JP4360183B2 - Air conditioner - Google Patents

Air conditioner Download PDF

Info

Publication number
JP4360183B2
JP4360183B2 JP2003387969A JP2003387969A JP4360183B2 JP 4360183 B2 JP4360183 B2 JP 4360183B2 JP 2003387969 A JP2003387969 A JP 2003387969A JP 2003387969 A JP2003387969 A JP 2003387969A JP 4360183 B2 JP4360183 B2 JP 4360183B2
Authority
JP
Japan
Prior art keywords
heat exchanger
compression mechanism
heating
hot water
refrigerant
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2003387969A
Other languages
Japanese (ja)
Other versions
JP2005147582A (en
Inventor
雅裕 本田
弘宗 松岡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Daikin Industries Ltd
Original Assignee
Daikin Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daikin Industries Ltd filed Critical Daikin Industries Ltd
Priority to JP2003387969A priority Critical patent/JP4360183B2/en
Publication of JP2005147582A publication Critical patent/JP2005147582A/en
Application granted granted Critical
Publication of JP4360183B2 publication Critical patent/JP4360183B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Compression-Type Refrigeration Machines With Reversible Cycles (AREA)
  • Air Conditioning Control Device (AREA)

Description

本発明は、空気調和装置に関し、特に、熱源側熱交換器として空気熱交換器と温水熱交換器とを備えたものに係るものである。   The present invention relates to an air conditioner, and particularly relates to an air conditioner including an air heat exchanger and a hot water heat exchanger as a heat source side heat exchanger.

従来より、空気の熱源と温水等の熱源とを複合させ、外気温度が低い場合(低外気時)に温水等の熱源を利用して室内の暖房を行うヒートポンプ式の空気調和機が知られている(例えば、特許文献1参照)。   Conventionally, there has been known a heat pump type air conditioner that combines a heat source of air and a heat source such as hot water, and heats the room using a heat source such as hot water when the outside air temperature is low (low outside air). (For example, refer to Patent Document 1).

上記空気調和機は、主に圧縮機、室内熱交換器、膨張弁および室外熱交換器が順に接続された冷媒回路を備えている。この冷媒回路では、冷媒が循環して冷凍サイクルが行われる。上記室外熱交換器は、空気を熱源とする熱源側熱交換器に構成されている。また、上記冷媒回路には、冷媒加熱器が室外熱交換器と並列に設けられている。この冷媒加熱器は、熱源機としてのボイラに接続され、該ボイラの温水から冷媒が吸熱するように構成されている。つまり、上記冷媒加熱器は、温水を熱源とする熱源側熱交換器に構成されている。   The air conditioner includes a refrigerant circuit in which a compressor, an indoor heat exchanger, an expansion valve, and an outdoor heat exchanger are connected in order. In this refrigerant circuit, the refrigerant circulates to perform a refrigeration cycle. The outdoor heat exchanger is configured as a heat source side heat exchanger using air as a heat source. The refrigerant circuit is provided with a refrigerant heater in parallel with the outdoor heat exchanger. This refrigerant heater is connected to a boiler as a heat source device, and is configured such that the refrigerant absorbs heat from the hot water of the boiler. That is, the refrigerant heater is configured as a heat source side heat exchanger using hot water as a heat source.

上記空気調和機では、外気の温度に応じて冷媒が室外熱交換器を通る循環と冷媒加熱器を通る循環とを切り換えて暖房運転が行われる。具体的に、例えば外気の温度が割と高い場合、つまり暖房負荷が割と小さい場合、圧縮機から吐出された冷媒は、室内熱交換器にて凝縮し、膨張弁で減圧された後、室外熱交換器に流れて外気との熱交換によって蒸発する。   In the air conditioner, the heating operation is performed by switching between circulation of the refrigerant passing through the outdoor heat exchanger and circulation of the refrigerant heater according to the temperature of the outside air. Specifically, for example, when the temperature of the outside air is relatively high, that is, when the heating load is relatively small, the refrigerant discharged from the compressor is condensed by the indoor heat exchanger, depressurized by the expansion valve, and then the outdoor It flows into the heat exchanger and evaporates by heat exchange with the outside air.

一方、外気の温度が著しく低い場合(例えば、氷点下)、つまり暖房負荷が大きい場合、室内熱交換器にて凝縮した冷媒は、膨張弁で減圧された後、冷媒加熱器に流れて温水との熱交換によって蒸発する。このように、低外気時の場合には、温水を熱源として利用することによって所要の暖房能力が確保される。
特開平9−138023号公報
On the other hand, when the temperature of the outside air is extremely low (for example, below freezing point), that is, when the heating load is large, the refrigerant condensed in the indoor heat exchanger is depressurized by the expansion valve and then flows into the refrigerant heater and flows into the hot water. Evaporates by heat exchange. Thus, in the case of low outside air, the required heating capacity is ensured by using hot water as a heat source.
Japanese Patent Laid-Open No. 9-138023

しかしながら、上述した従来の空気調和機においては、1台の圧縮機を備え、1つの蒸発温度に制御されるので、外気(空気)および温水の何れか一方を熱源として暖房運転が行われる。ここで、温水は通常ボイラ等の熱源機によって生成されるため、温水の利用コストが外気の利用コストに比べて割高になる。したがって、空調システム全体としての運転コストが高くなるという問題があった。   However, since the conventional air conditioner described above includes one compressor and is controlled to one evaporation temperature, heating operation is performed using either outside air (air) or hot water as a heat source. Here, since warm water is normally produced | generated by heat source machines, such as a boiler, the utilization cost of warm water becomes expensive compared with the utilization cost of external air. Therefore, there has been a problem that the operating cost of the entire air conditioning system increases.

本発明は、斯かる点に鑑みてなされたものであり、その目的とするところは、熱源として温水および空気の両方を同時に利用し、高い暖房能力を得ると共に、システム全体のコスト低減を図ることである。   The present invention has been made in view of such a point, and an object of the present invention is to simultaneously use both hot water and air as a heat source to obtain a high heating capacity and to reduce the cost of the entire system. It is.

具体的に、第1の発明は、圧縮機構(3A,3B)と熱源側熱交換器(35,52)と膨張機構(36,42)と利用側熱交換器(41)とが配管接続された蒸気圧縮式冷凍サイクルの冷媒回路(10)を備えた空気調和装置を前提としている。そして、上記熱源側熱交換器(35,52)は、冷媒が室外空気と熱交換する空気熱交換器(35)と、冷媒が温水と熱交換する温水熱交換器(52)とを備え、上記圧縮機構(3A,3B)は、互いに並列に接続された第1圧縮機構(3A)と第2圧縮機構(3B)を備えている。上記第1圧縮機構(3A)および第2圧縮機構(3B)の暖房サイクル時の吸込側配管同士を繋ぐ補助配管(25)には、流路開閉手段(38)が設けられている。上記膨張機構(36,42)は、上記空気熱交換器(35)のための第1膨張弁(36)と上記利用側熱交換器(41)のための第2膨張弁(42)とを備えている。上記第1圧縮機構(3A)は、暖房サイクル時の吸込側配管が上記空気熱交換器(35)に接続されている。一端が上記第1膨張弁(36)と第2膨張弁(42)との間の液配管に接続され且つ他端が上記第2圧縮機構(3B)の暖房サイクル時の吸込側配管に接続された分岐配管(20)は、上記第2圧縮機構(3B)側から順に上記温水熱交換器(52)と該温水熱交換器(52)のための第3膨張弁(51)とが設けられている。上記冷媒回路(10)は、暖房サイクル時に圧縮機構(3A,3B)の吐出冷媒が利用側熱交換器(41)で凝縮し、空気熱交換器(35)のみで蒸発して圧縮機構(3A,3B)に戻る循環を行う第1暖房動作と、暖房サイクル時に圧縮機構(3A,3B)の吐出冷媒が利用側熱交換器(41)で凝縮し、温水熱交換器(52)のみで蒸発して圧縮機構(3A,3B)に戻る循環を行う第2暖房動作と、上記補助配管(25)の流路開閉手段(38)が閉じられた状態の暖房サイクル時に第1圧縮機構(3A)および第2圧縮機構(3B)の吐出冷媒が利用側熱交換器(41)で凝縮し、その一部が温水熱交換器(52)で蒸発して第2圧縮機構(3B)に戻り残りが空気熱交換器(35)で温水熱交換器(52)とは異なる温度で蒸発して第1圧縮機構(3A)に戻る循環を行う第3暖房動作とを行うように構成されている。また、上記冷媒回路(10)は、暖房負荷に応じて第1暖房動作、第2暖房動作および第3暖房動作を切り換える暖房切換手段(61)を備えている。 Specifically, in the first invention, the compression mechanism (3A, 3B), the heat source side heat exchanger (35, 52), the expansion mechanism (36, 42), and the use side heat exchanger (41) are connected by piping. An air conditioner equipped with a refrigerant circuit (10) for a vapor compression refrigeration cycle is assumed. The heat source side heat exchanger (35, 52) includes an air heat exchanger (35) in which the refrigerant exchanges heat with outdoor air, and a hot water heat exchanger (52) in which the refrigerant exchanges heat with hot water. The compression mechanism (3A, 3B) includes a first compression mechanism (3A) and a second compression mechanism (3B ) connected in parallel to each other . The auxiliary pipe (25) that connects the suction side pipes during the heating cycle of the first compression mechanism (3A) and the second compression mechanism (3B) is provided with a flow path opening / closing means (38). The expansion mechanism (36, 42) includes a first expansion valve (36) for the air heat exchanger (35) and a second expansion valve (42) for the use side heat exchanger (41). I have. As for the said 1st compression mechanism (3A), the suction side piping at the time of a heating cycle is connected to the said air heat exchanger (35). One end is connected to the liquid piping between the first expansion valve (36) and the second expansion valve (42), and the other end is connected to the suction side piping during the heating cycle of the second compression mechanism (3B). The branch pipe (20) is provided with the hot water heat exchanger (52) and a third expansion valve (51) for the hot water heat exchanger (52) in order from the second compression mechanism (3B) side. ing. In the refrigerant circuit (10), the refrigerant discharged from the compression mechanism (3A, 3B) is condensed in the use side heat exchanger (41) during the heating cycle, and is evaporated only in the air heat exchanger (35). , 3B), the first heating operation that circulates back, and the refrigerant discharged from the compression mechanism (3A, 3B) condenses in the use side heat exchanger (41) during the heating cycle and evaporates only in the hot water heat exchanger (52) The second heating operation for circulating back to the compression mechanism (3A, 3B) and the first compression mechanism (3A) during the heating cycle with the flow path opening / closing means (38) of the auxiliary pipe (25) closed And the refrigerant discharged from the second compression mechanism (3B) is condensed in the use side heat exchanger (41), part of which is evaporated in the hot water heat exchanger (52) and returned to the second compression mechanism (3B). configured to perform a third heating operation for circulation back to the first compression mechanism and evaporated at different temperatures (3A) and the hot water heat exchanger (52) in the air heat exchanger (35) It is. The refrigerant circuit (10) includes a heating switching means (61) that switches between the first heating operation, the second heating operation, and the third heating operation according to the heating load.

