WO2021073654A1 - 无人机的安全航线生成方法、装置、控制终端和无人机 - Google Patents

无人机的安全航线生成方法、装置、控制终端和无人机 Download PDF

Info

Publication number
WO2021073654A1
WO2021073654A1 PCT/CN2020/122478 CN2020122478W WO2021073654A1 WO 2021073654 A1 WO2021073654 A1 WO 2021073654A1 CN 2020122478 W CN2020122478 W CN 2020122478W WO 2021073654 A1 WO2021073654 A1 WO 2021073654A1
Authority
WO
WIPO (PCT)
Prior art keywords
route
flight
elevation data
drone
feature point
Prior art date
Application number
PCT/CN2020/122478
Other languages
English (en)
French (fr)
Inventor
冯银华
Original Assignee
深圳市道通智能航空技术股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳市道通智能航空技术股份有限公司 filed Critical 深圳市道通智能航空技术股份有限公司
Publication of WO2021073654A1 publication Critical patent/WO2021073654A1/zh
Priority to US17/659,082 priority Critical patent/US20220254260A1/en

Links

Images

Classifications

    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D1/00Control of position, course or altitude of land, water, air, or space vehicles, e.g. automatic pilot
    • G05D1/10Simultaneous control of position or course in three dimensions
    • G05D1/101Simultaneous control of position or course in three dimensions specially adapted for aircraft
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01CMEASURING DISTANCES, LEVELS OR BEARINGS; SURVEYING; NAVIGATION; GYROSCOPIC INSTRUMENTS; PHOTOGRAMMETRY OR VIDEOGRAMMETRY
    • G01C21/00Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00
    • G01C21/38Electronic maps specially adapted for navigation; Updating thereof
    • G01C21/3804Creation or updating of map data
    • G01C21/3807Creation or updating of map data characterised by the type of data
    • G01C21/3826Terrain data
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64CAEROPLANES; HELICOPTERS
    • B64C39/00Aircraft not otherwise provided for
    • B64C39/02Aircraft not otherwise provided for characterised by special use
    • B64C39/024Aircraft not otherwise provided for characterised by special use of the remote controlled vehicle type, i.e. RPV
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01CMEASURING DISTANCES, LEVELS OR BEARINGS; SURVEYING; NAVIGATION; GYROSCOPIC INSTRUMENTS; PHOTOGRAMMETRY OR VIDEOGRAMMETRY
    • G01C21/00Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00
    • G01C21/005Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00 with correlation of navigation data from several sources, e.g. map or contour matching
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01CMEASURING DISTANCES, LEVELS OR BEARINGS; SURVEYING; NAVIGATION; GYROSCOPIC INSTRUMENTS; PHOTOGRAMMETRY OR VIDEOGRAMMETRY
    • G01C21/00Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00
    • G01C21/20Instruments for performing navigational calculations
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D1/00Control of position, course or altitude of land, water, air, or space vehicles, e.g. automatic pilot
    • G05D1/10Simultaneous control of position or course in three dimensions
    • G05D1/101Simultaneous control of position or course in three dimensions specially adapted for aircraft
    • G05D1/106Change initiated in response to external conditions, e.g. avoidance of elevated terrain or of no-fly zones
    • GPHYSICS
    • G08SIGNALLING
    • G08GTRAFFIC CONTROL SYSTEMS
    • G08G5/00Traffic control systems for aircraft, e.g. air-traffic control [ATC]
    • G08G5/0004Transmission of traffic-related information to or from an aircraft
    • G08G5/0013Transmission of traffic-related information to or from an aircraft with a ground station
    • GPHYSICS
    • G08SIGNALLING
    • G08GTRAFFIC CONTROL SYSTEMS
    • G08G5/00Traffic control systems for aircraft, e.g. air-traffic control [ATC]
    • G08G5/003Flight plan management
    • G08G5/0034Assembly of a flight plan
    • GPHYSICS
    • G08SIGNALLING
    • G08GTRAFFIC CONTROL SYSTEMS
    • G08G5/00Traffic control systems for aircraft, e.g. air-traffic control [ATC]
    • G08G5/003Flight plan management
    • G08G5/0039Modification of a flight plan
    • GPHYSICS
    • G08SIGNALLING
    • G08GTRAFFIC CONTROL SYSTEMS
    • G08G5/00Traffic control systems for aircraft, e.g. air-traffic control [ATC]
    • G08G5/0047Navigation or guidance aids for a single aircraft
    • G08G5/0069Navigation or guidance aids for a single aircraft specially adapted for an unmanned aircraft
    • GPHYSICS
    • G08SIGNALLING
    • G08GTRAFFIC CONTROL SYSTEMS
    • G08G5/00Traffic control systems for aircraft, e.g. air-traffic control [ATC]
    • G08G5/04Anti-collision systems
    • G08G5/045Navigation or guidance aids, e.g. determination of anti-collision manoeuvers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64UUNMANNED AERIAL VEHICLES [UAV]; EQUIPMENT THEREFOR
    • B64U2201/00UAVs characterised by their flight controls
    • B64U2201/10UAVs characterised by their flight controls autonomous, i.e. by navigating independently from ground or air stations, e.g. by using inertial navigation systems [INS]

