WO2021075038A1 - Heat pump system - Google Patents

Heat pump system Download PDF

Info

Publication number
WO2021075038A1
WO2021075038A1 PCT/JP2019/041003 JP2019041003W WO2021075038A1 WO 2021075038 A1 WO2021075038 A1 WO 2021075038A1 JP 2019041003 W JP2019041003 W JP 2019041003W WO 2021075038 A1 WO2021075038 A1 WO 2021075038A1
Authority
WO
WIPO (PCT)
Prior art keywords
hot water
heat
refrigerant
unit
heat exchanger
Prior art date
Application number
PCT/JP2019/041003
Other languages
French (fr)
Japanese (ja)
Inventor
將史 柴田
慶郎 青▲柳▼
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Priority to JP2021552070A priority Critical patent/JPWO2021075038A1/ja
Priority to PCT/JP2019/041003 priority patent/WO2021075038A1/en
Publication of WO2021075038A1 publication Critical patent/WO2021075038A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24HFLUID HEATERS, e.g. WATER OR AIR HEATERS, HAVING HEAT-GENERATING MEANS, e.g. HEAT PUMPS, IN GENERAL
    • F24H4/00Fluid heaters characterised by the use of heat pumps
    • F24H4/02Water heaters
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24HFLUID HEATERS, e.g. WATER OR AIR HEATERS, HAVING HEAT-GENERATING MEANS, e.g. HEAT PUMPS, IN GENERAL
    • F24H9/00Details
    • F24H9/02Casings; Cover lids; Ornamental panels

