WO2021073331A1 - 基于终端设备的变焦虚化图像获取方法和装置 - Google Patents

基于终端设备的变焦虚化图像获取方法和装置 Download PDF

Info

Publication number
WO2021073331A1
WO2021073331A1 PCT/CN2020/115159 CN2020115159W WO2021073331A1 WO 2021073331 A1 WO2021073331 A1 WO 2021073331A1 CN 2020115159 W CN2020115159 W CN 2020115159W WO 2021073331 A1 WO2021073331 A1 WO 2021073331A1
Authority
WO
WIPO (PCT)
Prior art keywords
camera
zoom
main
image
photographing mode
Prior art date
Application number
PCT/CN2020/115159
Other languages
English (en)
French (fr)
Inventor
黄杰文
Original Assignee
Oppo广东移动通信有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Oppo广东移动通信有限公司 filed Critical Oppo广东移动通信有限公司
Publication of WO2021073331A1 publication Critical patent/WO2021073331A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N23/00Cameras or camera modules comprising electronic image sensors; Control thereof
    • H04N23/10Cameras or camera modules comprising electronic image sensors; Control thereof for generating image signals from different wavelengths
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N23/00Cameras or camera modules comprising electronic image sensors; Control thereof
    • H04N23/60Control of cameras or camera modules
    • H04N23/67Focus control based on electronic image sensor signals

Definitions

  • This application relates to the field of image processing technology, and in particular to a method and device for acquiring a zoom blur image based on a terminal device.
  • the camera functions of terminal devices are becoming more and more diversified.
  • the use of dual cameras to achieve zoom photography in portrait mode can meet the user's portrait photography needs.
  • This application proposes a method and device for acquiring a zoom blur image based on a terminal device to solve the technical problem that in the prior art, multi-camera photography cannot achieve flexible zoom.
  • An embodiment of the present application provides a method for acquiring a zoom blur image based on a terminal device.
  • the terminal device includes a main camera and at least one secondary camera, wherein the equivalent zoom factor of the main camera is 1, and the The method includes the following steps: acquiring a zoom camera instruction carrying a zoom factor; judging the relationship between the zoom factor and the equivalent zoom factor of the main camera and the at least one secondary camera; according to the size relationship, in the main The camera and the at least one secondary camera determine the zoom main camera and the zoom secondary camera, and determine the photographing mode of the zoom main camera in the preset photographing mode; control the zoom main camera to take the main image according to the photographing mode, and Control the zoom sub-camera to take a sub-image; crop the main image according to the zoom factor to obtain a zoomed main image, and generate a zoomed blurred image according to the background blur of the zoomed main image by the sub-image.
  • the terminal device includes a main camera and at least one secondary camera, wherein the equivalent zoom factor of the main camera is 1, so
  • the device includes: an acquiring module, configured to acquire a zoom photographing instruction carrying a zoom factor; and a determining module, configured to determine the magnitude relationship between the zoom factor and the equivalent zoom factor of the main camera and the at least one secondary camera;
  • a determining module configured to determine a zoom main camera and a zoom sub-camera among the main camera and the at least one sub-camera according to the size relationship, and determine a photographing mode of the zoom main camera in a preset photographing mode;
  • Module used to control the zoom main camera to take main images according to the photographing mode, and control the zoom sub-camera to take sub-images; processing module, used to crop the main image according to the zoom factor to obtain the main zoom And generate a zoomed blurred image according to the background blurred of the zoomed main image by the secondary image.
  • Another embodiment of the present application provides a terminal device, including a main camera and at least one secondary camera, wherein the equivalent zoom factor of the main camera is 1, and the memory, the processor, and the storage device can be stored on the memory.
  • a computer program running on the processor, the processor is connected to the main camera and at least one secondary camera, and when the processor executes the computer program, the terminal device-based zoom as described in the foregoing embodiment is implemented The blur image acquisition method.
  • the terminal device includes a main camera and at least one secondary camera, wherein the equivalent zoom factor of the main camera is 1, and the method includes the following steps: obtaining a zoom photographing instruction carrying the zoom factor; The size relationship between the main camera and the equivalent zoom factor of the at least one secondary camera; according to the size relationship, the zoom primary camera and the zoom secondary camera are determined among the primary camera and the at least one secondary camera, and the preset In the photo mode, determine the photo mode of the zoom main camera; control the zoom main camera to take the main image according to the photo mode, and control the zoom sub camera to take the secondary image; crop the main image according to the zoom factor To obtain a zoomed main image, and generate a zoomed blurred image according to the background blurred of the zoomed main image by the secondary image.
  • an embodiment provides a computer-readable storage medium on which a computer program is stored.
  • the terminal device-based zoom blur image acquisition method described in the foregoing embodiment is implemented.
  • the terminal device includes a main camera and at least one secondary camera, wherein the equivalent zoom factor of the main camera is 1, and the method includes the following steps: obtaining a zoom photographing instruction carrying the zoom factor; The size relationship between the main camera and the equivalent zoom factor of the at least one secondary camera; according to the size relationship, the zoom primary camera and the zoom secondary camera are determined among the primary camera and the at least one secondary camera, and the preset In the photo mode, determine the photo mode of the zoom main camera; control the zoom main camera to take the main image according to the photo mode, and control the zoom sub camera to take the secondary image; crop the main image according to the zoom factor To obtain a zoomed main image, and generate a zoomed blurred image according to the background blurred of the zoomed main image by the secondary image.
  • FIG. 1 is a schematic structural diagram of an image sensor provided by an embodiment of the application.
  • FIG. 2 is a schematic flowchart of a method for acquiring a zoom blur image based on a terminal device according to an embodiment of the application;
  • Figure 3-1 is a schematic diagram of a photographing interface according to an embodiment of the present application.
  • Figure 3-2 is a schematic diagram of a photographing interface according to another embodiment of the present application.
  • Fig. 4 is a schematic diagram of the angle of view change when the zoom factor changes according to an embodiment of the present application
  • Fig. 5 is a schematic diagram of a processing flow in the preview and photographing stages according to an embodiment of the present application
  • FIG. 6 is a schematic flowchart of another method for acquiring a zoom blur image based on a terminal device according to an embodiment of the application.
  • FIG. 7 is a schematic structural diagram of a device for acquiring a zoom blur image based on a terminal device according to an embodiment of the application.
  • the terminal device includes a main camera and at least one secondary camera, where , The equivalent zoom factor of the main camera is 1, and the method for acquiring a zoom blur image based on the terminal device includes the following steps: acquiring a zoom camera instruction carrying the zoom factor; judging the zoom factor and the equivalent zoom factor of the main camera and at least one secondary camera According to the size relationship, determine the zoom main camera and the zoom sub-camera in the main camera and at least one sub-camera, and determine the camera mode of the zoom main camera in the preset camera mode; control the zoom main camera to take the main image according to the camera mode , And control the zoom sub-camera to take the sub-image; crop the main image according to the zoom factor to obtain the zoom main image, and generate the zoom blur image according to the background blur of the sub-image to the zoom main image.
  • the preset photographing mode includes: a first photographing mode and a second photographing mode, wherein the main image taken in the first photographing mode is composed of a plurality of combined pixel units, each The combined pixel unit includes a plurality of photosensitive pixel units, and the photosensitive pixel value of each combined pixel unit is obtained according to the sum of the photosensitive pixel values of the plurality of photosensitive pixel units; The photosensitive pixel value of each combined pixel unit in the main image is obtained by interpolation.
  • At least one secondary camera includes a wide-angle camera, where the equivalent zoom factor of the wide-angle camera is p, where p is less than 1.
  • Determining the zoom main camera and zoom sub-camera and the photo mode of the zoom main camera in the preset photo mode including: judging whether the zoom factor is greater than or equal to 1 and less than the preset n; if the zoom factor is greater than or equal to 1 and less than n, then confirm The main camera is the zoom main camera, and the wide-angle camera is determined to be the zoom sub-camera; the photographing mode of the main camera is determined to be the first photographing mode.
  • the at least one secondary camera includes a telephoto camera, and the equivalent zoom factor of the telephoto camera is q, where q is greater than n.
  • the device's zoom blur image acquisition method further includes: if the zoom factor is greater than or equal to n, judging whether the zoom factor is less than q; if the zoom factor is less than q, determining that the main camera is a zoom main camera and the wide-angle camera is a zoom secondary camera; It is determined that the photographing mode of the main camera is the second photographing mode.
  • the terminal device-based zoom blur image acquisition method before determining that the photographing mode of the main camera is the second photographing mode, the terminal device-based zoom blur image acquisition method further includes: acquiring the current environment brightness value; when the current environment brightness value meets a preset condition , It is determined that the photographing mode of the main camera is the second photographing mode.
  • the method for acquiring a zoomed blurred image based on the terminal device further includes: if the current environment brightness value is less than a preset threshold, determining that the photographing mode of the main camera is the first photographing mode .
  • the terminal device-based zoom blur image acquisition method further includes: if the zoom factor is greater than or equal to q, determining whether the zoom factor is less than a preset zoom factor; If the multiple is less than the preset zoom multiple, the telephoto camera is determined to be the main zoom camera, and the main camera is determined to be the secondary zoom camera; the photographing mode of the telephoto camera is determined to be the first photographing mode.
  • the terminal device-based zoom blur image acquisition method before determining that the photographing mode of the telephoto camera is the first photographing mode, further includes: acquiring the current environment brightness value; when the current environment brightness value is greater than or equal to a preset When the threshold is used, it is determined that the photographing mode of the telephoto camera is the first photographing mode.