Definitions

  • the embodiments of the present invention relate to the technical field of computer applications, and in particular to a method, a device, a control terminal and a drone for generating a safe flight route for a drone.
  • the flight route is usually drawn in the map of the control terminal based on the flying height, flight speed, overlap rate and ground resolution of the drone, and the generated flight route is sent to the drone, so that no Humans and machines can perform route tasks according to the flight route, but the flight control of existing drones cannot avoid flight obstacles caused by mountains or tall buildings.
  • the invention provides a method, a device, a control terminal and a drone for generating a safe flight route for an unmanned aerial vehicle, so as to realize the safe control of flying height, avoid collision accidents due to altitude problems, and make the unmanned aerial vehicle more safe and reliable to fly .
  • an embodiment of the present invention provides a method for generating a safe flight route for a drone, the method including:
  • the route feature point set includes at least one route planning key point
  • the attribute parameter includes at least a flying height
  • the flight route is adjusted according to the elevation data file to generate a route.
  • an embodiment of the present invention also provides a device for generating a safe route for drones, the device including:
  • a parameter acquisition module configured to acquire a route feature point set and attribute parameters, the route feature point set includes at least one route planning key point, and the attribute parameter includes at least a flying height;
  • the flight route module is used to generate a flight route according to the route feature point set, the attribute parameters and a preset route generation strategy;
  • the route generation module is used to adjust the flight route according to the elevation data file to generate a route.
  • an embodiment of the present invention also provides an unmanned aerial vehicle, the unmanned aerial vehicle including:
  • One or more processors are One or more processors;
  • Memory used to store one or more programs
  • the one or more processors When the one or more programs are executed by the one or more processors, the one or more processors are caused to implement the method for generating a safe flight route for drones according to any embodiment of the present invention.
  • an embodiment of the present invention also provides a control terminal, and the control terminal includes:
  • One or more processors are One or more processors;
  • Memory used to store one or more programs
  • the one or more processors When the one or more programs are executed by the one or more processors, the one or more processors are caused to implement the method for generating a safe flight route for drones according to any embodiment of the present invention.
  • the technical solution of the embodiment of the present invention obtains a route feature point set and attribute parameters, wherein the route feature point set includes at least one route planning key point, and the attribute parameter includes at least the flight height; according to the route feature point set, The flight route is generated by attribute parameters and preset route generation strategy; the flight route is adjusted according to the elevation data file to generate the route, and the flight route is taken into consideration by considering the elevation data in the flight route by using the route feature point set as the data for controlling the flight of the drone , To avoid obstacles in the flight control process, reduce the probability of drone accidents, and improve the accuracy and safety of drone control.
  • FIG. 1 is a flowchart of a method for generating a safe route for a UAV according to Embodiment 1 of the present invention
  • FIG. 2a is a flowchart of a method for generating a safe route for a drone provided in the second embodiment of the present invention
  • Fig. 2b is a schematic diagram of a user data input interface provided by the second embodiment of the present invention.
  • Fig. 3a is a flowchart of a method for generating a safe route for a UAV according to a third embodiment of the present invention
  • Figure 3b is an effect diagram of a flight route display provided by the third embodiment of the present invention.
  • Fig. 3c is an effect diagram of a flight route display provided by the third embodiment of the present invention.
  • FIG. 4 is a schematic structural diagram of a device for generating a safe route for drones according to a fourth embodiment of the present invention.
  • FIG. 5 is a schematic structural diagram of an unmanned aerial vehicle according to Embodiment 5 of the present invention.
  • FIG. 6 is a schematic structural diagram of a control terminal provided by Embodiment 6 of the present invention.
  • Fig. 1 is a flowchart of a method for generating a safe route for a drone according to the first embodiment of the present invention. This embodiment can be applied to the situation of controlling a drone.
  • the method can be implemented by a safe route generating device for a drone. Execution, the device can be integrated in the drone, and the device can be implemented in hardware and/or software. See Figure 1.
  • the method includes:
  • Step 101 Obtain a route feature point set and attribute parameters, where the route feature point set includes at least one route planning key point, and the attribute parameter includes at least a flying height.
  • the control terminal can be connected to the drone, and can send data to the drone to realize the control of the drone.
  • the control terminal can be the drone remote control or a smart phone installed with control software;
  • the route feature point set It can be a collection of feature points used to plan the flight route, which can be sent to the drone by the control terminal.
  • the attribute parameter can be the attribute parameter for controlling the flight of the drone. It can include flight altitude, flight speed, maximum flight altitude, and minimum flight. Flight parameters such as altitude, attribute parameters can be generated by the user input in the control terminal, and sent to the drone by the control terminal;
  • the key points of route planning can be characteristic points in the flight path of the drone, such as turning points and elevations Point and other location points with key features of the flight path.
  • the flight height can be the height of the drone flying in the flight path, a fixed value, or a set of values.
  • the drone may receive the route feature point set and attribute parameters used to generate the drone route sent by the control terminal, and the route feature point set may contain the characteristic location points for generating the drone route.
  • the attribute parameters can be the flight attributes of the generated UAV route, such as flight altitude and flight speed, etc.
  • the route feature point set and attribute parameters obtained by the UAV can also be directly input into the UAV by the user.
  • the route feature point set and attribute parameters received by the drone can be a form of fusion of the route feature point set and attribute parameters.
  • the key points of route planning in a concentrated route feature point can include their respective flight heights.
  • the route feature point set and the attribute parameter exist separately, the key points of the route planning in the route feature point set do not include the flight height, and the attribute parameter exists in the form of a separate data message.
  • Step 102 Generate a flight route according to the route feature point set, attribute parameters, and a preset route generation strategy.
  • the preset route generation strategy can be used to generate the strategy of the drone flight route, which can be preset in the drone in advance, and the route and flight route of the drone can be generated according to the acquired route feature point set and attribute parameters. It may be a flight route generated by the drone according to the received route feature point set and attribute parameters, and the first flight route may include the flight point and the flight height of the corresponding flight point.
  • the route generation strategy can be preset in the drone.
  • the route feature point set and attribute parameters can be used as the input of the route generation strategy, and the route generation strategy can be used
  • the output result is taken as the flight route.
  • the flight route may specifically include the waypoint and the flight parameters of the corresponding waypoint. It is understandable that there are many route generation strategies in the prior art and will not be described in detail in this application.
  • the initial planning route is generated by fitting the route planning key points in the first route feature point set, and then the attribute parameters are used as the corresponding flight parameters to generate the flight route.
  • Step 103 Adjust the flight route according to the elevation data file to generate a route.
  • the elevation data file can store all the terrain and the distance from the vertex of the building in the area where the drone is currently located along the plumb line to the horizontal plane.
  • the elevation data file can be stored in the drone in advance. All the elevation data can be pre-stored in the drone, or it can be connected to the control terminal before the drone makes the first flight route, and the elevation data of the current geographic location of the drone can be obtained and stored.
  • the elevation data downloaded by the drone according to the position of the drone during the flight.
  • the generated flight route can be adjusted according to the elevation data.
  • the flight altitude in the flight route can be automatically changed with the elevation data in the elevation data file, or the flight can be determined according to the elevation data file.
  • the flight route can be adjusted based on the target elevation data, and the adjusted flight route can be used as the flight route of the drone.
  • the technical solution of the embodiment of the present invention obtains the route feature point set and attribute parameters, generates the flight route according to the route feature point set, the attribute parameters and the preset route generation strategy, and adjusts the flight route according to the elevation data file to generate the route.
  • the route generation process of the UAV only needs to obtain the route feature point set and attribute parameters, and does not need to obtain the complete route data. This reduces the amount of communication data between the UAV and the control terminal.
  • the route generation process refers to the elevation data to avoid unmanned An aircraft collision accident can effectively improve the safety of UAV flight.
  • Figure 2a is a flow chart of a method for generating a safe flight route for a drone provided by the second embodiment of the present invention; this embodiment is embodied on the basis of the above-mentioned embodiment, and this method can be applied to drones.
  • the method provided in the embodiment of the present invention includes:
  • Step 201 Obtain route planning information input by the user.
  • the route planning information may be the information input by the user for generating the flight route of the drone, for example, it may include the user's sliding track information in the input interface and the click position information in the input interface.
  • Figure 2b is an embodiment of the present invention. 2.
  • a schematic diagram of a user data input interface is provided, as shown in Figure 2b.
  • the user can select input parameters such as flight altitude, flight speed, maximum flight altitude and minimum flight altitude in the input interface, and can obtain the information entered by the user on the input interface
  • the user can also click on the position in the input interface to generate the flight route or slide to generate the flight route, and can obtain the click position information or the sliding trajectory information as route planning information.
  • the flight height and flight speed input by the user in the interface can be obtained, the obtained flight height can be used as the flight parameter, and the click position information and sliding trajectory information used by the user to generate the flight route in the interface can be obtained.
  • the obtained click position information and sliding trajectory information are used as route planning information. It is understandable that the user can input route planning information in the control terminal that controls the drone, and the control terminal can send the route planning information to the drone , The user can also directly input route planning information into the drone, and the drone can be provided with an information input interface.
  • Step 202 Determine a route feature point set according to the route planning information.
  • the route feature point set can be a feature point set used to generate the flight route of the drone, which can be generated according to the route planning information input by the user.
  • the route planning information can include touch planning information and sliding trajectory planning information, and touch planning information It can be the location information of the user's tapping input through the input interface, or the information used to generate the flight route of the drone.
  • the tap planning information can include the latitude and longitude information corresponding to the location map of the user tapping
  • the sliding track planning information can be
  • the trajectory information corresponding to the sliding operation of the user in the input interface may include latitude and longitude information corresponding to the location map of the sliding trajectory.
  • the route feature point set can be determined according to the acquired touch planning information and/or sliding trajectory planning information, and the method of determining the route feature point set can be specifically to use the location points included in the touch planning information as the route.
  • feature points can also be selected according to the sliding trajectory in the sliding trajectory planning information, and the feature points are used as the elements in the route feature point collection.
  • Step 203 Obtain a route feature point set and attribute parameters, where the route feature point set includes at least one route planning key point, and the attribute parameter includes at least a flying height.
  • the UAV may first receive the route feature point set and attribute parameters sent by the control terminal, where the route feature point set may be a set of key points in route planning, which is used to generate the flight route of the UAV ,
  • the attribute parameter may include the flight altitude
  • the attribute parameter may be a parameter for controlling the flight of the drone
  • the first attribute parameter may also include the flight speed, the maximum flight altitude, the minimum flight altitude, etc.
  • Step 204 Generate a flight route according to the route feature point set, attribute parameters, and a preset route generation strategy.
  • the preset route generation strategy can be encapsulated as a model, and the first route feature point set and the first attribute parameter can be used as the input of the model, and the output result can be grouped as the flight route.
  • the flight route can be generated by fitting the key points of the route planning in the route feature point set.
  • Step 205 Obtain location information of the drone, and determine the elevation data file according to the location information of the drone.
  • the location information may include information about the geographic location of the drone, which may be a city, region, and/or latitude and longitude, etc.
  • the elevation data file may be a data table containing terrain elevation data of the location of the drone.
  • the information of the area where the drone is currently located can be obtained, for example, the location information of the city where the drone is located, the terrain elevation data file of the corresponding area can be searched according to the obtained location information, and the found data can be used as Elevation data file corresponding to the location information of the drone.
  • Step 206 Determine the current flight point where the UAV is located.
  • the current flight point may be the current position of the UAV when the UAV is flying along the flight route, which may be determined according to the latitude and longitude of the UAV's position.
  • the position information of the current position of the drone in the flight route can be obtained, which can specifically include the latitude and longitude data of the drone, and the determined position information can be used to determine the flight point of the drone. It is understandable that the current flying point can also be marked in the flight route, and the current flying point can be displayed on the display interface of the control terminal in a manner of changing color or form.
  • Step 207 Use the flight route after the current flight point in the flight route as the route to be detected.
  • the route to be detected may be the flight route of the drone in the flight route, specifically the flight route after the current flight point.
  • the target position in the flight path can be determined according to the current flight point, the flight path after the target position can be used as the unmanned aerial vehicle's unflighted route to be detected, and the drone can be the elevation data file at the position to be detected. Perform detection and obtain the corresponding elevation data.
  • Step 208 Extract sampling points in the route to be detected.
  • the sampling points may be a collection of location points acquired at a fixed distance in the route to be detected, and may be selected randomly or selected according to a threshold distance.
  • the method of selecting the sampling points is not limited in the embodiment of the present invention.
  • a sampling point can be obtained every 30m in the route to be detected.
  • sampling points in the route to be detected can be extracted randomly or according to a fixed threshold distance.
  • Step 209 Search for target elevation data corresponding to each of the sampling points from the elevation data file.
