WO2021075201A1 - 揚力型垂直軸風水車 - Google Patents

揚力型垂直軸風水車 Download PDF

Info

Publication number
WO2021075201A1
WO2021075201A1 PCT/JP2020/035170 JP2020035170W WO2021075201A1 WO 2021075201 A1 WO2021075201 A1 WO 2021075201A1 JP 2020035170 W JP2020035170 W JP 2020035170W WO 2021075201 A1 WO2021075201 A1 WO 2021075201A1
Authority
WO
WIPO (PCT)
Prior art keywords
wing
rotation
lift
arm
extending
Prior art date
Application number
PCT/JP2020/035170
Other languages
English (en)
French (fr)
Inventor
阿部 力也
伊東 孝彦
Original Assignee
阿部 力也
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 阿部 力也 filed Critical 阿部 力也
Priority to AU2020367335A priority Critical patent/AU2020367335A1/en
Priority to CN202080068431.5A priority patent/CN114450480A/zh
Priority to US17/768,581 priority patent/US20240102440A1/en
Publication of WO2021075201A1 publication Critical patent/WO2021075201A1/ja

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03DWIND MOTORS
    • F03D3/00Wind motors with rotation axis substantially perpendicular to the air flow entering the rotor 
    • F03D3/005Wind motors with rotation axis substantially perpendicular to the air flow entering the rotor  the axis being vertical
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03BMACHINES OR ENGINES FOR LIQUIDS
    • F03B13/00Adaptations of machines or engines for special use; Combinations of machines or engines with driving or driven apparatus; Power stations or aggregates
    • F03B13/12Adaptations of machines or engines for special use; Combinations of machines or engines with driving or driven apparatus; Power stations or aggregates characterised by using wave or tide energy
    • F03B13/26Adaptations of machines or engines for special use; Combinations of machines or engines with driving or driven apparatus; Power stations or aggregates characterised by using wave or tide energy using tide energy
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03BMACHINES OR ENGINES FOR LIQUIDS
    • F03B17/00Other machines or engines
    • F03B17/06Other machines or engines using liquid flow with predominantly kinetic energy conversion, e.g. of swinging-flap type, "run-of-river", "ultra-low head"
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03BMACHINES OR ENGINES FOR LIQUIDS
    • F03B17/00Other machines or engines
    • F03B17/06Other machines or engines using liquid flow with predominantly kinetic energy conversion, e.g. of swinging-flap type, "run-of-river", "ultra-low head"
    • F03B17/062Other machines or engines using liquid flow with predominantly kinetic energy conversion, e.g. of swinging-flap type, "run-of-river", "ultra-low head" with rotation axis substantially at right angle to flow direction
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03BMACHINES OR ENGINES FOR LIQUIDS
    • F03B3/00Machines or engines of reaction type; Parts or details peculiar thereto
    • F03B3/12Blades; Blade-carrying rotors
    • F03B3/121Blades, their form or construction
    • F03B3/123Blades, their form or construction specially designed as adjustable blades, e.g. for Kaplan-type turbines
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03BMACHINES OR ENGINES FOR LIQUIDS
    • F03B3/00Machines or engines of reaction type; Parts or details peculiar thereto
    • F03B3/12Blades; Blade-carrying rotors
    • F03B3/14Rotors having adjustable blades
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03BMACHINES OR ENGINES FOR LIQUIDS
    • F03B3/00Machines or engines of reaction type; Parts or details peculiar thereto
    • F03B3/12Blades; Blade-carrying rotors
    • F03B3/14Rotors having adjustable blades
    • F03B3/145Mechanisms for adjusting the blades
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03DWIND MOTORS
    • F03D3/00Wind motors with rotation axis substantially perpendicular to the air flow entering the rotor 
    • F03D3/005Wind motors with rotation axis substantially perpendicular to the air flow entering the rotor  the axis being vertical
    • F03D3/011Wind motors with rotation axis substantially perpendicular to the air flow entering the rotor  the axis being vertical of the lift type, e.g. Darrieus or Musgrove
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03DWIND MOTORS
    • F03D3/00Wind motors with rotation axis substantially perpendicular to the air flow entering the rotor 
    • F03D3/06Rotors
    • F03D3/061Rotors characterised by their aerodynamic shape, e.g. aerofoil profiles
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03DWIND MOTORS
    • F03D3/00Wind motors with rotation axis substantially perpendicular to the air flow entering the rotor 
    • F03D3/06Rotors
    • F03D3/062Rotors characterised by their construction elements
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03DWIND MOTORS
    • F03D7/00Controlling wind motors 
    • F03D7/06Controlling wind motors  the wind motors having rotation axis substantially perpendicular to the air flow entering the rotor
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03DWIND MOTORS
    • F03D3/00Wind motors with rotation axis substantially perpendicular to the air flow entering the rotor 
    • F03D3/06Rotors
    • F03D3/062Rotors characterised by their construction elements
    • F03D3/064Fixing wind engaging parts to rest of rotor
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05BINDEXING SCHEME RELATING TO WIND, SPRING, WEIGHT, INERTIA OR LIKE MOTORS, TO MACHINES OR ENGINES FOR LIQUIDS COVERED BY SUBCLASSES F03B, F03D AND F03G
    • F05B2210/00Working fluid
    • F05B2210/16Air or water being indistinctly used as working fluid, i.e. the machine can work equally with air or water without any modification
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05BINDEXING SCHEME RELATING TO WIND, SPRING, WEIGHT, INERTIA OR LIKE MOTORS, TO MACHINES OR ENGINES FOR LIQUIDS COVERED BY SUBCLASSES F03B, F03D AND F03G
    • F05B2250/00Geometry
    • F05B2250/10Geometry two-dimensional
    • F05B2250/11Geometry two-dimensional triangular
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05BINDEXING SCHEME RELATING TO WIND, SPRING, WEIGHT, INERTIA OR LIKE MOTORS, TO MACHINES OR ENGINES FOR LIQUIDS COVERED BY SUBCLASSES F03B, F03D AND F03G
    • F05B2260/00Function
    • F05B2260/70Adjusting of angle of incidence or attack of rotating blades
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/20Hydro energy
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/30Energy from the sea, e.g. using wave energy or salinity gradient
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/70Wind energy
    • Y02E10/74Wind turbines with rotation axis perpendicular to the wind direction