  • the terminal device-based zoom blur image acquisition method further includes: if the zoom factor is greater than or equal to the preset zoom factor, determining that the telephoto camera is the main zoom factor. Camera and zoom sub-camera; determine that the photographing mode of the telephoto camera is the second photographing mode.
  • cropping the main image according to the zoom factor to obtain the zoomed main image, and generating the zoomed blurred image according to the background blur of the zoomed main image by the secondary image includes: recognizing that the area where the subject in the main image is located is Zoom main image; calculate the depth information of the area where the non-photographed subject is located in the zoom main image; blur the area where the non-photographed subject in the zoom main image is based on the depth information to generate the initial zoom blur image; crop the initial zoom blur according to the zoom factor The image generates a zoom blur image.
  • controlling the zoom main camera to take the main image according to the photographing mode includes: controlling the zoom main camera to take continuous multi-frame main images according to the photographing mode; before cropping the main image according to the zoom factor to obtain the zoomed main image,
  • the method for acquiring a zoom blur image based on a terminal device further includes: synthesizing multiple frames of the main image to generate a frame of the main image.
  • the terminal device-based zoom blur image acquisition method before cropping the main image according to the zoom factor to obtain the zoomed main image, includes: performing interpolation calculation on the main image according to a preset algorithm to obtain the calculated main image .
  • controlling the secondary zoom camera to capture the secondary image includes: controlling the secondary zoom camera to capture the secondary image according to the photographing mode.
  • the terminal device includes a main camera and at least one secondary camera, where the equivalent zoom factor of the main camera is 1, and the zoom virtual image based on the terminal device
  • the image acquisition device includes: an acquisition module 100, a judgment module 200, a determination module 300, a photographing module 400, and a processing module 500.
  • the obtaining module 100 is used to obtain a zoom camera instruction carrying a zoom factor.
  • the judging module 200 is used for judging the relationship between the zoom factor and the equivalent zoom factor of the main camera and at least one secondary camera.
  • the determining module 300 is configured to determine the zoom main camera and the zoom sub-camera among the main camera and the at least one sub-camera according to the size relationship, and determine the photographing mode of the zoom main camera in the preset photographing mode.
  • the photographing module 400 is used to control the zoom main camera to take the main image according to the photographing mode, and control the zoom sub-camera to take the secondary image.
  • the processing module 500 is configured to crop the main image according to the zoom factor to obtain the zoomed main image, and generate the zoomed blurred image according to the background blur of the zoomed main image by the secondary image.
  • the preset photographing mode includes: a first photographing mode and a second photographing mode, wherein the main image taken in the first photographing mode is composed of a plurality of combined pixel units, each The combined pixel unit includes a plurality of photosensitive pixel units, and the photosensitive pixel value of each combined pixel unit is obtained according to the sum of the photosensitive pixel values of the plurality of photosensitive pixel units; The photosensitive pixel value of each combined pixel unit in the main image is obtained by interpolation.
  • At least one secondary camera includes a wide-angle camera, where the equivalent zoom factor of the wide-angle camera is p, where p is less than 1, and the determining module 300 is specifically configured to: determine whether the zoom factor is greater than If the zoom factor is equal to 1 and less than the preset n; if the zoom factor is greater than or equal to 1 and less than n, the main camera is determined to be the zoom main camera, and the wide-angle camera is determined to be the zoom secondary camera; the camera mode of the main camera is determined to be the first camera mode.
  • the determining module 300 is specifically configured to: if the zoom factor is greater than or equal to n, determine whether the zoom factor is less than q; if the zoom factor is less than q, determine that the main camera is a zoom main camera, and Determine that the wide-angle camera is the secondary zoom camera; determine that the photographing mode of the main camera is the second photographing mode.
  • the determining module 300 is further configured to: before determining that the photographing mode of the main camera is the second photographing mode, obtain the current environment brightness value, and determine that the current environment brightness value is greater than or equal to a preset threshold.
  • the terminal device of the embodiment of the present application includes a main camera and at least one secondary camera, where the equivalent zoom factor of the main camera is 1, a memory, a processor, and a computer program stored in the memory and running on the processor. Connected to the main camera and at least one secondary camera, when the processor executes the computer program, the terminal device-based zoom blur image acquisition method in any one of the above embodiments is implemented.
  • the non-transitory computer-readable storage medium of the embodiment of the present application has a computer program stored thereon, and when the computer program is executed by a processor, it implements the terminal device-based zoom blur image acquisition method in any of the above embodiments.
  • the terminal device of the embodiment of the present application includes a main camera and at least one secondary camera, wherein the equivalent zoom factor of the primary camera is 1, and the equivalent zoom factor of the at least one secondary camera may be less than 1, or greater than 1. Or any zoom factor that is not equal to 1.
  • the dual cameras of the terminal device are fixed-focus cameras, which cannot support flexible zooming for taking pictures in portrait mode. This results in that the size of the subject can only be adjusted by the movement of the photographer during the portrait mode. Therefore, there is an urgent need A photography method that flexibly meets the zoom requirements when taking pictures with multiple cameras.
  • the most commonly used method in related technologies is to arrange two cameras with different focal lengths. For example, using wide-angle + main camera to achieve a 1x dual-camera blur effect, and a 1x blur effect Perform digital zooming to get 1x ⁇ 2x zoom effect. For example, use wide-angle + main camera to achieve 1x dual-camera blur effect, use main camera + telephoto to achieve 2x dual-camera blur effect, and 1x blur effect between 1x and 2x The effect is realized by digital amplification.
  • the zoom factor is realized by a fully digital zoom method, which makes it difficult for the details to reach the light level and affects the quality of the image.
  • the zoom factor is completely limited by the camera. For example, if the fixed focal length of the current camera is 1x and 2x respectively, it is obvious that the zoom range that the dual camera can shoot is limited to 1-2 times.
  • this application proposes a zoom image acquisition method.
  • it can meet the requirements of zoom multiples in various scenarios, and on the other hand, it can ensure the sharpness of the zoomed image.
  • the optical zoom factor is usually the zoom factor achieved by moving the front and rear positions of the lens.
  • the cameras in this embodiment are fixed-focus cameras. Therefore, based on the size of the object imaged by each camera, the image of the object is calculated According to the zoom factor, the equivalent zoom factor of each camera is determined.
  • the first photographing mode and the second photographing mode respectively refer to photographing modes of different resolutions.
  • the composition of the pixel unit of the image sensor is changed to make the photographing
  • the resolution of the image is higher than the resolution of the image directly output by the image sensor in the prior art
  • the resolution of the second photographing mode is higher than the imaging resolution of the first photographing mode.
  • each photosensitive pixel in the first photographing mode may correspond to a combined pixel unit, that is, the main image taken in the first photographing mode is composed of It is composed of a plurality of combined pixel units, and each combined pixel unit includes a plurality of photosensitive pixel units.
  • the second photographing mode may be calculated by interpolation of the pixel points in the first photographing mode, that is, the main image photographed in the second photographing mode is obtained by interpolation of each combined pixel unit in the main image in the first photographing mode.
  • the realization of the combined pixel unit in the first photographing mode and the second photographing mode can be realized by installing the corresponding image sensor.
  • the image sensor of the embodiment of the present application may have a four-in-one structure, that is, as shown in part (a) of FIG. 1, each combined pixel unit 1 corresponds to a filter of the same color, and the first photographing mode is as As shown in part (b) of Figure 1, the sum of the four photosensitive pixels 11 in each combined pixel unit 1 can be used as the photosensitive pixel value of the combined pixel unit 1.
  • the four pixels can also be One half of the sum of the unit values is used as the light-sensitive pixel value of the combined pixel unit. Therefore, the brightness of the main image obtained in the first photographing mode is higher, and the resolution is relative to that of the image sensor in the prior art. Also higher.
  • the second photographing mode is shown in part (c) in Figure 1.
  • Each combined pixel unit 1 can be interpolated to obtain the photosensitive pixel value of the combined pixel unit of the other two colors, where the color of the interpolated pixel
  • the arrangement and number can be the same as the combined pixel unit shown in part (a), so that the resolution of the main image obtained in the second photographing mode is higher than that of the first photographing mode.
  • FIG. 2 is a schematic flowchart of a method for acquiring a zoom blur image based on a terminal device according to an embodiment of the application.
  • the method for acquiring a zoom blur image based on a terminal device includes the following steps:
  • Step 101 Obtain a zoom camera instruction carrying a zoom factor.
  • zoom multiple camera controls can be provided on the current photo preview interface, and a zoom photo instruction carrying the zoom multiple can be obtained according to the controls triggered by the user.
  • a zoom adjustment progress bar can be provided in the current photo preview interface. The user can drag the progress bar and click the corresponding photo control to trigger the zoom multiplier. Zoom camera instruction.
  • Step 102 Determine the magnitude relationship between the zoom factor and the equivalent zoom factor of the main camera and at least one secondary camera.
  • the equivalent zoom factor of imaging is different. Since the equivalent zoom factor of each camera is different, each camera can obtain clearer images under different zoom factors.
  • Step 103 Determine the zoom main camera and the zoom sub-camera among the main camera and the at least one sub-camera according to the size relationship, and determine the photographing mode of the zoom main camera in the preset photographing mode.
  • Step 104 Control the main zoom camera to take a main image according to the photographing mode, and control the secondary zoom camera to take a secondary image.
  • the zoom main camera and the zoom sub-camera are determined among the main camera and at least one sub-camera according to the size relationship to ensure that the zoom main camera is among all cameras, and the captured image is clear when converted to an image at the corresponding zoom multiple. The highest degree, so as to ensure the clarity of the zoomed image acquired subsequently.