Definitions

  • the present invention relates to a heat pump system that supplies hot water to the load side using a heat exchanger.
  • the geothermal heat pump system has been known conventionally.
  • the geothermal heat pump system collects heat from the ground, lake, etc. by circulating the heat medium to the geothermal heat exchanger by the heat pump.
  • the heat medium collected by the geothermal heat exchanger dissipates heat in the refrigerant brine heat exchanger and exchanges heat with the refrigerant in the refrigerant circuit.
  • the collected refrigerant exchanges heat with water by the water-refrigerant heat exchanger of the refrigerant circuit, and supplies hot water for heating or domestic use to the load side.
  • Such a geothermal heat pump system is a device that uses renewable energy and uses geothermal heat whose temperature is stable throughout the year. Therefore, the geothermal heat pump system is regarded as a device capable of high efficiency, low running cost and reduction of CO 2 emissions, and has been attracting attention in recent years.
  • the geothermal heat pump system is generally in the form in which all the elements including the refrigerant circuit are built in the same housing except for the piping connected to the geothermal heat exchanger on the load side and the heat collection side.
  • Patent Document 1 shows the structure of a heat pump system in which a refrigerant circuit is assembled in a unit and a hot water storage tank is provided on the upper side, the lower side, or the right side of the refrigerant circuit.
  • geothermal heat pump system is strongly required to be easy to maintain and save space because it is installed indoors in a general household and the periodic maintenance parts are included in the housing.
  • the present invention has been made in view of the above circumstances, and an object of the present invention is to provide a heat pump system capable of improving maintainability and space saving.
  • a tank unit having a hot water storage tank for storing hot water, and a refrigerant circuit which can be drawn out to the tank unit and has a compressor, a condenser, an expansion valve and an evaporator.
  • a drawer unit for supplying hot water to the hot water storage tank of the tank unit by utilizing the heat of the refrigerant circuit is provided.
  • the drawer unit includes a drawer unit that can be pulled out with respect to a tank unit having a tank for storing hot water. According to the present invention, by pulling out the drawer unit with respect to the tank unit, the tank unit and the drawer unit can be separated from each other in position, and maintainability can be improved. Further, since the drawer unit includes a refrigerant circuit having a compressor, a condenser, an expansion valve and an evaporator, a work space in the tank unit can be omitted. As a result, it is possible to provide a heat pump system that can realize space saving.
  • FIG. 1 is a configuration diagram schematically showing a geothermal heat pump system 15 according to an embodiment.
  • the geothermal heat pump system 15 circulates a heat medium through the geothermal heat exchanger 18 and the geothermal heat exchanger 19 and collects heat by the heat pump device 22, and uses the collected heat medium for heating on the load side. Or supply hot water for daily use.
  • the geothermal heat pump system 15 includes a heat pump device 22 and a hot water heating device 23.
  • the heat pump device 22 operates the heat pump cycle, which is a refrigeration cycle.
  • the hot water heating device 23 is equipped with a function of supplying hot water for heating indoors and equipment such as a hot water storage tank 12 for storing hot water.
  • the heat pump device 22 has a heat collection pump 5 that is a part of the underground circuit aa and a refrigerant brine heat exchanger 4 that serves as an evaporator. Further, the heat pump device 22 further includes a heat collection flow rate sensor 6, a heat collection return sensor 7, and a heat collection return sensor 8.
  • the underground circuit aa includes the underground heat exchangers 18 and 19 in addition to the heat collection pump 5, the refrigerant brine heat exchanger 4, the heat collection flow sensor 6, the heat collection return sensor 7, and the heat collection return sensor 8. Have.
  • the heat collection pump 5 circulates the heat medium in the piping of the underground circuit aa.
  • the heat medium is, for example, brine.
  • the refrigerant brine heat exchanger 4 exchanges heat between the heat medium circulated from the heat collection pump 5 and the refrigerant flowing through the piping of the refrigerant circuit bb.
  • the refrigerant for example, R410A or R32, which is an HFC-based mixed refrigerant, is used.
  • the heat collection return sensor 7 measures the temperature of the heat medium flowing from the heat collection pump 5 into the refrigerant brine heat exchanger 4.
  • the heat collection sensor 8 measures the temperature of the heat medium flowing from the refrigerant brine heat exchanger 4 into the geothermal heat exchanger 18 and the geothermal heat exchanger 19.
  • the heat collection flow sensor 6 detects the flow rate of the heat medium flowing from the refrigerant brine heat exchanger 4 into the geothermal heat exchanger 18 and the geothermal heat exchanger 19.
  • the temperature measured by the heat collection flow sensor 6, the heat collection return sensor 7, and the heat collection return sensor 8 is used in the control device 16 to control heat collection.
  • the geothermal heat exchanger 18 and the geothermal heat exchanger 19 are buried in the ground, and take heat from the ground using a heat medium from the refrigerant brine heat exchanger 4 flowing through the piping of the underground circuit aa. heat. Then, the heat-collected heat medium returns to the heat-collecting pump 5.
  • the geothermal heat exchanger 18 is, for example, a borehole.
  • the geothermal heat exchanger 19 is, for example, a horizontal loop.
  • the underground circuit aa may be connected to either the underground heat exchanger 18 or the underground heat exchanger 19.
  • the heat pump device 22 further has a refrigerant circuit bb.
  • the refrigerant circuit bb includes a compressor 1, a water-refrigerant heat exchanger 2 as a condenser, an expansion valve 3, and a refrigerant brine heat exchanger 4 as an evaporator.
  • the refrigerant brine heat exchanger 4 is shared with the underground circuit aa.
  • the compressor 1 compresses the refrigerant flowing in the piping of the refrigerant circuit bb.
  • the compressor 1 is a type in which the rotation speed is controlled by an inverter and the capacity is controlled.
  • the water refrigerant heat exchanger 2 is, for example, a plate heat exchanger, which exchanges heat between the refrigerant compressed by the compressor 1 and the water on the hot water heating side.
  • the expansion valve 3 decompresses the refrigerant heat-exchanged with the water on the hot water heating side by the water refrigerant heat exchanger 2.
  • the expansion valve 3 is an electronic expansion valve whose opening degree is variably controlled.
  • the refrigerant brine heat exchanger 4 is, for example, a plate heat exchanger, which exchanges heat between the underground heat medium and the refrigerant.
  • the heat-exchanged refrigerant is overheated, returns to the compressor 1, is recompressed, and is discharged.
  • the hot water heating device 23 includes a hot water storage tank 12, an electric heater 10, a hot water circulation forward water temperature sensor 11, a three-way valve 21, a hot water circulation return water temperature sensor 13, a hot water circulation flow rate sensor 14, a hot water circulation pump 9, and a control device. 16 and a remote controller 17 are mounted.
  • the hot water heating device 23 constitutes a part of the water circuit.
  • the water-refrigerant heat exchanger 2 is shared with the refrigerant circuit bb.
  • the hot water storage tank 12 has a substantially cylindrical shape, and at least the outer shell thereof is made of a metal material such as stainless steel.
  • a water supply pipe 31 for supplying water from a water supply or the like outside the system is connected to the lower part of the hot water storage tank 12.
  • the water supplied from the water supply pipe 31 flows into the hot water storage tank 12 and is stored. By performing the heating operation described above, the water stored in the hot water storage tank 12 is heated and hot water is generated.
  • a hot water discharge pipe 32 for taking out the hot water generated in the hot water storage tank 12 is connected to the upper part of the hot water storage tank 12.
  • the hot water generated in the hot water storage tank 12 is supplied to the outside of the geothermal heat pump system 15 through the hot water outlet pipe 32, and is used as domestic water or the like. Further, the hot water generated in the hot water storage tank 12 is supplied to the outside of the geothermal heat pump system 15 through the hot water outlet indoor pipe 33, and is used for indoor heating and the like.
  • the hot water storage tank 12 is covered with a heat insulating material in order to suppress heat dissipation of the stored hot water. Further, in the hot water storage tank 12, an oil storage tank sensor 20 for detecting the temperature of the stored hot water is provided.
  • the electric heater 10 further auxiliaryly heats the hot water after being heated by the water refrigerant heat exchanger 2 at the time of heating.
  • the hot water circulation water temperature sensor 11 measures the temperature of the hot water heated by the electric heater 10. The temperature of the hot water measured by the hot water circulation water temperature sensor 11 is used for controlling the heating operation and the hot water supply operation.
  • the three-way valve 21 switches the circulation destination of the hot water heat exchanged by the water refrigerant heat exchanger 2 to the hot water storage tank 12 or the room.
  • the hot water circulation return water temperature sensor 13 measures the temperature of the hot water returning from the indoor or hot water storage tank 12, and the hot water circulation flow rate sensor 14 measures the flow rate of the hot water returning from the indoor or hot water storage tank 12.
  • the hot water circulation pump 9 circulates the water from the hot water storage tank 12 and the water flowing through the pipe of the water circuit of the hot water heating device 23 returning from the indoor heating device through the hot water indoor pipe 34.
  • the control device 16 is based on the measurement information from the heat collection return sensor 7, the heat collection return sensor 8, the hot water circulation pump 9, and the hot water circulation return water temperature sensor 13, and the operation content instructed by the remote control from the user of the geothermal heat pump system 15. Based on this, the operating frequency of the compressor 1 of the heat pump device 22 and the opening degree of the expansion valve 3 are controlled.
  • the control device 16 is composed of dedicated hardware or a CPU (also referred to as a central processing unit, a processing unit, an arithmetic unit, a microprocessor, a microprocessor, or a processor) that executes a program stored in a memory. ..
  • a CPU also referred to as a central processing unit, a processing unit, an arithmetic unit, a microprocessor, a microprocessor, or a processor
  • control device 16 When the control device 16 is dedicated hardware, the control device 16 corresponds to, for example, a single circuit, a composite circuit, an ASIC (Application Specific Integrated Circuit), an FPGA (Field Programmable Gate Array), or a combination thereof. To do.
  • Each of the functional units realized by the control device 16 may be realized by individual hardware, or each functional unit may be realized by one hardware.
  • each function executed by the control device 16 is realized by software, firmware, or a combination of software and firmware.
  • Software and firmware are written as programs and stored in memory.
  • the CPU realizes each function of the control device 16 by reading and executing a program stored in the memory.
  • the memory is a non-volatile or volatile semiconductor memory such as a RAM, a ROM, a flash memory, an EPROM, or an EEPROM.
  • control device 16 may be realized by dedicated hardware, and some may be realized by software or firmware.
  • the remote controller 17 can be operated by the user and outputs an operation instruction of the geothermal heat pump system 15 to the control device 16.
  • the directions of the arrows indicate the direction in which the refrigerant flows during heating, the direction in which water flows, and the direction in which the heat medium flows.
  • the refrigerant is discharged from the compressor 1 in the direction of the arrow in FIG. 1 in the heat pump device 22, and the water refrigerant heat exchanger 2 Water is heated by the refrigerant at the above to generate hot water (hot water).
  • the refrigerant is depressurized by the expansion valve 3 and exchanges heat with the heat medium circulated in the geothermal heat exchanger 18 and the geothermal heat exchanger 19 buried in the ground by the refrigerant brine heat exchanger 4. Will be done.
  • the heat-exchanged refrigerant is overheated, returns to the compressor 1, is recompressed by the compressor 1, and is discharged. This operation cycle is continued during the heating operation.
  • the hot water heat-exchanged by the water-refrigerant heat exchanger 2 reaches the three-way valve 21 via the electric heater 10.
  • Heating can be performed by switching the three-way valve 21 to the indoor side and circulating hot water to the indoor radiator via the hot water outlet indoor pipe 33. Further, by switching the three-way valve 21 to the hot water storage tank 12 side and circulating hot water in the hot water storage tank 12, the water stored in the hot water storage tank 12 can be heated. The water whose temperature has dropped after passing through the room or the hot water storage tank 12 returns to the water refrigerant heat exchanger 2 via the hot water circulation pump 9 and is recirculated.
  • the high-temperature and high-pressure gas refrigerant discharged from the compressor 1 flows into the water-refrigerant heat exchanger 2. Then, the high-temperature and high-pressure gas refrigerant is condensed and liquefied while being dissipated by the water-refrigerant heat exchanger 2, and becomes a high-pressure and low-temperature liquid refrigerant. The water is warmed by giving the heat radiated from the refrigerant to the water on the load side. The high-pressure and low-temperature refrigerant that has exited the water-refrigerant heat exchanger 2 then flows into the refrigerant brine heat exchanger 4.
  • the high-pressure and low-temperature refrigerant that has flowed into the refrigerant brine heat exchanger 4 is endothermic, evaporated, and gasified by the refrigerant brine heat exchanger 4. After that, the gasified refrigerant is sucked into the compressor 1.
  • FIG. 2 is a diagram showing a drawing structure of the drawing unit 24 with respect to the tank unit 25 of the geothermal heat pump system 15 according to the embodiment.
  • the extraction unit 24 includes a compressor 1, a water-refrigerant heat exchanger 2, an expansion valve 3, a refrigerant brine heat exchanger 4, a heat sampling pump 5, a heat sampling flow sensor 6, a hot water circulation pump 9, and an electric heater 10. To do.
  • the inclusions of the drawer unit 24 can be omitted or added, if necessary, except for the compressor 1, the water refrigerant heat exchanger 2, the expansion valve 3, and the refrigerant brine heat exchanger 4. Is.
  • the tank unit 25 includes a hot water storage tank 12, a control device 16, and a three-way valve 21. The inclusions of the tank unit 25 can be omitted or added, if necessary, except for the hot water storage tank 12.
  • connection pipe 26 The pipe connected to the equipment in the drawer unit 24 and the pipe connected to the equipment in the tank unit 25 are connected by the connection pipe 26.
  • the connection pipe 26a the pipe connected to the connection pipe 26a.
  • the number of connecting pipes 26 is not limited to the two connecting pipes 26a and 26b because it depends on the equipment and the pipe configuration arranged in the drawer unit 24 and the tank unit 25. The configuration of the connecting pipe 26 will be described later.
  • the drawer unit 24 is arranged below the tank unit 25, and can be pulled out horizontally with respect to the tank unit 25 as shown in FIG. 2 during maintenance of the equipment in the drawer unit 24 or the equipment in the tank unit 25. It is configured to be possible. In the embodiment, the specific drawer structure of the drawer unit 24 with respect to the tank unit 25 does not matter. By adopting such a configuration, the tank unit 25 and the drawer unit 24 can be separated from each other in position, and the maintainability of the geothermal heat pump system 15 can be improved.
  • the extraction unit 24 includes at least a compressor 1, a water refrigerant heat exchanger 2, an expansion valve 3, and a refrigerant brine heat exchanger 4.
  • the work space in the tank unit 25 can be omitted and the space can be saved. Further, by pulling out the drawer unit 24 from the tank unit 25, it is possible to improve the maintainability of the contents of the drawer unit 24 and the tank unit 25.
  • FIG. 3 is a diagram showing a connection pipe 26 between the equipment in the drawer unit 24 and the equipment in the tank unit 25 of the geothermal heat pump system 15 according to the embodiment.
  • connection pipe 26 between the drawer unit 24 and the tank unit 25 is a pipe that is easily deformed, such as a bellows pipe or a rubber hose. By adopting such a connection pipe 26, the connection work becomes easy when the equipment in the drawer unit 24 and the equipment in the tank unit 25 are connected.
  • connection pipe 26 can be freely arranged on the drawer unit 24. For example, by arranging the connecting pipe 26 along the upper surface of the drawer unit 24 and the side on the front side orthogonal to the drawing direction, there is an effect that the connecting pipe 26 is less likely to interfere when the drawing unit 24 is pulled out.
  • geothermal heat pump system 15 has been described in the above-described embodiment, it can also be applied to the heat pump system.
  • the embodiment is presented as an example and is not intended to limit the scope of the embodiment.
  • the embodiment can be implemented in various other forms, and various omissions, replacements, and changes can be made without departing from the gist of the embodiment. These embodiments and variations thereof are included in the scope and gist of the embodiments.
  • 1 Compressor 2 Water refrigerant heat exchanger, 3 Expansion valve, 4 Refrigerant brine heat exchanger, 5 Heat collection pump, 6 Heat collection flow sensor, 7 Heat collection return sensor, 8 Heat collection return sensor, 9 Hot water circulation Pump, 10 electric heater, 11 hot water circulation going water temperature sensor, 12 hot water storage tank, 13 hot water circulation return water temperature sensor, 14 hot water circulation flow sensor, 15 geothermal heat pump system, 16 control device, 17 remote controller, 18 geothermal heat Exchanger (bore hole), 19 geothermal heat exchanger (horizontal loop), 20 hot water storage tank sensor, 21 three-way valve, 22 heat pump device, 23 hot water heating device, 24 drawer unit, 25 tank unit, 26, 26a, 26b connection Pipe, 31 water supply pipe, 32 hot water outlet pipe, 33 hot water outlet indoor pipe, 34 return hot water indoor pipe, aa geothermal circuit, bb refrigerant circuit.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Heat-Pump Type And Storage Water Heaters (AREA)