Definitions

  • the present invention relates to a lift-type vertical axis wind turbine or water turbine (hereinafter referred to as "wind turbine”) in which the rotation axis is rotated by the lift generated in the wing.
  • wind turbine a lift-type vertical axis wind turbine or water turbine
  • Wind turbines are roughly classified into horizontal axis wind turbines in which the axis of rotation of the impeller is horizontal to the ground and vertical axis wind turbines in which the axis of rotation of the impeller is perpendicular to the ground. Further, each wind turbine is roughly classified into a drag type that rotates the impeller by drag and a lift type that rotates the impeller by lift.
  • the horizontal axis wind turbine needs to have the rotating surface of the impeller facing the wind direction, in order to constantly rotate the impeller, the rotating surface of the impeller must follow the change in the wind direction.
  • the vertical axis wind turbine does not have directivity with respect to the wind direction, it is not necessary to have a wind direction following mechanism, and the device configuration can be simplified.
  • the drag-type wind turbine is characterized in that the wind turbine efficiency (efficiency of energy obtained from the wind) is high in a region where the peripheral speed ratio (ratio of the tip speed of the impeller to the wind speed) is low.
  • the lift type wind turbine is characterized in that the wind turbine efficiency is high in a region where the peripheral speed ratio is high.
  • a lift-type vertical axis wind turbine As such a lift-type vertical axis wind turbine, a plurality of rotary blades having a streamlined cross-sectional shape and a substantially rectangular plate shape, a rotary shaft connected to a rotor of a generator and arranged in the vertical direction, and rotation.
  • a wind turbine having a first rotary shaft penetration member fixed to a shaft and a second rotary shaft penetration member fixed to the rotary shaft at a position away from the first rotary shaft penetration member is known. (For example, Patent Document 1).
  • the wind turbine further has a first support member having one end fixed to the first rotary shaft penetrating member and the other end attached to any of the rotary shaft side surfaces of the plurality of rotor blades, and one end thereof. It has a plurality of second support members which are fixed to the second rotary shaft penetrating member and whose other end is attached to any of the rotary shaft side surfaces of the plurality of rotary blades.
  • the pair of first support members and the second support members that support each of the plurality of rotary blades are arranged with an opening degree of a predetermined angle when viewed from the axial direction of the rotary shaft.
  • an object of the present invention is to provide a feng shui wheel whose rotating shaft is less likely to be fatigued and broken.
  • the invention according to claim 1 comprises a rotating shaft extending in the vertical direction, a plurality of arms extending horizontally from the rotating shaft and formed at equal intervals in the rotating direction, and attached to the tip of the arm in the vertical direction.
  • a lift-type vertical axis wind turbine having a plurality of extending blades and whose rotation axis is rotated by the lifting force generated in the blades, wherein the cross section of the blades is uniform and uniform from the upper end of the blades to the lower end of the blades. It is an area, and when viewed from the extending direction of the rotation axis, a plurality of the wings are projected on the entire circumference of a single virtual ring centered on the rotation axis, and the length of the wings in the vertical direction is determined.
  • the upper wing having the wing extending upward from the arm and extending in the direction opposite to the rotation direction, and the above-mentioned invention. It is composed of a lower wing extending downward from the arm and extending in the direction opposite to the rotation direction, and the shape of the wing is V-shaped in a side view, thereby further solving the above-mentioned problem.
  • the arm in addition to the structure of the lift type vertical axis wind turbine according to claim 1 or 2, the arm holds the wing rotatably with the vertical direction as a rotation axis.
  • a shaft support mechanism is provided at the tip of the arm, and an angle-of-attack adjusting mechanism for adjusting the angle of attack of the wing is provided between the arm and the wing.
  • the cross section of the wing has a uniform shape and a uniform area from the upper end of the wing to the lower end of the wing, the lift generated in the wing is applied to the wing from the upper end to the lower end. Since the thrust distribution due to the lift in the vertical direction of the wing is made uniform, a torsional moment is less likely to occur in the direction in which the arm extends, and the arm can be less likely to be fractured by fatigue.
  • the wings extend above the arm and are opposite to the direction of rotation. It consists of an upper wing that extends in the direction and a lower wing that extends downward from the arm and extends in the direction opposite to the direction of rotation. Since the forces applied to the upper and lower sides of the wing around the arm are always balanced, the force applied to the rotation axis can be made uniform. Therefore, the force applied to the rotating shaft is made uniform, the fatigue of the bearing supporting the rotating shaft is suppressed, and the life of the feng shui wheel can be extended.
  • the angle-of-attack adjustment mechanism is a rotary shaft. If the rotation speed is less than the predetermined rotation speed, the angle of attack of the blade is not changed, and if the rotation speed of the rotation shaft exceeds the predetermined rotation speed, the lift generated in the blade is reduced or the drag force is reduced.
  • the angle of attack of the wing so as to increase it, lift is reduced when the rotation speed of the rotating shaft increases, for example, in strong winds, so that the increase in the rotation speed of the rotating shaft can be suppressed. it can.
  • the angle of attack of the wing is adjusted according to the centrifugal force applied to the wing by the angle of attack adjustment mechanism. Therefore, when the rotation speed of the rotation shaft increases to some extent, the angle of attack of the wing changes and the rotation speed does not increase. ..
  • the perspective view of the wind turbine which is 1st Example of this invention The plan view of the wind turbine shown in FIG. A side view of the wind turbine shown in FIG.
  • the present invention includes a rotation axis extending in the vertical direction, a plurality of arms extending horizontally from the rotation axis and formed at equal intervals in the rotation direction, and a plurality of wings attached to the tips of the arms and extending in the vertical direction. It is a lift-type vertical axis wind turbine in which the rotation axis is rotated by the lifting force generated in the blade, and the cross section of the blade has a uniform shape and a uniform area from the upper end of the blade to the lower end of the blade, and the rotation axis extends.
  • the specific embodiment may be any.
  • the number of wings used in the present invention is not limited as long as it is a plurality of wings.
  • the cross-sectional shape of the wing is not limited as long as it generates lift.
  • the material of the blade is preferably made of carbon fiber, but the material is not limited to this, and may be made of, for example, aluminum.
  • the wing shape may be formed by applying pressure such as air or liquid, and the wing shape may be lost by releasing the pressure. It may be made of deformable rubber, cloth, film, or the like.
  • the fluid for operating the lift-type vertical axis wind turbine of the present invention may be a liquid or a gas, and if the working fluid is a liquid, it becomes a water turbine, and the working fluid is a gas. It becomes a windmill.
  • FIGS. 1 to 3 the wind turbine 100 according to the first embodiment of the present invention will be described with reference to FIGS. 1 to 3.
  • the configurations with the same reference numerals are the same in different drawings, and the description thereof may be omitted.
  • FIG. 1 is a perspective view of a wind turbine according to a first embodiment of the present invention
  • FIG. 2 is a plan view of the wind turbine shown in FIG.
  • the windmill 100 which is a lift-type vertical axis wind turbine according to the first embodiment of the present invention, uses a working fluid as a gas, and as shown in FIG. 1, a rotary shaft 110 extending in the vertical direction and the rotary shaft 110. It includes a plurality of arms 120 extending in the horizontal direction (direction orthogonal to the vertical direction) from 110, and a plurality of wings 130 attached to the tips of the respective arms 120 and extending in the vertical direction.
  • the rotation shaft 110 rotates in one direction due to the lift generated in the blade 130. That is, the wind turbine 100 is a lift-type wind turbine that rotates by lift, and is a vertical-axis type wind turbine whose rotation axis faces vertically.
  • the rotating shaft 110 has a circular cross-sectional shape, the lower end is connected to a generator (not shown), and the arm 120 is formed on the upper end side.