  • the zoom main camera can be understood as a camera that blurs the main image in the subsequent zoom image.
  • the zoom sub-camera is determined among the main camera and at least one sub-camera, so as to facilitate the image taken based on the zoom sub-camera. Participate in bokeh processing.
  • the zoom factor is 1.1
  • the equivalent zoom factor of the image captured by the main camera is 1, which is the closest to the zoom factor relative to other cameras. Therefore, the main camera is determined to be the zoom main camera.
  • the zoom factor is relatively low, the wide-angle camera and the main camera have more overlapping viewing angles, and the accuracy of calculating the depth of field is high. Therefore, the wide-angle camera is used as the zoom sub-camera.
  • the image sensor in this application can be installed on the zoom main camera, and capture images with higher definition based on the selection of the photographing mode, so as to further ensure the clarity of the zoomed images acquired subsequently.
  • the zoom main camera in order to further ensure the resolution of the main image, can also be controlled to take continuous multiple frames of main images according to the camera mode, and a frame of main image is generated based on the synthesis of multiple frames for subsequent processing.
  • one frame of the main image with relatively high definition can be selected from the continuous multiple frames of main image to participate in the subsequent blurring processing.
  • the main image in order to further ensure the resolution of the main image, can also be interpolated according to a preset algorithm, for example, the pixel value of the main image is calculated according to a super-resolution algorithm to achieve image quality enhancement.
  • the image quality of each frame of the main image can be enhanced according to the super-division algorithm.
  • Step 105 Crop the main image according to the zoom factor to obtain the zoomed main image, and generate a zoomed blurred image according to the background blurred rendering of the zoomed main image by the secondary image.
  • the corresponding relationship between the cropping area and the zoom factor can be pre-built for the original main image of different resolutions, for example, For an image with an original main image of 12M, the zoom factor is 1. For an image with an original main image of 48M, it is specified that the middle quarter area is equivalent to 2x zoom, and the middle quarter area can be cropped.
  • a network model can be constructed in advance, the original main image is input, and the zoomed main image at the corresponding zoom factor is output.
  • the acquisition of the zoomed main image is not achieved through algorithmic magnification, it is obtained by directly cropping the original main image, thus retaining the original pixel information of the main image.
  • the resolution of the acquired zoomed main image is ensured.
  • the original main image is processed by the above-mentioned embodiments, and the image quality is clear. Therefore, the resolution of the acquired zoomed main image is further ensured.
  • the blurred main image is obtained by blurring the zoomed main image according to the secondary image.
  • the pixels to be processed are greatly reduced. Improve the efficiency of blur processing.
  • the secondary image can be cropped according to the zoom factor to obtain the zoom virtual image based on the cropped secondary image and the zoomed main image. Change the main image.
  • the zoomed blurred image is generated according to the background blur of the zoomed main image by the secondary image, where the blurred method can estimate the depth information of the background area of the zoomed main image based on the triangulation method, and perform the blurred processing based on the depth information.
  • the terminal device-based zoom blur image acquisition method in this embodiment of the application can also be used in the preview process.
  • the preview process in order to improve the preview efficiency, it can be based on digital
  • the zoom-in mode realizes the preview of the zoom blur image.
  • zoom blur image of the zoom blur image is digitally enlarged by the corresponding multiple of the zoom blur image with the one-fold blur effect to obtain the image under the corresponding zoom multiple.
  • the main camera is controlled to zoom to take the main image according to the photographing mode
  • the sub-camera is controlled to take the sub-image, which is based on the main image and the sub-image
  • the blurring process is performed to obtain a preview of the blurring effect at the one-time zoom factor for the user.
  • the zoom blurring can also be generated based on the main image and the sub-image through the processing steps of the above-mentioned embodiment. Transform the image to the user.
  • the terminal device-based zoom blur image acquisition method of the above embodiment realizes the zoom main image with the equivalent zoom factor effect by cropping the main image, which ensures the clarity of the zoom blur image, and on the other hand,
  • the subject of the photo is highlighted and the zoom effect is optimized.
  • the sharpness of the main image is improved, and the sharpness of the zoomed blur image is further ensured.
  • the terminal device-based zoom blur image acquisition method of the embodiment of the present application acquires a zoom camera instruction carrying a zoom factor, and determines the relationship between the zoom factor and the equivalent zoom factor of the main camera and at least one secondary camera.
  • the relationship between the main camera and at least one sub-camera is to determine the zoom main camera and the zoom sub-camera, and determine the camera mode of the zoom main camera in the preset camera mode.
  • control the zoom main camera to take the main image according to the camera mode and control
  • the zoom sub-camera takes a sub-image
  • the main image is cropped according to the zoom multiple to obtain the zoomed main image, and the zoomed blurred image is generated according to the background blur of the sub-image to the zoomed main image.
  • the at least one secondary camera includes a wide-angle camera, where the equivalent zoom factor of the wide-angle camera is p.
  • the zoom factor is greater than or equal to 1 and less than n, where n is a certain value greater than 1.
  • the n can be determined according to the image sensor corresponding to the preset photographing mode. The higher the imaging resolution of the image sensor , The larger the corresponding n, n can also be determined according to the sharpness of the main image, when the sharpness of the main image is higher, the larger the corresponding n, if the zoom factor is greater than or equal to 1 and less than n, it means that the main camera shooting As the main image, the image clarity can be ensured to the greatest extent. Therefore, the main camera is determined as the zoom main camera, and the wide-angle camera is determined as the zoom sub-camera.
  • the zoom factor is relatively small, there is not much difference between the main image taken by the main camera and the main camera at the zoom factor. Therefore, try to make the original image of the main camera output as the main image, that is, use the first photo with a relatively low resolution.
  • the main image is taken in the mode to avoid large resolution. After the main image needs to be cropped, the cropped main image cannot meet the corresponding zoom factor requirements.
  • the zoom factor is greater than n, it is further determined whether there are other cameras with a higher equivalent zoom factor. If not, the resolution of the zoom main image can be increased, and the zoom main image can be controlled in the second shooting mode. After the image captured in the second shooting mode is captured, a zoomed main image with a larger equivalent zoom factor can be obtained by cropping.
  • the equivalent zoom factor of the telephoto camera is q, where q is greater than the second The equivalent zoom factor n of the photographing mode.
  • the main camera is determined to be the zoom main camera, and the wide-angle camera is determined to be the zoom sub
  • the photographing mode of the main camera is determined to be the second photographing mode with higher resolution.
  • the camera mode of the main camera is the second camera mode.
  • the current environment brightness value for example, based on the sensor acquisition, or based on the iso of the zoom main camera, if it is determined that the current environment brightness value meets the preset conditions, for example, the current environment brightness value is greater than or equal to the preset threshold, for example, the current environment If the brightness value is continuously greater than the preset threshold value, shooting is based on the second photographing mode, and if the current environmental brightness value is less than the preset threshold value, it is determined that the photographing mode of the main camera is the first photographing mode.
  • the preset threshold can be determined according to the imaging capability of the camera.
  • the reference factors for selecting the photographing mode can be determined by referring to the environmental brightness value when the zoom factor differs from the equivalent zoom factor of the main zoom camera. mode.
  • a preset zoom factor is set.
  • the preset zoom factor can be understood as the secondary image captured by the main camera. Combined with the main image, the critical value of the zoom factor of the aligned pixels can be clearly obtained. If the zoom factor is greater than or equal to If q is less than the preset zoom factor, it indicates that the main image obtained by the main camera can also participate in the blurring.
  • the telephoto camera is determined to be the zoom main camera, and the main camera is determined to be the zoom sub-camera. Among them, the telephoto camera takes pictures The zoom factor of the image is relatively large, and the main image taken by the telephoto camera is not much different at the zoom factor.
  • the current environment brightness value can also be obtained before the shooting mode of the fixed telephoto camera is the first shooting mode, and it is determined that the current environment brightness value is greater than or equal to the preset threshold.
  • the preset threshold may be the same as the preset threshold for judging the main camera, or, in order to consider the sensitivity difference between different cameras, the preset threshold may also be different from the preset threshold for judging the main camera.
  • the zoom factor is greater than or equal to the preset zoom factor, it indicates that the secondary image collected by the main camera can no longer clearly obtain the aligned pixels in combination with the main image, that is, it is difficult to find the overlapping area of the two perspectives, which makes it difficult to blur.
  • the telephoto camera is determined to be the zoom main camera and the zoom sub-camera. It can also be understood that the image taken by the telephoto camera is used as the main image and the sub-image, and further, the blurred zoom image is realized based on the single-shot blur method Of access.
  • the photographing mode of the telephoto camera is the first photographing mode
  • the area where the subject in the main image is located is the zoom main image
  • the depth of field information of the area where the non-photographed subject is located in the zoom main image is calculated, for example, based on the current shot
  • the shooting parameters such as the color aperture
  • blur the area of the non-photographed subject in the zoom main image according to the depth information to generate an initial zoom blur image
  • the second photographing mode can also be used to take the zoomed main image.
  • the telephoto camera must be provided with the above-mentioned image sensor.
  • the zoom blur image acquisition method of the embodiment of the present application satisfies the image acquisition of multiple zoom multiples, breaks the limitation of the fixed focus of the camera, and balances the sharpness of imaging.
  • This application scenario includes a main camera and two sub-cameras.
  • the sub-cameras include a wide-angle camera and a telephoto camera.
  • the equivalent zoom factor of the main camera is 1x, or 1X for short, and the equivalent zoom factor of the wide-angle camera.
