JP2012215353A - Dual refrigeration cycle device - Google Patents

Dual refrigeration cycle device Download PDF

Info

Publication number
JP2012215353A
JP2012215353A JP2011081350A JP2011081350A JP2012215353A JP 2012215353 A JP2012215353 A JP 2012215353A JP 2011081350 A JP2011081350 A JP 2011081350A JP 2011081350 A JP2011081350 A JP 2011081350A JP 2012215353 A JP2012215353 A JP 2012215353A
Authority
JP
Japan
Prior art keywords
water
heat exchanger
refrigeration cycle
temperature side
temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2011081350A
Other languages
Japanese (ja)
Inventor
Tsukasa Takayama
司 高山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Carrier Corp
Original Assignee
Toshiba Carrier Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Carrier Corp filed Critical Toshiba Carrier Corp
Priority to JP2011081350A priority Critical patent/JP2012215353A/en
Publication of JP2012215353A publication Critical patent/JP2012215353A/en
Withdrawn legal-status Critical Current

Links

Images

Abstract

PROBLEM TO BE SOLVED: To provide a dual refrigeration cycle device having low-temperature side and high-temperature side refrigeration cycles that operate using different compressors, thereby increasing input energy necessary for the operation and energy efficiency.SOLUTION: The dual refrigeration cycle device includes: a water-heat exchanger for heat-exchanging the refrigerant of a high-temperature side refrigeration cycle with water received from the outside; water temperature detection means for detecting the temperature of the water received from the outside; external temperature detection means for detecting the temperature of an external heat source; and an operation control means for reducing the operation output of a low-temperature side refrigeration cycle or stopping the operation when the water temperature detected by the water temperature detecting means is higher than the temperature of the external heat source detected by the external temperature detection means, and controlling heat exchange between the high-temperature side refrigerant and the water in the water-heat exchanger.

Description

本発明の実施の形態は、二元冷凍サイクル装置に関する。   Embodiments of the present invention relate to a binary refrigeration cycle apparatus.

空気調和機やヒートポンプ給湯機などの冷凍サイクル装置には、利用側に高温の熱を供給するために低温側冷凍サイクルと高温側冷凍サイクルを備えた二元冷凍サイクル装置が用いられることがある。
二元冷凍サイクル装置の低温側冷凍サイクルと高温側冷凍サイクルは、それぞれ圧縮機や膨張装置を有しており、中間熱交換器によって熱交換可能に接続されている。そして、低温側冷凍サイクルに設けられた低温側蒸発器である低温側熱交換器から汲み上げた熱を、高温側冷凍サイクルに設けられた高温側凝縮器である利用側熱交換器を介して、より高温の熱が熱利用機器へ供給される。
In a refrigeration cycle apparatus such as an air conditioner or a heat pump water heater, a binary refrigeration cycle apparatus including a low temperature side refrigeration cycle and a high temperature side refrigeration cycle may be used to supply high temperature heat to the use side.
The low temperature side refrigeration cycle and the high temperature side refrigeration cycle of the binary refrigeration cycle apparatus each have a compressor and an expansion device, and are connected to each other by an intermediate heat exchanger so that heat can be exchanged. And the heat pumped from the low temperature side heat exchanger that is the low temperature side evaporator provided in the low temperature side refrigeration cycle, through the use side heat exchanger that is the high temperature side condenser provided in the high temperature side refrigeration cycle, Higher temperature heat is supplied to the heat utilization equipment.

特開2002−346403号公報JP 2002-346403 A

しかし、上記のような二元冷凍サイクル装置は、低温側と高温側の冷凍サイクルを別々の圧縮機を用いて運転するため、運転に必要とされる入力エネルギーが大きく、よりエネルギー効率の良い二元冷凍サイクル装置の提供がのぞまれている。   However, since the above-described two-stage refrigeration cycle apparatus operates the refrigeration cycle on the low temperature side and the high temperature side using separate compressors, the input energy required for the operation is large, and the two more energy efficient. The provision of original refrigeration cycle equipment is desired.

本発明の実施形態は、外部熱源から熱を吸収する熱源側熱交換器と、低温側圧縮機を備え、内部に低温側冷媒が封入された低温側冷凍サイクルと、利用側へ熱を供給する利用側熱交換器と高温側圧縮機を備え、内部に高温側冷媒が封入された高温側冷凍サイクルと、低温側冷凍サイクルと高温側冷凍サイクルの冷媒を熱交換させるための中間熱交換器を有する二元冷凍サイクル装置である。
この二元冷凍サイクル装置は、高温側冷凍サイクルの冷媒と外部から取りこんだ水とを熱交換させる水熱交換器と、外部からとりこまれる水の温度を検知する水温検知手段と、外部熱源の温度を検知する外部温度検知手段と、水温検知手段で検知された水の温度が外部温度検知手段で検知された外部熱源の温度のよりも高いときに、低温側冷凍サイクルの運転出力を低下させる、又は運転を停止させるとともに、高温側冷媒と水熱交換器内の水との熱交換を制御する運転制御手段を有している。
The embodiment of the present invention includes a heat source side heat exchanger that absorbs heat from an external heat source, a low temperature side compressor, and a low temperature side refrigeration cycle in which a low temperature side refrigerant is enclosed, and supplies heat to the user side. A high-temperature side refrigeration cycle that includes a use-side heat exchanger and a high-temperature side compressor and encloses a high-temperature side refrigerant therein, and an intermediate heat exchanger for exchanging heat between the refrigerant of the low-temperature side refrigeration cycle and the high-temperature side refrigeration cycle A two-stage refrigeration cycle apparatus.
This dual refrigeration cycle apparatus includes a water heat exchanger for exchanging heat between the refrigerant of the high temperature side refrigeration cycle and water taken from outside, water temperature detecting means for detecting the temperature of water taken from outside, and an external heat source. When the temperature of the external temperature detection means for detecting the temperature and the temperature of the water detected by the water temperature detection means is higher than the temperature of the external heat source detected by the external temperature detection means, the operation output of the low temperature side refrigeration cycle is reduced. Or, the operation control means for stopping the operation and controlling the heat exchange between the high temperature side refrigerant and the water in the water heat exchanger is provided.