上記の発明では、冷媒回路(10)が暖房サイクル時において、例えば外気温が極めて低い(暖房負荷が極めて大きい)場合、利用側熱交換器(41)で凝縮した冷媒が空気熱交換器(35)および温水熱交換器(52)で異温度で蒸発するように冷媒回路(10)内で冷媒が循環されるので、温水に加えて温度の低い室外空気も熱源として同時に利用される。つまり、冷媒が温水および室外空気の両方から同時に吸熱する。したがって、熱源として温水または室外空気を単独利用する場合に比べて暖房能力が向上する。   In the above invention, when the refrigerant circuit (10) is in the heating cycle, for example, when the outside air temperature is extremely low (the heating load is very large), the refrigerant condensed in the use side heat exchanger (41) is converted into the air heat exchanger (35 ) And the hot water heat exchanger (52) are circulated in the refrigerant circuit (10) so as to evaporate at different temperatures, so that outdoor air having a low temperature in addition to hot water is also used as a heat source. That is, the refrigerant absorbs heat simultaneously from both hot water and outdoor air. Therefore, the heating capacity is improved as compared with a case where hot water or outdoor air is used alone as a heat source.

また、熱源として温水と室外空気の両方を同時に利用できることから、温水の熱源機(例えば、ボイラ)の能力が低減される。これにより、空調システム全体としてのコスト低減が図られる。   Moreover, since both hot water and outdoor air can be utilized simultaneously as a heat source, the capability of the heat source machine (for example, boiler) of warm water is reduced. Thereby, the cost reduction as the whole air conditioning system is achieved.

さらに、上記の発明では、例えば外気温が高い(暖房負荷が小さい)場合、第3膨張弁(51)を閉じることにより、利用側熱交換器(41)にて凝縮した液冷媒が液配管を通って第1膨張弁(36)で減圧され、空気熱交換器(35)にて室外空気と熱交換して蒸発する(第1暖房動作)。また、外気温が低い(暖房負荷が大きい)場合、第1膨張弁(36)を閉じることにより、利用側熱交換器(41)にて凝縮した液冷媒が液配管から分岐配管(20)に流れ、第3膨張弁(51)で減圧された後、温水熱交換器(52)にて温水と熱交換して蒸発する(第2暖房動作)。また、外気温が極めて低い(暖房負荷が極めて大きい)場合、上記第1膨張弁(36)および第3膨張弁(51)の両方を開けることにより、利用側熱交換器(41)にて凝縮した液冷媒は、一部が分岐配管(20)に流れ、温水熱交換器(52)で蒸発して第2圧縮機構(3B)に戻り、残りが空気熱交換器(35)で蒸発して第1圧縮機構(3A)に戻る(第3暖房動作)。つまり、暖房サイクル時には、暖房負荷に応じて第1膨張弁(36)および第3膨張弁(51)の開閉切換を行うことにより、空気熱交換器(35)および温水熱交換器(52)の少なくとも何れか一方が蒸発器となる。 Further, in the above invention, for example, when the outside air temperature is high (heating load is small), the liquid refrigerant condensed in the use side heat exchanger (41) is connected to the liquid pipe by closing the third expansion valve (51). The pressure is reduced by the first expansion valve (36), and is evaporated by exchanging heat with the outdoor air in the air heat exchanger (35) (first heating operation). When the outside air temperature is low (the heating load is large), the liquid refrigerant condensed in the use side heat exchanger (41) is transferred from the liquid pipe to the branch pipe (20) by closing the first expansion valve (36). After flowing and depressurized by the third expansion valve (51), heat is exchanged with hot water in the hot water heat exchanger (52) to evaporate (second heating operation). When the outside air temperature is extremely low (the heating load is very large), the user side heat exchanger (41) condenses by opening both the first expansion valve (36) and the third expansion valve (51). A part of the liquid refrigerant flows into the branch pipe (20), evaporates in the hot water heat exchanger (52) and returns to the second compression mechanism (3B), and the rest evaporates in the air heat exchanger (35). Return to the first compression mechanism (3A) (third heating operation). In other words, during the heating cycle, the first expansion valve (36) and the third expansion valve (51) are switched according to the heating load, so that the air heat exchanger (35) and the hot water heat exchanger (52) are switched. At least one of them becomes an evaporator.

さらに、上記の発明では、空気熱交換器(35)および温水熱交換器(52)の何れか一方で冷媒が蒸発する第1暖房動作または第2暖房動作時において、流路開閉手段(38)を開けることにより、第1圧縮機構(3A)および第2圧縮機構(3B)の両方が利用される。これにより、上記冷媒回路(10)の冷媒循環量が増大し、空気熱交換器(35)または温水熱交換器(52)における冷媒の蒸発量が増大、つまり暖房サイクルにおける冷媒の吸熱量が増大するので、暖房能力が向上する。一方、上記流路開閉手段(38)を閉じることにより、空気熱交換器(35)および温水熱交換器(52)で異温度蒸発した冷媒が別個に各圧縮機構(3A,3B)に戻る3暖房動作が行われる。 Furthermore, in the above invention, the flow path opening / closing means (38) in the first heating operation or the second heating operation in which the refrigerant evaporates in any one of the air heat exchanger (35) and the hot water heat exchanger (52). By opening, both the first compression mechanism (3A) and the second compression mechanism (3B) are used. As a result, the refrigerant circulation amount in the refrigerant circuit (10) increases, the refrigerant evaporation amount in the air heat exchanger (35) or the hot water heat exchanger (52) increases, that is, the refrigerant heat absorption amount in the heating cycle increases. As a result, the heating capacity is improved. On the other hand, by closing the flow path opening / closing means (38), the refrigerant evaporated at different temperatures in the air heat exchanger (35) and the hot water heat exchanger (52) returns to the compression mechanisms (3A, 3B) 3 separately. Heating operation is performed.

また、上述したように、上記第1暖房動作および第2暖房動作時において、第1圧縮機構(3A)および第2圧縮機構(3B)の少なくとも何れか一方が利用されるので、暖房能力の異なる運転の種類が増える。これにより、より暖房負荷に見合った暖房能力で運転が行われる。したがって、運転の高効率化が図られる。   Further, as described above, at least one of the first compression mechanism (3A) and the second compression mechanism (3B) is used during the first heating operation and the second heating operation, so that the heating capacity is different. More types of driving. As a result, the operation is performed with a heating capacity more commensurate with the heating load. Therefore, high efficiency of operation is achieved.

また、第の発明は、第の発明において、上記暖房切換手段(61)は、暖房負荷が圧縮機構(3A,3B)の周波数および吐出圧力に基づいて定められる。 In addition, in a second aspect based on the first aspect , the heating switching means (61) determines the heating load based on the frequency and discharge pressure of the compression mechanism (3A, 3B).

上記の発明では、暖房負荷が確実に定められる。これにより、確実に暖房負荷に応じて暖房サイクルの冷媒循環が切り換えられる。したがって、運転の高効率化が確実に図られる。   In the above invention, the heating load is reliably determined. Thereby, the refrigerant circulation of the heating cycle is reliably switched according to the heating load. Therefore, high efficiency of operation can be achieved with certainty.

また、第の発明は、第1または第2の発明において、上記温水熱交換器(52)が屋内に設置されている。 In a third aspect based on the first aspect or the second aspect , the hot water heat exchanger (52) is installed indoors.

上記の発明では、温水熱交換器(42)が屋内に設置されているため、該温水熱交換器(42)の周囲温度が外気温より常時高くなり、また外気温が著しく低い(例えば、氷点下)場合でも、温水熱交換器(42)の周囲温度が氷点下になる恐れはほとんどない。したがって、温水熱交換器(42)を屋外に設置した場合に比べて温水熱交換器(42)を流れる温水の温度低下が抑制され、また温水が凍結することはほとんどない。この結果、温水の凍結防止のためにヒータ等の新たな機器を設けることなく、常時温水を熱源として高い暖房能力が得られる。   In the above invention, since the hot water heat exchanger (42) is installed indoors, the ambient temperature of the hot water heat exchanger (42) is always higher than the outside air temperature, and the outside air temperature is extremely low (for example, below freezing point). ), There is almost no risk that the temperature of the hot water heat exchanger (42) will be below freezing. Therefore, compared with the case where a warm water heat exchanger (42) is installed outdoors, the temperature fall of the warm water which flows through a warm water heat exchanger (42) is suppressed, and warm water hardly freezes. As a result, it is possible to obtain a high heating capacity using hot water as a heat source at all times without providing new equipment such as a heater for preventing freezing of hot water.

したがって、第の発明によれば、第1圧縮機構(3A)および第2圧縮機構(3B)を設け、暖房サイクル時において、空気熱交換器(35)および温水熱交換器(52)の何れか一方で冷媒が蒸発する第1暖房動作および第2暖房動作と、空気熱交換器(35)および温水熱交換器(52)の両方で冷媒が異温度蒸発する第3暖房動作とを暖房負荷に応じて切り換えるようにしたので、暖房負荷が大きい(例えば、外気温が低い)場合には、温水に加えて室外空気も熱源として同時に利用することができる。これにより、温水または室外空気を単独利用する場合と比べ、暖房サイクルにおける熱源からの冷媒の吸熱量を増大させることができるので、暖房能力を向上させることができる。 Therefore, according to the first invention, the first compression mechanism (3A) and the second compression mechanism (3B) are provided, and any of the air heat exchanger (35) and the hot water heat exchanger (52) is provided during the heating cycle. On the other hand, the heating load includes the first heating operation and the second heating operation in which the refrigerant evaporates, and the third heating operation in which the refrigerant evaporates at different temperatures in both the air heat exchanger (35) and the hot water heat exchanger (52). Therefore, when the heating load is large (for example, the outside air temperature is low), outdoor air in addition to hot water can be used simultaneously as a heat source. Thereby, compared with the case where warm water or outdoor air is used independently, the heat absorption amount of the refrigerant from the heat source in the heating cycle can be increased, so that the heating capacity can be improved.

また、熱源として温水と室外空気の両方を同時に利用できることから、温水の熱源機であるボイラ等の能力を下げることができる。これにより、空調システム全体としてのコスト低減を図ることができる。   Moreover, since both hot water and outdoor air can be used simultaneously as a heat source, the capability of the boiler which is a heat source machine of warm water can be reduced. Thereby, the cost reduction as the whole air conditioning system can be aimed at.

また、第の発明によれば、第1圧縮機構(3A)および第2圧縮機構(3B)を並列に設け、各圧縮機構(3A,3B)の暖房サイクル時の吸入側配管を繋ぐ補助配管(25)に流路開閉手段(38)を設けるようにしたので、流路開閉手段(38)の開閉切換によって空気熱交換器(35)および温水熱交換器(52)の両方における冷媒を異温度蒸発させることができる一方、温水および室外空気の何れか一方を熱源として運転する場合に両方の圧縮機構(3A,3B)を利用することができる。これにより、冷媒回路(10)における冷媒循環量が増大するので、空気熱交換器(35)または温水熱交換器(52)における冷媒の蒸発量を増大させることができる。その結果、より高い暖房能力を得ることができる。 Further, according to the first invention, the first compression mechanism (3A) and the second compression mechanism (3B) are provided in parallel, and the auxiliary piping that connects the suction side piping during the heating cycle of each compression mechanism (3A, 3B) Since the channel opening / closing means (38) is provided in (25), the refrigerant in both the air heat exchanger (35) and the hot water heat exchanger (52) is changed by switching the channel opening / closing means (38). While the temperature can be evaporated, both compression mechanisms (3A, 3B) can be used when operating with either hot water or outdoor air as a heat source. Thereby, since the refrigerant | coolant circulation amount in a refrigerant circuit (10) increases, the evaporation amount of the refrigerant | coolant in an air heat exchanger (35) or a warm water heat exchanger (52) can be increased. As a result, higher heating capacity can be obtained.