Abstract

This heat pump system is provided with: a tank unit having a hot water storage tank for storing hot water; and a drawer unit that is drawable from the tank unit, that has a refrigerant circuit having a compressor, a condenser, an expansion valve, and an evaporator, and that supplies hot water to the hot water storage tank of the tank unit by using heat of the refrigerant circuit.

Description

ヒートポンプシステムHeat pump system
 本発明は、熱交換器を使用して、負荷側に温水を供給するヒートポンプシステムに関する。 The present invention relates to a heat pump system that supplies hot water to the load side using a heat exchanger.
 従来より、地熱ヒートポンプシステムが知られている。地熱ヒートポンプシステムは、ヒートポンプにより熱媒体を地中熱交換器に循環することにより地盤、湖等を熱源として、採熱を行なう。地中熱交換器にて採熱された熱媒体は、冷媒ブライン熱交換器にて放熱を行ない、冷媒回路の冷媒と熱交換を行なう。採熱された冷媒は、冷媒回路の水冷媒熱交換器により水と熱交換が行なわれ、負荷側に暖房用又は生活用温水を供給する。 The geothermal heat pump system has been known conventionally. The geothermal heat pump system collects heat from the ground, lake, etc. by circulating the heat medium to the geothermal heat exchanger by the heat pump. The heat medium collected by the geothermal heat exchanger dissipates heat in the refrigerant brine heat exchanger and exchanges heat with the refrigerant in the refrigerant circuit. The collected refrigerant exchanges heat with water by the water-refrigerant heat exchanger of the refrigerant circuit, and supplies hot water for heating or domestic use to the load side.
 このような地熱ヒートポンプシステムは、再生可能エネルギーを利用した機器であり、年間を通して温度が安定している地中熱を利用する。従って、地熱ヒートポンプシステムは、高効率、低ランニングコスト及びCO排出量削減可能な機器とされ、近年注目が高まってきている。 Such a geothermal heat pump system is a device that uses renewable energy and uses geothermal heat whose temperature is stable throughout the year. Therefore, the geothermal heat pump system is regarded as a device capable of high efficiency, low running cost and reduction of CO 2 emissions, and has been attracting attention in recent years.
 地熱ヒートポンプシステムは、負荷側と採熱側である地中熱交換器に接続される配管以外は、同一筐体に冷媒回路を含む全ての要素が内蔵される形態が一般的である。例えば、特許文献1では、冷媒回路がユニットに組み付けられており、貯湯タンクが冷媒回路の上側、下側、又は右側に設けられるヒートポンプシステムの構造が示されている。 The geothermal heat pump system is generally in the form in which all the elements including the refrigerant circuit are built in the same housing except for the piping connected to the geothermal heat exchanger on the load side and the heat collection side. For example, Patent Document 1 shows the structure of a heat pump system in which a refrigerant circuit is assembled in a unit and a hot water storage tank is provided on the upper side, the lower side, or the right side of the refrigerant circuit.
特開2004-361080号公報Japanese Unexamined Patent Publication No. 2004-361080
 地熱ヒートポンプシステムは、一般家庭等に室内設置されるという事情及び筐体内に定期メンテナンス部品を内包するという事情から筐体のメンテナンス性及び省スペース化が強く求められる。 The geothermal heat pump system is strongly required to be easy to maintain and save space because it is installed indoors in a general household and the periodic maintenance parts are included in the housing.
 従来のヒートポンプシステムの筐体内の限られたスペースでは、地熱ヒートポンプシステムのメンテナンス性に課題がある。メンテナンス性確保のための空間を筐体内に確保すると、筐体の省スペース化を満たすことができない。 In the limited space inside the housing of the conventional heat pump system, there is a problem in the maintainability of the geothermal heat pump system. If a space for ensuring maintainability is secured in the housing, the space saving of the housing cannot be satisfied.
 本発明は、上記実情に鑑みてなされたものであり、メンテナンス性及び省スペース化を向上することができるヒートポンプシステムを提供することを目的とする。 The present invention has been made in view of the above circumstances, and an object of the present invention is to provide a heat pump system capable of improving maintainability and space saving.
 本発明に係るヒートポンプシステムによれば、温水を貯留する貯湯タンクを有するタンクユニットと、前記タンクユニットに対して引き出し可能であり、圧縮機、凝縮器、膨張弁及び蒸発器を有する冷媒回路を有し、前記冷媒回路の熱を利用して前記タンクユニットの前記貯湯タンクに温水を供給する引き出しユニットとを具備する。 According to the heat pump system according to the present invention, there is a tank unit having a hot water storage tank for storing hot water, and a refrigerant circuit which can be drawn out to the tank unit and has a compressor, a condenser, an expansion valve and an evaporator. A drawer unit for supplying hot water to the hot water storage tank of the tank unit by utilizing the heat of the refrigerant circuit is provided.
 引き出しユニットは、温水を貯蔵するタンクを有するタンクユニットに対して引き出し可能である引き出しユニットを含む。本発明によれば、引き出しユニットをタンクユニットに対して引き出すことにより、タンクユニットと引き出しユニットとを位置的に離すことができ、メンテナンス性を向上することができる。また、引き出しユニットは、圧縮機、凝縮器、膨張弁及び蒸発器を有する冷媒回路を含むので、タンクユニット内における作業スペースを省略することができる。その結果、省スペース化を実現することができるヒートポンプシステムを提供することができる。 The drawer unit includes a drawer unit that can be pulled out with respect to a tank unit having a tank for storing hot water. According to the present invention, by pulling out the drawer unit with respect to the tank unit, the tank unit and the drawer unit can be separated from each other in position, and maintainability can be improved. Further, since the drawer unit includes a refrigerant circuit having a compressor, a condenser, an expansion valve and an evaporator, a work space in the tank unit can be omitted. As a result, it is possible to provide a heat pump system that can realize space saving.
実施の形態に係る地熱ヒートポンプシステムを模式的に示す構成図である。It is a block diagram which shows typically the geothermal heat pump system which concerns on embodiment. 実施の形態に係る地熱ヒートポンプシステムの引き出しユニットのタンクユニットに対する引き出し構造を示す図である。It is a figure which shows the drawing structure with respect to the tank unit of the drawing unit of the geothermal heat pump system which concerns on embodiment. 実施の形態に係る地熱ヒートポンプシステムの引き出しユニット内の機器とタンクユニット内の機器との接続配管を示す図である。It is a figure which shows the connection piping between the equipment in the drawer unit of the geothermal heat pump system which concerns on embodiment, and the equipment in a tank unit.
 以下、図面を参照して、実施の形態に係る地熱ヒートポンプシステムについて説明する。なお、図面において、同一の構成要素には同一符号を付して説明し、重複説明は必要な場合にのみ行なう。
実施の形態.
 図1は、実施の形態に係る地熱ヒートポンプシステム15を模式的に示す構成図である。地熱ヒートポンプシステム15は、地中熱交換器18及び地中熱交換器19に熱媒体を循環させてヒートポンプ装置22により採熱し、この採熱された熱媒体を利用して、負荷側に暖房用又は生活用温水を供給する。
Hereinafter, the geothermal heat pump system according to the embodiment will be described with reference to the drawings. In the drawings, the same components will be described with the same reference numerals, and duplicate explanations will be given only when necessary.
Embodiment.
FIG. 1 is a configuration diagram schematically showing a geothermal heat pump system 15 according to an embodiment. The geothermal heat pump system 15 circulates a heat medium through the geothermal heat exchanger 18 and the geothermal heat exchanger 19 and collects heat by the heat pump device 22, and uses the collected heat medium for heating on the load side. Or supply hot water for daily use.
 図1に示すように、地熱ヒートポンプシステム15は、ヒートポンプ装置22と、温水暖房装置23とを有する。 As shown in FIG. 1, the geothermal heat pump system 15 includes a heat pump device 22 and a hot water heating device 23.
 ヒートポンプ装置22は、冷凍サイクルであるヒートポンプサイクルの運転を行なう。温水暖房装置23は、暖房用温水を室内に供給する機能と温水を貯留する貯湯タンク12等の機器を搭載している。 The heat pump device 22 operates the heat pump cycle, which is a refrigeration cycle. The hot water heating device 23 is equipped with a function of supplying hot water for heating indoors and equipment such as a hot water storage tank 12 for storing hot water.
 ヒートポンプ装置22は、地中回路aaの一部である採熱ポンプ5及び蒸発器となる冷媒ブライン熱交換器4を有する。また、ヒートポンプ装置22は、さらに、採熱用流量センサ6、採熱戻りセンサ7及び採熱往きセンサ8を有する。地中回路aaは、これら採熱ポンプ5、冷媒ブライン熱交換器4、採熱用流量センサ6、採熱戻りセンサ7及び採熱往きセンサ8に加えて、地中熱交換器18、19を有する。 The heat pump device 22 has a heat collection pump 5 that is a part of the underground circuit aa and a refrigerant brine heat exchanger 4 that serves as an evaporator. Further, the heat pump device 22 further includes a heat collection flow rate sensor 6, a heat collection return sensor 7, and a heat collection return sensor 8. The underground circuit aa includes the underground heat exchangers 18 and 19 in addition to the heat collection pump 5, the refrigerant brine heat exchanger 4, the heat collection flow sensor 6, the heat collection return sensor 7, and the heat collection return sensor 8. Have.