本発明の第1の実施形態に係る二元冷凍サイクル装置の概略図。1 is a schematic view of a dual refrigeration cycle apparatus according to a first embodiment of the present invention. 本発明の第1の実施形態に係る制御器のブロック図。The block diagram of the controller which concerns on the 1st Embodiment of this invention. 本発明の第2の実施形態に係る二元冷凍サイクル装置の概略図。Schematic of the dual refrigeration cycle apparatus according to the second embodiment of the present invention. 本発明の第2の実施形態に係る制御器のブロック図。The block diagram of the controller which concerns on the 2nd Embodiment of this invention.

図面を用いて本発明の実施形態について説明を行う。
(第1の実施形態)
第1の実施形態について図1を用いて説明する。
図1に示すように、本実施形態の二元冷凍サイクル装置100は、低温側冷凍サイクル6aと、高温側冷凍サイクル6bとが中間熱交換器5によって熱交換可能に構成されている。
低温側冷凍サイクル6aには、低温側圧縮機1aと、低温側圧縮機1aに冷媒配管を介して接続された低温側四方弁2aと、外部熱源である室外空気と熱交換する熱源側熱交換器3と、低温側膨張装置4aとが順次冷媒配管で接続されている。また、低温側四方弁2aと低温側膨張装置4aには、冷媒配管によって中間熱交換器5が接続されている。
熱源側熱交換器3には送風機11が設けられており、室外空気との熱交換を促進させるようになっている。また、熱源側熱交換器3には、外部温度検知手段である、外気温度センサ16が設けられており、熱源側熱交換器3へ吸込まれる室外空気の温度Toを検知するようになっている。
Embodiments of the present invention will be described with reference to the drawings.
(First embodiment)
A first embodiment will be described with reference to FIG.
As shown in FIG. 1, the binary refrigeration cycle apparatus 100 of the present embodiment is configured such that a heat exchange between a low temperature side refrigeration cycle 6 a and a high temperature side refrigeration cycle 6 b can be performed by an intermediate heat exchanger 5.
The low temperature side refrigeration cycle 6a includes a low temperature side compressor 1a, a low temperature side four-way valve 2a connected to the low temperature side compressor 1a via a refrigerant pipe, and heat source side heat exchange that exchanges heat with outdoor air that is an external heat source. The vessel 3 and the low temperature side expansion device 4a are sequentially connected by a refrigerant pipe. Further, an intermediate heat exchanger 5 is connected to the low temperature side four-way valve 2a and the low temperature side expansion device 4a by refrigerant piping.
The heat source side heat exchanger 3 is provided with a blower 11 to promote heat exchange with outdoor air. Further, the heat source side heat exchanger 3 is provided with an outside air temperature sensor 16 that is an external temperature detecting means, and detects the temperature To of the outdoor air sucked into the heat source side heat exchanger 3. Yes.

高温側冷凍サイクル6bには、高温側圧縮機1bと、高温側圧縮機1bに冷媒配管を介して接続された高温側四方弁2bと、低温側冷凍サイクル6bの低温側冷媒と熱交換する中間熱交換器5と、高温側膨張装置4bと、利用側熱交換器7とが、順次冷媒配管で接続されており、高温側冷凍サイクル6bが構成されている。
さらに、高温側冷凍サイクル6bの冷媒配管は、高温側四方弁2bと中間熱交換器5の間、及び高温側膨張装置4bと中間熱交換器5の間でそれぞれ分岐しており、分岐部分の中間に水と高温側冷媒が熱交換する水熱交換器13が中間熱交換器5に対して並列に接続されている。中間熱交換器5と水熱交換器13の各々の一端側には、高温側冷媒の流れを制御するための中間熱交換器冷媒流量制御バルブ12aと水熱交換器冷媒流量制御バルブ12bがそれぞれ設けられている。
また、水熱交換器13には、排水を流通させる排水管9が接続されており、この排水管9内には工場施設などで発生した排水が流動しており、高温側冷媒と熱交換するようになっている。排水管9の水熱交換器13の上流側には、排水管9内を流動する排水の温度を検知する水温検知手段である水温センサ15が配置されて設けられている。
The high temperature side refrigeration cycle 6b includes a high temperature side compressor 1b, a high temperature side four-way valve 2b connected to the high temperature side compressor 1b via a refrigerant pipe, and an intermediate for heat exchange with the low temperature side refrigerant of the low temperature side refrigeration cycle 6b. The heat exchanger 5, the high temperature side expansion device 4b, and the use side heat exchanger 7 are sequentially connected by refrigerant piping, and the high temperature side refrigeration cycle 6b is configured.
Further, the refrigerant piping of the high temperature side refrigeration cycle 6b branches between the high temperature side four-way valve 2b and the intermediate heat exchanger 5, and between the high temperature side expansion device 4b and the intermediate heat exchanger 5, respectively. A water heat exchanger 13 that exchanges heat between the water and the high-temperature refrigerant is connected in parallel to the intermediate heat exchanger 5. At one end of each of the intermediate heat exchanger 5 and the water heat exchanger 13, there are an intermediate heat exchanger refrigerant flow control valve 12a and a water heat exchanger refrigerant flow control valve 12b for controlling the flow of the high-temperature refrigerant, respectively. Is provided.
Further, the water heat exchanger 13 is connected with a drain pipe 9 through which drainage is circulated, and waste water generated in a factory facility flows in the drain pipe 9 and exchanges heat with the high-temperature side refrigerant. It is like that. On the upstream side of the water heat exchanger 13 of the drain pipe 9, a water temperature sensor 15, which is a water temperature detecting means for detecting the temperature of the waste water flowing through the drain pipe 9, is disposed and provided.