  • each arm 120 is formed at equal intervals in the rotation direction R. That is, the distance between the adjacent arms 120 is 60 degrees. Further, the cross-sectional shape of the surface of the arm 120 orthogonal to the radial direction is rectangular. At the tip of the arm 120, a columnar upper connecting portion 121 extending vertically upward and a columnar lower connecting portion 122 extending vertically downward are provided.
  • FIG. 3 is a side view of the wind turbine shown in FIG.
  • the wing 130 is connected to the upper end of the upper connecting portion 121 of the arm 120 and the lower end of the lower connecting portion 122. More specifically, the wing 130 is connected to the arm 120 at a distance from the center of gravity. In this embodiment, the connection point between the arm 120 and the wing 130 is provided near the midpoint between the center of the side view of the wing 130 and the tip of the wing 130, and is located closer to the tip of the wing than the center of gravity. Although located, this connection point depends on the shape of the wing.
  • the cross-sectional shape of the wing 130 is a NACA (National Advisory Committee for Aeronautics) 0012 airfoil, and has the same shape and the same area from the upper end to the lower end in the vertical direction. That is, the maximum blade thickness of the blade 130 in this embodiment is 12% of the cord length.
  • the wing 130 has a V shape having a receding angle with respect to the rotation direction R in a side view as shown in FIG. That is, from the upper wing 131 in which the wing 130 extends upward from the arm 120 and extends in the direction opposite to the rotation direction R, and the lower wing 132 in which the wing 130 extends downward from the arm 120 and extends in the direction opposite to the rotation direction R. Become.
  • the upper wing 131 and the lower wing 132 are symmetrical with respect to the center line L of the wing 130 extending in the horizontal direction.
  • the frontmost end F of the wing 130 is located forward in the rotation direction with respect to the rearmost end E which is the rear end of the upper and lower ends of the adjacent wing 130 on the front side in the rotation direction, and is on the front side in the adjacent rotation direction. It almost coincides with the front end G of the upper and lower ends of the wing 130. That is, in a plan view seen from the extending direction of the rotation axis 110 as shown in FIG. 2, a plurality of wings 130 are projected on the entire circumference of a single virtual ring C centered on the rotation axis 110.
  • the camper of the wing 130 (the difference between the center line of the wing connecting the front end and the rear end and the cord (the straight line connecting the front end and the rear end of the wing) in the cross section of the wing 130) is also on the virtual ring C. Will be located.
  • the diameter ⁇ of the virtual ring C (distance from the center of the virtual ring C to the center of the virtual ring C in the radial direction) ⁇ is substantially equal to the height H of the wing 130 in the side view (FIG. 3). It has become.
  • the blades 130 have the same length in the vertical direction over the entire circumference.
  • the length L1 in the vertical direction of the wing 130 at the position P1 overlapping the adjacent wing 130 in the vertical direction is the length L1a in the vertical direction of the upper wing 131 of the wing 130 on the front side in the rotation direction. It is the sum of the vertical length L1b of the wing 130 on the rear side in the rotation direction and the vertical length L1c of the lower wing 132 of the wing 130 on the front side in the rotation direction.
  • the length L2 in the vertical direction of the wing 130 at the position P2 that does not overlap with the adjacent wing 130 in the vertical direction is the vertical length L2a of the upper wing 131 of the wing 130 and the vertical direction of the lower wing 132 of the wing 130. Is the sum of the length L2b.
  • the length L1 in the vertical direction of the blade 130 at the position P1 overlapping the adjacent blade 130 in the vertical direction is the length L2 in the vertical direction of the blade 130 at the position P2 not overlapping with the adjacent blade 130 in the vertical direction.
  • FIG. 4 is a configuration diagram of a wind turbine according to a second embodiment of the present invention.
  • the wind turbine 200 of the second embodiment is common because the connection form of the arm 120 and the blade 130 in the wind turbine 100 of the first embodiment is changed and many elements are common to the wind turbine 100 of the first embodiment. Detailed explanations will be omitted for the matters to be performed, and only the 200-series codes having the same last two digits will be added.
  • the arm 220 has a shaft support mechanism 221 at the tip of the arm 220 that rotatably holds the blade 230 with the vertical direction as the rotation axis.
  • the wing 230 is rotatable with respect to the arm 220.
  • the wing 230 is connected to the shaft support mechanism 221 by an upper connecting portion 221a formed on the upper end side of the shaft support mechanism 221 and a lower connecting portion 221b formed on the lower end side of the shaft support mechanism 221. ..
  • the wind turbine 200 of the second embodiment is provided with an angle of attack adjusting mechanism 240 for adjusting the angle of attack of the blade 230 between the arm 220 and the blade 230.
  • the angle-of-attack adjustment mechanism 240 does not change the angle of attack of the blade 230 when the rotation speed of the rotating shaft 210 is smaller than the predetermined rotation speed, and when the rotation speed of the rotating shaft 210 becomes equal to or higher than the predetermined rotation speed. Changes the angle of attack of the wing 230 so as to reduce the lift generated on the wing 230.
  • the angle-of-attack adjustment mechanism 240 may be, for example, an actuator such as a servomotor, or an elastic element or a damping element.
  • the lift generated in the wing 230 when the rotation speed of the rotating shaft 210 becomes equal to or higher than a predetermined rotation speed is reduced or the drag force is increased.
  • the lift is reduced when the rotation speed of the rotation shaft 210 is high as in a strong wind, so that the increase in the rotation speed of the rotation shaft 210 is suppressed and the rotation shaft is suppressed.
  • the 210 is less likely to be consumed, and the durability of the windmill 200 can be increased.
  • the wind turbine 200 of this embodiment is proportional to the centrifugal force during rotation because the connection point between the arm 220 and the blade 230 and the center of gravity of the blade 230 are deviated from each other and the angle of attack adjusting mechanism 240 is provided.
  • a force that automatically changes the angle of attack acts on the wing 230.
  • the angle of attack adjusting mechanism 240 has a simple spring-like structure, the angle of attack of the blade 230 can be changed, and the increase in the rotation speed of the rotating shaft 210 is suppressed to be constant.
  • the effect on the spring due to the change in wind pressure is considered, but the effect is much smaller than the centrifugal force, so the angle of attack of the wing 230 pulsates while the rotating shaft 210 is rotating. Absent. Further, since the centrifugal force is proportional to the square of the rotation speed, in the wind turbine 200 of this embodiment, the angle of attack of the blade 230 hardly changes in the normal wind speed range, and the angle of attack of the blade 230 starts from the point where the limit wind speed is exceeded. Has begun to change, and the rated rotation speed is no longer exceeded even in strong winds.
  • the cross-sectional shape of the arm is rectangular as shown in FIG. 1 and the like, but the cross-sectional shape is not limited to this, and may be, for example, a wing shape.
  • the blade 130 has one stage, but the blade 130 may be provided in multiple stages in the vertical direction.
  • the rotation directions of the stages are not all limited to the same, and the blades 130 may rotate in different directions.
  • the diameter ⁇ of the virtual ring C (the distance from the center of the virtual ring C to the center of the virtual ring C in the radial direction) ⁇ is the height of the wing 130 in the side view (FIG. 3) in the above-described embodiment. It was almost equal to H, but it is not limited to this.
  • the angle-of-attack adjustment mechanism was provided between the arm 220 and the blade 230 in the second embodiment, but the angle of attack of the blade is changed when the rotation speed of the rotation shaft is smaller than the predetermined rotation speed.
  • the cross-sectional shape of the wing is such that the angle of attack of the wing is changed by changing the shape of the wing so as to reduce the lift generated in the wing when the rotation speed of the rotation shaft exceeds the predetermined rotation speed. Or material.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Physics & Mathematics (AREA)
  • Fluid Mechanics (AREA)
  • Power Engineering (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Oceanography (AREA)
  • Wind Motors (AREA)
  • Hydraulic Turbines (AREA)
  • Other Liquid Machine Or Engine Such As Wave Power Use (AREA)