  • 0.6X referred to as 0.6X(p)
  • the equivalent zoom factor of the telephoto camera is 3.0X, referred to as 3.0X(q)
  • n is 2, assuming that the zoom step accuracy is 0.1, and the image sensor is As shown in Figure 1, the straight-out image size is 48M, and the preset zoom factor is 4.
  • a zoom camera instruction carrying a zoom factor is obtained, and it is judged whether the zoom factor is 1, 2 or 3, that is, it is judged whether the zoom factor is the equivalent zoom factor of the camera, and if it is not, it is judged. Whether the zoom factor is greater than 1 or less than 2, judge whether the zoom factor is 1-1.9. If so, control the wide-angle camera and the main camera to work in the first camera mode during the preview stage, and it is obvious that the four-in-one merged into a merged pixel unit will output
  • the size of the main image is 12M, and the secondary image taken by the wide-angle camera is used to assist in the calculation of the depth map.
  • the depth map is calculated based on the parallax of the pixels of the image in the overlapping angle of view of the main image and the sub image, and a preview zoom blurred image with a 1X background blurred effect is obtained according to the depth map rendering.
  • a preview zoom blurred image with a 1X background blurred effect is obtained according to the depth map rendering.
  • 1.1X ⁇ The 1.9X preview blur effect is obtained by digitally magnifying the preview zoom blur image corresponding to the 1X blur effect.
  • the super-division algorithm is used to enhance the quality of the multi-frame main image collected by the main camera, and then the main image corresponding to the angle of view is cropped according to the zoom factor.
  • the reference main image in the main image is selected, the depth map is calculated using the reference main image and the secondary image taken by the synchronized wide-angle camera, and the cropped zoom main image is rendered according to the depth map.
  • the zoom factor is greater than or equal to 2
  • it is judged that the zoom factor is greater than or equal to 2 and less than 3 that is, it is judged whether the zoom factor is between 2 and 2.9.
  • the preview zoom virtual for the 1X blur effect is still used.
  • the image is obtained by digital zooming.
  • the main camera is switched to the second photographing mode.
  • the main image obtained based on this mode is a full-size 48M size. Therefore, we can crop the center 1/4 area of the screen and output a 12M image as the final main output. Image to facilitate subsequent cropping of the final main image.
  • cropping the center 1/4 area of the screen to output a 12M image is equivalent to the effect of optical zoom 2X, which improves the resolution of the main image at 2X.
  • the super-division algorithm can be used to enhance the quality of the multi-frame main image output by the camera.
  • the resolution of the wide-angle camera is required to be higher, for example, to be above 24M, for example, it can be based on the first Second, the camera mode takes a secondary image.
  • the main camera can work in the first camera mode to take pictures.
  • the definition of the main image taken can be improved by the super-resolution algorithm.
  • the main camera can be controlled to take the main image based on the second photographing mode.
  • the zoom factor is greater than or equal to 3, judge whether the zoom factor is greater than or equal to 3 and less than or equal to 4, that is, judge whether the zoom factor is 3-3.9, if it is 3-3.9, the main image will be output based on the telephoto camera as the main zoom camera, the main camera As a secondary zoom camera, it outputs secondary images and assists in the calculation of depth maps.
  • both the main camera and the telephoto camera work in the first camera mode.
  • both the main camera and the telephoto camera work in the second camera mode to increase the depth
  • the imaging accuracy of the image and the zoomed main image is enhanced by the super-resolution algorithm.
  • the telephoto camera and the main camera are controlled to work in the first photographing mode to ensure the calculation of the signal-to-noise ratio of the depth map and reduce the denoising point of the zoomed main image.
  • the super-resolution algorithm can be used to enhance the quality of the main image.
  • the zoom factor is greater than or equal to 4
  • the main image taken by the telephoto camera is obtained, and after the main image is super-divided, the single-shot blur method is used to generate the initial blurred zoom image, and then the initial blurred zoom image is cropped based on the zoom factor
  • the blurred zoom image generates a corresponding zoom blurred image.
  • the terminal device-based zoom blur image acquisition method of the embodiment of the present application is based on the flexible selection of the camera's photographing mode to ensure the clarity of the captured zoom main image, and furthermore, the corresponding zoom factor is achieved based on the cropping of the main image
  • the acquisition of the zoom main image improves the image resolution of the zoom main image.
  • this application also proposes a device for acquiring a zoom blur image based on a terminal device.
  • the terminal device includes a main camera and at least one secondary camera, where the equivalent zoom factor of the main camera is 1.
  • FIG. 7 is a schematic structural diagram of an apparatus for acquiring a zoom blur image based on a terminal device according to an embodiment of the application.
  • the terminal device-based zoom blur image acquisition device includes: an acquisition module 100, a judgment module 200, a determination module 300, a photographing module 400, and a processing module 500.
  • the acquiring module 100 is used to acquire a zoom camera instruction carrying a zoom factor.
  • the judging module 200 is used for judging the relationship between the zoom factor and the equivalent zoom factor of the main camera and at least one secondary camera.
  • the determining module 300 is configured to determine the zoom main camera and the zoom sub-camera among the main camera and the at least one sub-camera according to the size relationship, and determine the photographing mode of the zoom main camera in the preset photographing mode.
  • Preset camera modes including:
  • the first photographing mode and the second photographing mode wherein the main image taken in the first photographing mode is composed of multiple combined pixel units, each combined pixel unit includes multiple photosensitive pixel units, and the photosensitive pixel value of each combined pixel unit Obtain according to the sum of the photosensitive pixel values of multiple photosensitive pixel units;
  • the main image taken in the second photographing mode is obtained by interpolating the photosensitive pixel value of each combined pixel unit in the main image under the first photographing mode.
  • the photographing module 400 is used to control the zoom main camera to take the main image according to the photographing mode, and control the zoom sub-camera to take the secondary image.
  • the processing module 500 is configured to crop the main image according to the zoom factor to obtain the zoomed main image, and generate a zoomed blurred image according to the background blur of the zoomed main image by the secondary image.
  • At least one secondary camera includes a wide-angle camera, where the equivalent zoom factor of the wide-angle camera is p, where p is less than 1, and the determining module 300 is specifically used for : Judge whether the zoom factor is greater than or equal to 1 and less than the preset n;
  • the main camera is determined to be the zoom main camera, and the wide-angle camera is determined to be the zoom sub-camera;
  • the photographing mode of the main camera is the first photographing mode.
  • the determining module 400 is specifically used for:
  • the main camera is determined to be the main zoom camera, and the wide-angle camera is determined to be the secondary zoom camera;
  • the photographing mode of the main camera is the second photographing mode.
  • the determining module 400 is further configured to obtain the current environmental brightness value before determining that the photographing mode of the main camera is the second photographing mode, and determine that the current environmental brightness value is greater than or equal to a preset threshold.
  • the terminal device-based zoom blur image acquisition device of the embodiment of the present application acquires a zoom camera instruction carrying a zoom factor, and determines the relationship between the zoom factor and the equivalent zoom factor of the main camera and at least one secondary camera according to the size Relationship, determine the zoom main camera and the zoom sub camera in the main camera and at least one sub camera, and determine the camera mode of the zoom main camera in the preset camera mode. Further, control the zoom main camera to take the main image according to the camera mode and control The secondary zoom camera takes a secondary image, and finally, the primary image is cropped according to the zoom factor to obtain the zoom primary image, and the zoom blur image is generated according to the background blur of the secondary image to the zoom primary image.
  • the shooting requirements of multiple zoom multiples when taking pictures with multiple cameras are flexibly met, and the imaging clarity after zooming is ensured.
  • this application also proposes a terminal device, including a main camera and at least one secondary camera, wherein the equivalent zoom factor of the main camera is 1, the memory, the processor, and the memory and can be stored in the memory and can be processed
  • the processor is connected to the main camera and at least one secondary camera.
  • the processor executes the computer program, the processor implements the terminal device-based zoom blur image acquisition method described in the foregoing embodiment.
  • this application also proposes a non-transitory computer-readable storage medium.
  • the instructions in the storage medium are executed by the processor, the terminal device-based zoom blur can be realized as described in the preceding embodiments.
  • Image acquisition method When the instructions in the storage medium are executed by the processor, the terminal device-based zoom blur can be realized as described in the preceding embodiments.
  • first and second are only used for descriptive purposes, and cannot be understood as indicating or implying relative importance or implicitly indicating the number of indicated technical features. Therefore, the features defined with “first” and “second” may explicitly or implicitly include at least one of the features. In the description of the present application, "a plurality of” means at least two, such as two, three, etc., unless specifically defined otherwise.
  • a "computer-readable medium” can be any device that can contain, store, communicate, propagate, or transmit a program for use by an instruction execution system, device, or device or in combination with these instruction execution systems, devices, or devices.
  • computer readable media include the following: electrical connections (electronic devices) with one or more wiring, portable computer disk cases (magnetic devices), random access memory (RAM), Read only memory (ROM), erasable and editable read only memory (EPROM or flash memory), fiber optic devices, and portable compact disk read only memory (CDROM).
  • the computer-readable medium can even be paper or other suitable media on which the program can be printed, because it can be done, for example, by optically scanning the paper or other media, and then editing, interpreting, or other suitable media if necessary.
  • the program is processed in a way to obtain the program electronically and then stored in the computer memory.
  • each part of this application can be implemented by hardware, software, firmware, or a combination thereof.
  • multiple steps or methods can be implemented by software or firmware stored in a memory and executed by a suitable instruction execution system.
  • Discrete logic gate circuits with logic functions for data signals Logic circuit, application specific integrated circuit with suitable combinational logic gate circuit, programmable gate array (PGA), field programmable gate array (FPGA), etc.