低温側冷凍サイクル6aと高温側冷凍サイクル6bには、それぞれ特性の異なる冷媒が封入されている。
封入される冷媒の種類は二元冷凍サイクル装置100の用途によって異なるが、例えば、利用側熱交換器7を水熱交換器とし90℃近い湯を生成するための高温ヒートポンプ給湯機である場合、低温側冷凍サイクル6aに使用される低温側冷媒に、R410Aのような低外気温(―15℃程度)においても良好な性能を有する作動冷媒が好ましく、高温側冷凍サイクル6bに用いられる高温側冷媒にはR134aのような高温(95℃程度)において良好な性能を有する作動冷媒が好ましい。
低温側冷凍サイクル6aに使用される低温側冷媒と高温側冷凍サイクル6bの高温側冷媒は中間熱交換器5によって熱交換される。
Refrigerants having different characteristics are sealed in the low temperature side refrigeration cycle 6a and the high temperature side refrigeration cycle 6b, respectively.
The type of refrigerant to be sealed varies depending on the use of the two-stage refrigeration cycle apparatus 100. For example, when the use-side heat exchanger 7 is a water heat exchanger and a high-temperature heat pump water heater for producing hot water close to 90 ° C, The low-temperature side refrigerant used in the low-temperature side refrigeration cycle 6a is preferably a working refrigerant having good performance even at a low outside air temperature (about −15 ° C.) such as R410A, and the high-temperature side refrigerant used in the high-temperature side refrigeration cycle 6b. A working refrigerant having good performance at a high temperature (about 95 ° C.) such as R134a is preferable.
The intermediate heat exchanger 5 exchanges heat between the low-temperature side refrigerant used in the low-temperature side refrigeration cycle 6 a and the high-temperature side refrigerant in the high-temperature side refrigeration cycle 6 b.

利用側熱交換器7には、二元冷凍サイクル装置100によって汲み上げられた熱を利用する熱利用機器へ供給するための利用側流体配管18が接続されている。
利用側流体配管18内には熱利用側機器へ熱を供給するための水やブラインなどが封入され、流通するようになっている。
利用側配管18内には送流ポンプ10によって送流される利用側流体が流動している。
The usage-side heat exchanger 7 is connected to a usage-side fluid piping 18 for supplying heat utilization equipment that uses the heat pumped up by the dual refrigeration cycle apparatus 100.
Water, brine, or the like for supplying heat to the heat utilization side device is enclosed in the utilization side fluid pipe 18 and circulated.
In the use side pipe 18, the use side fluid fed by the feed pump 10 flows.

二元冷凍サイクル装置100には運転を制御するための電気部品箱22が備えられている。電気部品箱22には、運転制御手段である制御器23が設けられている。制御器23は、低温側圧縮機1a及び高温側圧縮機1bを駆動する図示しないインバータ回路と、低温側膨張装置4a及び高温側膨張装置4bの開度や、低温側四方弁2a及び高温側四方弁2bの切替えと、中間熱交換器冷媒流量制御バルブ12a及び水熱交換器冷媒流量制御バルブ12bの開度を制御する。これらインバータ回路及び制御器23によって、低温側冷凍サイクル6aと高温側冷凍サイクル6bは最適な運転条件で制御される。   The dual refrigeration cycle apparatus 100 is provided with an electrical component box 22 for controlling operation. The electrical component box 22 is provided with a controller 23 as operation control means. The controller 23 includes an inverter circuit (not shown) that drives the low temperature side compressor 1a and the high temperature side compressor 1b, the opening degree of the low temperature side expansion device 4a and the high temperature side expansion device 4b, the low temperature side four-way valve 2a, and the high temperature side four-way. The switching of the valve 2b and the opening degree of the intermediate heat exchanger refrigerant flow control valve 12a and the water heat exchanger refrigerant flow control valve 12b are controlled. By these inverter circuit and controller 23, the low temperature side refrigeration cycle 6a and the high temperature side refrigeration cycle 6b are controlled under optimum operating conditions.

二元冷凍サイクル装置100に設けられた制御器23には、図2のブロック図に示すように、水温センサ15と、外気温度センサ16と、中間熱交換器冷媒流量制御バルブ12a及び水熱交換器冷媒流量制御バルブ12bが接続されている。
ここで、中間熱交換器冷媒流量制御バルブ12a及び水熱交換器冷媒流量制御バルブ12bは制御器23によって制御される。
As shown in the block diagram of FIG. 2, the controller 23 provided in the dual refrigeration cycle apparatus 100 includes a water temperature sensor 15, an outside air temperature sensor 16, an intermediate heat exchanger refrigerant flow control valve 12a, and a water heat exchange. The refrigerant flow rate control valve 12b is connected.
Here, the intermediate heat exchanger refrigerant flow control valve 12 a and the water heat exchanger refrigerant flow control valve 12 b are controlled by the controller 23.