Abstract

回転軸が疲労破壊しにくい風水車を提供すること。 鉛直方向に延びる回転軸110と、この回転軸110から水平方向に延びると共に回転方向に等間隔に形成される複数のアーム120と、このアーム120の先端に取り付けられて上下方向に延びる複数の翼130とを備え、この翼130に生じる揚力により回転軸110が回転する風車100であって、翼130の断面が、翼130の上端から翼130の下端まで均一形状かつ均一面積であり、回転軸110の延びる方向から見て、回転軸110を中心とする単一の仮想円環Cの全周上に複数の翼130が投影され、鉛直方向における翼130の長さが、全周に亘って等しい。

Description

揚力型垂直軸風水車
 本発明は、翼に生じる揚力により回転軸が回転する揚力型垂直軸風車または水車(以下、「風水車」と呼ぶ)に関するものである。
 回転する羽根車を介して連続的にエネルギーを変換するターボ機械の一つとして、自然風の持つ風力エネルギーを回転する翼車により機械的エネルギーに変換する風車が知られている。
 風車は、翼車の回転軸が地面に対して水平な水平軸風車と、翼車の回転軸が地面に対して垂直な垂直軸風車とに大別される。
 さらに、それぞれの風車において、抗力により翼車を回転させる抗力型と揚力により翼車を回転させる揚力型とに大別されている。
 水平軸風車は翼車の回転面を風向きに対して正対させる必要があるため、常に翼車を回転させるには、風向きの変化に翼車の回転面を追従させるがある。
 一方、垂直軸風車は風向きに対する指向性を有さないため、風向き追従機構を有する必要が無く、装置構成を簡略化できる。
 そして、抗力型の風車は、周速比(翼車の先端速度と風速の比)が低い領域において風車効率(風から得られるエネルギーの効率)が高くなるという特徴がある。
 一方、揚力型の風車は、周速比が高い領域において風車効率が高くなるという特徴がある。
 以上のような特徴から、近年、揚力型の垂直軸風車が注目されている。
 このような揚力型の垂直軸風車として、断面形状が流線形で略長方形の板状をした複数の回転翼と、発電機の回転子に連結されて垂直方向に配置された回転軸と、回転軸に固定される第一の回転軸貫入部材と、この第一の回転軸貫入部材と離れた位置で回転軸に固定される第二の回転軸貫入部材を有している風車が知られている(例えば、特許文献1)。
 この風車は、さらに、一端が第一の回転軸貫入部材に固着されると共に他端が複数の回転翼の回転軸側の面のいずれかに取り付けられている第一の支持部材と、一端が第二の回転軸貫入部材に固着されると共に他端が複数の回転翼の回転軸側の面のいずれかに取り付けられている複数の第二の支持部材とを有している。
 そして、複数の回転翼のそれぞれを支持する一対の第一の支持部材および第二の支持部材は、回転軸の軸方向から見たとき、所定角度の開度を有して配置されている。
特開2005-240632号公報
 しかしながら、上記の風車は、平面視において、翼が存在する部分と存在しない部分とがあるため、回転軸の角度により、風から得られる風力エネルギーが周期的に変化する。
 したがって、回転軸に加わるモーメントや軸力が回転軸の角度により周期的に変化するため、回転軸がこの周期的なモーメントや軸力の付加により疲労破壊される恐れがある。
 そこで、本発明は、前述したような従来技術の問題を解決するものであって、すなわち、本発明の目的は、回転軸が疲労破壊しにくい風水車を提供することである。
 請求項1に係る発明は、鉛直方向に延びる回転軸と、該回転軸から水平方向に延びると共に回転方向に等間隔に形成される複数のアームと、該アームの先端に取り付けられて上下方向に延びる複数の翼とを備え、該翼に生じる揚力により前記回転軸が回転する揚力型垂直軸風水車であって、前記翼の断面が、前記翼の上端から前記翼の下端まで均一形状かつ均一面積であり、前記回転軸の延びる方向から見て、前記回転軸を中心とする単一の仮想円環の全周上に複数の前記翼が投影され、鉛直方向における前記翼の長さが、全周に亘って等しいことにより、前述した課題を解決するものである。
 請求項2に係る発明は、請求項1に記載された揚力型垂直軸風水車の構成に加えて、前記翼が、前記アームより上方に延びると共に回転方向と逆方向に延びる上方翼と、前記アームより下方に延びると共に回転方向と逆方向に延びる下方翼とからなり、前記翼の形状が、側面視でV字状であることにより、前述した課題をさらに解決するものである。
 請求項3に係る発明は、請求項1または請求項2に記載された揚力型垂直軸風水車の構成に加えて、前記アームが、鉛直方向を回動軸として回動自在に前記翼を保持する軸支機構を前記アームの先端に有し、前記翼の迎角を調整する迎角調整機構が、前記アームと前記翼との間に設けられ、前記迎角調整機構は、前記回転軸の回転数が所定の回転数より小さい場合には前記翼の迎角を変更せず、前記回転軸の回転数が前記所定の回転数以上となった場合には前記翼に発生する揚力を低減、または、抗力を増加させるように前記翼の迎角を変更することにより、前述した課題をさらに解決するものである。
 請求項1に係る発明の揚力型垂直軸風水車によれば、翼の断面が、翼の上端から翼の下端まで均一形状かつ均一面積であることにより、翼に生ずる揚力が翼に上端から下端に亘って一定となり、翼における上下方向の揚力に起因する推力分布が均一化されるため、アームの延びる方向まわりに捩りモーメントが生じにくくなり、アームを疲労破壊されにくくすることができる。
 また、回転軸の延びる方向から見て、回転軸を中心とする単一の仮想円環の全周上に複数の翼が投影され、鉛直方向における翼の長さが、全周に亘って等しいことにより、側面視における翼の受風面積が回転軸の回転位置に依らずにほぼ一定となるため、翼の回転方向と直交する方向から受ける風に起因するアームからの軸力やモーメントがほぼ一定となり、回転軸を疲労破壊されにくくすることができる。
 請求項2に係る発明の揚力型垂直軸風水車によれば、請求項1に係る発明の揚力型垂直軸風水車が奏する効果に加えて、翼が、アームより上方に延びると共に回転方向と逆方向に延びる上方翼と、アームより下方に延びると共に回転方向と逆方向に延びる下方翼とからなり、翼の形状が、側面視でV字状であることにより、上下に均等の風圧がかかり、アームを中心に翼の上下に加わる力が常に釣り合うため、回転軸に加わる力を均一化することができる。