  • the target elevation data can be elevation data corresponding to each sampling point, which can be obtained by querying the elevation data file through the location information of the sampling point.
  • the elevation data file can be queried according to the location information of the sampling points, and the queried elevation data can be used as the target elevation data corresponding to each sampling point.
  • Step 210 Adjust the flight route according to the target elevation data.
  • the acquired target elevation data can be used as the flying height of the UAV at each sampling point in the flight route, so as to realize the adjustment of the flight route.
  • adjusting the flight route according to the target elevation data includes:
  • the flight route is not adjusted; when the height of the sampling point is less than the target elevation data plus the relative height , Adjust the flight route according to the preset adjustment strategy.
  • the height of the sampling point can be the flying height of the drone when it passes the sampling point
  • the relative height can be the difference between the flying height of the drone and the level of the target elevation data, which can be set manually.
  • setting the relative altitude to 5 meters is equivalent to adding 5 meters to the target elevation data as the minimum flight altitude of the drone at the corresponding first sampling point, which can further prevent the drone from colliding. .
  • the height of the sampling point can be compared to the sum of the target elevation data and the relative height. If the height is greater than or equal to the sum of the target elevation data and the relative height, it can indicate that the drone will not collide with the object when flying at the sampling point. If the altitude is less than the sum of the target elevation data and the relative altitude, it can indicate that the drone can hit high-level objects when flying at the sampling point, and the flight path can be adjusted according to the adjustment strategy.
  • the preset adjustment strategy can be The strategy of adjusting the flight altitude of the drone in the flight path, for example, can adjust the flight altitude to a threshold altitude, or use the average value of the target elevation data plus the flight altitude as the flight altitude of the flight path.
  • adjusting the flight route according to the preset adjustment strategy includes:
  • the flight obstacle point may be the location point in the flight route where the drone hits the terrain accident, and the flight height of the flight obstacle point is less than the sum of the target elevation data and the relative height.
  • the sampling points in the route to be detected whose flight height is less than the sum of the corresponding target elevation data and relative height are used as flight obstacle points, and the flight height of the drone at the flight obstacle points can be adjusted, and the adjustment method It can include adding target elevation data to the original flight altitude as the new flight altitude.
  • adjusting the height of the flight route at the flight obstacle point includes:
  • the route planning information is input by the user, the route feature point set is determined according to the route planning information, the flight route is determined according to the route feature point set and attribute parameters and the preset generation strategy, and the position of the drone is obtained.
  • Information the elevation data file is determined according to the position information of the drone, the flight route after the current flight point is obtained according to the current flight point of the drone as the route to be detected, sampling points are extracted from the route to be detected, and extracted from the elevation data file
  • the target elevation data corresponding to the sampling point is adjusted according to the target elevation data to realize the dynamic adjustment of the flight route of the drone.
  • the flight altitude is determined according to the elevation data, avoiding possible tall buildings or mountains, and improving the flight performance of the drone. safety.
  • Fig. 3a is a flowchart of a method for generating a safe route for a drone according to the third embodiment of the present invention. This embodiment can be applied to the situation of controlling the flight of the drone.
  • the method can be executed by the drone control device.
  • the device can be implemented in hardware and/or software, and the device can be integrated in the control terminal. See Figure 3a.
  • the method includes:
  • Step 301 Obtain route planning information input by the user; and determine a route feature point set according to the route planning information.
  • the route feature point set can be a collection of feature points used to generate the flight route of the drone, which can be generated according to the input route planning information, and the touch planning information can be the touch position input by the user through the input interface of the control terminal
  • the information can be the information used to generate the flight route of the drone.
  • the tap planning information can include the longitude and latitude information corresponding to the location map where the user taps.
  • the sliding track planning information can be the trajectory information corresponding to the user's sliding operation in the input interface. Including the latitude and longitude information corresponding to the sliding track location map.
  • the route feature point set can be determined according to the acquired touch planning information and/or sliding trajectory planning information, and the method of determining the route feature route can specifically be the location point included in the touch planning information as the route feature
  • the method of determining the route feature route can specifically be the location point included in the touch planning information as the route feature
  • feature points can also be selected according to the sliding trajectory in the sliding trajectory planning information, and the feature points are used as the points in the route feature point concentration.
  • Step 302 Generate a flight route according to the route feature point set, attribute parameters, and a preset route generation strategy.
  • the route feature point set and attribute parameters can be sent to the drone.
  • the route feature point set and attribute parameters can exist alone or in the form of a whole.
  • the attribute parameters can be integrated into the route feature point set.
  • Each point in the route feature point set has a corresponding flight height.
  • the drone can generate a flight route for flight control according to the route feature point set and attribute parameters sent by the control terminal.
  • the flight route can be used for display at the control terminal. To display the flight status of the drone. After the flight route is generated, the control terminal can display the generated flight route.
  • FIG. 3b is a flight route display effect diagram provided in the third embodiment of the present invention. Referring to FIG. 3b, the flight route 41 and the terrain 42 can be displayed together. This allows the user to intuitively understand the relationship between the flying height of the second flight route 41 and the elevation of the terrain 42.
  • Step 303 Adjust the flight route according to the elevation data file to generate a route.
  • the control terminal can adjust the flight route according to the elevation data in the elevation data file. For example, it can adjust the flight route according to all the elevation data of the location of the flight route, and obtain all the elevation data. Maximum elevation, the maximum elevation can be used as the flight altitude of the drone flying in the first flight path to realize the adjustment of the first flight path according to the first elevation data file. It is understandable that, in the embodiment of the present invention, after the control terminal receives the terrain following instruction, it can adjust the flight route in combination with the elevation data file at one time, or adjust the flight route in segments based on the elevation data, that is, unmanned The aircraft can adjust the flight route while flying.
  • a sampling point smaller than the target elevation data plus the relative height may be determined as a flight obstacle point; adjusting the flight route in the flight The height of the obstacle point.
  • the sampling points on the route to be detected whose flight height is less than the sum of the corresponding target elevation data and relative height are used as flight obstacle points, and the flight height at the flight obstacle points in the flight route can be adjusted to realize the adjustment of the flight route and generate a route.
  • the user can also be notified in the control terminal that there is a flight obstacle in the flight path of the drone, and the area where the flight obstacle is located and the nearby area can be displayed with a special highlight.
  • Figure 3c is a third embodiment of the present invention.
  • the drone will not send the problem of hitting the terrain.
  • the flying height of the drone is less than the sum of the target elevation data and the relative height of the corresponding terrain.
  • the drone will hit the terrain when flying. Therefore, highlighting marks are used to reflect the user's drone flight obstruction.
  • the highlighting mark can be a special display in the displayed content, or the user can discover the highlighted content in time.
  • the way of highlighting can include Paint, change the presentation graphics and increase the background color, etc.
  • the technical solution of the embodiment of the present invention determines the route feature point set by acquiring the route planning information input by the user, generates the flight route according to the route feature point set, attribute parameters and the preset route generation strategy, and adjusts the flight route according to the elevation data file to generate the route.
  • the route formulation process takes into account the elevation data to avoid obstacles encountered during the flight of the drones, reduce the probability of drone collision accidents, and improve the user experience.
  • FIG. 4 is a schematic structural diagram of a safe route generating device for drones provided in the fourth embodiment of the present invention; the safe route generating device for drones provided by the embodiments of the present invention can execute the none provided by any embodiment of the present invention.
  • the human-machine safe route generation method has the corresponding functional modules and beneficial effects of the execution method.
  • the device can be implemented by software and/or hardware, and can be integrated in the drone and/or control terminal.
  • the device specifically includes: parameter acquisition Module 501, flight route module 502, and route generation module 503.
  • the parameter acquisition module 501 is configured to acquire a route feature point set and attribute parameters, the route feature point set includes at least one route planning key point, and the attribute parameter includes at least the flying height.
  • the flight route module 502 is configured to generate a flight route according to the route feature point set, the attribute parameters, and a preset route generation strategy.
  • the route generation module 503 is configured to adjust the flight route according to the elevation data file to generate a route.
  • the technical solution of the embodiment of the present invention obtains the route feature point set and attribute parameters through the parameter acquisition module, and the flight route module generates the flight route according to the route feature point set, attribute parameters and preset route generation strategy ,
  • the route generation module adjusts the flight route according to the elevation data file to generate the route.
  • the route generation process of the drone only needs to obtain the route feature point set and attribute parameters, and does not need to obtain the complete route data, which reduces the drone and control
  • the communication data volume of the terminal and the reference elevation data during the route generation process can avoid the collision accident of the UAV and can effectively improve the safety of the UAV flight.
  • the preprocessing module is used to obtain route planning information input by the user; and determine a route feature point set according to the route planning information.
  • the elevation file determination module is used to obtain the position information of the drone, and determine the elevation data file according to the position information of the drone.
  • the route generation module includes:
  • the flight point unit is used to determine the current flight point where the UAV is located.
  • the route to be tested unit is used to take the flight route after the current flight point in the flight route as the route to be tested.
  • the sampling point unit is used to extract sampling points in the route to be detected.
  • the route adjustment unit is configured to search for target elevation data corresponding to each of the sampling points from the elevation data file; and adjust the flight route according to the target elevation data.
  • the route adjustment unit includes:
  • the non-adjustment subunit is configured to not adjust the flight route when the heights of the sampling points are all greater than or equal to the target elevation data plus the relative height.
  • the adjustment subunit is configured to adjust the flight route according to the preset adjustment strategy when the height of the sampling point is less than the target elevation data plus the relative height.
  • the adjustment subunit is specifically used for:
  • the adjustment of the height of the flight route at the flight obstacle point in the adjustment subunit is specifically:
  • FIG. 5 is a schematic structural diagram of a drone provided by Embodiment 5 of the present invention.
  • the drone includes a processor 70, a memory 71, an input device 72, and an output device 73;
  • the number of the device 70 can be one or more.
  • one processor 70 is taken as an example; it is assumed that the processor 70, the memory 71, the input device 72 and the output device 73 in the drone can be connected by a bus or other means.
  • the bus connection is taken as an example.
  • the memory 71 can be used to store software programs, computer-executable programs, and modules, such as the program modules corresponding to the drone control method in the embodiment of the present invention (for example, the drone control device in the drone control device).
  • Parameter acquisition module 501, route generation module 502, and flight control module 503 The processor 70 executes various functional applications and data processing of the drone by running the software programs, instructions, and modules stored in the memory 71, that is, realizes the above-mentioned drone control method.
  • the memory 71 may mainly include a program storage area and a data storage area.
  • the program storage area may store an operating system and an application program required by at least one function; the data storage area may store data created according to the use of the terminal, and the like.
  • the memory 71 may include a high-speed random access memory, and may also include a non-volatile memory, such as at least one magnetic disk storage device, a flash memory device, or other non-volatile solid-state storage devices.
  • the memory 71 may further include a memory remotely provided with respect to the processor 70, and these remote memories may be connected to the drone through a network. Examples of the aforementioned networks include, but are not limited to, the Internet, intranets, local area networks, mobile communication networks, and combinations thereof.
  • the input device 72 can be used to receive control information sent by the user, and generate signal inputs related to user settings and function control of the drone.
  • the output device 73 may be used to output signals generated by the drone, and may include a flight status feedback interface and/or a display screen.
  • the control terminal includes a processor 80, a memory 81, an input device 82, and an output device 83;
  • the number can be one or more.
  • One processor 80 is taken as an example in FIG. 6; the processor 80, the memory 81, the input device 82 and the output device 83 in the control terminal can be connected by a bus or other means, as shown in FIG. Take the bus connection as an example.
  • the memory 81 can be used to store software programs, computer-executable programs, and modules, such as the program modules corresponding to the control terminal control method in the embodiment of the present invention (for example, the parameter acquisition in the control terminal control device).
  • Module 501, route generation module 502 and flight control module 503 The processor 80 executes various functional applications and data processing of the control terminal by running the software programs, instructions, and modules stored in the memory 81, that is, realizes the above-mentioned control terminal control method.
  • the memory 81 may mainly include a program storage area and a data storage area.
  • the program storage area may store an operating system and an application program required by at least one function; the data storage area may store data created according to the use of the terminal, and the like.
  • the memory 81 may include a high-speed random access memory, and may also include a non-volatile memory, such as at least one magnetic disk storage device, a flash memory device, or other non-volatile solid-state storage devices.
  • the memory 81 may further include a memory remotely provided with respect to the processor 80, and these remote memories may be connected to the control terminal through a network. Examples of the aforementioned networks include, but are not limited to, the Internet, corporate intranets, local area networks, mobile communication networks, and combinations thereof.
  • the input device 82 can be used to receive inputted numeric or character information, and generate key signal inputs related to user settings and function control of the control terminal.
  • the output device 83 may include a display device such as a display screen.