  • a person of ordinary skill in the art can understand that all or part of the steps carried in the method of the foregoing embodiments can be implemented by a program instructing relevant hardware to complete.
  • the program can be stored in a computer-readable storage medium, and the program can be stored in a computer-readable storage medium. When executed, it includes one of the steps of the method embodiment or a combination thereof.
  • each functional unit in each embodiment of the present application may be integrated into one processing module, or each unit may exist alone physically, or two or more units may be integrated into one module.
  • the above-mentioned integrated modules can be implemented in the form of hardware or software function modules. If the integrated module is implemented in the form of a software function module and sold or used as an independent product, it can also be stored in a computer readable storage medium.
  • the aforementioned storage medium may be a read-only memory, a magnetic disk or an optical disk, etc.

Landscapes

  • Engineering & Computer Science (AREA)
  • Multimedia (AREA)
  • Signal Processing (AREA)
  • Studio Devices (AREA)

Abstract

一种基于终端设备的变焦虚化图像获取方法和装置。方法包括:获取变焦拍照指令;判断变焦倍数与主摄像头和至少一个副摄像头的等效变焦倍数的大小关系;根据大小关系确定变焦主摄像头、变焦副摄像头及拍照模式;根据拍照模式拍摄主图像和副图像;根据变焦倍数裁切主图像以获取变焦主图像,根据副图像对变焦主图像的背景虚化。

Description

基于终端设备的变焦虚化图像获取方法和装置
优先权信息
本申请请求2019年10月14日向中国国家知识产权局提交的、专利申请号为201910972592.6的专利申请的优先权和权益,并且通过参照将其全文并入此处。
技术领域
本申请涉及图像处理技术领域,尤其涉及一种基于终端设备的变焦虚化图像获取方法和装置。
背景技术
随着终端设备的普及,终端设备的拍照功能也愈发多样化,比如,采用双摄实现人像模式的变焦拍照,可以满足用户的人像拍照需求。
发明内容
本申请提出一种基于终端设备的变焦虚化图像获取方法和装置,以解决现有技术中,多摄像头拍照无法实现灵活变焦的技术问题。
本申请一方面实施例提供了一种基于终端设备的变焦虚化图像获取方法,所述终端设备包括主摄像头和至少一个副摄像头,其中,所述主摄像头的等效变焦倍数为1,所述方法包括以下步骤:获取携带变焦倍数的变焦拍照指令;判断所述变焦倍数与所述主摄像头和所述至少一个副摄像头的等效变焦倍数的大小关系;根据所述大小关系,在所述主摄像头和所述至少一个副摄像头中确定变焦主摄像头和变焦副摄像头以及在预设拍照模式中确定所述变焦主摄像头的拍照模式;控制所述变焦主摄像头根据所述拍照模式拍摄主图像,并控制所述变焦副摄像头拍摄副图像;根据所述变焦倍数裁切所述主图像以获取变焦主图像,并根据所述副图像对所述变焦主图像的背景虚化生成变焦虚化图像。
本申请另一方面实施例提供了一种基于终端设备的变焦虚化图像获取装置,所述终端设备包括主摄像头和至少一个副摄像头,其中,所述主摄像头的等效变焦倍数为1,所述装置,包括:获取模块,用于获取携带变焦倍数的变焦拍照指令;判断模块,用于判断所述变焦倍数与所述主摄像头和所述至少一个副摄像头的等效变焦倍数的大小关系;确定模块,用于根据所述大小关系,在所述主摄像头和所述至少一个副摄像头中确定变焦主摄像头和变焦副摄像头以及在预设拍照模式中确定所述变焦主摄像头的拍照模式;拍摄模块,用于控制所述变焦主摄像头根据所述拍照模式拍摄主图像,并控制所述变焦副摄像头拍摄副图像;处理模块,用于根据所述变焦倍数裁切所述主图像以获取变焦主图像,并根据所述副图像对所述变焦主图像的背景虚化生成变焦虚化图像。
本申请又一方面实施例提供了一种终端设备,包括主摄像头和至少一个副摄像头,其中,所述主摄像头的等效变焦倍数为1,存储器、处理器及存储在所述存储器上并可在所述处理器上运行的计算机程序,所述处理器与所述主摄像头和至少一个副摄像头连接,所述处理器执行所述计算机程序时,实现如前述实施例描述的基于终端设备的变焦虚化图像获取方法。所述终端设备包括主摄像头和至少一个副摄像头,其中,所述主摄像头的等效变焦倍数为1,所述方法包括以下步骤:获取携带变焦倍数的变焦拍照指令;判断所述变焦倍数与所述主摄像头和所述至少一个副摄像头的等效变焦倍数的大小关系;根据所述大小关系,在所述主摄像头和所述至少一个副摄像头中确定变焦主摄像头和变焦副摄像头以及在预设拍照模式中确定所述变焦主摄像头的拍照模式;控制所述变焦主摄像头根据所述拍照模 式拍摄主图像,并控制所述变焦副摄像头拍摄副图像;根据所述变焦倍数裁切所述主图像以获取变焦主图像,并根据所述副图像对所述变焦主图像的背景虚化生成变焦虚化图像。
本申请还一方面实施例提供了一种计算机可读存储介质,其上存储有计算机程序,所述计算机程序被处理器执行时实现如前述实施例描述的基于终端设备的变焦虚化图像获取方法。所述终端设备包括主摄像头和至少一个副摄像头,其中,所述主摄像头的等效变焦倍数为1,所述方法包括以下步骤:获取携带变焦倍数的变焦拍照指令;判断所述变焦倍数与所述主摄像头和所述至少一个副摄像头的等效变焦倍数的大小关系;根据所述大小关系,在所述主摄像头和所述至少一个副摄像头中确定变焦主摄像头和变焦副摄像头以及在预设拍照模式中确定所述变焦主摄像头的拍照模式;控制所述变焦主摄像头根据所述拍照模式拍摄主图像,并控制所述变焦副摄像头拍摄副图像;根据所述变焦倍数裁切所述主图像以获取变焦主图像,并根据所述副图像对所述变焦主图像的背景虚化生成变焦虚化图像。
本申请附加的方面和优点将在下面的描述中部分给出,部分将从下面的描述中变得明显,或通过本申请的实践了解到。
附图说明
本申请上述的和/或附加的方面和优点从下面结合附图对实施例的描述中将变得明显和容易理解,其中:
图1为本申请实施例所提供的一种图像传感器的结构示意图;
图2为本申请实施例所提供的一种基于终端设备的变焦虚化图像获取方法的流程示意图;
图3-1是根据本申请一个实施例的拍照界面示意图;
图3-2是根据本申请另一个实施例的拍照界面示意图;
图4是根据本申请一个实施例的变焦倍数变化时视角变化示意图;
图5是根据本申请一个实施例的预览和拍照阶段处理流程示意图;
图6为本申请实施例所提供的另一种基于终端设备的变焦虚化图像获取方法的流程示意图;以及
图7为本申请实施例所提供的一种基于终端设备的变焦虚化图像获取装置的结构示意图。
具体实施方式
下面详细描述本申请的实施例,所述实施例的示例在附图中示出,其中自始至终相同或类似的标号下面详细描述本申请的实施例,所述实施例的示例在附图中示出,其中自始至终相同或类似的标号表示相同或类似的元件或具有相同或类似功能的元件。下面通过参考附图描述的实施例是示例性的,旨在用于解释本申请,而不能理解为对本申请的限制。