また、上述したことから、空気熱交換器(35)および温水熱交換器(52)の何れか一方が蒸発器とする暖房サイクル時において、第1圧縮機構(3A)および第2圧縮機構(3B)の少なくとも何れか一方を利用できるので、暖房能力の異なる運転モードを増やすことができる。これにより、より暖房負荷に見合った暖房能力で運転を行うことができるので、運転の高効率化を図ることができる。   Further, from the above, in the heating cycle in which one of the air heat exchanger (35) and the hot water heat exchanger (52) is an evaporator, the first compression mechanism (3A) and the second compression mechanism (3B) ) Can be used, so that it is possible to increase operation modes having different heating capacities. Thereby, since it can drive | operate with the heating capability corresponding to heating load more, the highly efficient driving | operation can be achieved.

また、第の発明によれば、各圧縮機構(3A,3B)の周波数および吐出圧力に基づいて暖房負荷を定めるようにしたため、確実に暖房負荷の変動を捉えることができる。したがって、確実に暖房負荷に応じた暖房能力の運転に切り換えることができる。 In addition, according to the second invention, since the heating load is determined based on the frequency and the discharge pressure of each compression mechanism (3A, 3B), the fluctuation of the heating load can be reliably captured. Therefore, it is possible to reliably switch to the operation of the heating capacity corresponding to the heating load.

また、第の発明によれば、温水熱交換器(52)を屋内に設置するようにしたので、温水熱交換器(52)の温水の温度低下を抑制することができ、また温水が凍結するのを防止することができる。これにより、外気温が著しく低い場合であっても、温水を熱源として確実に利用することができるため、常時高い暖房能力を得ることができる。この結果、装置の小型化および装置の信頼性向上を図ることができる。 According to the third invention, since the hot water heat exchanger (52) is installed indoors, it is possible to suppress the temperature drop of the hot water in the hot water heat exchanger (52), and the hot water is frozen. Can be prevented. Thereby, even if the outside air temperature is extremely low, the hot water can be reliably used as a heat source, so that a high heating capacity can be always obtained. As a result, it is possible to reduce the size of the device and improve the reliability of the device.

以下、本発明の実施形態を図面に基づいて詳細に説明する。   Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings.

《発明の実施形態》
本実施形態の空気調和装置(1)は、図1に示すように、熱源側である室外機(30)および温水ユニット(50)と、利用側である複数(本実施形態では、3台)の室内機(40)とを有し、蒸気圧縮式冷凍サイクルを行う冷媒回路(10)を備えている。この冷媒回路(10)は、冷房サイクルと暖房サイクルとに切り換わるように構成されている。
<< Embodiment of the Invention >>
As shown in FIG. 1, the air conditioner (1) of the present embodiment includes an outdoor unit (30) and a hot water unit (50) on the heat source side, and a plurality (three in this embodiment) on the use side. Indoor unit (40) and a refrigerant circuit (10) for performing a vapor compression refrigeration cycle. The refrigerant circuit (10) is configured to switch between a cooling cycle and a heating cycle.

上記室外機(30)は、屋外に設置されている。この室外機(30)は、第1圧縮機(31)および第2圧縮機(32)と、流路切換手段である第1四路切換弁(33)および第2四路切換弁(34)とを備えると共に、熱源側熱交換器である室外熱交換器(35)と、膨張機構である第1膨張弁(36)と、レシーバ(37)とを備えている。上記第1圧縮機(31)は、第1圧縮機構(3A)を構成し、第2圧縮機(32)は、第2圧縮機構(3B)を構成している。そして、この第1圧縮機構(3A)および第2圧縮機構(3B)は、冷媒回路(10)の圧縮機構(3A,3B)を構成している。   The outdoor unit (30) is installed outdoors. The outdoor unit (30) includes a first compressor (31) and a second compressor (32), and a first four-way switching valve (33) and a second four-way switching valve (34) which are channel switching means. And an outdoor heat exchanger (35) that is a heat source side heat exchanger, a first expansion valve (36) that is an expansion mechanism, and a receiver (37). The first compressor (31) constitutes a first compression mechanism (3A), and the second compressor (32) constitutes a second compression mechanism (3B). The first compression mechanism (3A) and the second compression mechanism (3B) constitute a compression mechanism (3A, 3B) of the refrigerant circuit (10).

上記第1圧縮機(31)の吐出側および吸込側には、それぞれ第1吐出配管(31a)および第1吸入配管(31b)の一端が接続されている。この第1吐出配管(31a)および第1吸入配管(31b)の他端は、それぞれ別個に第1四路切換弁(33)に接続されている。また、上記第1四路切換弁(33)には、第1ガス配管(11)および第2ガス配管(15)の一端が接続されている。上記第1ガス配管(11)の他端は、室外機(30)から室内機(40)へ向かって延びている。一方、上記第2ガス配管(15)の他端は、室外熱交換器(35)の一端に接続され、該室外熱交換器(35)の他端には、第2液配管(14)の一端が接続されている。この第2液配管(14)の他端は、冷媒調整回路(13)を介して第1液配管(12)の一端に接続されている。この第1液配管(12)の他端は、室外機(30)から室内機(40)へ向かって延びている。   One end of a first discharge pipe (31a) and a first suction pipe (31b) are connected to the discharge side and the suction side of the first compressor (31), respectively. The other ends of the first discharge pipe (31a) and the first suction pipe (31b) are separately connected to the first four-way switching valve (33). In addition, one end of a first gas pipe (11) and a second gas pipe (15) is connected to the first four-way switching valve (33). The other end of the first gas pipe (11) extends from the outdoor unit (30) toward the indoor unit (40). On the other hand, the other end of the second gas pipe (15) is connected to one end of the outdoor heat exchanger (35), and the other end of the outdoor heat exchanger (35) is connected to the second liquid pipe (14). One end is connected. The other end of the second liquid pipe (14) is connected to one end of the first liquid pipe (12) via the refrigerant adjustment circuit (13). The other end of the first liquid pipe (12) extends from the outdoor unit (30) toward the indoor unit (40).

上記冷媒調整回路(13)には、第1膨張弁(36)とレシーバ(37)とが設けられている。具体的に、上記冷媒調整回路(13)は、ブリッジ回路で構成された整流機構である方向制御回路(16)と、常時冷媒が一方向に流れる一方向通路(17)とを備えている。上記一方向通路(17)には、レシーバ(37)が設けられている。上記方向制御回路(16)は、第1および第2の流入通路(18a,18b)と、第1および第2の流出通路(19a,19b)とがブリッジ状に接続されて構成されている。そして、この第1および第2の流入通路(18a,18b)と第2の流出通路(19b)には、それぞれ逆止弁(CV)が設けられている。上記第1の流出通路(19a)には、第1膨張弁(36)が設けられている。   The refrigerant adjustment circuit (13) is provided with a first expansion valve (36) and a receiver (37). Specifically, the refrigerant adjustment circuit (13) includes a direction control circuit (16) that is a rectification mechanism configured by a bridge circuit, and a one-way passage (17) through which the refrigerant always flows in one direction. The unidirectional passage (17) is provided with a receiver (37). The direction control circuit (16) is configured by connecting the first and second inflow passages (18a, 18b) and the first and second outflow passages (19a, 19b) in a bridge shape. A check valve (CV) is provided in each of the first and second inflow passages (18a, 18b) and the second outflow passage (19b). A first expansion valve (36) is provided in the first outflow passage (19a).

上記方向制御回路(16)は、冷房サイクル時において、室外熱交換器(35)を出た冷媒が第2液配管(14)から第1の流入通路(18a)を通って一方向通路(17)に流れ、レシーバ(37)を経て第2の流出通路(19b)から第1液配管(12)に流れるように構成されている。一方、上記方向制御回路(16)は、暖房サイクル時において、第1液配管(12)の冷媒が第2の流入通路(18b)を通って一方向通路(17)に流れ、レシーバ(37)を経て第1の流出通路(19a)における第1膨張弁(36)を通った後、第2液配管(14)から室外熱交換器(35)へ流れるように構成されている。つまり、上記一方向通路(17)は、常時冷媒が図1における時計回り(右回り)の一方向に流れるように構成されている。なお、上記冷媒調整回路(13)は、配管が液配管に構成されている。   In the direction control circuit (16), during the cooling cycle, the refrigerant that has exited the outdoor heat exchanger (35) passes through the first inflow passage (18a) from the second liquid pipe (14), and the one-way passage (17 ), And flows from the second outflow passage (19b) to the first liquid pipe (12) through the receiver (37). On the other hand, in the direction control circuit (16), during the heating cycle, the refrigerant in the first liquid pipe (12) flows into the one-way passage (17) through the second inflow passage (18b), and the receiver (37) After passing through the 1st expansion valve (36) in the 1st outflow passage (19a), it is constituted so that it may flow from the 2nd liquid piping (14) to an outdoor heat exchanger (35). That is, the one-way passage (17) is configured such that the refrigerant always flows in one direction clockwise (clockwise) in FIG. In the refrigerant adjusting circuit (13), the pipe is configured as a liquid pipe.

上記室外熱交換器(35)は、例えば、クロスフィン式のフィン・アンド・チューブ型熱交換器であって、図示しない室外ファンが近接して配置されている。この室外熱交換器(35)は、冷媒が室外ファンによって取り込まれた室外空気と熱交換する空気熱交換器を構成している。   The outdoor heat exchanger (35) is, for example, a cross-fin type fin-and-tube heat exchanger, and an outdoor fan (not shown) is disposed close to the outdoor heat exchanger (35). This outdoor heat exchanger (35) constitutes an air heat exchanger in which the refrigerant exchanges heat with the outdoor air taken in by the outdoor fan.

上記3台の室内機(40)は、屋内の各部屋に設置され、室外機(30)より延びる第1ガス配管(11)の他端から分岐したそれぞれのガス分岐管(11a)と、室外機(30)より延びる第1液配管(12)の他端から分岐したそれぞれの液分岐管(12a)とに並列に接続されている。上記各室内機(40)は、利用側熱交換器である室内熱交換器(41)と膨張機構である第2膨張弁(42)とが配管接続されて構成されている。上記室内機(40)における室内熱交換器(41)側の配管の端部には、ガス分岐管(11a)が接続される一方、室内機(40)における第2膨張弁(42)側の配管の端部には、液分岐管(12a)が接続されている。   Each of the three indoor units (40) is installed in each indoor room and has a gas branch pipe (11a) branched from the other end of the first gas pipe (11) extending from the outdoor unit (30), and an outdoor unit. The first liquid pipe (12) extending from the machine (30) is connected in parallel to each liquid branch pipe (12a) branched from the other end. Each indoor unit (40) is configured by pipe-connecting an indoor heat exchanger (41) as a use side heat exchanger and a second expansion valve (42) as an expansion mechanism. A gas branch pipe (11a) is connected to the end of the pipe on the indoor heat exchanger (41) side in the indoor unit (40), while the second expansion valve (42) side in the indoor unit (40) is connected. A liquid branch pipe (12a) is connected to the end of the pipe.