 したがって、回転軸に加わる力が一様化され、回転軸を支持する軸受の疲労が抑制され、風水車の寿命を延ばすことができる。
 請求項3に係る発明の揚力型垂直軸風水車によれば、請求項1または請求項2に係る発明の揚力型垂直軸風水車が奏する効果に加えて、迎角調整機構は、回転軸の回転数が所定の回転数より小さい場合には翼の迎角を変更せず、回転軸の回転数が所定の回転数以上となった場合には翼に発生する揚力を低減、または、抗力を増加させるように翼の迎角を変更することにより、例えば強風時のような回転軸の回転数が高くなる場合に、揚力が低減されるため、回転軸の回転数の増加を抑制することができる。
 換言すれば、迎角調整機構により翼に加わる遠心力に応じて翼の迎角が調整されるため、ある程度回転軸の回転数が高くなると、翼の迎角が変わり、回転数が増加しなくなる。
本発明の第1実施例である風車の斜視図。 図1に示す風車の平面図。 図1に示す風車の側面図。 本発明の第2実施例である風車の構成図。
 本発明は、鉛直方向に延びる回転軸と、この回転軸から水平方向に延びると共に回転方向に等間隔に形成される複数のアームと、このアームの先端に取り付けられて上下方向に延びる複数の翼とを備え、この翼に生じる揚力により回転軸が回転する揚力型垂直軸風水車であって、翼の断面が、翼の上端から翼の下端まで均一形状かつ均一面積であり、回転軸の延びる方向から見て、回転軸を中心とする単一の仮想円環の全周上に複数の翼が投影され、鉛直方向における翼の長さが、全周に亘って等しく、回転軸が疲労破壊しにくいものであれば、その具体的な実施態様は、如何なるものであっても構わない。
 例えば、本発明で使用する翼の枚数は、複数枚であれば、その枚数は限定されるものではない。
 また、翼の断面形状は、揚力を発生されるものであれば、その形状は限定されるものではない。
 また、翼の材質は、カーボンファイバー製であることが好ましいが、これに限定されず、例えば、アルミニウム製であってもよい。
 あるいは、空気や液体などの圧力を加えることで翼形状が形成され、圧力を抜くことで翼形状が失われるような変形可能なゴム製、布製、フィルム製、などであってもよい。
 例えば、形状をなめらかに実現するためにワイヤーなどの骨に当たるものが、翼にあってもよい。
 このような圧力による形状可変翼の場合は、圧力を抜くことにより、強風時の迎角調整機能を実現することができる。
 例えば、本発明の揚力型垂直軸風水車を作動させるための流体は、液体であってもよいし、気体であってもよく、作動流体を液体とすれば水車となり、作動流体を気体とすれば風車となる。
 以下、図1乃至図3に基づいて、本発明の第1実施例である風車100を説明する。
 なお、以下の説明において、異なる図面においても同じ符号を付した構成は同様のものであるとして、その説明を省略する場合がある。
<1.風車の概要>
 まず、図1および図2に基づいて、本発明の第1実施例である風車100について説明する。
 図1は本発明の第1実施例である風車の斜視図であり、図2は図1に示す風車の平面図である。
 本発明の第1実施例である揚力型垂直軸風水車である風車100は、作動流体を気体とするものであり、図1に示すように、鉛直方向に延びる回転軸110と、この回転軸110から水平方向(鉛直方向と直交する方向)に延びる複数のアーム120と、それぞれのアーム120の先端に取り付けられて上下方向に延びる複数の翼130とを備えている。
 この風車100は、翼130に生じる揚力により、回転軸110が一方向に回転する。
 すなわち、風車100は、揚力によって回転する揚力型の風車であるとともに、回転軸が垂直を向く垂直軸型の風車である。
 回転軸110は、断面形状が円形であり、下端が不図示の発電機に接続されており、上端側にはアーム120が形成されている。
 アーム120は、図2に示すように、回転方向Rに等間隔に6本形成されている。
 すなわち、隣り合うアーム120の間隔は、60度となっている。
 また、アーム120の半径方向と直交する面の断面形状は、矩形状になっている。
 アーム120の先端には、鉛直上方に延びる円柱状の上部連結部121と、鉛直下方に延びる円柱状の下部連結部122が設けられている。
<2.翼の形状について>
 次に、図1乃至図3に基づいて、翼について詳細に説明する。
 図3は、図1に示す風車の側面図である。
 翼130は、アーム120の上部連結部121の上端および下部連結部122の下端と連接されている。
 より具体的には、翼130は、重心から少し離れたところで、アーム120と連結されている。
 なお、本実施例において、アーム120と翼130との連結点は、翼130の側面視の中心と翼130の先端部との中間地点付近に設けられており、重心よりも翼の先端側に位置するが、この連結点は翼の形状によって異なる。
 翼130の断面形状は、図2に示すようにNACA(National Advisory Committee for Aeronautics)0012翼型となっており、鉛直方向上端から下端まで同一形状かつ同一面積となっている。
 すなわち、本実施例における翼130の最大翼厚は、コード長の12%となっている。
 このように翼130が形成されていることにより、翼130に発生する揚力は鉛直方向でほぼ一定となる。
 翼130は、図3のような側面視において、回転方向Rに対して後退角を有するV字状になっている。
 すなわち、翼130が、アーム120より上方に向かって延びると共に回転方向Rと逆方向に延びる上方翼131と、アーム120より下方に向かって延びると共に回転方向Rと逆方向に延びる下方翼132とからなる。
 この上方翼131と下方翼132とは、水平方向に延びる翼130の中心線Lに対して対称となっている。
 また、翼130の最前端Fは、隣接する回転方向前方側の翼130の上下端の後端である最後端Eよりも、回転方向前方に位置していると共に、隣接する回転方向前方側の翼130の上下端の前端Gとほぼ一致している。
 すなわち、図2のような回転軸110の延びる方向から見た平面視において、回転軸110を中心とする単一の仮想円環Cの全周上に複数の翼130が投影される。
 したがって、翼130のキャンパー(翼130の断面において、前端と後端とを結ぶ翼の中心線と、コード(翼の前端と後端とを結ぶ直線)との差)も仮想円環C上に位置することになる。