请参阅图2、图3-1、图3-2、图4和图5,本申请实施方式的基于终端设备的变焦虚化图像获取方法中,终端设备包括主摄像头和至少一个副摄像头,其中,主摄像头的等效变焦倍数为1,基于终端设备的变焦虚化图像获取方法包括以下步骤:获取携带变焦倍数的变焦拍照指令;判断变焦倍数与主摄像头和至少一个副摄像头的等效变焦倍数的大小关系;根据大小关系,在主摄像头和至少一个副摄像头中确定变焦主摄像头和变焦副摄像头以及在预设拍照模式中确定变焦主摄像头的拍照模式;控制变焦主摄像头根据拍照模式拍摄主图像,并控制变焦副摄像头拍摄副图像;根据变焦倍数裁切主图像以获取变焦主图像,并根据副图像对变焦主图像的背景虚化生成变焦虚化图像。
请参阅图1,在某些实施方式中,预设拍照模式,包括:第一拍照模式和第二拍照模式,其中,第一拍照模式下拍摄的主图像由多个合并像素单元组成,每个合并像素单元包括多个感光像素单元,每 个合并像素单元的感光像素值根据多个感光像素单元的感光像素值之和获取;第二拍照模式下拍摄的主图像通过对第一拍照模式下的主图像中每个合并像素单元的感光像素值插值得到。
请参阅图6,在某些实施方式中,至少一个副摄像头包括广角摄像头,其中,广角摄像头的等效变焦倍数为p,其中,p小于1,根据大小关系,在主摄像头和至少一个副摄像头中确定变焦主摄像头和变焦副摄像头以及在预设拍照模式中确定变焦主摄像头的拍照模式,包括:判断变焦倍数是否大于等于1小于预设的n;若变焦倍数大于等于1小于n,则确定主摄像头为变焦主摄像头,并确定广角摄像头为变焦副摄像头;确定主摄像头的拍照模式为第一拍照模式。
在某些实施方式中,至少一个副摄像头包括长焦摄像头,长焦摄像头的等效变焦倍数为q,其中,q大于n,在判断变焦倍数是否大于等于1小于预设的n之后,基于终端设备的变焦虚化图像获取方法还包括:若变焦倍数大于等于n,则判断变焦倍数是否小于q;若变焦倍数小于q,则确定主摄像头为变焦主摄像头,并确定广角摄像头为变焦副摄像头;确定主摄像头的拍照模式为第二拍照模式。
在某些实施方式中,在确定主摄像头的拍照模式为第二拍照模式之前,基于终端设备的变焦虚化图像获取方法还包括:获取当前环境亮度值;当当前环境亮度值满足预设条件时,确定主摄像头的拍照模式为第二拍照模式。
在某些实施方式中,在获取当前环境亮度值之后,基于终端设备的变焦虚化图像获取方法还包括:若当前环境亮度值小于预设阈值,则确定主摄像头的拍照模式为第一拍照模式。
在某些实施方式中,在则判断变焦倍数是否小于q之后,基于终端设备的变焦虚化图像获取方法还包括:若变焦倍数大于等于q,则判断变焦倍数是否小于预设变焦倍数;若变焦倍数小于预设变焦倍数,则确定长焦摄像头为变焦主摄像头,并确定主摄像头为变焦副摄像头;确定长焦摄像头的拍照模式为第一拍照模式。
在某些实施方式中,在确定长焦摄像头的拍照模式为第一拍照模式之前,基于终端设备的变焦虚化图像获取方法还包括:获取当前环境亮度值;当当前环境亮度值大于等于预设阈值时,确定长焦摄像头的拍照模式为第一拍照模式。
在某些实施方式中,在判断变焦倍数是否小于预设变焦倍数之后,基于终端设备的变焦虚化图像获取方法还包括:若变焦倍数大于等于预设变焦倍数,则确定长焦摄像头为变焦主摄像头和变焦副摄像头;确定长焦摄像头的拍照模式为第二拍照模式。
在某些实施方式中,根据变焦倍数裁切主图像以获取变焦主图像,并根据副图像对变焦主图像的背景虚化生成变焦虚化图像,包括:识别主图像中的拍摄主体所在区域为变焦主图像;计算变焦主图像中的非拍摄主体所在区域的景深信息;根据景深信息虚化变焦主图像中的非拍摄主体所在区域生成初始变焦虚化图像;根据变焦倍数裁切初始变焦虚化图像生成变焦虚化图像。
在某些实施方式中,控制变焦主摄像头根据拍照模式拍摄主图像,包括:控制变焦主摄像头根据拍照模式拍摄连续的多帧主图像;在根据变焦倍数裁切主图像以获取变焦主图像之前,基于终端设备的变焦虚化图像获取方法还包括:对多帧主图像合成生成一帧主图像。
在某些实施方式中,在根据变焦倍数裁切主图像以获取变焦主图像之前,基于终端设备的变焦虚化图像获取方法包括:根据预设算法对主图像进行插值计算获取计算后的主图像。
在某些实施方式中,控制变焦副摄像头拍摄副图像,包括:控制变焦副摄像头根据拍照模式拍摄副图像。
请参阅图7,本实施方式的基于终端设备的变焦虚化图像获取装置中,终端设备包括主摄像头和至少一个副摄像头,其中,主摄像头的等效变焦倍数为1,基于终端设备的变焦虚化图像获取装置包括包 括:获取模块100、判断模块200、确定模块300、拍摄模块400和处理模块500。获取模块100,用于获取携带变焦倍数的变焦拍照指令。判断模块200,用于判断变焦倍数与主摄像头和至少一个副摄像头的等效变焦倍数的大小关系。确定模块300,用于根据大小关系,在主摄像头和至少一个副摄像头中确定变焦主摄像头和变焦副摄像头以及在预设拍照模式中确定变焦主摄像头的拍照模式。拍摄模块400,用于控制变焦主摄像头根据拍照模式拍摄主图像,并控制变焦副摄像头拍摄副图像。处理模块500,用于根据变焦倍数裁切主图像以获取变焦主图像,并根据副图像对变焦主图像的背景虚化生成变焦虚化图像。
请参阅图1,在某些实施方式中,预设拍照模式,包括:第一拍照模式和第二拍照模式,其中,第一拍照模式下拍摄的主图像由多个合并像素单元组成,每个合并像素单元包括多个感光像素单元,每个合并像素单元的感光像素值根据多个感光像素单元的感光像素值之和获取;第二拍照模式下拍摄的主图像通过对第一拍照模式下的主图像中每个合并像素单元的感光像素值插值得到。
请参阅图6,在某些实施方式中,至少一个副摄像头包括广角摄像头,其中,广角摄像头的等效变焦倍数为p,其中,p小于1,确定模块300具体用于:判断变焦倍数是否大于等于1小于预设的n;若变焦倍数大于等于1小于n,则确定主摄像头为变焦主摄像头,并确定广角摄像头为变焦副摄像头;确定主摄像头的拍照模式为第一拍照模式。
请参阅图7,在某些实施方式中,确定模块300具体用于:若变焦倍数大于等于n,则判断变焦倍数是否小于q;若变焦倍数小于q,则确定主摄像头为变焦主摄像头,并确定广角摄像头为变焦副摄像头;确定主摄像头的拍照模式为第二拍照模式。
请参阅图7,在某些实施方式中,确定模块300还用于:在确定主摄像头的拍照模式为第二拍照模式之前,获取当前环境亮度值,确定当前环境亮度值大于等于预设阈值。
本申请实施方式的终端设备包括主摄像头和至少一个副摄像头,其中,主摄像头的等效变焦倍数为1,存储器、处理器及存储在存储器上并可在处理器上运行的计算机程序,处理器与主摄像头和至少一个副摄像头连接,处理器执行计算机程序时,实现上述任一实施方式的基于终端设备的变焦虚化图像获取方法。
本申请实施方式的非临时性计算机可读存储介质,其上存储有计算机程序,计算机程序被处理器执行时实现上述任一实施方式的基于终端设备的变焦虚化图像获取方法。
下面参考附图描述本申请实施例的基于终端设备的变焦虚化图像获取方法和装置。
其中,本申请实施例的终端设备包括一个主摄像头和至少一个副摄像头,其中主摄像头的等效变焦倍数为1,至少一个副摄像头的等效变焦倍数可以为小于1,也可以为大于1,或者任意不等于1的变焦倍数。
相关技术中,终端设备的双摄像头为定焦摄像头,无法支持人像模式下拍照的灵活变焦,这导致人像拍照过程中只能通过拍摄者的移动来调整被摄人像的大小,由此,亟需一种灵活满足多摄像头拍照时变焦需求的拍照方式,相关技术中最常用的方法为布局两个焦距不同的摄像头,比如,采用广角+主摄实现1x双摄虚化效果,对1x虚化效果进行数码放大得到1x~2x变焦效果,又比如,采用广角+主摄实现1x双摄虚化效果,采用主摄+长焦实现2x双摄虚化效果,1x~2x之间通过对1x虚化效果进行数码放大实现。
由此,相关技术中,在摄像头不能直接拍摄得到的变焦倍数下,采用完全数码放大的方式实现变焦,这导致细节难以达到光变水平,影响图像的质量,另外,变焦倍数完全受限于摄像头的定焦焦距,比如,若当前摄像头的定焦焦距分别为1x和2x,则显然双摄像头能拍摄的变焦范围限制在1-2倍。
为了解决上述技术,本申请提出了一种变焦图像获取方法,一方面,可以满足多种场景下的变焦倍数需求,另一方面,保证了变焦拍摄图像后的清晰度。
在对本申请实施例的基于终端设备的变焦虚化图像获取方法进行说明之前,首先对本申请实施例中涉及的一些技术名词进行定义,定义如下:
等效变焦倍数:光学变焦倍数通常为通过移动镜头的前后位置来实现的变焦倍数,本实施例中的摄像头均为定焦摄像头,因而,基于每个摄像头对物体成像的大小,计算对物体成像的缩放倍数,根据缩放倍数确定每个摄像头的等效变焦倍数。
第一拍照模式和第二拍照模式:第一拍照模式和第二拍照模式分别指代不同分辨率的拍照模式,其中,在第一拍照模式下,通过改变图像传感器的像素单元组成,使得拍摄的图像的分辨率高于现有技术中的图像传感器直接出图的分辨率,第二拍照模式的分辨率高于第一拍照模式的成像分辨率。在本申请的实施例中,为了实现第一拍照模式和第二拍照模式,对第一拍照模式中每个感光像素点可以对应于一个合并像素单元,即第一拍照模式下拍摄的主图像由多个合并像素单元组成,每个合并像素单元包括多个感光像素单元。第二拍照模式可以由第一拍照模式下的像素点的插值计算得到,即第二拍照模式下拍摄的主图像由第一拍照模式下的主图像中每个合并像素单元插值得到。