 採熱ポンプ5は、地中回路aaの配管内の熱媒体を循環させる。ここで、熱媒体は、例えば、ブラインなどである。冷媒ブライン熱交換器4は、採熱ポンプ5から循環された熱媒体と、冷媒回路bbの配管を流れる冷媒とを熱交換する。冷媒は、例えば、HFC系の混合冷媒であるR410A又はR32が用いられる。採熱戻りセンサ7は、採熱ポンプ5から冷媒ブライン熱交換器4に流入する熱媒体の温度を測定する。採熱往きセンサ8は、冷媒ブライン熱交換器4から地中熱交換器18及び地中熱交換器19に流入する熱媒体の温度を測定する。採熱用流量センサ6は、冷媒ブライン熱交換器4から地中熱交換器18及び地中熱交換器19に流入する熱媒体の流量を検出する。これら採熱用流量センサ6、採熱戻りセンサ7及び採熱往きセンサ8により測定された温度は、制御装置16において採熱の制御に使用される。 The heat collection pump 5 circulates the heat medium in the piping of the underground circuit aa. Here, the heat medium is, for example, brine. The refrigerant brine heat exchanger 4 exchanges heat between the heat medium circulated from the heat collection pump 5 and the refrigerant flowing through the piping of the refrigerant circuit bb. As the refrigerant, for example, R410A or R32, which is an HFC-based mixed refrigerant, is used. The heat collection return sensor 7 measures the temperature of the heat medium flowing from the heat collection pump 5 into the refrigerant brine heat exchanger 4. The heat collection sensor 8 measures the temperature of the heat medium flowing from the refrigerant brine heat exchanger 4 into the geothermal heat exchanger 18 and the geothermal heat exchanger 19. The heat collection flow sensor 6 detects the flow rate of the heat medium flowing from the refrigerant brine heat exchanger 4 into the geothermal heat exchanger 18 and the geothermal heat exchanger 19. The temperature measured by the heat collection flow sensor 6, the heat collection return sensor 7, and the heat collection return sensor 8 is used in the control device 16 to control heat collection.
 地中熱交換器18及び地中熱交換器19は、地中に埋没されており、地中回路aaの配管を流れる冷媒ブライン熱交換器4からの熱媒体を使用して地盤の熱を採熱する。そして、採熱された熱媒体は、採熱ポンプ5に戻る。地中熱交換器18は、例えば、ボアホールである。地中熱交換器19は、例えば、水平ループである。なお、地中回路aaは、地中熱交換器18及び地中熱交換器19のいずれか一方に接続されていても良い。 The geothermal heat exchanger 18 and the geothermal heat exchanger 19 are buried in the ground, and take heat from the ground using a heat medium from the refrigerant brine heat exchanger 4 flowing through the piping of the underground circuit aa. heat. Then, the heat-collected heat medium returns to the heat-collecting pump 5. The geothermal heat exchanger 18 is, for example, a borehole. The geothermal heat exchanger 19 is, for example, a horizontal loop. The underground circuit aa may be connected to either the underground heat exchanger 18 or the underground heat exchanger 19.
 ヒートポンプ装置22は、さらに、冷媒回路bbを有する。冷媒回路bbは、圧縮機1、凝縮器となる水冷媒熱交換器2、膨張弁3及び蒸発器となる冷媒ブライン熱交換器4を有する。冷媒ブライン熱交換器4は、地中回路aaと共有されている。 The heat pump device 22 further has a refrigerant circuit bb. The refrigerant circuit bb includes a compressor 1, a water-refrigerant heat exchanger 2 as a condenser, an expansion valve 3, and a refrigerant brine heat exchanger 4 as an evaporator. The refrigerant brine heat exchanger 4 is shared with the underground circuit aa.
 圧縮機1は、冷媒回路bbの配管内を流れる冷媒を圧縮する。圧縮機1は、インバータにより回転数が制御され容量制御されるタイプである。水冷媒熱交換器2は、例えば、プレート熱交換器であり、圧縮機1により圧縮された冷媒と温水暖房側の水との熱交換を行なう。膨張弁3は、水冷媒熱交換器2にて温水暖房側の水と熱交換された冷媒を減圧する。膨張弁3は、開度が可変に制御される電子膨張弁である。冷媒ブライン熱交換器4は、例えば、プレート熱交換器であり、地中側熱媒体と冷媒との熱交換を行なう。熱交換が行なわれた冷媒は過熱されて、圧縮機1に戻り、再圧縮されて吐出される。 The compressor 1 compresses the refrigerant flowing in the piping of the refrigerant circuit bb. The compressor 1 is a type in which the rotation speed is controlled by an inverter and the capacity is controlled. The water refrigerant heat exchanger 2 is, for example, a plate heat exchanger, which exchanges heat between the refrigerant compressed by the compressor 1 and the water on the hot water heating side. The expansion valve 3 decompresses the refrigerant heat-exchanged with the water on the hot water heating side by the water refrigerant heat exchanger 2. The expansion valve 3 is an electronic expansion valve whose opening degree is variably controlled. The refrigerant brine heat exchanger 4 is, for example, a plate heat exchanger, which exchanges heat between the underground heat medium and the refrigerant. The heat-exchanged refrigerant is overheated, returns to the compressor 1, is recompressed, and is discharged.
 温水暖房装置23には、貯湯タンク12、電気ヒータ10、温水循環用往き水温センサ11、三方弁21、温水循環用戻り水温センサ13、温水循環用流量センサ14、温水循環用ポンプ9、制御装置16及びリモートコントローラ17が搭載されている。温水暖房装置23は水回路の一部を構成する。水冷媒熱交換器2は、冷媒回路bbと共有されている。 The hot water heating device 23 includes a hot water storage tank 12, an electric heater 10, a hot water circulation forward water temperature sensor 11, a three-way valve 21, a hot water circulation return water temperature sensor 13, a hot water circulation flow rate sensor 14, a hot water circulation pump 9, and a control device. 16 and a remote controller 17 are mounted. The hot water heating device 23 constitutes a part of the water circuit. The water-refrigerant heat exchanger 2 is shared with the refrigerant circuit bb.
 貯湯タンク12は、略円筒形状をなしており、少なくともその外郭は例えばステンレス鋼等の金属材料で構成されている。貯湯タンク12の下部には、システム外部の水道等から水を供給する給水配管31が接続されている。 The hot water storage tank 12 has a substantially cylindrical shape, and at least the outer shell thereof is made of a metal material such as stainless steel. A water supply pipe 31 for supplying water from a water supply or the like outside the system is connected to the lower part of the hot water storage tank 12.
 給水配管31から供給される水は、貯湯タンク12内に流入して貯留される。上述した加熱運転を行なうことにより、貯湯タンク12内に貯留された水が加熱され、温水が生成される。 The water supplied from the water supply pipe 31 flows into the hot water storage tank 12 and is stored. By performing the heating operation described above, the water stored in the hot water storage tank 12 is heated and hot water is generated.
 貯湯タンク12内では、上側が高温で下側が低温となるように温度成層が形成されて温水が貯留される。貯湯タンク12の上部には、貯湯タンク12内に生成した温水を取り出すための出湯配管32が接続されている。 In the hot water storage tank 12, a temperature stratification is formed so that the upper side is high temperature and the lower side is low temperature, and hot water is stored. A hot water discharge pipe 32 for taking out the hot water generated in the hot water storage tank 12 is connected to the upper part of the hot water storage tank 12.
 貯湯タンク12内で生成された温水は、出湯配管32を通って地熱ヒートポンプシステム15外部に供給され、生活用水等として利用される。また、貯湯タンク12内で生成された温水は、出湯室内配管33を通って地熱ヒートポンプシステム15外部に供給され、室内暖房等として利用される。貯湯タンク12は、貯留した温水の放熱を抑制するため、断熱材により覆われている。また、貯湯タンク12内には、貯留された温水の温度を検知する貯油タンク用センサ20が設けられている。 The hot water generated in the hot water storage tank 12 is supplied to the outside of the geothermal heat pump system 15 through the hot water outlet pipe 32, and is used as domestic water or the like. Further, the hot water generated in the hot water storage tank 12 is supplied to the outside of the geothermal heat pump system 15 through the hot water outlet indoor pipe 33, and is used for indoor heating and the like. The hot water storage tank 12 is covered with a heat insulating material in order to suppress heat dissipation of the stored hot water. Further, in the hot water storage tank 12, an oil storage tank sensor 20 for detecting the temperature of the stored hot water is provided.