 このように翼130が形成されていることにより、翼130に発生する揚力は回転軸110の回転位置にかかわらず等しくなる。
 なお、この仮想円環Cの直径(仮想円環Cの中心から、仮想円環Cの半径方向の中心までの距離)φは、側面視(図3)における翼130の高さHとほぼ等しくなっている。
 また、翼130は、図3に示すように、鉛直方向における翼130の長さが、全周に亘って等しくなっている。
 具体的には、鉛直方向において隣接する翼130と重複する位置P1における、翼130の鉛直方向の長さL1は、回転方向前方側の翼130の上方翼131の鉛直方向の長さL1aと、回転方向後方側の翼130の鉛直方向の長さL1bと、回転方向前方側の翼130の下方翼132の鉛直方向の長さL1cとの和である。
 一方、鉛直方向において隣接する翼130と重複しない位置P2における、翼130鉛直方向の長さL2は、翼130の上方翼131の鉛直方向の長さL2aと、翼130の下方翼132の鉛直方向の長さL2bとの和である。
 そして、この鉛直方向において隣接する翼130と重複する位置P1における、翼130鉛直方向の長さL1は、鉛直方向において隣接する翼130と重複しない位置P2における、翼130鉛直方向の長さL2と等しくなっている。
 このように翼130が形成されていることにより、風車100が側方から受ける風の受圧面積が、回転軸110の回転位置にかかわらず等しくなる。
 以下、図4に基づいて、本発明の第2実施例である風車200を説明する。
 図4は、本発明の第2実施例である風車の構成図である。
 第2実施例の風車200は、第1実施例の風車100におけるアーム120と翼130との接続形態を変更したものであり、多くの要素について第1実施例の風車100と共通するので、共通する事項については詳しい説明を省略し、下2桁が共通する200番台の符号を付すのみとする。
 第2実施例の風車200では、アーム220が鉛直方向を回動軸として回動自在に翼230を保持する軸支機構221をアーム220の先端に有している。
 これにより、翼230は、アーム220に対して回動自在になっている。
 なお、翼230は、軸支機構221の上端側に形成された上側連結部221aと、軸支機構221の下端側に形成された下側連結部221bとにより軸支機構221に連結されている。
 また、第2実施例の風車200において、翼230が生み出す揚力によって回転軸210が回転するが、強風時には、回転軸210の回転数が許容される回転数を上回ってしまう恐れがある。
 そこで、第2実施例の風車200は、翼230の迎角を調整する迎角調整機構240をアーム220と翼230との間に備えている。
 迎角調整機構240は、回転軸210の回転数が所定の回転数より小さい場合には翼230の迎角を変更せず、回転軸210の回転数が所定の回転数以上となった場合には翼230に発生する揚力を低減させるように翼230の迎角を変更する。
 この迎角調整機構240は、例えば、サーボモーターのようなアクチュエーターであってもよいし、弾性要素や減衰要素であってもよい。
 このように構成された第2実施例の風車200によれば、回転軸210の回転数が所定の回転数以上となった場合に翼230に発生する揚力を低減、または、抗力を増加させるように翼230の迎角を変更することにより、強風時のような回転軸210の回転数が高くなる場合に、揚力が低減されるため、回転軸210の回転数の増加が抑制され、回転軸210が消耗しにくくなり、風車200の耐久性を増すことができる。
 また、本実施例の風車200は、アーム220と翼230との連結点と翼230の重心とがずれていること及び迎角調整機構240を備えているにより、回転時の遠心力に比例して自動的に迎角が変更されるような力が翼230に働く。
 このとき、迎角調整機構240が単純なばねのような構造であっても、翼230の迎角が変更可能となり、回転軸210の回転数の上昇が一定に抑制される。
 風圧の変化によるばねへの影響が考えられるが、その影響は、遠心力に比べるとけた違いに小さいため、回転軸210が回転している最中に翼230の迎角が脈動することはほとんどない。
 また、遠心力は回転数の2乗に比例することから、本実施例の風車200では、通常の風速域では翼230の迎角がほとんど変わらず、制限風速を超えるあたりから翼230の迎角が変わりはじめ、強風時においても定格回転数を超えることがなくなっている。
<変形例>
 以上、本発明の実施例について説明したが、本発明は上記に限定されるものではない。
 例えば、アームの断面形状は、図1等に示すように、矩形状となっていたが、これに限定されるものでなく、例えば、翼形状としてもよい。
 例えば、上述した実施例では、翼130は1段であったが、この翼130を上下方向に多段に設けてもよい。
 翼130を多段にした場合、各段の回転方向は全て同じに限定されることはなく、それぞれ別々な方向に回転してもよい。
 例えば、仮想円環Cの直径(仮想円環Cの中心から、仮想円環Cの半径方向の中心までの距離)φは、上述した実施例では、側面視(図3)における翼130の高さHとほぼ等しくなっていたが、これに限定されるものではない。
 例えば、迎角調整機構は、第2実施例においてはアーム220と翼230との間に設けられていたが、回転軸の回転数が所定の回転数より小さい場合には翼の迎角を変更せず、回転軸の回転数が所定の回転数以上となった場合には翼に発生する揚力を低減させるように翼の形状を変化させて翼の迎角を変更するような翼の断面形状や材質であってもよい。
100、200 ・・・ 風車(揚力型垂直軸風水車)
110、210 ・・・ 回転軸
120、220 ・・・ アーム
121     ・・・ 上側連結部
122     ・・・ 下側連結部
    221 ・・・ 軸支機構
    221a・・・ 上側連結部
    221b・・・ 下側連結部
130、230 ・・・ 翼
131     ・・・ 上方翼
132     ・・・ 下方翼
    240 ・・・ 迎角調整機構
 R      ・・・ 回転方向
 L      ・・・ 上下方向の中心線
 H      ・・・ 翼の高さ
 F      ・・・ 最前端
 E      ・・・ 最後端
 G      ・・・ 上下端の前端
 C      ・・・ 仮想円環
 φ      ・・・ 仮想円環の直径