水温センサ15で検出される排水温度Twが外気温度To以下である場合(Tw−To≦0℃)の二元冷凍サイクル装置100の運転時の冷媒の流れを図1に実線矢印で示す。
中間熱交換器冷媒流量制御バルブ12aを開放し水熱交換器冷媒流量制御バルブ12bを閉鎖して、低温側冷凍サイクル6aと高温側冷凍サイクル6bの両方を運転する。
まず、低温側冷凍サイクル6aでは、低温側圧縮機1aから低温側四方弁2a、中間熱交換器5の低温側流路、低温側膨張装置4a及び熱源側熱交換器3を順次通過し、低温側四方弁2aから低温側圧縮機1aへと戻る。
同様に高温側冷凍サイクル6bでは、高温側圧縮機1bで圧縮された高温側冷媒が、高温側四方弁2b、利用側熱交換器7、高温側膨張装置4b及び中間熱交換器5の高温側流路を順次通過し、高温側四方弁2bから高温側圧縮機1bへと戻る。
このとき、低温側冷媒は熱源側熱交換器3で蒸発し、中間熱交換器5の低温側流路で凝縮する。また、高温側冷媒は利用側熱交換器7において、利用側である利用側配管18内を流動する水やブラインに温熱を供給して凝縮し、中間熱交換器5の高温側流路では高温側膨張装置4bによって減圧された液状の冷媒が蒸発し、蒸発熱として低温側冷媒の凝縮熱を吸収する。
The flow of the refrigerant during operation of the dual refrigeration cycle apparatus 100 when the waste water temperature Tw detected by the water temperature sensor 15 is equal to or lower than the outside air temperature To (Tw−To ≦ 0 ° C.) is indicated by solid line arrows in FIG.
The intermediate heat exchanger refrigerant flow control valve 12a is opened and the water heat exchanger refrigerant flow control valve 12b is closed, and both the low temperature side refrigeration cycle 6a and the high temperature side refrigeration cycle 6b are operated.
First, in the low temperature side refrigeration cycle 6a, the low temperature side compressor 1a passes through the low temperature side four-way valve 2a, the low temperature side flow path of the intermediate heat exchanger 5, the low temperature side expansion device 4a, and the heat source side heat exchanger 3 in order. The side four-way valve 2a returns to the low temperature side compressor 1a.
Similarly, in the high temperature side refrigeration cycle 6b, the high temperature side refrigerant compressed by the high temperature side compressor 1b is converted into the high temperature side of the high temperature side four-way valve 2b, the use side heat exchanger 7, the high temperature side expansion device 4b, and the intermediate heat exchanger 5. It passes through the flow path sequentially and returns from the high temperature side four-way valve 2b to the high temperature side compressor 1b.
At this time, the low temperature side refrigerant evaporates in the heat source side heat exchanger 3 and condenses in the low temperature side flow path of the intermediate heat exchanger 5. Further, the high-temperature side refrigerant is condensed in the use-side heat exchanger 7 by supplying warm heat to water or brine flowing in the use-side pipe 18 on the use side, and in the high-temperature side flow path of the intermediate heat exchanger 5. The liquid refrigerant decompressed by the side expansion device 4b evaporates and absorbs the condensation heat of the low temperature side refrigerant as the evaporation heat.

次に、水熱交換器13に流れ込む排水の温度Twが外気温度Toよりも10℃以上高い場合(10℃≦Tw−To)には、低温側冷凍サイクル6aを停止させ、高温側冷凍サイクル6bのみを運転する。この時の高温側冷媒の流れを図1に破線矢印で示す。
制御器23の指令により、中間熱交換器5に接続されている中間熱交換器冷媒流量制御バルブ12aを閉鎖し、水熱交換器13に接続されている水熱交換器冷媒流量制御バルブ12bを開放する。そして、低温側冷凍サイクルを停止させた状態で、高温側冷凍サイクルのみを運転する。
高温側冷媒は利用側熱交換器7において、利用側である利用側配管18内の水に温熱を供給して凝縮し、高温側膨張装置4bによって減圧された液状の高温側冷媒は、水熱交換器13内を流れる工場設備などで発生した排水の温熱を吸収して蒸発する。
Next, when the temperature Tw of the waste water flowing into the water heat exchanger 13 is higher by 10 ° C. or more than the outside air temperature To (10 ° C. ≦ Tw−To), the low temperature side refrigeration cycle 6a is stopped and the high temperature side refrigeration cycle 6b. Only drive. The flow of the high-temperature side refrigerant at this time is indicated by broken line arrows in FIG.
In response to a command from the controller 23, the intermediate heat exchanger refrigerant flow control valve 12a connected to the intermediate heat exchanger 5 is closed, and the water heat exchanger refrigerant flow control valve 12b connected to the water heat exchanger 13 is closed. Open. And only the high temperature side refrigerating cycle is drive | operated in the state which stopped the low temperature side refrigerating cycle.
In the use side heat exchanger 7, the high temperature side refrigerant is condensed by supplying warm heat to the water in the use side pipe 18 on the use side, and the liquid high temperature side refrigerant decompressed by the high temperature side expansion device 4b is hydrothermal. It absorbs the heat of the wastewater generated in the factory equipment flowing in the exchanger 13 and evaporates.