Abstract

一种无人机的安全航线生成方法、装置、控制终端和无人机,安全航线生成方法包括:获取路线特征点集和属性参数,其中,路线特征点集包含至少一个路线规划关键点,属性参数至少包含飞行高度(101);根据路线特征点集、属性参数及预设路线生成策略生成飞行路线(41)(102);根据高程数据文件调整飞行路线(41),以生成航线(103)。通过在飞行路线(41)制定中考虑高程数据,避免飞行控制过程中出现飞行障碍,可提高无人机飞行的安全性。

Description

无人机的安全航线生成方法、装置、控制终端和无人机 技术领域
本发明实施例涉及计算机应用技术领域,尤其涉及一种无人机的安全航线生成方法、装置、控制终端和无人机。
背景技术
随着无人航拍技术的发展,越来越多专业级无人机投入到日常生活生产中,例如利用无人机搜救、地理勘测、农林植保和道路巡航等,无人机的普及率日渐上升,为了适应不同的飞行任务,需要对航线任务指定精密的规划,保证无人机飞行的准确性和安全性。
现有技术方案中,通常基于无人机飞行高度、飞行速度、重叠率和地面分辨率等方面在控制终端的地图中绘制出飞行路线,并将生成的飞行路线发送到无人机,使得无人机可以根据飞行路线执行航线任务,但是现有无人机的飞行控制中无法避免高山或高楼产生的飞行障碍。
发明内容
本发明提供一种无人机的安全航线生成方法、装置、控制终端和无人机,以实现飞行高度的安全控制,避免了由于高度问题而发生的撞击事故,使得无人机飞行更加安全可靠。
第一方面,本发明实施例提供了一种无人机安全航线生成方法,该方法包括:
获取路线特征点集和属性参数,其中,所述路线特征点集包含至少一个路线规划关键点,所述属性参数至少包含飞行高度;
根据所述路线特征点集、属性参数及预设路线生成策略生成飞行路线;
根据高程数据文件调整所述飞行路线,以生成航线。
第二方面,本发明实施例还提供了一种无人机安全航线生成装置,该装置,包括:
参数获取模块,用于获取路线特征点集和属性参数,所述路线特征点集包含至少一个路线规划关键点,所述属性参数至少包含飞行高度;
飞行路线模块,用于根据所述路线特征点集、所述属性参数及预设路线生成策略生成飞行路线;
航线生成模块,用于根据高程数据文件调整所述飞行路线,以生成航线。
第三方面,本发明实施例还提供了一种无人机,该无人机包括:
一个或多个处理器;
存储器,用于存储一个或多个程序;
当所述一个或多个程序被所述一个或多个处理器执行时,使得所述一个或多个处理器实现如本发明任意实施例所述的无人机安全航线生成方法。
第四方面,本发明实施例还提供了一种控制终端,该控制终端包括:
一个或多个处理器;
存储器,用于存储一个或多个程序;
当所述一个或多个程序被所述一个或多个处理器执行时,使得所述一个或多个处理器实现如本发明任意实施例所述的无人机安全航线生成方法。
本发明实施例的技术方案通过获取路线特征点集和属性参数,其中,所述路线特征点集包含至少一个路线规划关键点,所述属性参数至少包含飞行高度;根据所述路线特征点集、属性参数及预设路线生成策略生成飞行路线;根据高程数据文件调整所述飞行路线,以生成航线,通过将路线特征点集作为控制无 人机飞行的数据,在飞行路线的制定中考虑高程数据,避免飞行控制过程出现障碍,减小无人机事故的发生机率,可提高无人机控制的准确度和安全性。
附图说明
图1是本发明实施例一提供的一种无人机的安全航线生成方法的流程图;
图2a是本发明实施例二提供的一种无人机的安全航线生成方法的流程图;
图2b是本发明实施例二提供的一种用户数据输入界面示意图;
图3a是本发明实施例三提供的一种无人机的安全航线生成方法的流程图;
图3b是本发明实施例三提供的一种飞行路线展示效果图;
图3c是本发明实施例三提供的一种飞行路线展示效果图;
图4是本发明实施例四提供的一种无人机的安全航线生成装置的结构示意图;
图5是本发明实施例五提供的一种无人机的结构示意图;
图6是本发明实施例六提供的一种控制终端的结构示意图。
具体实施方式
下面结合附图和实施例对本发明作进一步的详细说明。可以理解的是,此处所描述的具体实施例仅仅用于解释本发明,而非对本发明的限定。另外还需要说明的是,为了便于描述,附图中仅示出了与本发明相关的部分而非全部结构,此外,在不冲突的情况下,本发明中的实施例及实施例中的特征可以相互组合。
实施例一
图1是本发明实施例一提供的一种无人机的安全航线生成方法的流程图,本实施例可适用于控制无人机的情况,该方法可以由无人机的安全航线生成装 置来执行,该装置可以集成在无人机,该装置可以采用硬件和/或软件的方式来实现,参见图1,该方法包括:
步骤101、获取路线特征点集和属性参数,其中,所述路线特征点集包含至少一个路线规划关键点,所述属性参数至少包含飞行高度。
其中,控制终端可以是与无人机连接,可以向无人机发送数据实现对无人机的控制,控制终端具体可以为无人机遥控器或安装有控制软件的智能手机;路线特征点集可以是用于规划飞行路线的特征点的集合,可以由控制终端发送到无人机,属性参数可以是控制无人机飞行的属性参数,可以包括飞行高度、飞行速度、最高飞行海拔和最低飞行海拔等飞行参数,属性参数可以由用户在控制终端输入生成,并由控制终端发送到无人机;路线规划关键点可以是无人机飞行路线中的特征点,例如可以是拐弯点和升高点等具有飞行路线关键特征的位置点,飞行高度可以是无人机在飞行路线中飞行的高度,可以是一个固定值,也可以是一个数值集合。
在本发明实施例中,无人机可以接收控制终端发送的用于生成无人机航线的路线特征点集和属性参数,路线特征点集可以是包含有生成无人机航线的特征位置点的集合,属性参数可以是生成无人机航线的飞行属性,例如飞行高度和飞行速度等,无人机获取的路线特征点集和属性参数还可以由用户直接输入到无人机中。可以理解的是,无人机接收到的路线特征点集和属性参数,可以是将路线特征点集和属性参数融合的形式,例如路线特征点集中路线规划关键点可以包括有各自的飞行高度,还可以是路线特征点集和属性参数单独存在,路线特征点集中的路线规划关键点中不包括有飞行高度,属性参数以单独数据报文的形式存在。
步骤102、根据所述路线特征点集、属性参数及预设路线生成策略生成飞行路线。
其中,预设路线生成策略可以用于生成无人机飞行路线的策略,可以提前预设在无人机内部,可以根据获取到的路线特征点集和属性参数生成无人机的航线,飞行路线可以是无人机根据接收到的路线特征点集和属性参数生成的飞行路线,第一飞行路线可以包括飞行点和对应飞行点的飞行高度。
具体的,可以在无人机内预设好路线生成策略,可以在获取到路线特征点集和属性参数时,可以将路线特征点集和属性参数作为路线生成策略的输入,可以将路线生成策略输出的结果作为飞行路线,飞行路线具体可以包括航点和对应航点的飞行参数,可以理解的是,路线生成策略在现有技术中有很多,在本申请中不做详细描述,例如,可以连对第一路线特征点集中的路线规划关键点进行拟合生成初始规划路线,再将属性参数作为对应的飞行参数以生成飞行路线。
步骤103、根据高程数据文件调整所述飞行路线,以生成航线。
其中,高程数据文件可以存储有当前无人机所处区域的所有地形和建筑物顶点沿铅锤垂线方向到水平面的距离,高程数据文件可以预先存储在无人机内部,无人机出厂时可以将全部的高程数据预存在无人机内,也可以是在无人机制定第一飞行路线前连接至控制终端,获取到并存储的无人机当前地理位置的高程数据,还可以是无人机在飞行过程中根据无人机位置下载的高程数据。
在本发明实施例中,可以根据高程数据对生成的飞行路线进行调整,例如,飞行路线中的飞行高度可以随着高程数据文件中的高程数据而自动更改,也可以根据高程数据文件确定出飞行路线中的最高的目标高程数据,可以基于目标 高程数据对飞行路线进行调整,可以将调整后的飞行路线作为无人机的航线。
本发明实施例的技术方案,通过获取路线特征点集和属性参数,根据路线特征点集、属性参数和预设的路线生成策略生成飞行路线,根据高程数据文件对飞行路线进行调整以生成航线,无人机的航线生成过程只需要获取路线特征点集和属性参数,无需获取完整的航线数据,减小了无人机与控制终端的通信数据量,航线生成过程参考高程数据,避免了无人机发生撞机事故,可有效提高无人机飞行的安全性。
实施例二
图2a是本发明实施例二提供的一种无人机的安全航线生成方法的流程图;本实施例是以上述实施例为基础进行具体化,本方法可以应用于无人机中,在本发明实施例中,参见图2a,本发明实施例提供的方法包括:
步骤201、获取用户输入的路线规划信息。
其中,路线规划信息可以是用户输入的用于生成无人机飞行路线的信息,例如可以包括用户在输入界面中的滑动轨迹信息和在输入界面中的点击位置信息,图2b是本发明实施例二提供的一种用户数据输入界面示意图,参见图2b,用户可以在输入界面中选择输入的飞行高度、飞行速度、最高飞行海拔和最低飞行海拔等参数,可以获取到用户在输入界面输入的信息作为属性参数,用户还可以在输入界面中点击位置生成飞行路线或者滑动生成飞行路线,可以获取点击位置信息或滑动轨迹信息作为路线规划信息。