Claims (3)

  1.  鉛直方向に延びる回転軸と、該回転軸から水平方向に延びると共に回転方向に等間隔に形成される複数のアームと、該アームの先端に取り付けられて上下方向に延びる複数の翼とを備え、該翼に生じる揚力により前記回転軸が回転する揚力型垂直軸風水車であって、
     前記翼の断面が、前記翼の上端から前記翼の下端まで均一形状かつ均一面積であり、
     前記回転軸の延びる方向から見て、前記回転軸を中心とする単一の仮想円環の全周上に複数の前記翼が投影され、
     鉛直方向における前記翼の長さが、全周に亘って等しいことを特徴とする揚力型垂直軸風水車。
  2.  前記翼が、前記アームより上方に延びると共に回転方向と逆方向に延びる上方翼と、前記アームより下方に延びると共に回転方向と逆方向に延びる下方翼とからなり、
     前記翼の形状が、側面視でV字状であることを特徴とする請求項1に記載の揚力型垂直軸風水車。
  3.  前記アームが、鉛直方向を回動軸として回動自在に前記翼を保持する軸支機構を前記アームの先端に有し、
     前記翼の迎角を調整する迎角調整機構が、前記アームと前記翼との間に設けられ、
     前記迎角調整機構は、前記回転軸の回転数が所定の回転数より小さい場合には前記翼の迎角を変更せず、前記回転軸の回転数が前記所定の回転数以上となった場合には前記翼に発生する揚力を低減、または、抗力を増加させるように前記翼の迎角を変更することを特徴とする請求項1または請求項2に記載の揚力型垂直軸風水車。
PCT/JP2020/035170 2019-10-15 2020-09-17 揚力型垂直軸風水車 WO2021075201A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
AU2020367335A AU2020367335A1 (en) 2019-10-15 2020-09-17 Lift-type vertical shaft windmill
CN202080068431.5A CN114450480A (zh) 2019-10-15 2020-09-17 升力型垂直轴风水车
US17/768,581 US20240102440A1 (en) 2019-10-15 2020-09-17 Lift-type vertical shaft wind or water turbine