在实际执行过程中,可以通过安装对应图像传感器的方式来实现第一拍照模式和第二拍照模式中合并像素单元的实现,如图1所示,若合并像素单元包含4个感光像素值,则本申请实施例的图像传感器可以为四合一的结构,即如图1中的(a)部分示出的,每个合并像素单元1对应于同一个颜色的滤光片,第一拍照模式如图1中的(b)部分示出的,可以将每个合并像素单元1中的四个感光像素11之和作为合并像素单元1的感光像素值,在具体计算时,也可以将四个像素单元值之和的二分之一作为合并像素单元的感光像素值,由此,第一拍照模式下得到的主图像的亮度较高,分辨率相对于现有技术中的图像传感器拍摄的分辨率也较高。第二拍照模式如图1中的(c)部分示出的,可以将每个合并像素单元1进行插值计算,获取其他两个颜色的合并像素单元的感光像素值,其中,插值的像素的颜色排列和个数可以和(a)部分示出的合并像素单元相同,由此,第二拍照模式下得到的主图像的分辨率相对于第一拍照模式更高。
具体而言,图2为本申请实施例所提供的一种基于终端设备的变焦虚化图像获取方法的流程示意图。
如图2所示,该基于终端设备的变焦虚化图像获取方法包括以下步骤:
步骤101,获取携带变焦倍数的变焦拍照指令。
可以理解,在很多应用场景中,用户为了获取不同焦距下的拍照效果,通常会具有变焦拍摄需求,为了满足用户的变焦拍照需求,获取携带变焦倍数的变焦拍照指令,该变焦拍照指令的触发方式可以为语音触发、也可以为控件触发等。
作为一种可能的实现方式,如图3-1所示,可以在当前拍照预览界面提供多种变焦倍数拍照控件,可以根据用户触发的控件获取携带变焦倍数的变焦拍照指令。
作为另一种可能的实现方式,如图3-2所示,可以在当前拍照预览界面中提供变焦调节进度条,用户可以通过拖动该进度条并点击对应的拍照控件来触发携带变焦倍数的变焦拍照指令。
步骤102,判断变焦倍数与主摄像头和至少一个副摄像头的等效变焦倍数的大小关系。
正如以上分析的,每个摄像头由于其焦距的不同,成像的等效变焦倍数不同,由于每个摄像头的等效变焦倍数不同,因而,每个摄像头可以获取不同的变焦倍数下的较为清晰的图像,为了保证对应变焦倍数下的图像清晰度,判断变焦倍数与主摄像头和至少一个副摄像头的等效变焦倍数的大小关系, 基于该大小关系,筛选出拍摄的图像相对于该变焦倍数下的理论图像最相近的摄像头,以保证后续出图的清晰度。
步骤103,根据大小关系,在主摄像头和至少一个副摄像头中确定变焦主摄像头和变焦副摄像头以及在预设拍照模式中确定变焦主摄像头的拍照模式。
步骤104,控制变焦主摄像头根据拍照模式拍摄主图像,并控制变焦副摄像头拍摄副图像。
具体的,根据大小关系在主摄像头和至少一个副摄像头中确定变焦主摄像头和变焦副摄像头,以保证变焦主摄像头是所有摄像头中,拍摄的图像在转换为对应变焦倍数下的图像时的图像清晰度最高,从而保证后续获取的变焦图像的清晰度。变焦主摄像头可以理解为后续虚化变焦图像中主图像的拍摄摄像头。
另外,在本申请的实施例中,为了确保可以获取到更好的变焦效果,能够更加突出拍照主体,在主摄像头和至少一个副摄像头中确定变焦副摄像头,以便于基于变焦副摄像头拍摄的图像参与背景虚化处理。
举例而言,如果变焦倍数为1.1,则显然由于主摄像头的拍摄的图像的等效变焦倍数为1,相对于其他摄像头最接近于该变焦倍数,因而,将该主摄像头确定为变焦主摄像头,由于此时,变焦倍数比较低,广角摄像头和主摄像头的重叠视角较多,计算景深的精度较高,因此,将广角摄像头作为变焦副摄像头。
容易理解的是,正如以上分析的,本申请中的图像传感器可以安装在变焦主摄像头上,基于拍照模式的选择拍摄获取清晰度较高的图像,以进一步保证后续获取的变焦图像的清晰度。
当然,为了提高图像的虚化效果,也可以控制与变焦主摄像头同样的拍照模式拍照,控制变焦副摄像头根据与变焦主摄像头一样的拍照模式拍摄副图像,保证拍摄的副图像可以和主图像进行更好的像素对齐,保证虚化的自然。
需要说明的是,为了保证后续变焦图像的图像质量,可以通过提升主图像的解析力来实现,示例说明如下:
在本申请的一个实施例中,为了进一步保证主图像的解析力,还可以控制变焦主摄像头根据拍照模式拍摄连续的多帧主图像,基于多帧主图像合成生成一帧主图像进行后续的处理,在本实施例中,可以在连续的多帧主图像中选择清晰度比较高的一帧主图像参与后续的虚化处理。
在本申请的一个实施例中,为了进一步保证主图像的解析力,还可以根据预设算法对主图像进行插值计算,比如根据超分算法对主图像的像素值进行计算,实现画质增强。
比如,当拍摄的主图像是多帧时,可以根据超分算法对每一帧主图像进行画质增强处理。
步骤105,根据变焦倍数裁切主图像以获取变焦主图像,并根据副图像对变焦主图像的背景虚化渲染生成变焦虚化图像。
可以理解,所谓变焦倍数下的拍摄,其实就是实现了视角的增大和缩小,如图4所示,当变焦主摄像头的等效变焦倍数为1倍时,其视角范围如图4左图所示,假设变焦主摄像头的等效变焦倍数为2倍时,其视角范围如图4右图所示,由此,显然可以通过对主图像的裁剪来获取等同的视角变化后的图像,也就是说,可以根据变焦倍数裁切主图像以获取变焦主图像,其中,作为一种可能的实现方式,可以针对不同分辨率的原始主图像,预先构建裁切区域与变焦倍数的对应关系,比如,规定对于原始主图像为12M的图像其变焦倍数为1,则对于原始主图像为48M的图像,规定其中间四分之一区域相当于2倍变焦,则可以将中间四分之一的区域裁切出来作为2倍变焦效果的主图像等,作为另一种可能的实现方式,也可以预先构建网络模型,输入原始主图像,输出该对应变焦倍数下的变焦主图像。
此时,需要强调的是,由于变焦主图像的获取并不是通过算法放大来实现的,而是直接对原有的主图像进行裁剪得到的,因而,保留了原有的主图像的像素信息,保证了获取的变焦主图像的解析力,其中,原有的主图像经过上述实施例的处理,画质清晰度也较高,因而,进一步保证了获取的变焦主图像的解析力。
进一步的,根据副图像对变焦主图像进行虚化获取虚化主图像,本实施例中,在变焦主图像获取之后,相对于直接基于主图像进行虚化处理,要处理的像素点大大降低,提高了虚化处理效率,当然,在进行虚化处理之前,为了便于像素的对齐,可以根据变焦倍数同样对副图像进行裁剪,以基于裁剪后的副图像和变焦主图像进行虚化获取变焦虚化主图像。
具体而言,根据副图像对变焦主图像的背景虚化生成变焦虚化图像,其中,虚化方式可以基于三角定位法估算变焦主图像的背景区域的景深信息,基于景深信息进行虚化处理。
需要说明的是,前述方法主要描述了拍照处理流程,本申请实施例中的基于终端设备的变焦虚化图像获取方法也可以用于预览流程,在预览流程中,为了提高预览效率,可以基于数码放大的方式实现变焦虚化图像的预览。即可以以主摄像头拍摄的一倍变焦倍数的主图像,基于副摄像头获取的图像为副图像,基于主图像和副图像的重叠部分视差计算深度图,根据深度图渲染得到一倍景虚化效果的变焦虚化图像,通过对一倍虚化效果的变焦虚化图像进行数码放大对应倍数得到对应变焦倍数下的图像。
举例而言,如图5所示,当主摄像头的等效变焦倍数为一倍时,控制变焦主摄像头根据拍照模式拍摄主图像,并控制变焦副摄像头拍摄副图像,其中,基于主图像和副图像经过一系列处理模块的处理,进行虚化处理,获取一倍变焦倍数下的虚化效果预览图给用户,此时,还可以基于主图像和副图像经过上述实施例的处理步骤,生成变焦虚化图像给用户。
由此,上述实施例的基于终端设备的变焦虚化图像获取方法,一方面,通过对主图像的裁剪来实现等效变焦倍数效果的变焦主图像,保证了变焦虚化图像的清晰度,另一方面,通过背景虚化技术,突出了拍照主体,优化了变焦效果。又一方面,基于拍照模式的选择,提高了主图像的清晰度,进一步保证了变焦虚化图像的清晰度。
综上,本申请实施例的基于终端设备的变焦虚化图像获取方法,获取携带变焦倍数的变焦拍照指令,判断变焦倍数与主摄像头和至少一个副摄像头的等效变焦倍数的大小关系,根据大小关系,在主摄像头和至少一个副摄像头中确定变焦主摄像头和变焦副摄像头以及在预设拍照模式中确定变焦主摄像头的拍照模式,进一步的,控制变焦主摄像头根据拍照模式拍摄主图像,并控制变焦副摄像头拍摄副图像,最后,根据变焦倍数裁切主图像以获取变焦主图像,根据副图像对变焦主图像的背景虚化生成变焦虚化图像。由此,灵活的满足了多摄像头拍照时多种变焦倍数的拍摄需求,且保证了变焦后的成像清晰度。
基于以上实施例,为了使得本领域的发明人更加清楚的了解如何根据大小关系,在主摄像头和至少一个副摄像头中确定变焦主摄像头和变焦副摄像头以及在预设拍照模式中确定变焦主摄像头的拍照模式,下面结合具体的示例进行说明:
