US20120283159A1 (en) | Lubricant composition | |
JP5638256B2 (ja) | 潤滑油組成物 | |
JP6730123B2 (ja) | 潤滑油組成物 | |
WO2013008836A1 (ja) | 潤滑油組成物および機械装置 | |
JP5339861B2 (ja) | 消泡性に優れた潤滑油組成物及び潤滑油の消泡方法 | |
GB2506975A (en) | Lubricant compositions | |
WO2021124807A1 (ja) | 低残渣シロキサン化合物並びにそれを用いた潤滑油組成物及び潤滑剤 | |
TWI836351B (zh) | 內燃機用潤滑油組合物 | |
JP7282907B2 (ja) | 潤滑油組成物およびそれを用いた潤滑剤 | |
JP6509322B2 (ja) | 最終減速機用潤滑油組成物 | |
WO2022250017A1 (ja) | 内燃機関用潤滑油組成物 | |
EP3760697B1 (en) | Lubricant composition, its method of producing and use in a mechanical device | |
JP7296711B2 (ja) | 潤滑油組成物、潤滑油組成物を備える機械装置および潤滑油組成物の製造方法 | |
JP6990299B2 (ja) | 潤滑油組成物およびそれを用いた潤滑剤 | |
EP1516913A2 (en) | Shear stable functional fluid with low Brookfield viscosity | |
WO2010012598A2 (en) | Lubricating composition | |
JP2020090557A (ja) | 潤滑油組成物 | |
JP2020090558A (ja) | 潤滑油組成物 | |
JP7312717B2 (ja) | 潤滑油組成物 | |
JP5048959B2 (ja) | 消泡剤および潤滑油組成物 | |
JP2021143309A (ja) | 潤滑油組成物 | |
GB2506973A (en) | Lubricant compositions |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 20876746 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 2021552346 Country of ref document: JP Kind code of ref document: A |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 20876746 Country of ref document: EP Kind code of ref document: A1 |