具体的,可以获取到用户在界面中输入的飞行高度和飞行速度,可以将获取到的飞行高度作为飞行参数,可以获取用户在界面中用于生成飞行路线的点击位置信息和滑动轨迹信息,可以将获取到的点击位置信息和滑动轨迹信息作 为路线规划信息,可以理解的是,用户可以在控制无人机的控制终端中输入路线规划信息,可以由控制终端将路线规划信息发送到无人机,用户还可以直接将路线规划信息输入到无人机中,无人机可以设置有信息输入的界面。
步骤202、根据所述路线规划信息确定路线特征点集。
其中,路线特征点集可以是用于生成无人机飞行路线的特征点集合,可以根据用户输入的路线规划信息生成,路线规划信息可以包括点触规划信息和滑动轨迹规划信息,点触规划信息可以是用户通过在输入界面中输入的点触位置信息,可以是用于生成无人机飞行路线的信息,点触规划信息可以包括用户点触位置地图对应的经纬度信息,滑动轨迹规划信息可以是用户在输入界面中滑动操作对应的轨迹信息,可以包括滑动轨迹位置地图对应的经纬度信息。
在本发明实施中,可以根据获取到的点触规划信息和/或滑动轨迹规划信息确定路线特征点集,确定路线特征点集的方式可以具体为将点触规划信息中包括的位置点作为路线特征点集中的元素,还可以在滑动轨迹规划信息中根据滑动轨迹选取特征点,将特征点作为路线特征点集中的元素。
步骤203、获取路线特征点集和属性参数,其中,所述路线特征点集包含至少一个路线规划关键点,所述属性参数至少包含飞行高度。
在本发明实施例中,可以由无人机先接收控制终端发送的路线特征点集和属性参数,其中,路线特征点集可以是路线规划关键点的集合,用于生成无人机的飞行路线,属性参数可以包括飞行高度,属性参数可以是控制无人机飞行的参数,第一属性参数还可以包括飞行速度、最大飞行海拔和最低飞行海拔等。
步骤204、根据所述路线特征点集、属性参数及预设路线生成策略生成飞行路线。
具体的,可以将预设路线生成策略封装为一个模型,并可以将第一路线特征点集和第一属性参数作为模型的输入,将输出的结果组为飞行路线,其中,路线生成策略在现有技术中很多,在此不一一举例,例如,可以根据路线特征点集内的路线规划关键点进行拟合生成飞行路线。
步骤205、获取无人机的位置信息,并根据所述无人机的位置信息确定所述高程数据文件。
其中,位置信息可以包括无人机所处地理位置的信息,可以是城市、区域和/或经纬度等,高程数据文件可以是包含有无人机所处位置的地形高程数据的数据表。
具体的,可以获取无人机当前所处区域的信息,例如获取无人机所处城市的位置信息,可以根据获取到的位置信息查找对应区域的地形高程数据文件,可以将查找到的数据作为于无人机位置信息对应的高程数据文件。
步骤206、确定所述无人机所处的当前飞行点。
其中,当前飞行点可以是无人机沿飞行路线飞行时,无人机当前所处的位置,可以根据无人机所述位置的经纬度确定。
在本发明实施例中,可以获取无人机在飞行路线中当前所处位置的位置信息,具体可以包括无人机所处的经纬度数据,可以将确定后的位置信息确定无人机的飞行点,可以理解的是,还可以在飞行路线中将所述当前飞行点进行标记,可以将当前飞行点以改变颜色或者形式的方式展示在控制终端的显示界面。
步骤207、将所述飞行路线中所述当前飞行点之后的飞行路线作为待检测路线。
其中,待检测路线可以是飞行路线中无人机进行飞行航线,具体当前飞行 点后的飞行路线。
具体的,可以根据当前飞行点确定处于飞行路线中的目标位置,可以将目标位置之后的飞行路线作为无人机还未飞行的待检测路线,无人机可以对待检测路线位置处的高程数据文件进行检测,获取到对应的高程数据。
步骤208、在所述待检测路线中提取采样点。
其中,采样点可以是在待检测路线中按照固定距离获取到的位置点集合,可以是随机选取也可以是按阈值距离选取,选取采样点的方式在本发明实施例中不作限制,例如,可以在待检测路线中可以每隔30m获取一个采样点。在本发明实施例中,可以在待检测路线中随机或按照固定阈值距离提取其中的采样点。
步骤209、从所述高程数据文件中查找各个所述采样点对应的目标高程数据。
其中,目标高程数据可以是对应各采样点的高程数据,可以通过采样点的位置信息在高程数据文件中查询获得。
具体的,可以根据采样点的位置信息在高程数据文件中进行查询,可以将查询到的高程数据作为对应各采样点的目标高程数据。
步骤210、根据所述目标高程数据调整所述飞行路线。
具体的,可以将获取到的目标高程数据作为无人机在飞行路线中各采样点处的飞行高度,以实现飞行路线的调整。
进一步的,在上述发明实施例的基础上,根据所述目标高程数据调整所述飞行路线,包括:
当所述采样点的高度均大于或等于所述目标高程数据加上相对高度时,不调整所述飞行路线;当存在所述采样点的高度小于所述目标高程数据加上所述相对高度时,根据所述预设调整策略调整所述飞行路线。
其中,采样点的高度可以是无人机经过采样点时的飞行高度,相对高度可以是无人机的飞行高度与目标高程数据的水平高度之差,可有人为设定。,例如将相对高度设为5米,则相当于在目标高程数据的基础上再加上5米作为对应第一采样点处无人机的最低飞行高度,可以进一步防止无人机发生撞机事故。
具体的,可以将采样点的高度对比目标高程数据和相对高度的和,若高度大于或等于目标高程数据和相对高度的和,可以说明无人机在采样点处飞行时不会撞机到物体,若高度小于目标高程数据和相对高度的和时,可以说明无人机在采样点处飞行时,可以撞击到高层物体,可以根据调整策略对飞行路径进行调整,其中,预设调整策略可以是对无人机在飞行路线中的飞行高度进行调整的策略,例如,可以调整飞行高度为一个阈值高度,或者使用目标高程数据的平均值加上飞行高度作为飞行路线的飞行高度。
进一步的,在上述发明实施例的基础上,根据所述预设调整策略调整所述飞行路线,包括:
将小于所述目标高程数据加上所述相对高度的采样点确定为飞行障碍点;调整所述飞行路线在所述飞行障碍点处的高度。
其中,飞行障碍点可以是飞行路线中发生无人机撞击地形事故的位置点,飞行障碍点的飞行高度小于目标高程数据和相对高度之和。
在本发明实施例中,将待检测路线中飞行高度小于对应的目标高程数据和相对高度之和的采样点作为飞行障碍点,可以调整无人机在飞行障碍点处的飞 行高度,调整的方式可以包括在原有飞行高度的基础上加上目标高程数据作为新的飞行高度。
进一步的,在上述发明实施例的基础上,调整所述飞行路线在所述飞行障碍点处的高度,包括:
调整所述飞行路线在所述飞行障碍点处的飞行高度为超出所述目标高程数据所述相对高度。
在本发明实施例的技术方案,通过用户输入的路线规划信息,根据路线规划信息确定路线特征点集,根据路线特征点集和属性参数及预设生成策略确定飞行路线,获取无人机的位置信息,根据无人机的位置信息确定高程数据文件,根据无人机的当前飞行点获取当前飞行点之后的飞行路线作为待检测路线,在待检测路线中提取采样点,从高程数据文件中提取采样点对应的目标高程数据,根据目标高程数据对飞行路线进行调整,实现了无人机飞行路线的动态调整,根据高程数据确定飞行高度,躲避可能出现的高楼或者高山,提高无人机飞行的安全性。
实施例三
图3a是本发明实施例三提供的一种无人机的安全航线生成方法的流程图,本实施例可适用于控制无人机飞行的情况,该方法可以由无人机控制装置来执行,该装置可以采用硬件和/或软件的方式来实现,该装置可以集成在控制终端中,参见图3a,该方法包括:
步骤301、获取用户输入的路线规划信息;以及根据所述路线规划信息确定路线特征点集。
其中,路线特征点集可以是用于生成无人机飞行路线的特征点的集合,可 以根据输入的路线规划信息生成,点触规划信息可以是用户通过在控制终端输入界面中输入的点触位置信息,可以是用于生成无人机飞行路线的信息,点触规划信息可以包括用户点触位置地图对应的经纬度信息,滑动轨迹规划信息可以是用户在输入界面中滑动操作对应的轨迹信息,可以包括滑动轨迹位置地图对应的经纬度信息。
在本发明实施中,可以根据获取到的点触规划信息和/或滑动轨迹规划信息确定路线特征点集,确定路线特征路线的方式可以具体为将点触规划信息中包括的位置点作为路线特征点集中的点,还可以在滑动轨迹规划信息中根据滑动轨迹选取特征点,将特征点作为路线特征点集中的点。
步骤302、根据所述路线特征点集、属性参数及预设路线生成策略生成飞行路线。
具体的,可以将路线特征点集和属性参数发送给无人机,路线特征点集和属性参数可以单独存在,也可以以整体的形式存在,例如,可以将属性参数融合到路线特征点集中,路线特征点集中各点均存在对应的飞行高度,无人机可以根据控制终端发送的路线特征点集和属性参数生成用于飞行控制的飞行路线,飞行路线可以用于在控制终端处进行展示,以显示无人机的飞行情况。在飞行路线生成后,控制终端可以将生成的飞行路线进行展示,图3b是本发明实施例三提供的一种飞行路线展示效果图,参见图3b,可以将飞行路线41与地形42一同展示,使得用户直观了解第二飞行路线41的飞行高度与地形42的高程之间的关系。