上記室内熱交換器(41)は、例えば、クロスフィン式のフィン・アンド・チューブ型熱交換器であって、図示しない室内ファンが近接して配置されている。この室内熱交換器(41)は、冷媒が室内ファンによって取り込まれた室内空気と熱交換する空気熱交換器を構成している。   The indoor heat exchanger (41) is, for example, a cross-fin type fin-and-tube heat exchanger, and an indoor fan (not shown) is disposed close to the indoor heat exchanger (41). The indoor heat exchanger (41) constitutes an air heat exchanger in which the refrigerant exchanges heat with the indoor air taken in by the indoor fan.

一方、上記室外機(30)における第2圧縮機(32)の吐出側および吸込側には、それぞれ第2吐出配管(32a)および第2吸入配管(32b)の一端が接続されている。この第2吐出配管(32a)および第2吸入配管(32b)の他端は、それぞれ別個に第2四路切換弁(34)に接続されている。また、上記第2四路切換弁(34)には、第3ガス配管(21)および第4ガス配管(23)の一端が接続されている。上記第3ガス配管(21)の他端は、室外機(30)内における第1ガス配管(11)に接続されている。一方、上記第4ガス配管(23)の他端は、室外機(30)から温水ユニット(50)へ向かって延びている。   On the other hand, one end of a second discharge pipe (32a) and a second suction pipe (32b) is connected to the discharge side and the suction side of the second compressor (32) in the outdoor unit (30), respectively. The other ends of the second discharge pipe (32a) and the second suction pipe (32b) are separately connected to the second four-way switching valve (34). Further, one end of a third gas pipe (21) and a fourth gas pipe (23) is connected to the second four-way switching valve (34). The other end of the third gas pipe (21) is connected to the first gas pipe (11) in the outdoor unit (30). On the other hand, the other end of the fourth gas pipe (23) extends from the outdoor unit (30) toward the hot water unit (50).

上記温水ユニット(50)は、屋内に設置されている。つまり、この温水ユニット(50)は、周囲温度が外気温よりも高い場所に設けられている。上記温水ユニット(50)は、膨張機構である第3膨張弁(51)と熱源側熱交換器である温水熱交換器(52)とを備えている。上記温水熱交換器(52)には、室外機(30)より延びる第4ガス配管(23)の一端が接続されると共に、第3液配管(22)の一端が接続されている。上記第3液配管(22)の他端は、第3膨張弁(51)を介して温水ユニット(50)の外へ延び、屋内における第1液配管(12)に接続されている。上記第3液配管(22)および第4ガス配管(23)は、分岐配管(20)を構成している。つまり、この分岐配管(20)は、一端が第1膨張弁(36)と第2膨張弁(42)との間の液配管である第1液配管(12)に接続される一方、他端が第2四路切換弁(34)を介して第2圧縮機(32)に接続されている。   The warm water unit (50) is installed indoors. That is, this hot water unit (50) is provided in a place where the ambient temperature is higher than the outside air temperature. The hot water unit (50) includes a third expansion valve (51) that is an expansion mechanism and a hot water heat exchanger (52) that is a heat source side heat exchanger. One end of a fourth gas pipe (23) extending from the outdoor unit (30) and one end of a third liquid pipe (22) are connected to the hot water heat exchanger (52). The other end of the third liquid pipe (22) extends outside the hot water unit (50) through the third expansion valve (51) and is connected to the first liquid pipe (12) indoors. The third liquid pipe (22) and the fourth gas pipe (23) constitute a branch pipe (20). That is, the branch pipe (20) has one end connected to the first liquid pipe (12) which is a liquid pipe between the first expansion valve (36) and the second expansion valve (42), while the other end. Is connected to the second compressor (32) via the second four-way selector valve (34).

また、上記温水熱交換器(52)は、温水が流れる温水配管(55)を備えている。この温水配管(55)は、熱源機としての、例えばボイラ(図示しない)に接続されている。上記温水熱交換器(52)は、いわゆるプレート式熱交換器であって、冷媒が温水から吸熱するように構成されている。   The hot water heat exchanger (52) includes a hot water pipe (55) through which hot water flows. This hot water pipe (55) is connected to, for example, a boiler (not shown) as a heat source device. The hot water heat exchanger (52) is a so-called plate heat exchanger, and is configured such that the refrigerant absorbs heat from the hot water.

そして、上記室外機(30)における第2ガス配管(15)と第4ガス配管(23)との間には、電磁弁(38)を有する補助配管(25)が接続されている。つまり、この補助配管(25)は、後述する冷媒回路(10)が暖房サイクルの状態において、第1圧縮機(31)および第2圧縮機(32)の吸込側となる互いの配管に接続され、第1圧縮機(31)および第2圧縮機(32)が室外機(30)内において並列に設けられている。上記電磁弁(38)は、補助配管(25)の流路を遮断可能な流路開閉手段を構成している。また、上記第1圧縮機(31)および第2圧縮機(32)には、吐出圧力を検出する圧力検出手段である第1圧力センサ(31s)および第2圧力センサ(32s)がそれぞれ設けられている。   An auxiliary pipe (25) having a solenoid valve (38) is connected between the second gas pipe (15) and the fourth gas pipe (23) in the outdoor unit (30). In other words, the auxiliary pipe (25) is connected to the pipes on the suction side of the first compressor (31) and the second compressor (32) when the refrigerant circuit (10) described later is in the heating cycle. The first compressor (31) and the second compressor (32) are provided in parallel in the outdoor unit (30). The solenoid valve (38) constitutes a channel opening / closing means capable of blocking the channel of the auxiliary pipe (25). The first compressor (31) and the second compressor (32) are respectively provided with a first pressure sensor (31s) and a second pressure sensor (32s) which are pressure detection means for detecting the discharge pressure. ing.

上記冷媒回路(10)は、第1四路切換弁(33)および第2四路切換弁(34)の切換によって暖房サイクル(暖房モードの運転)と冷房サイクル(冷房モードの運転)とに切り換わるように構成されている。つまり、上記第1四路切換弁(33)および第2四路切換弁(34)が図1の実線側の状態に切り換わると、冷媒回路(10)は、各室内熱交換器(41)を凝縮器とし、室外熱交換器(35)および温水熱交換器(52)の少なくとも何れか一方を蒸発器とする暖房サイクルで冷媒が循環する。一方、上記第1四路切換弁(33)および第2四路切換弁(34)が図1の破線側の状態に切り換わると、冷媒回路(10)は、室外熱交換器(35)を凝縮器とし、各室内熱交換器(41)を蒸発器とする冷房サイクルで冷媒が循環する。つまり、上記冷媒回路(10)は、温水熱交換器(52)が蒸発器としてのみ機能するように構成されている。   The refrigerant circuit (10) is switched between a heating cycle (heating mode operation) and a cooling cycle (cooling mode operation) by switching the first four-way switching valve (33) and the second four-way switching valve (34). It is comprised so that it may replace. That is, when the first four-way switching valve (33) and the second four-way switching valve (34) are switched to the state on the solid line side in FIG. 1, the refrigerant circuit (10) is connected to each indoor heat exchanger (41). Is a condenser, and the refrigerant circulates in a heating cycle in which at least one of the outdoor heat exchanger (35) and the hot water heat exchanger (52) is an evaporator. On the other hand, when the first four-way switching valve (33) and the second four-way switching valve (34) are switched to the broken line side in FIG. 1, the refrigerant circuit (10) causes the outdoor heat exchanger (35) to be connected. The refrigerant circulates in a cooling cycle using a condenser and each indoor heat exchanger (41) as an evaporator. That is, the refrigerant circuit (10) is configured such that the hot water heat exchanger (52) functions only as an evaporator.

本実施形態の空気調和装置(1)は、冷媒回路(10)が暖房サイクル時において、第1〜第5モードの5種類の運転モードが切り換わるように構成されている。この5種類の運転モードは、コントローラ(60)によって切り換えられ、該コントローラ(60)は、暖房切換手段(61)を備えている。この暖房切換手段(61)は、暖房負荷に応じて第1〜第5モードの運転を切り換えるように構成されている。具体的に、上記暖房切換手段(61)は、各モードの運転において、暖房負荷が増大して各圧力センサ(31s,32s)の検出圧力が各圧縮機(31,32)の周波数に対応する予め設定された所定圧力より低下すると、第1〜第5モードの運転を順次切り換えるように構成されている。つまり、上記暖房切換手段(61)は、第1圧縮機(31)および第2圧縮機(32)の周波数と吐出圧力とに基づいて暖房負荷を定める。   The air conditioner (1) of the present embodiment is configured such that the five operation modes of the first to fifth modes are switched when the refrigerant circuit (10) is in the heating cycle. These five types of operation modes are switched by the controller (60), and the controller (60) includes a heating switching means (61). The heating switching means (61) is configured to switch the operation in the first to fifth modes according to the heating load. Specifically, in the heating switching means (61), in each mode of operation, the heating load increases, and the detected pressure of each pressure sensor (31s, 32s) corresponds to the frequency of each compressor (31, 32). When the pressure falls below a predetermined pressure set in advance, the first to fifth modes of operation are sequentially switched. That is, the heating switching means (61) determines the heating load based on the frequency and discharge pressure of the first compressor (31) and the second compressor (32).

上記各モードの切換は、第1圧縮機(31)および第2圧縮機(32)の運転切換、第1膨張弁(36)および第3膨張弁(51)の開度調整および補助配管(25)における電磁弁(38)の開閉切換によって行われる。   The switching of each mode is performed by switching the operation of the first compressor (31) and the second compressor (32), adjusting the opening of the first expansion valve (36) and the third expansion valve (51), and auxiliary piping (25 ) By switching the opening and closing of the solenoid valve (38).