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019188506A JP7040792B2 (ja) 2019-10-15 2019-10-15 揚力型垂直軸風水車
JP2019-188506 2019-10-15

Publications (1)

Publication Number Publication Date
WO2021075201A1 true WO2021075201A1 (ja) 2021-04-22

Family

ID=75487796

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/035170 WO2021075201A1 (ja) 2019-10-15 2020-09-17 揚力型垂直軸風水車

Country Status (5)

Country Link
US (1) US20240102440A1 (ja)
JP (1) JP7040792B2 (ja)
CN (1) CN114450480A (ja)
AU (1) AU2020367335A1 (ja)
WO (1) WO2021075201A1 (ja)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013541675A (ja) * 2010-11-05 2013-11-14 エレクトリサイト デュ フランス 自律的な段を備えた横断流海底タービン
JP2017120050A (ja) * 2015-12-28 2017-07-06 株式会社Noai 垂直型風力発電システム、垂直型水力発電システム、およびその制御方法

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2882109B1 (fr) * 2005-02-14 2010-09-03 Inst Nat Polytech Grenoble Dispositif de maintien d'une turbomachine hydraulique
CA2614929A1 (en) * 2005-07-28 2007-02-01 Cleanfield Energy Corp. Power generating system including modular wind turbine-generator assembly
EP2283232A1 (en) * 2008-04-24 2011-02-16 Hopewell Wind Power Limited Vertical axis wind turbine
US7741729B2 (en) * 2008-10-15 2010-06-22 Victor Lyatkher Non-vibrating units for conversion of fluid stream energy
CN201865840U (zh) * 2009-09-18 2011-06-15 北京希翼新兴能源科技有限公司 垂直轴风力发电机风叶及其风轮
US10094361B2 (en) * 2012-09-13 2018-10-09 Jaime Miguel Bardia Method and apparatus that generates electricity from a wind turbine equipped with self-cleaning photovoltaic panels
US11434869B2 (en) * 2017-06-30 2022-09-06 Agile Wind Power Ag Vertical wind turbine with controlled tip-speed ratio behavior, kit for same, and method for operating same
GB2561926B (en) * 2017-07-04 2020-04-29 Vertogen Ltd Wind turbine
DE102018114004A1 (de) * 2018-06-12 2019-12-12 Andreas Demopoulos Windkraftanlage mit vertikaler Drehachse des Rotors und schwimmender Windpark mit mehreren solcher Windkraftanlagen

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013541675A (ja) * 2010-11-05 2013-11-14 エレクトリサイト デュ フランス 自律的な段を備えた横断流海底タービン
JP2017120050A (ja) * 2015-12-28 2017-07-06 株式会社Noai 垂直型風力発電システム、垂直型水力発電システム、およびその制御方法

Also Published As

Publication number Publication date
JP7040792B2 (ja) 2022-03-23
US20240102440A1 (en) 2024-03-28
JP2021063469A (ja) 2021-04-22
AU2020367335A1 (en) 2022-04-21
CN114450480A (zh) 2022-05-06

Similar Documents

Publication Publication Date Title
US7726934B2 (en) Vertical axis wind turbine
US8333564B2 (en) Vertical axis wind turbine airfoil
US8714928B2 (en) Rotor assembly for a wind turbine and method of assembling the same
JP2008538597A (ja) 風力タービンおよび水力タービン用のロータ・システムのテンション・ホイール
TWI668368B (zh) 可自動調整風翼迎風角度之垂直軸風車
EA006361B1 (ru) Усовершенствованная турбина
ES2626450T5 (es) Rotor de turbina eólica de pala acoplada
WO2008046283A1 (fr) Structure de bras de support pour une pale d'aérogénérateur à axe vertical
WO2009151736A1 (en) Wind / fluid turbine
KR20120061264A (ko) 다중 종속 블레이드를 갖는 수직축형 터빈
US8167571B2 (en) Horizontal axis wind turbine rotor assembly with lifting body rotor blades
US20200132044A1 (en) Wind turbine
US20120163976A1 (en) Vertical axis turbine blade with adjustable form
US8322035B2 (en) Vertical axis wind turbine and method of installing blades therein
JP7429692B2 (ja) ロータアセンブリおよびロータアセンブリを含む風車
WO2021075201A1 (ja) 揚力型垂直軸風水車
US20100232960A1 (en) Variable geometry turbine
JP2010261431A (ja) 翼角調整機能付平板翼片持支持式(うちわ式)多翼プロペラ形風車(兼平板翼特性試験機)
KR100979177B1 (ko) 풍력 발전 장치
JP2015166562A (ja) 強風による過回転を防止できる垂直軸抗力型風車及び風力発電装置
WO2014174654A1 (ja) 風力発電装置
JP4533991B1 (ja) 小型プロペラ風車
JP2014145293A (ja) 風車
JP6398095B2 (ja) 動力装置
WO2022202358A1 (ja) 風車及び風力発電装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20876378

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 17768581

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2020367335

Country of ref document: AU

Date of ref document: 20200917

Kind code of ref document: A

122 Ep: pct application non-entry in european phase

Ref document number: 20876378

Country of ref document: EP

Kind code of ref document: A1