步骤303、根据高程数据文件调整所述飞行路线,以生成航线。
具体的,控制终端可以接受到用户发送的地形跟随指令后,根据高程数据 文件中的高程数据对飞行路线进行调整,例如可以根据飞行路线所处位置的所有高程数据,并获取所有高程数据中的最大高程,可以将最大高程作为无人机在第一飞行路线中飞行的飞行高度以实现根据第一高程数据文件调整第一飞行路线。可以理解的是,本发明实施例中,控制终端接受到地形跟随指令后,可以结合高程数据文件一次性对飞行路线进行调整,也可以结合高程数据分段对飞行路线进行调整,也就是无人机可以边飞行边对飞行路线进行调整。
进一步的,在根据高程数据文件调整所述飞行路线以生成航线时,可以将小于所述目标高程数据加上所述相对高度的采样点确定为飞行障碍点;调整所述飞行路线在所述飞行障碍点处的高度。
具体的,将待检测路线中飞行高度小于对应的目标高程数据和相对高度之和的采样点作为飞行障碍点,可以调整飞行路线中飞行障碍点处的飞行高度以实现飞行路线的调整生成航线。还可以在控制终端中提示用户无人机飞行路线中存在飞行障碍,可以将飞行阻碍点所处区域的及附近区域进行特殊的高亮标记显示,图3c是本发明实施例三提供的一种飞行路线展示效果图,参见图3c,第二飞行路线中的未高亮部分43和高亮部分44,在未高亮部分由于无人机的飞行高度大于或等于对应地形的目标高程数据和相对高度之和,无人机不会发送撞击地形的问题,而在高亮部分44,无人机的飞行高度小于对应地形的目标高程数据和相对高度之和,无人机飞行时会撞击地形,因此以高亮标记的方式体现用户无人机存在飞行阻碍,其中,高亮标记可以是在展示内容中进行特殊展示,可以是用户及时发现被高亮标记的内容,高亮标记的方式可以包括涂色、改变表示图形和增加背景色等。
本发明实施例的技术方案,通过获取用户输入的路线规划信息确定路线特 征点集,根据路线特征点集、属性参数合预设路线生成策略生成飞行路线,根据高程数据文件调整飞行路线以生成航线,实现了无人机航线的安全制定,航线制定过程考虑了高程数据,避免无人机飞行过程遭遇障碍,降低无人机撞机事故的发生概率,可提高用户的体验程度。
实施例四
图4是本发明实施例四提供的一种无人机的安全航线生成装置的结构示意图;本发明实施例所提供的无人机的安全航线生成装置可执行本发明任意实施例所提供的无人机的安全航线生成方法,具备执行方法相应的功能模块和有益效果,该装置可以由软和/或硬件实现,可以集成在无人机和/或控制终端中,该装置具体包括:参数获取模块501、飞行路线模块502和航线生成模块503。
其中,参数获取模块501,用于获取路线特征点集和属性参数,所述路线特征点集包含至少一个路线规划关键点,所述属性参数至少包含飞行高度。
飞行路线模块502,用于根据所述路线特征点集、所述属性参数及预设路线生成策略生成飞行路线。
航线生成模块503,用于根据高程数据文件调整所述飞行路线,以生成航线。
本发明实施例的技术方案,本发明实施例的技术方案,通过参数获取模块获取路线特征点集和属性参数,飞行路线模块根据路线特征点集、属性参数和预设的路线生成策略生成飞行路线,航线生成模块根据高程数据文件对飞行路线进行调整以生成航线,无人机的航线生成过程只需要获取路线特征点集和属性参数,无需获取完整的航线数据,减小了无人机与控制终端的通信数据量,航线生成过程参考高程数据,避免了无人机发生撞机事故,可有效提高无人机 飞行的安全性。
进一步的,在上述发明实施例的基础上,还包括:
预处理模块,用于获取用户输入的路线规划信息;以及根据所述路线规划信息确定路线特征点集。
进一步的,在上述发明实施例的基础上,还包括:
高程文件确定模块,用于获取无人机的位置信息,并根据所述无人机的位置信息确定所述高程数据文件。
进一步的,在上述发明实施例的基础上,航线生成模块包括:
飞行点单元,用于确定所述无人机所处的当前飞行点。
待测路线单元,用于将所述飞行路线中所述当前飞行点之后的飞行路线作为待检测路线。
采样点单元,用于在所述待检测路线中提取采样点。
路线调整单元,用于从所述高程数据文件中查找各个所述采样点对应的目标高程数据;以及根据所述目标高程数据调整所述飞行路线。
进一步的,在上述发明实施例的基础上,路线调整单元包括:
非调整子单元,用于当所述采样点的高度均大于或等于所述目标高程数据加上相对高度时,不调整所述飞行路线。
调整子单元,用于当存在所述采样点的高度小于所述目标高程数据加上所述相对高度时,根据所述预设调整策略调整所述飞行路线。
进一步的,在上述发明实施例的基础上,调整子单元具体用于:
将小于所述目标高程数据加上所述相对高度的采样点确定为飞行障碍点;
调整所述飞行路线在所述飞行障碍点处的高度。
进一步的,在上述发明实施例的基础上,调整子单元中的调整所述飞行路线在所述飞行障碍点处的高度,具体为:
调整所述飞行路线在所述飞行障碍点处的飞行高度为超出所述目标高程数据所述相对高度。
实施例五
图5是本发明实施例五提供的一种无人机的结构示意图,如图5所示,该无人机包括处理器70、存储器71、输入装置72和输出装置73;无人机中处理器70的数量可以是一个或多个,图5中以一个处理器70为例;设无人机中的处理器70、存储器71、输入装置72和输出装置73可以通过总线或其他方式连接,图5中以通过总线连接为例。
存储器71作为一种计算机可读存储介质,可用于存储软件程序、计算机可执行程序以及模块,如本发明实施例中的无人机控制方法对应的程序模块(例如,无人机控制装置中的参数获取模块501、路线生成模块502和飞行控制模块503)。处理器70通过运行存储在存储器71中的软件程序、指令以及模块,从而执行无人机的各种功能应用以及数据处理,即实现上述的无人机控制方法。
存储器71可主要包括存储程序区和存储数据区,其中,存储程序区可存储操作系统、至少一个功能所需的应用程序;存储数据区可存储根据终端的使用所创建的数据等。此外,存储器71可以包括高速随机存取存储器,还可以包括非易失性存储器,例如至少一个磁盘存储器件、闪存器件、或其他非易失性固态存储器件。在一些实例中,存储器71可进一步包括相对于处理器70远程设置的存储器,这些远程存储器可以通过网络连接至无人机。上述网络的实例包 括但不限于互联网、企业内部网、局域网、移动通信网及其组合。
输入装置72可用于接收用户发送的控制信息,以及产生与无人机的用户设置以及功能控制有关的信号输入。输出装置73可以用于输出无人机产生的信号,可以包括飞行状态反馈接口和/或显示屏等。
实施例六
图6是本发明实施例六提供的一种控制终端的结构示意图,如图8所示,该控制终端包括处理器80、存储器81、输入装置82和输出装置83;控制终端中处理器80的数量可以是一个或多个,图6中以一个处理器80为例;设控制终端中的处理器80、存储器81、输入装置82和输出装置83可以通过总线或其他方式连接,图6中以通过总线连接为例。
存储器81作为一种计算机可读存储介质,可用于存储软件程序、计算机可执行程序以及模块,如本发明实施例中的控制终端控制方法对应的程序模块(例如,控制终端控制装置中的参数获取模块501、路线生成模块502和飞行控制模块503)。处理器80通过运行存储在存储器81中的软件程序、指令以及模块,从而执行控制终端的各种功能应用以及数据处理,即实现上述的控制终端控制方法。
存储器81可主要包括存储程序区和存储数据区,其中,存储程序区可存储操作系统、至少一个功能所需的应用程序;存储数据区可存储根据终端的使用所创建的数据等。此外,存储器81可以包括高速随机存取存储器,还可以包括非易失性存储器,例如至少一个磁盘存储器件、闪存器件、或其他非易失性固态存储器件。在一些实例中,存储器81可进一步包括相对于处理器80远程设置的存储器,这些远程存储器可以通过网络连接至控制终端。上述网络的实例 包括但不限于互联网、企业内部网、局域网、移动通信网及其组合。
输入装置82可用于接收输入的数字或字符信息,以及产生与控制终端的用户设置以及功能控制有关的键信号输入。输出装置83可包括显示屏等显示设备。
值得注意的是,上述无人机的安全航线生成装置的实施例中,所包括的各个单元和模块只是按照功能逻辑进行划分的,但并不局限于上述的划分,只要能够实现相应的功能即可;另外,各功能单元的具体名称也只是为了便于相互区分,并不用于限制本发明的保护范围。
注意,上述仅为本发明的较佳实施例及所运用技术原理。本领域技术人员会理解,本发明不限于这里所述的特定实施例,对本领域技术人员来说能够进行各种明显的变化、重新调整和替代而不会脱离本发明的保护范围。因此,虽然通过以上实施例对本发明进行了较为详细的说明,但是本发明不仅仅限于以上实施例,在不脱离本发明构思的情况下,还可以包括更多其他等效实施例,而本发明的范围由所附的权利要求范围决定。