 電気ヒータ10は、暖房時に水冷媒熱交換器2にて加熱された後の温水を更に補助的に加熱する。温水循環用往き水温センサ11は、電気ヒータ10にて加熱された温水の温度を測定する。この温水循環用往き水温センサ11にて測定された温水の温度は、暖房運転及び給湯運転の制御に用いられる。三方弁21は、水冷媒熱交換器2にて熱交換された温水の循環先を貯湯タンク12又は室内に切り替える。温水循環用戻り水温センサ13は、室内又は貯湯タンク12から戻る温水の温度を測定する、温水循環用流量センサ14は、室内又は貯湯タンク12から戻る温水の流量を測定する。温水循環用ポンプ9は、貯湯タンク12からの水及び室内の暖房機器から戻り湯室内配管34を通して戻る温水暖房装置23の水回路の配管内を流れる水を循環する。 The electric heater 10 further auxiliaryly heats the hot water after being heated by the water refrigerant heat exchanger 2 at the time of heating. The hot water circulation water temperature sensor 11 measures the temperature of the hot water heated by the electric heater 10. The temperature of the hot water measured by the hot water circulation water temperature sensor 11 is used for controlling the heating operation and the hot water supply operation. The three-way valve 21 switches the circulation destination of the hot water heat exchanged by the water refrigerant heat exchanger 2 to the hot water storage tank 12 or the room. The hot water circulation return water temperature sensor 13 measures the temperature of the hot water returning from the indoor or hot water storage tank 12, and the hot water circulation flow rate sensor 14 measures the flow rate of the hot water returning from the indoor or hot water storage tank 12. The hot water circulation pump 9 circulates the water from the hot water storage tank 12 and the water flowing through the pipe of the water circuit of the hot water heating device 23 returning from the indoor heating device through the hot water indoor pipe 34.
 制御装置16は、採熱戻りセンサ7、採熱往きセンサ8、温水循環用ポンプ9及び温水循環用戻り水温センサ13からの計測情報及び地熱ヒートポンプシステム15の使用者からリモコン指示される運転内容に基づいて、ヒートポンプ装置22の圧縮機1の運転周波数及び膨張弁3の開度などを制御する。 The control device 16 is based on the measurement information from the heat collection return sensor 7, the heat collection return sensor 8, the hot water circulation pump 9, and the hot water circulation return water temperature sensor 13, and the operation content instructed by the remote control from the user of the geothermal heat pump system 15. Based on this, the operating frequency of the compressor 1 of the heat pump device 22 and the opening degree of the expansion valve 3 are controlled.
 制御装置16は、専用のハードウェア、又はメモリに格納されるプログラムを実行するCPU(Central Processing Unit、中央処理装置、処理装置、演算装置、マイクロプロセッサ、マイクロコンピュータ、プロセッサともいう)で構成される。 The control device 16 is composed of dedicated hardware or a CPU (also referred to as a central processing unit, a processing unit, an arithmetic unit, a microprocessor, a microprocessor, or a processor) that executes a program stored in a memory. ..
 制御装置16が専用のハードウェアである場合、制御装置16は、例えば、単一回路、複合回路、ASIC(Application Specific Integrated Circuit)、FPGA(Field Programmable Gate Array)、又はこれらを組み合わせたものが該当する。制御装置16が実現する各機能部のそれぞれを、個別のハードウェアで実現してもよいし、各機能部を一つのハードウェアで実現してもよい。 When the control device 16 is dedicated hardware, the control device 16 corresponds to, for example, a single circuit, a composite circuit, an ASIC (Application Specific Integrated Circuit), an FPGA (Field Programmable Gate Array), or a combination thereof. To do. Each of the functional units realized by the control device 16 may be realized by individual hardware, or each functional unit may be realized by one hardware.
 制御装置16がCPUの場合、制御装置16が実行する各機能は、ソフトウェア、ファームウェア、又はソフトウェアとファームウェアとの組み合わせにより実現される。ソフトウェア及びファームウェアはプログラムとして記述され、メモリに格納される。CPUは、メモリに格納されたプログラムを読み出して実行することにより、制御装置16の各機能を実現する。ここで、メモリは、例えば、RAM、ROM、フラッシュメモリ、EPROM、EEPROM等の、不揮発性又は揮発性の半導体メモリである。 When the control device 16 is a CPU, each function executed by the control device 16 is realized by software, firmware, or a combination of software and firmware. Software and firmware are written as programs and stored in memory. The CPU realizes each function of the control device 16 by reading and executing a program stored in the memory. Here, the memory is a non-volatile or volatile semiconductor memory such as a RAM, a ROM, a flash memory, an EPROM, or an EEPROM.
 なお、制御装置16の機能の一部を専用のハードウェアで実現し、一部をソフトウェア又はファームウェアで実現するようにしてもよい。 Note that some of the functions of the control device 16 may be realized by dedicated hardware, and some may be realized by software or firmware.
 リモートコントローラ17は、ユーザが操作可能であり、地熱ヒートポンプシステム15の運転指示を制御装置16に出力する。 The remote controller 17 can be operated by the user and outputs an operation instruction of the geothermal heat pump system 15 to the control device 16.
 図1中、矢印の向きは暖房時の冷媒の流れる方向、水の流れる方向、熱媒体が流れる方向をそれぞれ表している。 In FIG. 1, the directions of the arrows indicate the direction in which the refrigerant flows during heating, the direction in which water flows, and the direction in which the heat medium flows.
 暖房運転時、あるいは貯湯タンク12内に貯留された水を加熱する給湯運転時には、ヒートポンプ装置22の中で、図1中の矢印方向に圧縮機1から冷媒が吐出され、水冷媒熱交換器2にて冷媒により水が加熱されて温水(湯)が生成される。その後、冷媒は、膨張弁3で減圧され、冷媒ブライン熱交換器4にて地中に埋没されている地中熱交換器18及び地中熱交換器19に循環されている熱媒体と熱交換される。熱交換が行われた冷媒は過熱され圧縮機1に戻り、圧縮機1により再圧縮され吐出される。暖房運転中はこの運転サイクルを継続する。 During the heating operation or the hot water supply operation for heating the water stored in the hot water storage tank 12, the refrigerant is discharged from the compressor 1 in the direction of the arrow in FIG. 1 in the heat pump device 22, and the water refrigerant heat exchanger 2 Water is heated by the refrigerant at the above to generate hot water (hot water). After that, the refrigerant is depressurized by the expansion valve 3 and exchanges heat with the heat medium circulated in the geothermal heat exchanger 18 and the geothermal heat exchanger 19 buried in the ground by the refrigerant brine heat exchanger 4. Will be done. The heat-exchanged refrigerant is overheated, returns to the compressor 1, is recompressed by the compressor 1, and is discharged. This operation cycle is continued during the heating operation.
 水冷媒熱交換器2にて熱交換された温水は、電気ヒータ10を経由して、三方弁21に至る。 The hot water heat-exchanged by the water-refrigerant heat exchanger 2 reaches the three-way valve 21 via the electric heater 10.
 三方弁21を室内側に切り替えて温水を出湯室内配管33を介して室内放熱器に循環させることにより、暖房を行なうことができる。また、三方弁21を貯湯タンク12側に切り替えて温水を貯湯タンク12内に循環させることにより、貯湯タンク12に貯留された水を加熱することができる。室内又は貯湯タンク12を通過して温度低下した水は、温水循環用ポンプ9を経由して水冷媒熱交換器2に戻り、再循環する。 Heating can be performed by switching the three-way valve 21 to the indoor side and circulating hot water to the indoor radiator via the hot water outlet indoor pipe 33. Further, by switching the three-way valve 21 to the hot water storage tank 12 side and circulating hot water in the hot water storage tank 12, the water stored in the hot water storage tank 12 can be heated. The water whose temperature has dropped after passing through the room or the hot water storage tank 12 returns to the water refrigerant heat exchanger 2 via the hot water circulation pump 9 and is recirculated.
 次に、地熱ヒートポンプシステム15のヒートポンプ装置22の暖房給湯運転動作について説明する。 Next, the heating and hot water supply operation operation of the heat pump device 22 of the geothermal heat pump system 15 will be described.
 暖房給湯運転時には、圧縮機1から吐出された高温高圧のガス冷媒は水冷媒熱交換器2に流入する。そして、高温高圧のガス冷媒は、水冷媒熱交換器2で放熱しながら凝縮液化し高圧低温の液冷媒となる。冷媒から放熱された熱を負荷側の水に与えることで水を温める。水冷媒熱交換器2を出た高圧低温の冷媒は、その後、冷媒ブライン熱交換器4に流入する。冷媒ブライン熱交換器4に流入した高圧低温の冷媒は、冷媒ブライン熱交換器4にて吸熱し蒸発、ガス化される。その後、ガス化された冷媒は、圧縮機1に吸入される。 During the heating and hot water supply operation, the high-temperature and high-pressure gas refrigerant discharged from the compressor 1 flows into the water-refrigerant heat exchanger 2. Then, the high-temperature and high-pressure gas refrigerant is condensed and liquefied while being dissipated by the water-refrigerant heat exchanger 2, and becomes a high-pressure and low-temperature liquid refrigerant. The water is warmed by giving the heat radiated from the refrigerant to the water on the load side. The high-pressure and low-temperature refrigerant that has exited the water-refrigerant heat exchanger 2 then flows into the refrigerant brine heat exchanger 4. The high-pressure and low-temperature refrigerant that has flowed into the refrigerant brine heat exchanger 4 is endothermic, evaporated, and gasified by the refrigerant brine heat exchanger 4. After that, the gasified refrigerant is sucked into the compressor 1.