次に、水熱交換器13に流れ込む排水の温度Twと外気温度Toとの差が10℃未満である場合(0℃<Tw−Ta<10℃)には、中間熱交換器冷媒流量制御バルブ12a及び水熱交換器冷媒流量制御バルブ12bの両方を開放し、低温側冷凍サイクル6aと高温側冷凍サイクル6bの両方を運転する。この時、中間熱交換器5と水熱交換器13の両方に高温側冷媒が流入する。
制御器23の指令により、中間熱交換器冷媒流量制御バルブ12a及び水熱交換器冷媒流量制御バルブ12bの両方が所定量開放され、低温側冷凍サイクル6aと高温側冷凍サイクル6bが運転される。中間熱交換器冷媒流量制御バルブ12a及び水熱交換器冷媒流量制御バルブ12bの開度は、水温センサ15で検知される水熱交換器13へ流入する排水温度によってきまる。即ち、水温センサ15で検出される排水温度が高い場合には、中間熱交換器冷媒流量制御バルブ12aの開度を小さくし、水熱交換器冷媒流量制御バルブ12bの開度を大きくして、水熱交換器13へ流入する高温側冷媒の流量を大きくする。
Next, when the difference between the temperature Tw of the waste water flowing into the water heat exchanger 13 and the outside air temperature To is less than 10 ° C. (0 ° C. <Tw−Ta <10 ° C.), the intermediate heat exchanger refrigerant flow control valve Both 12a and the water heat exchanger refrigerant flow control valve 12b are opened, and both the low temperature side refrigeration cycle 6a and the high temperature side refrigeration cycle 6b are operated. At this time, the high-temperature side refrigerant flows into both the intermediate heat exchanger 5 and the water heat exchanger 13.
By the command of the controller 23, both the intermediate heat exchanger refrigerant flow control valve 12a and the water heat exchanger refrigerant flow control valve 12b are opened by a predetermined amount, and the low temperature side refrigeration cycle 6a and the high temperature side refrigeration cycle 6b are operated. The opening degree of the intermediate heat exchanger refrigerant flow control valve 12a and the water heat exchanger refrigerant flow control valve 12b is determined by the temperature of the wastewater flowing into the water heat exchanger 13 detected by the water temperature sensor 15. That is, when the waste water temperature detected by the water temperature sensor 15 is high, the opening degree of the intermediate heat exchanger refrigerant flow control valve 12a is reduced, and the opening degree of the water heat exchanger refrigerant flow control valve 12b is increased. The flow rate of the high-temperature side refrigerant flowing into the water heat exchanger 13 is increased.

水温センサ15で検出される排水温度Twが外気温度To以下である場合(Tw−To≦0℃)には、低温側冷凍サイクル6aと高温側冷凍サイクル6bの両方を運転するとともに、中間熱交換器冷媒流量制御バルブ12aの開度を全開にし、水熱交換器冷媒流量制御バルブ12bを閉鎖して、中間熱交換器5へのみ高温側冷媒が流入するようにする。   When the waste water temperature Tw detected by the water temperature sensor 15 is equal to or lower than the outside air temperature To (Tw−To ≦ 0 ° C.), both the low temperature side refrigeration cycle 6a and the high temperature side refrigeration cycle 6b are operated and intermediate heat exchange is performed. The refrigerant refrigerant flow control valve 12a is fully opened and the water heat exchanger refrigerant flow control valve 12b is closed so that the high-temperature refrigerant flows only into the intermediate heat exchanger 5.

上記のように、水温センサ15で検知される熱交換器13へ流入する排水の温度Twと外気温度センサ16で検知される外気温度Toとの差によって、中間熱交換器5と水熱交換器13に流入する高温側冷媒の流量を配分することで、低温側冷凍サイクル6aの運転に要する運転エネルギーを最小限にとどめることができ、よりエネルギー効率の高い二元冷凍サイクル装置100とすることができる。   As described above, the intermediate heat exchanger 5 and the water heat exchanger are determined by the difference between the temperature Tw of the wastewater flowing into the heat exchanger 13 detected by the water temperature sensor 15 and the outside air temperature To detected by the outside air temperature sensor 16. By distributing the flow rate of the high-temperature side refrigerant flowing into the refrigerant 13, the operation energy required for the operation of the low-temperature side refrigeration cycle 6a can be minimized, and the dual refrigeration cycle apparatus 100 having higher energy efficiency can be obtained. it can.

上記第1の実施形態では、室外温度Toと排水の温度Twとの温度差が0℃から10℃の範囲(0℃<Tw−Ta<10℃)で、中間熱交換器冷媒流量制御バルブ12a及び水熱交換器冷媒流量制御バルブ12bの開度を変化させる冷媒流れ制御手段を用いたが、使用される冷媒の種類や熱利用機器で必要とされる温度域によって温度差の条件は変更されて良い。   In the first embodiment, the intermediate heat exchanger refrigerant flow control valve 12a has a temperature difference between the outdoor temperature To and the waste water temperature Tw in the range of 0 ° C. to 10 ° C. (0 ° C. <Tw−Ta <10 ° C.). The refrigerant flow control means for changing the opening degree of the water heat exchanger refrigerant flow control valve 12b is used, but the temperature difference condition is changed depending on the type of refrigerant used and the temperature range required for the heat utilization device. Good.