Claims (10)

  1. 一种无人机的安全航线生成方法,其特征在于,包括:
    获取路线特征点集和属性参数,其中,所述路线特征点集包含至少一个路线规划关键点,所述属性参数至少包含飞行高度;
    根据所述路线特征点集、属性参数及预设路线生成策略生成飞行路线;
    根据高程数据文件调整所述飞行路线,以生成航线。
  2. 根据权利要求1所述的方法,其特征在于,包括:
    获取用户输入的路线规划信息;以及
    根据所述路线规划信息确定路线特征点集。
  3. 根据权利要求2所述的方法,其特征在于,还包括:
    获取无人机的位置信息,并根据所述无人机的位置信息确定所述高程数据文件。
  4. 根据权利要求3所述的方法,其特征在于,所述根据所述高程数据文件调整所述飞行路线,以生成所述航线,包括:
    确定所述无人机所处的当前飞行点;
    将所述飞行路线中所述当前飞行点之后的飞行路线作为待检测路线;
    在所述待检测路线中提取采样点;
    从所述高程数据文件中查找各个所述采样点对应的目标高程数据;以及
    根据所述目标高程数据调整所述飞行路线。
  5. 根据权利要求4所述的方法,其特征在于,所述根据所述目标高程数据调整所述飞行路线,包括:
    当所述采样点的高度均大于或等于所述目标高程数据加上相对高度时,不调整所述飞行路线;
    当存在所述采样点的高度小于所述目标高程数据加上所述相对高度时,根据所述预设调整策略调整所述飞行路线。
  6. 根据权利要求5所述的方法,其特征在于,所述根据所述预设调整策略调整所述飞行路线,包括:
    将小于所述目标高程数据加上所述相对高度的采样点确定为飞行障碍点;
    调整所述飞行路线在所述飞行障碍点处的高度。
  7. 根据权利要求6所述的方法,其特征在于,所述调整所述飞行路线在所述飞行障碍点处的高度,包括:
    调整所述飞行路线在所述飞行障碍点处的飞行高度为超出所述目标高程数据所述相对高度。
  8. 一种无人机的安全航线生成装置,其特征在于,包括:
    参数获取模块,用于获取路线特征点集和属性参数,所述路线特征点集包含至少一个路线规划关键点,所述属性参数至少包含飞行高度;
    飞行路线模块,用于根据所述路线特征点集、所述属性参数及预设路线生成策略生成飞行路线;
    航线生成模块,用于根据高程数据文件调整所述飞行路线,以生成航线。
  9. 一种无人机,其特征在于,所述无人机包括:
    一个或多个处理器;
    存储器,用于存储一个或多个程序,
    当所述一个或多个程序被所述一个或多个处理器执行,使得所述一个或多个处理器实现如权利要求1-7中任一项所述的无人机的安全航线生成方法。
  10. 一种控制终端,其特征在于,所述控制终端包括:
    一个或多个处理器;
    存储器,用于存储一个或多个程序,
    当所述一个或多个程序被所述一个或多个处理器执行,使得所述一个或多个处理器实现如权利要求1-7中任一项所述的无人机的安全航线生成方法。
PCT/CN2020/122478 2019-10-16 2020-10-21 无人机的安全航线生成方法、装置、控制终端和无人机 WO2021073654A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US17/659,082 US20220254260A1 (en) 2019-10-16 2022-04-13 Method and apparatus for generating safe flight path for unmanned aerial vehicle, control terminal and unmanned aerial vehicle