具体的に、図2に示すように、上記各モードは、外気温の低下等で暖房負荷が大きくなるにつれて第1モードから第5モードまで順に切り換わる。つまり、上記第1モードは、第1膨張弁(36)を開状態に、第3膨張弁(51)および電磁弁(38)を閉状態にそれぞれ切り換えると共に、第1圧縮機(31)のみを運転し、室外熱交換器(35)のみが蒸発器として機能する運転モードである。上記第2モードは、第1膨張弁(36)および電磁弁(38)を開状態に、第3膨張弁(51)を閉状態にそれぞれ切り換えると共に、第1圧縮機(31)および第2圧縮機(32)の両方を運転し、室外熱交換器(35)のみが蒸発器として機能する運転モードである。上記第3モードは、第3膨張弁(51)を開状態に、第1膨張弁(36)および電磁弁(38)を閉状態にそれぞれ切り換えると共に、第1圧縮機(31)のみを運転し、温水熱交換器(52)のみが蒸発器として機能する運転モードである。上記第4モードは、第1膨張弁(36)および第3膨張弁(51)を開状態に、電磁弁(38)を閉状態にそれぞれ切り換えると共に、第1圧縮機(31)および第2圧縮機(32)の両方を運転し、室外熱交換器(35)および温水熱交換器(52)の両方が蒸発器として機能する運転モードである。この場合、上記室外熱交換器(35)と温水熱交換器(52)とにおける冷媒が異温度で蒸発する。上記第5モードは、第3膨張弁(51)および電磁弁(38)を開状態に、第1膨張弁(36)を閉状態にそれぞれ切り換えると共に、第1圧縮機(31)および第2圧縮機(32)の両方を運転し、温水熱交換器(52)のみが蒸発器として機能する運転モードである。   Specifically, as shown in FIG. 2, the above modes are sequentially switched from the first mode to the fifth mode as the heating load increases due to a decrease in outside air temperature or the like. That is, in the first mode, the first expansion valve (36) is switched to the open state, the third expansion valve (51) and the electromagnetic valve (38) are switched to the closed state, and only the first compressor (31) is switched. This is an operation mode in which only the outdoor heat exchanger (35) operates and functions as an evaporator. In the second mode, the first expansion valve (36) and the electromagnetic valve (38) are switched to the open state, and the third expansion valve (51) is switched to the closed state, and the first compressor (31) and the second compression valve are switched to the closed state. This is an operation mode in which both the machine (32) is operated and only the outdoor heat exchanger (35) functions as an evaporator. In the third mode, the third expansion valve (51) is switched to the open state, the first expansion valve (36) and the solenoid valve (38) are switched to the closed state, and only the first compressor (31) is operated. In this mode, only the hot water heat exchanger (52) functions as an evaporator. In the fourth mode, the first expansion valve (36) and the third expansion valve (51) are switched to the open state, and the electromagnetic valve (38) is switched to the closed state, and the first compressor (31) and the second compression valve are switched to the closed state. This is an operation mode in which both the machine (32) is operated and both the outdoor heat exchanger (35) and the hot water heat exchanger (52) function as an evaporator. In this case, the refrigerant in the outdoor heat exchanger (35) and the hot water heat exchanger (52) evaporates at different temperatures. In the fifth mode, the third expansion valve (51) and the solenoid valve (38) are switched to the open state, and the first expansion valve (36) is switched to the closed state, and the first compressor (31) and the second compression valve are switched to the closed state. This is an operation mode in which both the machine (32) is operated and only the hot water heat exchanger (52) functions as an evaporator.

つまり、上記第1モードおよび第2モードは、圧縮機構(3A,3B)の吐出冷媒が各室内熱交換器(41)で凝縮し、室外熱交換器(35)で蒸発して圧縮機構(3A,3B)に戻る循環を行う第1暖房動作の運転を構成している。また、上記第3モードおよび第5モードは、圧縮機構(3A,3B)の吐出冷媒が各室内熱交換器(41)で凝縮し、温水熱交換器(52)で蒸発して圧縮機構(3A,3B)に戻る循環を行う第2暖房動作の運転を構成している。また、上記第4モードは、第1圧縮機構(3A)および第2圧縮機構(3B)の吐出冷媒が各室内熱交換器(41)で凝縮し、室外熱交換器(35)および温水熱交換器(52)で異温度蒸発して第1圧縮機構(3A)および第2圧縮機構(3B)に戻る循環を行う第3暖房動作の運転を構成している。   That is, in the first mode and the second mode, the refrigerant discharged from the compression mechanism (3A, 3B) condenses in each indoor heat exchanger (41) and evaporates in the outdoor heat exchanger (35) to compress the compression mechanism (3A , 3B) constitutes the operation of the first heating operation for circulation. In the third mode and the fifth mode, the refrigerant discharged from the compression mechanism (3A, 3B) is condensed in each indoor heat exchanger (41) and evaporated in the hot water heat exchanger (52) to compress the compression mechanism (3A , 3B) constitutes the operation of the second heating operation for circulation. In the fourth mode, the refrigerant discharged from the first compression mechanism (3A) and the second compression mechanism (3B) is condensed in each indoor heat exchanger (41), and the outdoor heat exchanger (35) and hot water heat exchange are performed. Operation of the 3rd heating operation which circulates by returning to the 1st compression mechanism (3A) and the 2nd compression mechanism (3B) after evaporating at different temperature with a vessel (52) is constituted.

このように、上記暖房切換手段(61)は、暖房負荷に応じて第1暖房動作、第2暖房動作および第3暖房動作を切り換え、室外熱交換器(35)および温水熱交換器(52)の少なくとも何れか一方で冷媒が蒸発するように構成されている。   Thus, the heating switching means (61) switches between the first heating operation, the second heating operation, and the third heating operation according to the heating load, and the outdoor heat exchanger (35) and the hot water heat exchanger (52). The refrigerant is configured to evaporate at least one of the above.

−運転動作−
次に、上述した空気調和装置(1)の運転動作について説明する。この空気調和装置(1)は、冷房モードの冷房運転と暖房モードの暖房運転とを切り換えて行う。また、上記空気調和装置(1)は、暖房運転において、暖房負荷に応じて第1〜第5モードの運転を切り換えて行う。
-Driving action-
Next, the operation of the above-described air conditioner (1) will be described. The air conditioner (1) performs switching between a cooling operation in a cooling mode and a heating operation in a heating mode. Moreover, the said air conditioning apparatus (1) switches and performs the operation | movement of the 1st-5th mode according to heating load in heating operation.

〈冷房運転〉
この冷房運転では、まず、第1圧縮機(31)および第2圧縮機(32)が停止している状態において、第1四路切換弁(33)および第2四路切換弁(34)を図1の破線側の状態に切り換え、また、室外機(30)の第1膨張弁(36)、温水ユニット(50)の第3膨張弁(51)および補助配管(25)の電磁弁(38)をそれぞれ閉じる。そして、上記各室内機(40)における第2膨張弁(42)の開度が所定開度に設定される。
<Cooling operation>
In this cooling operation, first, in a state where the first compressor (31) and the second compressor (32) are stopped, the first four-way switching valve (33) and the second four-way switching valve (34) are turned on. The state is switched to the state of the broken line in FIG. 1, and the first expansion valve (36) of the outdoor unit (30), the third expansion valve (51) of the hot water unit (50), and the solenoid valve (38) of the auxiliary pipe (25). ) Close each. And the opening degree of the 2nd expansion valve (42) in each said indoor unit (40) is set to predetermined opening degree.

図3に示すように、上述した冷媒回路(10)の状態で、第1圧縮機(31)を駆動すると、該第1圧縮機(31)で圧縮されたガス冷媒は、第1吐出配管(31a)、第1四路切換弁(33)および第2ガス配管(15)を順次経て室外熱交換器(35)へ流れ、室外ファンにより取り込まれた室外空気と熱交換して凝縮する。この凝縮した液冷媒は、第2液配管(14)および第1の流入通路(18a)を順次流れ、レシーバ(37)を経て第2の流出通路(19b)から第1液配管(12)に流れる。この第1液配管(12)の液冷媒は、各液分岐管(12a)に分流して各室内機(40)に流れる。該各室内機(40)において、液冷媒は、第2膨張弁(42)で減圧され、室内熱交換器(41)にて室内ファンにより取り込まれた室内空気と熱交換して蒸発する。その際、冷却された空気が室内に供給されて室内の冷房が行われる。上記各室内熱交換器(41)で蒸発したガス冷媒は、ガス分岐管(11a)を通って第1ガス配管(11)に合流し、第1四路切換弁(33)および第1吸入配管(31b)を経て再び第1圧縮機(31)に戻り、この冷媒循環を繰り返す。   As shown in FIG. 3, when the first compressor (31) is driven in the state of the refrigerant circuit (10) described above, the gas refrigerant compressed by the first compressor (31) is supplied to the first discharge pipe ( 31a), the first four-way switching valve (33) and the second gas pipe (15) are sequentially passed to the outdoor heat exchanger (35), and are condensed by exchanging heat with the outdoor air taken in by the outdoor fan. The condensed liquid refrigerant sequentially flows through the second liquid pipe (14) and the first inflow passage (18a), passes through the receiver (37), and passes from the second outflow passage (19b) to the first liquid pipe (12). Flowing. The liquid refrigerant in the first liquid pipe (12) is divided into the liquid branch pipes (12a) and flows into the indoor units (40). In each indoor unit (40), the liquid refrigerant is depressurized by the second expansion valve (42) and is evaporated by exchanging heat with the indoor air taken in by the indoor fan in the indoor heat exchanger (41). At that time, the cooled air is supplied into the room to cool the room. The gas refrigerant evaporated in each indoor heat exchanger (41) passes through the gas branch pipe (11a) and merges with the first gas pipe (11), and the first four-way switching valve (33) and the first suction pipe. It returns to the 1st compressor (31) again through (31b), and repeats this refrigerant circulation.

なお、本実施形態では、第1圧縮機(31)のみを運転するようにしたが、冷房負荷によっては第1圧縮機(31)に加えて第2圧縮機(32)も同時に運転するようにしてもよい。その場合、上記補助配管(25)の電磁弁(38)を開状態に切り換える。   In this embodiment, only the first compressor (31) is operated. However, depending on the cooling load, the second compressor (32) is also operated simultaneously with the first compressor (31). May be. In that case, the solenoid valve (38) of the auxiliary pipe (25) is switched to the open state.

〈暖房運転〉
この暖房運転では、一例として、第1モードの運転から始め、その後暖房負荷の増大(外気温の低下)に伴って第2、第3、第4および第5モードの運転へと順番にモードを切り換えて暖房運転を行う場合について、図4〜図8を参照しながら説明する。
<Heating operation>
In this heating operation, as an example, the mode is started in the first mode, and then the modes are sequentially switched to the second, third, fourth, and fifth mode operations as the heating load increases (the outside air temperature decreases). A case where the heating operation is performed by switching will be described with reference to FIGS.

(第1モード)
この第1モードの運転では、まず、各圧縮機(31,32)が停止している状態において、第1四路切換弁(33)を図1の実線側の状態に切り換え、また、温水ユニット(40)の第3膨張弁(41)および補助配管(25)の電磁弁(38)をそれぞれ閉じる。そして、上記室外機(20)における第1膨張弁(24)の開度が所定開度に設定され、各室内機(30)における第2膨張弁(32)の開度が全開状態に設定される。
(First mode)
In the operation in the first mode, first, in a state where the compressors (31, 32) are stopped, the first four-way switching valve (33) is switched to the state on the solid line side in FIG. The third expansion valve (41) of (40) and the solenoid valve (38) of the auxiliary pipe (25) are each closed. The opening degree of the first expansion valve (24) in the outdoor unit (20) is set to a predetermined opening degree, and the opening degree of the second expansion valve (32) in each indoor unit (30) is set to a fully open state. The

図4に示すように、上述した冷媒回路(10)の状態で、第1圧縮機(31)を駆動すると、該第1圧縮機(31)で圧縮されたガス冷媒は、第1吐出配管(31a)、第1四路切換弁(33)および第1ガス配管(11)を順次経た後、各ガス分岐管(11a)に分流して各室内機(40)に流れる。該各室内機(40)において、ガス冷媒は、室内熱交換器(41)にて室内ファンにより取り込まれた室内空気と熱交換して凝縮する。その際、加熱された空気が室内に供給されて室内の暖房が行われる。上記各室内熱交換器(41)で凝縮した液冷媒は、第2膨張弁(42)および液分岐管(12a)を通って第1液配管(12)に合流する。この液冷媒は、第2の流入通路(18b)を通ってレシーバ(37)を経た後、第1の流出通路(19a)の第1膨張弁(36)で減圧され、第2液配管(14)から室外熱交換器(35)へ流れ、室外ファンにより取り込まれた室外空気と熱交換して蒸発する。その後、蒸発したガス冷媒は、第2ガス配管(15)、第1四路切換弁(33)および第1吸入配管(31b)を順次経て再び第1圧縮機(31)に戻り、この冷媒循環を繰り返す。   As shown in FIG. 4, when the first compressor (31) is driven in the state of the refrigerant circuit (10) described above, the gas refrigerant compressed by the first compressor (31) is supplied to the first discharge pipe ( 31a), after passing through the first four-way selector valve (33) and the first gas pipe (11) in sequence, it is diverted to each gas branch pipe (11a) and flows to each indoor unit (40). In each indoor unit (40), the gas refrigerant is condensed by exchanging heat with the indoor air taken in by the indoor fan in the indoor heat exchanger (41). At that time, heated air is supplied to the room and the room is heated. The liquid refrigerant condensed in each indoor heat exchanger (41) joins the first liquid pipe (12) through the second expansion valve (42) and the liquid branch pipe (12a). This liquid refrigerant passes through the second inflow passage (18b), passes through the receiver (37), and then is depressurized by the first expansion valve (36) of the first outflow passage (19a), and then the second liquid pipe (14 ) To the outdoor heat exchanger (35), evaporates by exchanging heat with the outdoor air taken in by the outdoor fan. Thereafter, the evaporated gas refrigerant returns to the first compressor (31) again through the second gas pipe (15), the first four-way switching valve (33) and the first suction pipe (31b) in order, and this refrigerant circulation repeat.