(第2の実施形態)
第2の実施形態に係る二元冷凍サイクル装置100は、図3に示すように、第1の実施形態の二元冷凍サイクル装置100同様に低温側冷凍サイクル6aと高温側冷凍サイクル6bを備えている。
ここで、第1の実施形態の冷凍サイクル装置100と異なる構成として、水熱交換器13の接続形態がある。第2の実施形態の水熱交換器13は、中間熱交換器5と高温側膨張弁4bの間で、中間熱交換器5に対して直列に配され、高温側冷凍サイクル6bの冷媒配管に接続されている。また、水熱交換器13は排水が流動する排水管9に対して、流量制御三方バルブ14と下流側分岐部17を介して、並列に接続されており、流量制御三方バルブ14の流路切り替えにより、排水が水熱交換器13内を流動するか否かが制御されるようになっている。下流側分岐部17の下流側には排水ポンプ8が設けられており、排水の流路にかかわらず排水が流動するように送流が行われる。
流量制御三方バルブ14の上流側には水温センサ15が設けられており、排水温度を検知するようになっており、図4のブロック図に示すように制御器23に接続されている。この流量制御三方バルブ14は制御器23によって制御される。
(Second Embodiment)
As shown in FIG. 3, the binary refrigeration cycle apparatus 100 according to the second embodiment includes a low temperature side refrigeration cycle 6 a and a high temperature side refrigeration cycle 6 b as in the dual refrigeration cycle apparatus 100 of the first embodiment. Yes.
Here, as a configuration different from the refrigeration cycle apparatus 100 of the first embodiment, there is a connection form of the water heat exchanger 13. The water heat exchanger 13 of the second embodiment is arranged in series with respect to the intermediate heat exchanger 5 between the intermediate heat exchanger 5 and the high temperature side expansion valve 4b, and is connected to the refrigerant pipe of the high temperature side refrigeration cycle 6b. It is connected. Further, the water heat exchanger 13 is connected in parallel to the drain pipe 9 through which the drainage flows through the flow control three-way valve 14 and the downstream branching portion 17, and the flow path of the flow control three-way valve 14 is switched. Thus, it is controlled whether or not the waste water flows in the water heat exchanger 13. A drainage pump 8 is provided on the downstream side of the downstream branching portion 17, and the flow is performed so that the drainage flows regardless of the drainage flow path.
A water temperature sensor 15 is provided on the upstream side of the flow control three-way valve 14 so as to detect the drainage temperature, and is connected to the controller 23 as shown in the block diagram of FIG. This flow control three-way valve 14 is controlled by a controller 23.

上記のように構成された二元冷凍サイクル装置100は以下のように運転される。
水温センサ15により検知された排水温度Twが、熱源側熱交換器3に設けられた外気温度センサ16で検出された外気温度To以下の場合、流量制御三方バルブ14の流路が水熱交換器13内に排水が流入しないように切り替えられる。そして、低温側冷凍サイクル6aと高温側冷凍サイクル6bの両方を運転する。
まず、低温側冷凍サイクル7では、低温側圧縮機1から低温側四方弁2、中間熱交換器5の低温側流路、低温側膨張装置4及び熱源側熱交換器3を順次通過し、低温側四方弁2から低温側圧縮機1へと戻る。
同様に高温側冷凍サイクル6bでは、高温側圧縮機1bで圧縮された高温側冷媒が、高温側四方弁2b、利用側熱交換器7、高温側膨張装置4b、水熱交換器13及び中間熱交換器5の高温側流路を順次通過し、高温側四方弁2bから高温側圧縮機1bへと戻る。
このとき、低温側冷媒は熱源側熱交換器3で蒸発し、中間熱交換器5の低温側で凝縮する。また、高温側冷媒は利用側熱交換器7において凝縮し、利用側である利用側配管18内の水に温熱を供給する。中間熱交換器5の高温側では高温側膨張装置4bによって減圧された液状の冷媒が蒸発し、蒸発熱として低温側冷媒の凝縮熱を吸収する。
利用側配管18内には送流ポンプ10によって送流される利用側流体が流動している。
The dual refrigeration cycle apparatus 100 configured as described above is operated as follows.
When the waste water temperature Tw detected by the water temperature sensor 15 is equal to or lower than the outside air temperature To detected by the outside air temperature sensor 16 provided in the heat source side heat exchanger 3, the flow path of the flow control three-way valve 14 is the water heat exchanger. It is switched so that the drainage does not flow into 13. Then, both the low temperature side refrigeration cycle 6a and the high temperature side refrigeration cycle 6b are operated.
First, in the low temperature side refrigeration cycle 7, the low temperature side compressor 1 sequentially passes through the low temperature side four-way valve 2, the low temperature side flow path of the intermediate heat exchanger 5, the low temperature side expansion device 4, and the heat source side heat exchanger 3. The side four-way valve 2 returns to the low temperature side compressor 1.
Similarly, in the high temperature side refrigeration cycle 6b, the high temperature side refrigerant compressed by the high temperature side compressor 1b is converted into the high temperature side four-way valve 2b, the use side heat exchanger 7, the high temperature side expansion device 4b, the water heat exchanger 13, and the intermediate heat. The high temperature side flow path of the exchanger 5 is sequentially passed, and the high temperature side four-way valve 2b returns to the high temperature side compressor 1b.
At this time, the low temperature side refrigerant evaporates in the heat source side heat exchanger 3 and condenses on the low temperature side of the intermediate heat exchanger 5. Further, the high temperature side refrigerant is condensed in the use side heat exchanger 7 and supplies hot water to the water in the use side pipe 18 which is the use side. On the high temperature side of the intermediate heat exchanger 5, the liquid refrigerant decompressed by the high temperature side expansion device 4b evaporates and absorbs the condensation heat of the low temperature side refrigerant as the evaporation heat.
In the use side pipe 18, the use side fluid fed by the feed pump 10 flows.