 図2は、実施の形態に係る地熱ヒートポンプシステム15のタンクユニット25に対する引き出しユニット24の引き出し構造を示す図である。 FIG. 2 is a diagram showing a drawing structure of the drawing unit 24 with respect to the tank unit 25 of the geothermal heat pump system 15 according to the embodiment.
 引き出しユニット24は、圧縮機1、水冷媒熱交換器2、膨張弁3、冷媒ブライン熱交換器4、採熱ポンプ5、採熱用流量センサ6、温水循環用ポンプ9及び電気ヒータ10を内包する。引き出しユニット24の内包物は、必要に応じて、圧縮機1、水冷媒熱交換器2、膨張弁3及び冷媒ブライン熱交換器4以外は省略することが可能であり、又は追加することも可能である。 The extraction unit 24 includes a compressor 1, a water-refrigerant heat exchanger 2, an expansion valve 3, a refrigerant brine heat exchanger 4, a heat sampling pump 5, a heat sampling flow sensor 6, a hot water circulation pump 9, and an electric heater 10. To do. The inclusions of the drawer unit 24 can be omitted or added, if necessary, except for the compressor 1, the water refrigerant heat exchanger 2, the expansion valve 3, and the refrigerant brine heat exchanger 4. Is.
 タンクユニット25は、貯湯タンク12、制御装置16及び三方弁21を内包する。タンクユニット25の内包物は、必要に応じて、貯湯タンク12以外は省略することが可能であり、又は追加することも可能である。 The tank unit 25 includes a hot water storage tank 12, a control device 16, and a three-way valve 21. The inclusions of the tank unit 25 can be omitted or added, if necessary, except for the hot water storage tank 12.
 引き出しユニット24内の機器に接続される配管と、タンクユニット25内の機器に接続される配管とは、接続配管26により接続される。例えば、図1において、水冷媒熱交換器2以外の温水暖房装置23がタンクユニット25内に配置され、冷媒回路bbが引き出しユニット24内に配置される場合を仮定する。このような場合、タンクユニット25内の三方弁21に接続される配管と、引き出しユニット24内の水冷媒熱交換器2に接続される配管とは接続配管26aにより接続される。また、タンクユニット25内の温水循環用ポンプ9の出力側の配管と、引き出しユニット24内の水冷媒熱交換器2に接続される配管とは接続配管26bにより接続される。なお、接続配管26の数は、引き出しユニット24及びタンクユニット25内に配置される機器及び配管構成に依存するので、2つの接続配管26a、26bに限るものではない。接続配管26の構成については、後述する。 The pipe connected to the equipment in the drawer unit 24 and the pipe connected to the equipment in the tank unit 25 are connected by the connection pipe 26. For example, in FIG. 1, it is assumed that the hot water heating device 23 other than the water refrigerant heat exchanger 2 is arranged in the tank unit 25, and the refrigerant circuit bb is arranged in the drawing unit 24. In such a case, the pipe connected to the three-way valve 21 in the tank unit 25 and the pipe connected to the water refrigerant heat exchanger 2 in the drawer unit 24 are connected by the connection pipe 26a. Further, the pipe on the output side of the hot water circulation pump 9 in the tank unit 25 and the pipe connected to the water refrigerant heat exchanger 2 in the drawer unit 24 are connected by the connection pipe 26b. The number of connecting pipes 26 is not limited to the two connecting pipes 26a and 26b because it depends on the equipment and the pipe configuration arranged in the drawer unit 24 and the tank unit 25. The configuration of the connecting pipe 26 will be described later.
 引き出しユニット24は、タンクユニット25の下部に配置され、引き出しユニット24内の機器又はタンクユニット25内の機器のメンテナンス時には、図2に示すように、タンクユニット25に対して水平方向に引き出すことが可能なように構成されている。実施の形態では、引き出しユニット24のタンクユニット25に対する具体的な引き出し構造は問わない。このような構成を採用することにより、タンクユニット25と引き出しユニット24とを位置的に離すことができ、地熱ヒートポンプシステム15のメンテナンス性を向上することができる。 The drawer unit 24 is arranged below the tank unit 25, and can be pulled out horizontally with respect to the tank unit 25 as shown in FIG. 2 during maintenance of the equipment in the drawer unit 24 or the equipment in the tank unit 25. It is configured to be possible. In the embodiment, the specific drawer structure of the drawer unit 24 with respect to the tank unit 25 does not matter. By adopting such a configuration, the tank unit 25 and the drawer unit 24 can be separated from each other in position, and the maintainability of the geothermal heat pump system 15 can be improved.
 室内設置を特徴とする地熱ヒートポンプシステム15においては、省スペース化が強く求められる。実施の形態の地熱ヒートポンプシステム15は、引き出しユニット24は、少なくとも圧縮機1、水冷媒熱交換器2、膨張弁3及び冷媒ブライン熱交換器4を内包する。 In the geothermal heat pump system 15 characterized by indoor installation, space saving is strongly required. In the geothermal heat pump system 15 of the embodiment, the extraction unit 24 includes at least a compressor 1, a water refrigerant heat exchanger 2, an expansion valve 3, and a refrigerant brine heat exchanger 4.
 これにより、タンクユニット25内における作業スペースを省略し、省スペース化を図ることができる。また、引き出しユニット24をタンクユニット25から引き出すことにより、引き出しユニット24及びタンクユニット25の内包物のメンテナンス性の向上を図ることができる。 As a result, the work space in the tank unit 25 can be omitted and the space can be saved. Further, by pulling out the drawer unit 24 from the tank unit 25, it is possible to improve the maintainability of the contents of the drawer unit 24 and the tank unit 25.
 図3は、実施の形態に係る地熱ヒートポンプシステム15の引き出しユニット24内の機器とタンクユニット25内の機器との接続配管26を示す図である。 FIG. 3 is a diagram showing a connection pipe 26 between the equipment in the drawer unit 24 and the equipment in the tank unit 25 of the geothermal heat pump system 15 according to the embodiment.
 引き出しユニット24とタンクユニット25との接続配管26は、例えば蛇腹管又はゴムホースのような変形の容易な配管である。このような接続配管26を採用することにより、引き出しユニット24内の機器とタンクユニット25内の機器との接続時に、接続作業が容易になる。 The connection pipe 26 between the drawer unit 24 and the tank unit 25 is a pipe that is easily deformed, such as a bellows pipe or a rubber hose. By adopting such a connection pipe 26, the connection work becomes easy when the equipment in the drawer unit 24 and the equipment in the tank unit 25 are connected.
 接続配管26は、引き出しユニット24上に自由に配置することが可能である。例えば、引き出しユニット24上面、かつ引き出し方向と直交する手前側の辺に沿わせて接続配管26を配置することによって、引き出しユニット24の引き出し時に接続配管26が干渉しづらくなるという効果がある。 The connection pipe 26 can be freely arranged on the drawer unit 24. For example, by arranging the connecting pipe 26 along the upper surface of the drawer unit 24 and the side on the front side orthogonal to the drawing direction, there is an effect that the connecting pipe 26 is less likely to interfere when the drawing unit 24 is pulled out.
 なお、上述の実施の形態では、地熱ヒートポンプシステム15について説明したが、ヒートポンプシステムについても適用することができる。 Although the geothermal heat pump system 15 has been described in the above-described embodiment, it can also be applied to the heat pump system.
 実施の形態は、例として提示したものであり、実施の形態の範囲を限定することは意図していない。実施の形態は、その他の様々な形態で実施されることが可能であり、実施の形態の要旨を逸脱しない範囲で、種々の省略、置き換え、変更を行なうことができる。これら実施の形態及びその変形は、実施の形態の範囲及び要旨に含まれる。 The embodiment is presented as an example and is not intended to limit the scope of the embodiment. The embodiment can be implemented in various other forms, and various omissions, replacements, and changes can be made without departing from the gist of the embodiment. These embodiments and variations thereof are included in the scope and gist of the embodiments.
 1 圧縮機、2 水冷媒熱交換器、3 膨張弁、4 冷媒ブライン熱交換器、5 採熱ポンプ、6 採熱用流量センサ、7 採熱戻りセンサ、8 採熱往きセンサ、9 温水循環用ポンプ、10 電気ヒータ、11 温水循環用往き水温センサ、12 貯湯タンク、13 温水循環用戻り水温センサ、14 温水循環用流量センサ、15 地熱ヒートポンプシステム、16 制御装置、17 リモートコントローラ、18 地中熱交換器(ボアホール)、19 地中熱交換器(水平ループ)、20 貯湯タンク用センサ、21 三方弁、22 ヒートポンプ装置、23 温水暖房装置、24 引き出しユニット、25 タンクユニット、26、26a、26b 接続配管、31 給水配管、32 出湯配管、33 出湯室内配管、34 戻り湯室内配管、aa 地中回路、bb 冷媒回路。 1 Compressor, 2 Water refrigerant heat exchanger, 3 Expansion valve, 4 Refrigerant brine heat exchanger, 5 Heat collection pump, 6 Heat collection flow sensor, 7 Heat collection return sensor, 8 Heat collection return sensor, 9 Hot water circulation Pump, 10 electric heater, 11 hot water circulation going water temperature sensor, 12 hot water storage tank, 13 hot water circulation return water temperature sensor, 14 hot water circulation flow sensor, 15 geothermal heat pump system, 16 control device, 17 remote controller, 18 geothermal heat Exchanger (bore hole), 19 geothermal heat exchanger (horizontal loop), 20 hot water storage tank sensor, 21 three-way valve, 22 heat pump device, 23 hot water heating device, 24 drawer unit, 25 tank unit, 26, 26a, 26b connection Pipe, 31 water supply pipe, 32 hot water outlet pipe, 33 hot water outlet indoor pipe, 34 return hot water indoor pipe, aa geothermal circuit, bb refrigerant circuit.