そして、この第1モードの運転において、外気温が低下(暖房負荷が増大)して第1圧力センサ(31s)の検出圧力が第1圧縮機(31)の周波数に対応する所定圧力より低下すると、暖房切換手段(61)によって第2モードの運転に切り換えられる。   In this first mode of operation, when the outside air temperature decreases (the heating load increases) and the detected pressure of the first pressure sensor (31s) decreases below a predetermined pressure corresponding to the frequency of the first compressor (31). The operation is switched to the second mode operation by the heating switching means (61).

(第2モード)
この第2モードの運転では、上述した第1モードにおける冷媒回路(10)の状態において、第2四路切換弁(34)を図1の実線側の状態に切り換え、また、補助配管(25)の電磁弁(38)を開ける。
(Second mode)
In the operation in the second mode, the second four-way switching valve (34) is switched to the state on the solid line side in FIG. 1 in the state of the refrigerant circuit (10) in the first mode, and the auxiliary pipe (25). Open the solenoid valve (38).

図5に示すように、上述した冷媒回路(10)の状態で、第1圧縮機(31)に加えて第2圧縮機(32)を駆動すると、該第2圧縮機(32)で圧縮されたガス冷媒は、第2吐出配管(32a)、第2四路切換弁(34)および第3ガス配管(21)を順次経た後、第1ガス配管(11)にて第1圧縮機(31)の吐出ガスと合流する。この合流した吐出ガスは、第1モードの運転と同様に、各室内熱交換器(41)にて凝縮した後、室外熱交換器(35)にて蒸発する。この蒸発したガス冷媒は、一部が第2ガス配管(15)から補助配管(25)へ分流して第4ガス配管(23)および第2四路切換弁(34)を通って再び第2圧縮機(32)に戻る一方、残りが第2ガス配管(15)から第1四路切換弁(33)を経て第1圧縮機(31)に戻り、この冷媒循環を繰り返す。   As shown in FIG. 5, when the second compressor (32) is driven in addition to the first compressor (31) in the state of the refrigerant circuit (10), the refrigerant is compressed by the second compressor (32). The gas refrigerant passes through the second discharge pipe (32a), the second four-way selector valve (34) and the third gas pipe (21) in this order, and then passes through the first compressor (31 ). The combined discharged gas is condensed in each indoor heat exchanger (41) and then evaporated in the outdoor heat exchanger (35), as in the first mode operation. A part of the evaporated gas refrigerant is diverted from the second gas pipe (15) to the auxiliary pipe (25), and again passes through the fourth gas pipe (23) and the second four-way selector valve (34). While returning to the compressor (32), the remainder returns from the second gas pipe (15) to the first compressor (31) via the first four-way switching valve (33), and this refrigerant circulation is repeated.

この第2モードでは、冷媒回路(10)における冷媒の循環量が増大して室外熱交換器(35)での冷媒の蒸発量が増大するので、第1モードの運転に比べて暖房サイクルにおける冷媒の吸熱量が増大する。したがって、暖房能力を向上させることができる。   In the second mode, the refrigerant circulation amount in the refrigerant circuit (10) increases and the refrigerant evaporation amount in the outdoor heat exchanger (35) increases, so that the refrigerant in the heating cycle compared to the operation in the first mode. The endothermic amount of increases. Therefore, the heating capacity can be improved.

そして、この第2モードの運転において、さらに外気温が低下(暖房負荷が増大)して第1圧力センサ(31s)の検出圧力が第1圧縮機(31)の周波数に対応する所定圧力より低下すると共に、第2圧力センサ(32s)の検出圧力が第2圧縮機(32)の周波数に対応する所定圧力より低下すると、暖房切換手段(61)によって第3モードの運転に切り換えられる。   In the second mode operation, the outside air temperature further decreases (the heating load increases), and the detected pressure of the first pressure sensor (31s) decreases below a predetermined pressure corresponding to the frequency of the first compressor (31). At the same time, when the detected pressure of the second pressure sensor (32s) falls below a predetermined pressure corresponding to the frequency of the second compressor (32), the heating switching means (61) switches the operation to the third mode.

(第3モード)
この第3モードの運転では、上述した第2モードにおける冷媒回路(10)の状態において、第2圧縮機(32)を停止し、また、室外機(30)の第1膨張弁(36)を閉じる。そして、上記温水ユニット(50)における第3膨張弁(51)の開度が所定開度に設定される。
(Third mode)
In the operation of the third mode, the second compressor (32) is stopped and the first expansion valve (36) of the outdoor unit (30) is turned off in the state of the refrigerant circuit (10) in the second mode. close. And the opening degree of the 3rd expansion valve (51) in the said warm water unit (50) is set to a predetermined opening degree.

図6に示すように、上述した冷媒回路(10)の状態になると、第1モードの運転と同様に、第1圧縮機(31)から吐出されたガス冷媒は、各室内機(40)における室内熱交換器(41)にて室内空気と熱交換して凝縮する。この凝縮した液冷媒は、第1液配管(12)から分岐配管(20)に流れる。この液冷媒は、第3液配管(22)を通って温水ユニット(50)に流れ、第3膨張弁(51)で減圧された後、温水熱交換器(52)にて温水配管(55)を流れる温水と熱交換して蒸発する。この蒸発したガス冷媒は、第4ガス配管(23)、補助配管(25)および第2ガス配管(15)を順次通って再び第1圧縮機(31)に戻り、この冷媒循環を繰り返す。   As shown in FIG. 6, when the refrigerant circuit (10) is in the state described above, the gas refrigerant discharged from the first compressor (31) is passed through each indoor unit (40) as in the first mode operation. Heat is exchanged with indoor air in the indoor heat exchanger (41) to condense. The condensed liquid refrigerant flows from the first liquid pipe (12) to the branch pipe (20). This liquid refrigerant flows into the hot water unit (50) through the third liquid pipe (22), and after being depressurized by the third expansion valve (51), in the hot water heat exchanger (52), the hot water pipe (55) It evaporates by exchanging heat with warm water flowing through. The evaporated gas refrigerant sequentially passes through the fourth gas pipe (23), the auxiliary pipe (25), and the second gas pipe (15) and returns to the first compressor (31), and the refrigerant circulation is repeated.

この第3モードでは、室外空気より温度の極めて高い温水を熱源とするので、第2モードの運転に比べて冷媒の蒸発温度が高くなり、暖房サイクルにおける冷媒の吸熱量が増大する。これにより、暖房能力をさらに向上させることができる。   In the third mode, hot water having a temperature much higher than that of the outdoor air is used as a heat source, so that the evaporation temperature of the refrigerant is higher than in the operation in the second mode, and the heat absorption amount of the refrigerant in the heating cycle is increased. Thereby, a heating capability can further be improved.

そして、この第3モードの運転において、さらに外気温が低下(暖房負荷が増大)して第1圧力センサ(31s)の検出圧力が第1圧縮機(31)の周波数に対応する所定圧力より低下すると、暖房切換手段(61)によって第4モードの運転に切り換えられる。   In this third mode of operation, the outside air temperature further decreases (the heating load increases), and the detected pressure of the first pressure sensor (31s) decreases below a predetermined pressure corresponding to the frequency of the first compressor (31). Then, the operation is switched to the fourth mode operation by the heating switching means (61).

(第4モード)
この第4モードの運転では、上述した第3モードにおける冷媒回路(10)の状態において、補助配管(25)の電磁弁(38)を閉じ、また、室外機(30)における第1膨張弁(36)の開度を所定開度に設定する。
(4th mode)
In the operation of the fourth mode, the electromagnetic valve (38) of the auxiliary pipe (25) is closed in the state of the refrigerant circuit (10) in the third mode described above, and the first expansion valve ( Set the opening in 36) to the specified opening.

図7に示すように、上述した冷媒回路(10)の状態で、第1圧縮機(31)に加えて第2圧縮機(32)を駆動すると、第2モードの運転と同様に、第1圧縮機(31)および第2圧縮機(32)の吐出ガスが第1ガス配管(11)で合流した後、各室内熱交換器(41)にて室内空気と熱交換して凝縮する。この凝縮した液冷媒の一部は、第1液配管(12)から分岐配管(20)に分流して温水熱交換器(52)にて蒸発した後、第4ガス配管(23)および第2四路切換弁(34)を経て再び第2圧縮機(32)に戻る。一方、上記の凝縮した液冷媒の残りは、第1液配管(12)から室外熱交換器(35)に流れて蒸発した後、第2ガス配管(15)および第1四路切換弁(33)を経て再び第1圧縮機(31)に戻る。そして、この冷媒循環を繰り返す。   As shown in FIG. 7, when the second compressor (32) is driven in addition to the first compressor (31) in the state of the refrigerant circuit (10) described above, the first mode is the same as in the second mode operation. After the discharge gas of the compressor (31) and the second compressor (32) merges in the first gas pipe (11), it is condensed by exchanging heat with indoor air in each indoor heat exchanger (41). A part of the condensed liquid refrigerant is diverted from the first liquid pipe (12) to the branch pipe (20) and evaporated in the hot water heat exchanger (52), and then the fourth gas pipe (23) and the second gas pipe (2). It returns to the second compressor (32) again through the four-way switching valve (34). On the other hand, the remainder of the condensed liquid refrigerant flows from the first liquid pipe (12) to the outdoor heat exchanger (35) and evaporates, and then the second gas pipe (15) and the first four-way switching valve (33). ) To return to the first compressor (31) again. Then, this refrigerant circulation is repeated.