水温センサ15により検知された排水温度Twが、熱源側熱交換器3に設けられた外気温度センサ16で検出された外気温度Toよりも高い場合、流量制御三方バルブ14の流路が水熱交換器13内に排水が流入するように切り替えられる。そして、低温側冷凍サイクル6aと高温側冷凍サイクル6bの両方を運転する。ここで、中間熱交換器5内には、水熱交換器13内で蒸発しきれなかった高温側冷媒が流入している。低温側冷凍サイクル6aでは、水熱交換器13内で蒸発しきれなかった高温側冷媒を蒸発させるだけの温熱を供給するために、低出力での運転を行う。
水熱交換器13内へ流入する排水の温度が充分に高く、水熱交換器13のみで高温側冷媒が蒸発し切る場合には、低温側冷凍サイクル6aの運転を停止する。
When the waste water temperature Tw detected by the water temperature sensor 15 is higher than the outside air temperature To detected by the outside air temperature sensor 16 provided in the heat source side heat exchanger 3, the flow path of the flow control three-way valve 14 is subjected to water heat exchange. It is switched so that drainage flows into the vessel 13. Then, both the low temperature side refrigeration cycle 6a and the high temperature side refrigeration cycle 6b are operated. Here, the high-temperature side refrigerant that could not be evaporated in the water heat exchanger 13 flows into the intermediate heat exchanger 5. In the low temperature side refrigeration cycle 6a, operation is performed at a low output in order to supply warm heat sufficient to evaporate the high temperature side refrigerant that could not be evaporated in the water heat exchanger 13.
When the temperature of the waste water flowing into the water heat exchanger 13 is sufficiently high and the high temperature side refrigerant is completely evaporated only by the water heat exchanger 13, the operation of the low temperature side refrigeration cycle 6a is stopped.

上記第1及び第2の実施形態の二元冷凍サイクル装置は、例えば工場設備などにおいて、温熱を供給するためのシステムとして使用される。一般的な工場設備では使用後の排水は、外気温度Toよりも10℃以上高い温水であることがある。この温水は二元冷凍サイクル装置100の高温側冷凍サイクルの熱源として利用可能な温度域であり、このような工場設備の排水温度を高温側冷凍サイクルの熱源として使用することで、低温側冷凍サイクルの運転を停止、又は弱めることができ、エネルギー効率が高く温熱を供給することができる。これにより、工場設備としてのエネルギー効率を高くすることができる。   The binary refrigeration cycle apparatus of the first and second embodiments is used as a system for supplying warm heat, for example, in factory equipment. In general factory equipment, the waste water after use may be warm water that is 10 ° C. or more higher than the outside air temperature To. This hot water is a temperature range that can be used as a heat source for the high temperature side refrigeration cycle of the binary refrigeration cycle apparatus 100, and by using the waste water temperature of such factory equipment as a heat source for the high temperature side refrigeration cycle, It is possible to stop or weaken the operation, and it is possible to supply heat with high energy efficiency. Thereby, the energy efficiency as factory equipment can be made high.

本発明は、上記実施形態に限定されない。さらに、本発明の実施の形態に開示されている複数の構成要素を適宜組み合わせることにより種々の発明を形成できる。例えば、本発明の実施の形態に示される全構成要素から幾つかの構成要素を削除してもよい。更に、異なる実施の形態に亘る構成要素を適宜組み合わせてもよい。   The present invention is not limited to the above embodiment. Furthermore, various inventions can be formed by appropriately combining a plurality of constituent elements disclosed in the embodiments of the present invention. For example, you may delete some components from all the components shown by embodiment of this invention. Furthermore, you may combine the component covering different embodiment suitably.

1a…低温側圧縮機、1b…高温側圧縮機、2a…低温側四方弁、2b…高温側四方弁、3…熱源側熱交換器、4a…低温側膨張装置、4b…高温側膨張装置、5…中間熱交換器、6a…低温側冷凍サイクル、6b…高温側冷凍サイクル、7…利用側熱交換器、8…排水ポンプ、9…排水管、12a…中間熱交換器冷媒流量制御バルブ、12b…水熱交換器冷媒流量制御バルブ、14…流量制御三方バルブ、15…水温センサ、16…室外空気温度センサ、17…下流側分岐部、18…利用側配管、22…電気部品箱、23…制御器、100…二元冷凍サイクル装置
DESCRIPTION OF SYMBOLS 1a ... Low temperature side compressor, 1b ... High temperature side compressor, 2a ... Low temperature side four way valve, 2b ... High temperature side four way valve, 3 ... Heat source side heat exchanger, 4a ... Low temperature side expansion device, 4b ... High temperature side expansion device, 5 ... Intermediate heat exchanger, 6a ... Low temperature side refrigeration cycle, 6b ... High temperature side refrigeration cycle, 7 ... Usage side heat exchanger, 8 ... Drain pump, 9 ... Drain pipe, 12a ... Intermediate heat exchanger refrigerant flow control valve, 12b ... Water heat exchanger refrigerant flow control valve, 14 ... Flow control three-way valve, 15 ... Water temperature sensor, 16 ... Outdoor air temperature sensor, 17 ... Downstream branching part, 18 ... Use side piping, 22 ... Electric component box, 23 ... Controller, 100 ... Dual refrigeration cycle device

Claims (3)