Claims (3)

  1.  温水を貯留する貯湯タンクを有するタンクユニットと、
     前記タンクユニットに対して引き出し可能であり、圧縮機、凝縮器、膨張弁及び蒸発器を有する冷媒回路を有し、前記冷媒回路の熱を利用して前記タンクユニットの前記貯湯タンクに温水を供給する引き出しユニットと
    を具備するヒートポンプシステム。
    A tank unit with a hot water storage tank for storing hot water,
    It has a refrigerant circuit that can be drawn out to the tank unit and has a compressor, a condenser, an expansion valve, and an evaporator, and uses the heat of the refrigerant circuit to supply hot water to the hot water storage tank of the tank unit. A heat pump system equipped with a drawer unit.
  2.  前記引き出しユニット内の機器に接続される配管と、前記タンクユニット内の機器に接続される配管との間は、変形可能な接続配管で接続されている、
    請求項1記載のヒートポンプシステム。
    The pipe connected to the equipment in the drawer unit and the pipe connected to the equipment in the tank unit are connected by a deformable connection pipe.
    The heat pump system according to claim 1.
  3.  前記引き出しユニットは、前記タンクユニットの下部に配置され、
     前記接続配管は、前記引き出しユニットの上面、かつ前記引き出しユニットの引き出し方向と直交する手前側の辺に沿わせて配置されている、
    請求項2記載のヒートポンプシステム。
    The drawer unit is located at the bottom of the tank unit.
    The connecting pipe is arranged along the upper surface of the drawer unit and the front side orthogonal to the drawer direction of the drawer unit.
    The heat pump system according to claim 2.
PCT/JP2019/041003 2019-10-18 2019-10-18 Heat pump system WO2021075038A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2021552070A JPWO2021075038A1 (en) 2019-10-18 2019-10-18
PCT/JP2019/041003 WO2021075038A1 (en) 2019-10-18 2019-10-18 Heat pump system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2019/041003 WO2021075038A1 (en) 2019-10-18 2019-10-18 Heat pump system