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201910982607.7 2019-10-16
CN201910982607.7A CN110750106B (zh) 2019-10-16 2019-10-16 无人机的安全航线生成方法、装置、控制终端和无人机

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US17/659,082 Continuation US20220254260A1 (en) 2019-10-16 2022-04-13 Method and apparatus for generating safe flight path for unmanned aerial vehicle, control terminal and unmanned aerial vehicle

Publications (1)

Publication Number Publication Date
WO2021073654A1 true WO2021073654A1 (zh) 2021-04-22

Family

ID=69278481

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/122478 WO2021073654A1 (zh) 2019-10-16 2020-10-21 无人机的安全航线生成方法、装置、控制终端和无人机

Country Status (3)

Country Link
US (1) US20220254260A1 (zh)
CN (1) CN110750106B (zh)
WO (1) WO2021073654A1 (zh)

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110750106B (zh) * 2019-10-16 2023-06-02 深圳市道通智能航空技术股份有限公司 无人机的安全航线生成方法、装置、控制终端和无人机
WO2021163881A1 (zh) * 2020-02-18 2021-08-26 深圳市大疆创新科技有限公司 数据处理方法与系统、设备与可读存储介质
WO2021195875A1 (zh) * 2020-03-30 2021-10-07 深圳市大疆创新科技有限公司 飞行控制方法、装置、设备及存储介质
CN111552318B (zh) * 2020-05-15 2023-01-10 航迅信息技术有限公司 一种无人机最低安全高度飞行的控制方法
CN113874804A (zh) * 2020-05-26 2021-12-31 深圳市大疆创新科技有限公司 无人飞行器的限高方法、装置、无人飞行器及存储介质
CN112162565B (zh) * 2020-08-21 2023-05-30 云南电网有限责任公司昆明供电局 一种基于多机协同作业的不间断自主杆塔巡检方法
WO2022061491A1 (zh) * 2020-09-22 2022-03-31 深圳市大疆创新科技有限公司 飞行航线生成方法、装置、无人机系统及存储介质
CN112649005B (zh) * 2020-12-20 2023-08-22 中国人民解放军总参谋部第六十研究所 一种基于dem的无人直升机飞行航线诊断方法
CN113325135A (zh) * 2021-05-27 2021-08-31 深圳市中博科创信息技术有限公司 无人机路径规划方法、装置、计算机设备
CN113253760B (zh) * 2021-06-08 2021-11-09 北京远度互联科技有限公司 路径规划方法、装置、可移动载具及存储介质
CN113485438B (zh) * 2021-07-30 2022-03-18 南京石知韵智能科技有限公司 一种无人机空间监测路径智能规划方法及系统
CN114167894A (zh) * 2021-12-07 2022-03-11 深圳市城市公共安全技术研究院有限公司 一种无人机航线规划方法、装置及计算机设备
CN115297303B (zh) * 2022-09-29 2022-12-27 国网浙江省电力有限公司 适用于电网输变电设备的图像数据采集处理方法及装置

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6377875B1 (en) * 1998-10-29 2002-04-23 Daimlerchrysler Ag Method for remote-controlling an unmanned aerial vehicle
CN106716285A (zh) * 2016-06-30 2017-05-24 深圳市大疆创新科技有限公司 农业无人机作业方法、系统及农业无人机
CN108445905A (zh) * 2018-03-30 2018-08-24 合肥赛为智能有限公司 一种无人机智能化避障调控系统
CN109782804A (zh) * 2019-01-04 2019-05-21 哈瓦国际航空技术(深圳)有限公司 根据地理高程调整航线的方法、装置、设备和存储介质
CN109901617A (zh) * 2019-03-29 2019-06-18 西安联飞智能装备研究院有限责任公司 一种无人机飞行方法、装置及无人机
CN110750106A (zh) * 2019-10-16 2020-02-04 深圳市道通智能航空技术有限公司 无人机的安全航线生成方法、装置、控制终端和无人机

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11157021B2 (en) * 2014-10-17 2021-10-26 Tyco Fire & Security Gmbh Drone tours in security systems
US10008123B2 (en) * 2015-10-20 2018-06-26 Skycatch, Inc. Generating a mission plan for capturing aerial images with an unmanned aerial vehicle
WO2018089268A1 (en) * 2016-11-04 2018-05-17 Loveland Innovations, LLC Systems and methods for autonomous imaging and structural analysis
US11017679B2 (en) * 2017-01-13 2021-05-25 Skydio, Inc. Unmanned aerial vehicle visual point cloud navigation
CN109035869A (zh) * 2017-07-26 2018-12-18 广州极飞科技有限公司 无人机航线的生成方法和装置
JP6951013B2 (ja) * 2017-08-28 2021-10-20 Necソリューションイノベータ株式会社 無人航空機管理装置、無人航空機管理方法、及びプログラム
CN108701373B (zh) * 2017-11-07 2022-05-17 深圳市大疆创新科技有限公司 基于无人机航拍的三维重建方法、系统及装置
CA3082511A1 (en) * 2017-11-13 2019-05-16 Geomni, Inc. System and method for mission planning, flight automation, and capturing of high-resolution images by unmanned aircraft
CN108351652A (zh) * 2017-12-26 2018-07-31 深圳市道通智能航空技术有限公司 无人飞行器路径规划方法、装置和飞行管理方法、装置
CN108332753B (zh) * 2018-01-30 2020-09-08 北京航空航天大学 一种无人机电力巡检路径规划方法
CN109375636A (zh) * 2018-12-13 2019-02-22 广州极飞科技有限公司 无人机航线的生成方法、装置、无人机和存储介质
CN109445463B (zh) * 2018-12-21 2021-07-27 山东理工大学 一种无人机动态航线规划方法
CN110162090A (zh) * 2019-06-07 2019-08-23 河南华翼智鹰无人机科技有限公司 一种基于 gis 数据的无人机航线规划系统和方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6377875B1 (en) * 1998-10-29 2002-04-23 Daimlerchrysler Ag Method for remote-controlling an unmanned aerial vehicle
CN106716285A (zh) * 2016-06-30 2017-05-24 深圳市大疆创新科技有限公司 农业无人机作业方法、系统及农业无人机
CN108445905A (zh) * 2018-03-30 2018-08-24 合肥赛为智能有限公司 一种无人机智能化避障调控系统
CN109782804A (zh) * 2019-01-04 2019-05-21 哈瓦国际航空技术(深圳)有限公司 根据地理高程调整航线的方法、装置、设备和存储介质
CN109901617A (zh) * 2019-03-29 2019-06-18 西安联飞智能装备研究院有限责任公司 一种无人机飞行方法、装置及无人机
CN110750106A (zh) * 2019-10-16 2020-02-04 深圳市道通智能航空技术有限公司 无人机的安全航线生成方法、装置、控制终端和无人机

Also Published As

Publication number Publication date
CN110750106A (zh) 2020-02-04
CN110750106B (zh) 2023-06-02
US20220254260A1 (en) 2022-08-11

Similar Documents

Publication Publication Date Title
WO2021073654A1 (zh) 无人机的安全航线生成方法、装置、控制终端和无人机
CN106970648B (zh) 城市低空环境下无人机多目标路径规划联合搜索方法
US9852639B2 (en) Generating a mission plan for capturing aerial images with an unmanned aerial vehicle
KR102191445B1 (ko) 필수 이미지 및 위치 캡처 시스템 및 방법
EP3531222A1 (en) Path planning method and device for unmanned aerial vehicle, and flight management method and device
CN109709976B (zh) 一种可飞行区域确定方法、装置、无人机及存储介质
WO2018006454A1 (zh) 一种无人机的飞行路径规划、控制方法及系统
WO2018095407A1 (zh) 控制无人机飞行的方法及装置
CN108594843A (zh) 无人机自主飞行方法、装置及无人机
US20160335898A1 (en) Automated drone management system
US20190041233A1 (en) Optimized flight plan ensuring an available landing location within glide range
CN106373433A (zh) 一种飞行器的飞行路线设置方法及装置
CN106842226A (zh) 基于激光雷达的定位系统及方法
CN110568862A (zh) 一种无人机飞行路径规划方法、装置及相关设备
CN106371452A (zh) 一种飞行器限飞区域信息的获取、共享方法、装置及系统
CN111665508B (zh) 直升机载地形跟随与回避可视化导航系统以及导航方法
JP2007304976A5 (zh)
US20220234740A1 (en) Flight information synchronization using ad hoc networking
CN110850894A (zh) 一种无人机自动返航的方法、装置、无人机及存储介质
WO2018157309A1 (zh) 航线修正的方法、设备和无人机
WO2019023894A1 (zh) 确定无人机飞行策略的方法、无人机和地面设备
CN106199647A (zh) 一种推测未知无人机目标位置的方法
CN105242248B (zh) 一种基于测控设备的雷达挂飞试验位置参数自动装订方法
WO2018053742A1 (zh) 一种航点编辑方法、装置及地面飞行控制台
US10802685B2 (en) Vehicle marking in vehicle management systems

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20876000

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20876000

Country of ref document: EP

Kind code of ref document: A1