外部熱源から熱を吸収する熱源側熱交換器と、低温側圧縮機を備え、内部に低温側冷媒が封入された低温側冷凍サイクルと、
利用側へ熱を供給する利用側熱交換器と高温側圧縮機を備え、内部に高温側冷媒が封入された高温側冷凍サイクルと、
前記低温側冷凍サイクルと前記高温側冷凍サイクルの冷媒を熱交換させるための中間熱交換器と、
前記高温側冷凍サイクルの冷媒と外部から取りこんだ水とを熱交換させる水熱交換器と、
前記外部からとりこまれる水の温度を検知する水温検知手段と、
前記外部熱源の温度を検知する外部温度検知手段と、
前記水温検知手段で検知された水の温度が前記外部温度検知手段で検知された外部熱源の温度のよりも高いときに、低温側冷凍サイクルの運転出力を低下させる、又は運転を停止させるとともに、前記高温側冷媒と水熱交換器内の水との熱交換を制御する運転制御手段を、
有することを特徴とする二元冷凍サイクル装置。
A heat source side heat exchanger that absorbs heat from an external heat source, a low temperature side refrigeration cycle including a low temperature side compressor, and a low temperature side refrigerant enclosed therein,
A high-temperature side refrigeration cycle comprising a utilization-side heat exchanger for supplying heat to the utilization side and a high-temperature side compressor, and a high-temperature-side refrigerant sealed therein
An intermediate heat exchanger for exchanging heat between the refrigerant of the low temperature side refrigeration cycle and the high temperature side refrigeration cycle;
A water heat exchanger for exchanging heat between the refrigerant of the high temperature side refrigeration cycle and water taken from the outside;
Water temperature detecting means for detecting the temperature of water taken from the outside;
An external temperature detecting means for detecting the temperature of the external heat source;
When the temperature of the water detected by the water temperature detection means is higher than the temperature of the external heat source detected by the external temperature detection means, the operation output of the low temperature side refrigeration cycle is reduced or the operation is stopped, Operation control means for controlling heat exchange between the high temperature side refrigerant and water in the water heat exchanger,
A binary refrigeration cycle apparatus comprising:
前記水熱交換器は、前記中間熱交換器に対して並列に接続されており、
前記運転制御手段は、前記水温検知手段で検知された温度が所定温度以上である場合に、前記水熱交換器へ冷媒が流入するように制御することを特徴とする請求項1に記載の二元冷凍サイクル装置。
The water heat exchanger is connected in parallel to the intermediate heat exchanger,
The said operation control means controls so that a refrigerant | coolant flows in into the said water heat exchanger, when the temperature detected by the said water temperature detection means is more than predetermined temperature. Original refrigeration cycle equipment.
前記水熱交換器は、前記中間熱交換器に対して直列に接続されており、
前記運転制御手段は、前記水温検知手段で検知された温度が所定温度以上である場合に、前記水熱交換器へ外部から水が流入するように制御することを特徴とする請求項1に記載の二元冷凍サイクル装置。
The water heat exchanger is connected in series to the intermediate heat exchanger,
The said operation control means is controlled so that water flows in into the said water heat exchanger from the outside, when the temperature detected by the said water temperature detection means is more than predetermined temperature. Dual refrigeration cycle equipment.
JP2011081350A 2011-04-01 2011-04-01 Dual refrigeration cycle device Withdrawn JP2012215353A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011081350A JP2012215353A (en) 2011-04-01 2011-04-01 Dual refrigeration cycle device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011081350A JP2012215353A (en) 2011-04-01 2011-04-01 Dual refrigeration cycle device

Publications (1)

Publication Number Publication Date
JP2012215353A true JP2012215353A (en) 2012-11-08

Family

ID=47268258

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011081350A Withdrawn JP2012215353A (en) 2011-04-01 2011-04-01 Dual refrigeration cycle device

Country Status (1)

Country Link
JP (1) JP2012215353A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014145557A (en) * 2013-01-30 2014-08-14 Toshiba Carrier Corp Dual refrigeration cycle device
JP2014145500A (en) * 2013-01-28 2014-08-14 Toshiba Carrier Corp Dual refrigeration cycle device

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014145500A (en) * 2013-01-28 2014-08-14 Toshiba Carrier Corp Dual refrigeration cycle device
JP2014145557A (en) * 2013-01-30 2014-08-14 Toshiba Carrier Corp Dual refrigeration cycle device

Similar Documents

Publication Publication Date Title
JP5868498B2 (en) Heat pump equipment
JP6625242B2 (en) Air conditioner
JP6559339B2 (en) Heat pump system
JP2009228979A (en) Air conditioner
US10401038B2 (en) Heat pump system
JP2006292313A (en) Geothermal unit
JP5300806B2 (en) Heat pump equipment
JP5681787B2 (en) Two-way refrigeration cycle equipment
KR101142914B1 (en) Hot water and cool water product system using 2-steps heat pump cycles
KR20120125856A (en) Heat storaging apparatus having cascade cycle and Control process of the same
JP2013127332A (en) Hydronic heating device
JP2016102636A (en) Air conditioning system
JP2012013350A (en) Hot-water heater
EP2339267B1 (en) Refrigerating cycle apparatus, heat pump type hot water supply air conditioner and outdoor unit thereof
WO2013080497A1 (en) Refrigeration cycle device and hot water generating apparatus comprising same
KR101653567B1 (en) A Duality Cold Cycle Heatpump System Recovering Heat
JP5150300B2 (en) Heat pump type water heater
JP2012215353A (en) Dual refrigeration cycle device
KR100849613B1 (en) High effectiveness heat pump system that available water heating and floor heating
KR101658021B1 (en) A Heatpump System Using Duality Cold Cycle
JP6143682B2 (en) Combined heat source heat pump device
EP3196557A1 (en) Brine/water heat pump system
JP2004293889A (en) Ice thermal storage unit, ice thermal storage type air conditioner and its operating method
CN105556219A (en) Freezer
JP4360183B2 (en) Air conditioner

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20140603