この第4モードでは、上記室外熱交換器(35)と温水熱交換器(52)とにおける冷媒が異温度で蒸発する。つまり、上記室外熱交換器(35)における冷媒は、温水熱交換器(52)における冷媒の蒸発温度よりも低い温度で確実に蒸発する。これにより、温水に加えて室外空気も熱源として利用することができるので、第3モードの運転に比べて冷媒の吸熱量をより増大させることができる。したがって、暖房能力をさらに向上させることができる。   In the fourth mode, the refrigerant in the outdoor heat exchanger (35) and the hot water heat exchanger (52) evaporates at different temperatures. That is, the refrigerant in the outdoor heat exchanger (35) is surely evaporated at a temperature lower than the evaporation temperature of the refrigerant in the hot water heat exchanger (52). Thereby, in addition to warm water, outdoor air can also be used as a heat source, so that the amount of heat absorbed by the refrigerant can be further increased compared to the operation in the third mode. Therefore, the heating capacity can be further improved.

そして、この第4モードの運転において、さらに外気温が低下(暖房負荷が増大)して第1圧力センサ(31s)の検出圧力が第1圧縮機(31)の周波数に対応する所定圧力より低下すると共に、第2圧力センサ(32s)の検出圧力が第2圧縮機(32)の周波数に対応する所定圧力より低下すると、暖房切換手段(61)によって第5モードの運転に切り換えられる。   In this fourth mode of operation, the outside air temperature further decreases (the heating load increases), and the detected pressure of the first pressure sensor (31s) decreases below a predetermined pressure corresponding to the frequency of the first compressor (31). At the same time, when the detected pressure of the second pressure sensor (32s) falls below a predetermined pressure corresponding to the frequency of the second compressor (32), the heating switching means (61) switches the operation to the fifth mode.

(第5モード)
この第5モードの運転では、上述した第4モードにおける冷媒回路(10)の状態において、室外機(30)の第1膨張弁(36)を閉じ、また、補助配管(25)の電磁弁(38)を開ける。
(5th mode)
In the operation of the fifth mode, the first expansion valve (36) of the outdoor unit (30) is closed in the state of the refrigerant circuit (10) in the fourth mode described above, and the electromagnetic valve ( 38) Open.

図8に示すように、上述した冷媒回路(10)の状態になると、第2モードの運転と同様に、第1圧縮機(31)および第2圧縮機(32)の吐出ガスが第1ガス配管(11)で合流した後、各室内熱交換器(41)にて室内空気と熱交換して凝縮する。この凝縮した液冷媒は、分岐配管(20)に流れて温水熱交換器(52)にて蒸発する。この蒸発したガス冷媒は、一部が第4ガス配管(23)から補助配管(25)に分流して第2ガス配管(15)および第1四路切換弁(33)を通って再び第1圧縮機(31)に戻る一方、残りが第4ガス配管(23)から第2四路切換弁(34)を通って再び第2圧縮機(32)に戻る。そして、この冷媒循環を繰り返す。   As shown in FIG. 8, when the refrigerant circuit (10) is in the state described above, the discharge gas of the first compressor (31) and the second compressor (32) is the first gas, as in the second mode operation. After merging in the pipe (11), each indoor heat exchanger (41) exchanges heat with room air and condenses. The condensed liquid refrigerant flows into the branch pipe (20) and evaporates in the hot water heat exchanger (52). A part of the evaporated gas refrigerant is diverted from the fourth gas pipe (23) to the auxiliary pipe (25) and again passes through the second gas pipe (15) and the first four-way switching valve (33). While returning to the compressor (31), the remainder returns from the fourth gas pipe (23) to the second compressor (32) through the second four-way switching valve (34). Then, this refrigerant circulation is repeated.

この第5モードでは、冷媒回路(10)における冷媒の循環量が増大して温水熱交換器(52)での冷媒の蒸発量が増大するので、第4モードの運転に比べて冷媒の吸熱量をより一層増大させることができる。したがって、暖房能力をさらに向上させることができる。   In this fifth mode, the amount of refrigerant circulating in the refrigerant circuit (10) increases and the amount of refrigerant evaporated in the hot water heat exchanger (52) increases, so the amount of heat absorbed by the refrigerant compared to the operation in the fourth mode. Can be further increased. Therefore, the heating capacity can be further improved.

−実施形態の効果−
以上説明したように、本実施形態によれば、圧縮機(31,32)を2台設け、暖房運転時において、室外熱交換器(35)および温水熱交換器(52)の何れか一方で冷媒が蒸発する第1暖房動作および第2暖房動作と、室外熱交換器(35)および温水熱交換器(52)の両方で冷媒が異温度蒸発する第3暖房動作とを暖房負荷に応じて切り換えるようにしたので、暖房負荷が大きい(例えば、外気温が低い)場合においても、熱源として温水に加えて室外空気も同時に利用することができる。これにより、温水または室外空気を単独利用する場合と比べ、暖房サイクルにおける熱源からの冷媒の吸熱量を増大させることができるので、暖房能力を向上させることができる。
-Effect of the embodiment-
As described above, according to the present embodiment, two compressors (31, 32) are provided, and at the time of heating operation, either the outdoor heat exchanger (35) or the hot water heat exchanger (52) is used. The first heating operation and the second heating operation in which the refrigerant evaporates, and the third heating operation in which the refrigerant evaporates at different temperatures in both the outdoor heat exchanger (35) and the hot water heat exchanger (52), according to the heating load. Since the switching is performed, even when the heating load is large (for example, the outside air temperature is low), outdoor air as well as warm water can be used simultaneously as a heat source. Thereby, compared with the case where warm water or outdoor air is used independently, the heat absorption amount of the refrigerant from the heat source in the heating cycle can be increased, so that the heating capacity can be improved.

また、熱源として温水と室外空気の両方を同時に利用できることから、温水の熱源機であるボイラ等の能力を下げることができる。これにより、空調システム全体としてのコスト低減を図ることができる。   Moreover, since both hot water and outdoor air can be used simultaneously as a heat source, the capability of the boiler which is a heat source machine of warm water can be reduced. Thereby, the cost reduction as the whole air conditioning system can be aimed at.

また、上記2台の圧縮機(31,32)を並列に設けると共に、各圧縮機(31,32)の暖房サイクル時の吸入側配管を繋ぐ補助配管(25)に電磁弁(38)を設けるようにしたので、電磁弁(38)を閉じると、室外熱交換器(35)および温水熱交換器(52)の両方における冷媒を異温度蒸発させることができる一方、電磁弁(38)を開けると、室外熱交換器(35)および温水熱交換器(52)の何れか一方が蒸発器として機能する運転の場合に両方の圧縮機(31,32)を同時に利用することができる。これにより、上記冷媒回路(10)における冷媒循環量が増大するので、室外熱交換器(35)または温水熱交換器(52)における冷媒の蒸発量を増大させることができる。その結果、暖房サイクルにおける熱源からの冷媒の吸熱量をより一層増大させることができるので、暖房能力を格段に向上させることができる。   The two compressors (31, 32) are provided in parallel, and a solenoid valve (38) is provided in the auxiliary pipe (25) connecting the suction side pipes during the heating cycle of each compressor (31, 32). Since the solenoid valve (38) is closed, the refrigerant in both the outdoor heat exchanger (35) and the hot water heat exchanger (52) can be evaporated at different temperatures, while the solenoid valve (38) is opened. In the operation in which one of the outdoor heat exchanger (35) and the hot water heat exchanger (52) functions as an evaporator, both the compressors (31, 32) can be used simultaneously. Thereby, since the refrigerant | coolant circulation amount in the said refrigerant circuit (10) increases, the evaporation amount of the refrigerant | coolant in an outdoor heat exchanger (35) or a warm water heat exchanger (52) can be increased. As a result, the heat absorption amount of the refrigerant from the heat source in the heating cycle can be further increased, so that the heating capacity can be significantly improved.

また、上述したことから、暖房負荷の増大に伴って第1〜第5モードの5段階の運転を順次切り換えるようにしたので、つまり暖房能力の異なる暖房能力が暖房負荷に対して過剰になることはなく、より暖房負荷に見合った運転を行うことができる。これにより、高効率の運転を行うことができる。   Moreover, from the above, since the five-stage operation of the first to fifth modes is sequentially switched as the heating load increases, that is, the heating capacity with different heating capacity becomes excessive with respect to the heating load. Rather, it is possible to perform an operation that is more commensurate with the heating load. Thereby, highly efficient operation can be performed.

また、上記温水熱交換器(52)を屋内に設置するようにしたので、温水の温度低下を抑制することができる。つまり、温水の放熱量を抑制することができる。これにより、外気温が著しく低い場合であっても、温水を熱源として確実に利用することができるため、常時高い暖房能力を得ることができる。その結果、装置の小型化および信頼性向上を図ることができる。   Moreover, since the said warm water heat exchanger (52) was installed indoors, the temperature fall of warm water can be suppressed. That is, the heat dissipation amount of warm water can be suppressed. Thereby, even if the outside air temperature is extremely low, the hot water can be reliably used as a heat source, so that a high heating capacity can be always obtained. As a result, it is possible to reduce the size and improve the reliability of the apparatus.

《その他の実施形態》
本発明は、上記実施形態について、以下のような構成としてもよい。
<< Other Embodiments >>
The present invention may be configured as follows with respect to the above embodiment.

例えば、上記実施形態において、第1圧縮機構(3A)および第2圧縮機構(3B)を各1台の圧縮機(31,32)で構成するようにしたが、複数台で構成するようにしてもよい。   For example, in the above embodiment, the first compression mechanism (3A) and the second compression mechanism (3B) are each configured by one compressor (31, 32), but are configured by a plurality of units. Also good.

また、上記暖房運転では、第1モードから運転を開始するようにしたが、運転開始時の暖房負荷(外気温)に応じて他の運転モードから開始するようにしてもよい。   In the heating operation, the operation is started from the first mode. However, the operation may be started from another operation mode according to the heating load (outside temperature) at the start of the operation.

また、上記暖房運転では、暖房負荷の増大に伴って第1〜第5モードへと順次切り換えて暖房能力を増大させるようにしたが、新たな切換条件を設定し、暖房負荷の低下に伴って暖房能力を低減させるモード切換を行うようにしてもよい。   In the heating operation, the heating capacity is increased by sequentially switching to the first to fifth modes as the heating load increases. However, a new switching condition is set, and the heating load decreases. Mode switching for reducing the heating capacity may be performed.

また、上記実施形態では、冷暖兼用の空気調和装置(1)としたが、本発明は暖房専用の空気調和装置にも適用することができる。   In the above embodiment, the cooling / heating air conditioner (1) is used. However, the present invention can also be applied to a heating-only air conditioner.

以上説明したように、本発明は、温水を熱源として暖房を行う空気調和装置として有用である。   As described above, the present invention is useful as an air conditioner that performs heating using hot water as a heat source.