Publications (1)

Publication Number Publication Date
WO2021075038A1 true WO2021075038A1 (en) 2021-04-22

Family

ID=75537358

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/041003 WO2021075038A1 (en) 2019-10-18 2019-10-18 Heat pump system

Country Status (2)

Country Link
JP (1) JPWO2021075038A1 (en)
WO (1) WO2021075038A1 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115875849A (en) * 2022-11-29 2023-03-31 重庆交通大学 High-high heat utilization system in alpine region
EP4286765A1 (en) * 2022-05-30 2023-12-06 BDR Thermea Group B.V. An assembly of a housing and a drawer for heating water in a building
WO2023232501A1 (en) * 2022-05-30 2023-12-07 Bdr Thermea Group B.V. An assembly of a housing and a drawer for heating water in a building
EP4328515A1 (en) * 2022-08-25 2024-02-28 BDR Thermea Group B.V. A mounting tray for holding heat pump components

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005337695A (en) * 2004-04-27 2005-12-08 Chugoku Electric Power Co Inc:The Installation structure of heat pump type water heater in collective housing
JP2007071516A (en) * 2005-09-09 2007-03-22 Sanden Corp Water heater system
JP2009092300A (en) * 2007-10-05 2009-04-30 Daikin Ind Ltd Humidity conditioner
JP2010281551A (en) * 2009-06-08 2010-12-16 Mayekawa Mfg Co Ltd Water heater
DE102017203626A1 (en) * 2017-03-06 2018-09-06 Glen Dimplex Deutschland Gmbh Modular heat pump system

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007004460A1 (en) * 2005-06-30 2007-01-11 Toshiba Carrier Corporation Heat pump hotwater supply device

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005337695A (en) * 2004-04-27 2005-12-08 Chugoku Electric Power Co Inc:The Installation structure of heat pump type water heater in collective housing
JP2007071516A (en) * 2005-09-09 2007-03-22 Sanden Corp Water heater system
JP2009092300A (en) * 2007-10-05 2009-04-30 Daikin Ind Ltd Humidity conditioner
JP2010281551A (en) * 2009-06-08 2010-12-16 Mayekawa Mfg Co Ltd Water heater
DE102017203626A1 (en) * 2017-03-06 2018-09-06 Glen Dimplex Deutschland Gmbh Modular heat pump system

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP4286765A1 (en) * 2022-05-30 2023-12-06 BDR Thermea Group B.V. An assembly of a housing and a drawer for heating water in a building
WO2023232501A1 (en) * 2022-05-30 2023-12-07 Bdr Thermea Group B.V. An assembly of a housing and a drawer for heating water in a building
WO2023232502A1 (en) * 2022-05-30 2023-12-07 Bdr Thermea Group B.V. A mounting tray for holding heat pump components
EP4328515A1 (en) * 2022-08-25 2024-02-28 BDR Thermea Group B.V. A mounting tray for holding heat pump components
CN115875849A (en) * 2022-11-29 2023-03-31 重庆交通大学 High-high heat utilization system in alpine region
CN115875849B (en) * 2022-11-29 2024-04-26 重庆交通大学 High and middle ground heat utilization system in alpine region

Also Published As

Publication number Publication date
JPWO2021075038A1 (en) 2021-04-22

Similar Documents

Publication Publication Date Title
WO2021075038A1 (en) Heat pump system
KR101270616B1 (en) Co-generation
JP5615381B2 (en) Hot water supply and air conditioning complex equipment
US9310106B2 (en) Heat pump system
US20110016897A1 (en) Air conditioning-hot water supply combined system
US20080022707A1 (en) Co-generation
US20110302948A1 (en) Heat pump system
EP2224188B1 (en) Water circulation system associated with refrigerant cycle
JP6405521B2 (en) Heat pump hot water generator
JP2011252636A (en) Hot-water heating hot-water supply apparatus
JP2011069529A (en) Air-conditioning hot water supply system and heat pump unit
JP5300806B2 (en) Heat pump equipment
US9810466B2 (en) Heat pump system
JP2009293839A (en) Exhaust heat utilizing system of refrigerating device
KR101324902B1 (en) Method for cooling, heating and boiling using geothermal heat pump
JP2013104590A (en) Water heater and installation structure
JP6589946B2 (en) Refrigeration equipment
JP2013124802A (en) Refrigeration cycle apparatus
EP3594588B1 (en) Geothermal heat pump device
KR101166858B1 (en) Space cooling, heating and domestic hot water systeme for the geosource heat pump heating and cooling
JP2007178008A (en) Air conditioner other function adding device
KR100556201B1 (en) Heat pump type air-conditioning and heating equipment
KR20070108306A (en) Heating equipment of heat pump type
WO2010109618A1 (en) Load-side relay unit and compound air conditioning/hot water supply system mounting load-side relay unit thereon
JP2012215353A (en) Dual refrigeration cycle device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19949266

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2021552070

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19949266

Country of ref document: EP

Kind code of ref document: A1