実施形態に係る空気調和装置の冷媒回路図である。It is a refrigerant circuit figure of the air harmony device concerning an embodiment. 実施形態に係る空気調和装置の暖房運転における各モード内容を示す表である。It is a table | surface which shows each mode content in the heating operation of the air conditioning apparatus which concerns on embodiment. 実施形態に係る空気調和装置の冷房運転の動作を示す冷媒回路図である。It is a refrigerant circuit diagram which shows the operation | movement of the air_conditioning | cooling driving | operation of the air conditioning apparatus which concerns on embodiment. 実施形態に係る空気調和装置の暖房運転における第1モードの動作を示す冷媒回路図である。It is a refrigerant circuit figure showing operation of the 1st mode in heating operation of an air harmony device concerning an embodiment. 実施形態に係る空気調和装置の暖房運転における第2モードの動作を示す冷媒回路図である。It is a refrigerant circuit figure which shows the operation | movement of the 2nd mode in the heating operation of the air conditioning apparatus which concerns on embodiment. 実施形態に係る空気調和装置の暖房運転における第3モードの動作を示す冷媒回路図である。It is a refrigerant circuit figure showing operation of the 3rd mode in heating operation of the air harmony device concerning an embodiment. 実施形態に係る空気調和装置の暖房運転における第4モードの動作を示す冷媒回路図である。It is a refrigerant circuit figure which shows the operation | movement of the 4th mode in the heating operation of the air conditioning apparatus which concerns on embodiment. 実施形態に係る空気調和装置の暖房運転における第5モードの動作を示す冷媒回路図である。It is a refrigerant circuit figure which shows the operation | movement of the 5th mode in the heating operation of the air conditioning apparatus which concerns on embodiment.

1 空気調和装置
10 冷媒回路
20 分岐配管
25 補助配管
31(3A) 第1圧縮機(第1圧縮機構)
32(3B) 第2圧縮機(第2圧縮機構)
35 室外熱交換器(熱源側熱交換器、空気熱交換器)
36 第1膨張弁(膨張機構)
38 電磁弁(流路開閉手段)
41 室内熱交換器(利用側熱交換器)
42 第2膨張弁(膨張機構)
51 第3膨張弁
52 温水熱交換器(熱源側熱交換器)
61 暖房切換手段
1 Air conditioner
10 Refrigerant circuit
20 Branch piping
25 Auxiliary piping
31 (3A) 1st compressor (1st compression mechanism)
32 (3B) Second compressor (second compression mechanism)
35 Outdoor heat exchanger (heat source side heat exchanger, air heat exchanger)
36 First expansion valve (expansion mechanism)
38 Solenoid valve (channel opening / closing means)
41 Indoor heat exchanger (use side heat exchanger)
42 Second expansion valve (expansion mechanism)
51 Third expansion valve
52 Hot water heat exchanger (heat source side heat exchanger)
61 Heating switching means

Claims (3)

圧縮機構(3A,3B)と熱源側熱交換器(35,52)と膨張機構(36,42)と利用側熱交換器(41)とが配管接続された蒸気圧縮式冷凍サイクルの冷媒回路(10)を備えた空気調和装置であって、
上記熱源側熱交換器(35,52)は、冷媒が室外空気と熱交換する空気熱交換器(35)と、冷媒が温水と熱交換する温水熱交換器(52)とを備え、
上記圧縮機構(3A,3B)は、互いに並列に接続された第1圧縮機構(3A)と第2圧縮機構(3B)を備え
上記第1圧縮機構(3A)および第2圧縮機構(3B)の暖房サイクル時の吸込側配管同士を繋ぐ補助配管(25)には、流路開閉手段(38)が設けられ、
上記膨張機構(36,42)は、上記空気熱交換器(35)のための第1膨張弁(36)と上記利用側熱交換器(41)のための第2膨張弁(42)とを備え、
上記第1圧縮機構(3A)は、暖房サイクル時の吸込側配管が上記空気熱交換器(35)に接続され、
一端が上記第1膨張弁(36)と第2膨張弁(42)との間の液配管に接続され且つ他端が上記第2圧縮機構(3B)の暖房サイクル時の吸込側配管に接続された分岐配管(20)は、上記第2圧縮機構(3B)側から順に上記温水熱交換器(52)と該温水熱交換器(52)のための第3膨張弁(51)とが設けられ、
上記冷媒回路(10)は、暖房サイクル時に圧縮機構(3A,3B)の吐出冷媒が利用側熱交換器(41)で凝縮し、空気熱交換器(35)のみで蒸発して圧縮機構(3A,3B)に戻る循環を行う第1暖房動作と、暖房サイクル時に圧縮機構(3A,3B)の吐出冷媒が利用側熱交換器(41)で凝縮し、温水熱交換器(52)のみで蒸発して圧縮機構(3A,3B)に戻る循環を行う第2暖房動作と、上記補助配管(25)の流路開閉手段(38)が閉じられた状態の暖房サイクル時に第1圧縮機構(3A)および第2圧縮機構(3B)の吐出冷媒が利用側熱交換器(41)で凝縮し、その一部が温水熱交換器(52)で蒸発して第2圧縮機構(3B)に戻り残りが空気熱交換器(35)で温水熱交換器(52)とは異なる温度で蒸発して第1圧縮機構(3A)に戻る循環を行う第3暖房動作とを行うように構成されると共に、
上記冷媒回路(10)は、暖房負荷に応じて第1暖房動作、第2暖房動作および第3暖房動作を切り換える暖房切換手段(61)を備えている
ことを特徴とする空気調和装置。
A refrigerant circuit of a vapor compression refrigeration cycle in which a compression mechanism (3A, 3B), a heat source side heat exchanger (35, 52), an expansion mechanism (36, 42), and a use side heat exchanger (41) are connected by piping ( 10) an air conditioner with
The heat source side heat exchanger (35, 52) includes an air heat exchanger (35) in which the refrigerant exchanges heat with outdoor air, and a hot water heat exchanger (52) in which the refrigerant exchanges heat with hot water.
The compression mechanism (3A, 3B) comprises a first compression mechanism, which is connected in parallel with each other and (3A) the second compression mechanism (3B),
The auxiliary pipe (25) connecting the suction side pipes during the heating cycle of the first compression mechanism (3A) and the second compression mechanism (3B) is provided with a flow path opening / closing means (38),
The expansion mechanism (36, 42) includes a first expansion valve (36) for the air heat exchanger (35) and a second expansion valve (42) for the use side heat exchanger (41). Prepared,
In the first compression mechanism (3A), a suction side pipe during a heating cycle is connected to the air heat exchanger (35),
One end is connected to the liquid piping between the first expansion valve (36) and the second expansion valve (42), and the other end is connected to the suction side piping during the heating cycle of the second compression mechanism (3B). The branch pipe (20) is provided with the hot water heat exchanger (52) and a third expansion valve (51) for the hot water heat exchanger (52) in order from the second compression mechanism (3B) side. ,
In the refrigerant circuit (10), the refrigerant discharged from the compression mechanism (3A, 3B) is condensed in the use side heat exchanger (41) during the heating cycle, and is evaporated only in the air heat exchanger (35). , 3B), the first heating operation that circulates back, and the refrigerant discharged from the compression mechanism (3A, 3B) condenses in the use side heat exchanger (41) during the heating cycle and evaporates only in the hot water heat exchanger (52) The second heating operation for circulating back to the compression mechanism (3A, 3B) and the first compression mechanism (3A) during the heating cycle with the flow path opening / closing means (38) of the auxiliary pipe (25) closed And the refrigerant discharged from the second compression mechanism (3B) is condensed in the use side heat exchanger (41), part of which is evaporated in the hot water heat exchanger (52) and returned to the second compression mechanism (3B). configured to perform a third heating operation for circulation back to the first compression mechanism and evaporated at different temperatures (3A) and the hot water heat exchanger (52) in the air heat exchanger (35) Together with is,
The said refrigerant circuit (10) is provided with the heating switching means (61) which switches 1st heating operation, 2nd heating operation, and 3rd heating operation according to heating load, The air conditioning apparatus characterized by the above-mentioned.
請求項において、
上記暖房切換手段(61)は、暖房負荷が圧縮機構(3A,3B)の周波数および吐出圧力に基づいて定められる
ことを特徴とする空気調和装置。
In claim 1 ,
The air conditioner characterized in that the heating switching means (61) determines the heating load based on the frequency and discharge pressure of the compression mechanism (3A, 3B).
請求項1または2において、
上記温水熱交換器(52)が屋内に設置されている
ことを特徴とする空気調和装置。
In claim 1 or 2 ,
An air conditioner in which the hot water heat exchanger (52) is installed indoors.
JP2003387969A 2003-11-18 2003-11-18 Air conditioner Expired - Fee Related JP4360183B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003387969A JP4360183B2 (en) 2003-11-18 2003-11-18 Air conditioner

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003387969A JP4360183B2 (en) 2003-11-18 2003-11-18 Air conditioner

Publications (2)

Publication Number Publication Date
JP2005147582A JP2005147582A (en) 2005-06-09
JP4360183B2 true JP4360183B2 (en) 2009-11-11

Family

ID=34695183

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003387969A Expired - Fee Related JP4360183B2 (en) 2003-11-18 2003-11-18 Air conditioner

Country Status (1)

Country Link
JP (1) JP4360183B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102692100A (en) * 2011-03-25 2012-09-26 株式会社电装 Heat exchange system and vehicle refrigeration cycle system

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012052801A (en) * 2011-12-12 2012-03-15 Daikin Industries Ltd Refrigerating device
CN104422196B (en) * 2013-09-11 2016-08-17 珠海格力电器股份有限公司 Air conditioning and water heating system

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0464062U (en) * 1990-10-12 1992-06-01
JPH05223388A (en) * 1992-02-10 1993-08-31 Matsushita Electric Ind Co Ltd Room heater/cooler
JPH0755283A (en) * 1993-08-20 1995-03-03 Sanyo Electric Co Ltd Air conditioner
JPH1062030A (en) * 1996-08-23 1998-03-06 Sanyo Electric Co Ltd Air conditioner
JP4441965B2 (en) * 1999-06-11 2010-03-31 ダイキン工業株式会社 Air conditioner
JP2003222423A (en) * 2002-01-29 2003-08-08 Daikin Ind Ltd Refrigeration unit

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102692100A (en) * 2011-03-25 2012-09-26 株式会社电装 Heat exchange system and vehicle refrigeration cycle system

Also Published As

Publication number Publication date
JP2005147582A (en) 2005-06-09

Similar Documents

Publication Publication Date Title
JP5951109B2 (en) Air conditioner with additional unit for heating capacity enhancement
AU2008208346B2 (en) Air conditioner
JP5474048B2 (en) Air conditioner
JP4122349B2 (en) Refrigeration cycle apparatus and operation method thereof
WO2013144994A1 (en) Air conditioning device
JP4360203B2 (en) Refrigeration equipment
US20090282854A1 (en) Air conditioning system
WO2005019742A1 (en) Freezing apparatus
WO2006013938A1 (en) Freezing apparatus
JP2011112233A (en) Air conditioning device
JP2008157557A (en) Air-conditioning system
JP2005274134A (en) Heat pump type floor heating air conditioner
JP2018132269A (en) Heat pump system
JP2004037006A (en) Freezing device
JP5145026B2 (en) Air conditioner
JP6576603B1 (en) Air conditioner
KR20120083139A (en) Heat pump type speed heating apparatus
JP2011133133A (en) Refrigerating device
JP2007232265A (en) Refrigeration unit
JP2010048506A (en) Multi-air conditioner
JP2008025901A (en) Air conditioner
JP4360183B2 (en) Air conditioner
JP4273588B2 (en) Air conditioner refrigerant circuit
KR100528292B1 (en) Heat-pump type air conditioner
JP2008175430A (en) Air conditioner

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20061031

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20081112

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20081202

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090202

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090721

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090803

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120821

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120821

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130821

Year of fee payment: 4

LAPS Cancellation because of no payment of annual fees