作为一种可能的实现方式,至少一个副摄像头包括广角摄像头,其中,广角摄像头的等效变焦倍数为p。
在本实施例中,判断变焦倍数是否大于等于1小于n,其中,n为大于1的某个数值,该n可以根据预设拍照模式对应的图像传感器确定,该图像传感器的成像分辨率越高,则对应的n越大,n也可以 根据主图像的清晰度确定,当主图像的清晰度越高,则对应的n越大,若变焦倍数大于等于1小于n,则表明此时主摄像头拍摄的图像作为主图像可最大程度的保证图像清晰度,因而,确定主摄像头为变焦主摄像头,并确定广角摄像头为变焦副摄像头。
此时,由于变焦倍数相对较小,变焦倍数下拍照主体与主摄像头拍摄的主图像相差不大,因而,尽量使得主摄像头原图输出作为主图像,即使用分辨率相对较低的第一拍照模式拍摄主图像,避免分辨率较大,需要对主图像裁剪后,导致裁剪后的变焦主图像难以满足对应的变焦倍数需求。
当变焦倍数大于n时,进一步确定是否还具有其他更高等效变焦倍数的摄像头,若没有,则可以提高变焦主图像的分辨率,将变焦主图像控制在第二拍摄模式拍摄,由此,对第二拍摄模式下拍摄的图像拍摄后,可以通过裁剪的方式得到更大等效变焦倍数的变焦主图像。
在发明的一个实施例中,当还具有其他更高等效变焦倍数的摄像头时,比如,至少一个副摄像头包括长焦摄像头,长焦摄像头的等效变焦倍数为q时,其中,q大于第二拍照模式的等效变焦倍数n,基于上述实施例,若变焦倍数大于等于所述第二拍照模式的等效变焦倍数n小于q,则确定主摄像头为变焦主摄像头,并确定广角摄像头为变焦副摄像头,由于此时变焦倍数相对较大,因此,为了提高变焦主图像的解析力,确定主摄像头的拍照模式为分辨率较高的第二拍照模式。
当然,参照上述实施例的分析,由于第一拍照模式的亮度比较高,可以弥补感光值的不足导致主图像噪点较多,因而,在确定主摄像头的拍照模式为第二拍照模式之前,还需要获取当前环境亮度值,比如,基于传感器获取,或者基于变焦主摄像头的iso来确定,如果确定当前环境亮度值满足预设条件,比如,当前环境亮度值大于等于预设阈值,又比如,当前环境亮度值持续大于预设阈值,则基于第二拍照模式拍摄,如果当前环境亮度值小于预设阈值,则确定主摄像头的拍照模式为第一拍照模式。其中,预设阈值可以根据摄像头的成像能力确定。
由此可见,在本申请的实施例中,选择拍照模式的参考因素除了变焦倍数之外,在变焦倍数与变焦主摄像头的等效变焦倍数差距较大的时候,可以参考环境亮度值来确定拍照模式。
在本实施例中,设置预设变焦倍数,该预设变焦倍数可以理解为主摄像头采集的副图像,结合主图像可以清晰获取到对齐的像素点的变焦倍数的临界值,若变焦倍数大于等于q小于预设变焦倍数,则表明此时主摄像头获取的主图像还可以参与虚化,确定长焦摄像头为变焦主摄像头,并确定主摄像头为所述变焦副摄像头,其中,由于长焦摄像头拍照的图像的变焦倍数相对较大,变焦倍数下拍照主体与长焦摄像头拍摄的主图像相差不大,因而,尽量使得长焦摄像头原图输出作为主图像,即使用分辨率相对较低的第一拍照模式拍摄主图像,避免分辨率较大,需要对主图像裁剪后,导致裁剪后的变焦主图像难以满足对应的变焦倍数需求。
当然,在本实施例中,也可以在定长焦摄像头的拍照模式为第一拍照模式之前,获取当前环境亮度值,并确定当前环境亮度值大于等于预设阈值,其中,为了计算方便,该预设阈值可以和判断上述主摄像头的预设阈值相同,或者,为了考虑不同摄像头之间感光度的差异性,该预设阈值也可以和判断上述主摄像头的预设阈值不同。
若变焦倍数大于等于预设变焦倍数,则表明主摄像头采集的副图像,结合主图像已经不可以清晰获取到对齐的像素点,即难以发现二者的视角重合区域,从而导致难以进行虚化,此时,确定长焦摄像头为变焦主摄像头和变焦副摄像头,也可以理解,将长焦摄像头拍摄的图像即作为主图像也作为副图像,进而,基于单摄虚化的方式实现虚化变焦图像的获取。即确定长焦摄像头的拍照模式为第一拍照模式,进而,识别主图像中的拍摄主体所在区域为变焦主图像,计算变焦主图像中的非拍摄主体所在区域的景深信息,比如,基于当前拍色的光圈等拍摄参数计算景深信息,根据景深信息虚化变焦主 图像中的非拍摄主体所在区域生成初始变焦虚化图像,进而,根据变焦倍数裁切初始变焦虚化图像生成变焦虚化图像。在本实施例中,为了确保变焦主图像的清晰度,也可以使用第二拍照模式拍照变焦主图像,当然了,无论以哪种模式进行拍照,长焦摄像头必然设置有上述图像传感器。
由此,本申请实施例的变焦虚化图像获取方法,满足了多种变焦倍数的图像获取,打破了摄像头定焦的限制,且平衡了成像的清晰度。
为了使得本领域的技术人员更全面的了解本申请实施例的基于终端设备的变焦虚化图像获取方法,下面结合具体的应用场景进行说明:
在本应用场景中包括一个主摄像头和两个副摄像头,其中,副摄像头包括广角摄像头和长焦摄像头,其中,主摄像头的等效变焦倍数为1倍,简称1X,广角摄像头的等效变焦倍数为0.6倍,简称0.6X(p),长焦摄像头的等效变焦倍数为3.0倍,简称3.0X(q),本实施例中,n为2,假设变焦步进精度为0.1,图像传感器为如图1所示,直出成像大小为48M,预设变焦倍数为4。
具体而言,如图6所示,获取携带变焦倍数的变焦拍照指令,判断该变焦倍数是否为1、2或3,即判断变焦倍数是否为摄像头的等效变焦倍数,若不是,则判断该变焦倍数是否大于1小于2,判断变焦倍数是否为1-1.9,若是,则在预览阶段,控制广角摄像头和主摄像头工作在第一拍照模式,则显然四合一合并为合并像素单元后,输出的主图像的大小为12M,广角摄像头拍摄的副图像用于辅助计算深度图。
具体而言,基于主图像和副图像的重合视角部分的图像的像素点的视差计算深度图,根据深度图渲染得到1X背景虚化效果的预览变焦虚化图像,为了提高预览效率,1.1X~1.9X预览虚化效果通过对1X虚化效果对应的预览变焦虚化图像进行数码放大得到。
在拍照阶段,为提升成像清晰度,采用超分算法对主摄像头采集的多帧主图像进行画质增强,然后根据变焦倍数裁切对应视角的主摄图像。同时,选择主图像中的基准主图像,利用基准主图像与同步的广角摄像头拍摄的副图像计算深度图,根据深度图渲染裁切后的变焦主图像。
若变焦倍数大于等于2,则判断变焦倍数是都大于等于2小于3,即判断变焦倍数是否位于2-2.9之间,此时,在预览时,仍然使用上述对1X虚化效果的预览变焦虚化图像进行数码放大得到。在拍照阶段,主摄像头切换至第二拍照模式,此时,基于该模式得到的主图像为全尺寸的48M的大小,因而,我们可以裁剪画面中央1/4面积输出12M图像作为最终输出的主图像,以便于后续对该最终的主图像的裁切,比如,裁切画面中央1/4面积输出12M图像相当于光学变焦2X的效果,提高了2X时的主图像的解析力,在变焦倍数为2.1-2.9时,可采用超分算法对这摄像头输出的多帧主图像进行画质增强。
在本实施例中,考虑到此时广角摄像头与这摄像头的重叠的视角较小,为了提高景深的计算精度,要求广角摄像头的分辨率较高,比如,要到24M以上,比如,可以基于第二拍照模式拍摄副图像。
当然,在本实施例中,若环境亮度比较低,比如,说ISO>3200,则显然第二拍照模式的噪点会较多,因此,控制主摄像头工作在第一拍照模式下拍照,在本实施例中,可以通过超分算法提高拍摄的主图像的清晰度,当然,如果环境亮度较高,则可以基于第二拍照模式控制主摄像头拍摄主图像。
若变焦倍数大于等于3,则判断变焦倍数是否大于等于3小于等于4,即判断变焦倍数是否为3-3.9,若为3-3.9,则基于长焦摄像头作为变焦主摄像头输出主图像,主摄像头作为变焦副摄像头输出副图像,辅助计算深度图。
在预览阶段,主摄像头和长焦摄像头都工作在第一拍照模式,拍照阶段,若环境亮度比较高,大于预设阈值,则主摄像头和长焦摄像头都工作在第二拍照模式下,提高深度图和变焦主图像的成像精度,采用超分算法对主图像进行画质增强。
当环境亮度比较低时,即环境亮度小于预设阈值,则控制长焦摄像头和主摄像头工作在第一拍照模式,保证计算深度图的信噪比,降低变焦主图像的清噪点,同样的,可采用超分算法对主图像进行画质增强。
当变焦倍数大于若变焦倍数大于等于4,则获取长焦摄像头拍摄的主图像,对主图像进行超分计算后,采用单摄虚化方式生成初始虚化变焦图像,进而,基于变焦倍数裁剪初始虚化变焦图像生成对应的变焦虚化图像。
综上,本申请实施例的基于终端设备的变焦虚化图像获取方法,基于摄像头的拍照模式的灵活选择,确保拍摄的变焦主图像的清晰度,进而,基于对主图像的裁剪实现对应变焦倍数的变焦主图像的获取,提高了变焦主图像的图像解析力。
为了实现上述实施例,本申请还提出一种基于终端设备的变焦虚化图像获取装置。终端设备包括主摄像头和至少一个副摄像头,其中,主摄像头的等效变焦倍数为1。
图7为本申请实施例提供的一种基于终端设备的变焦虚化图像获取装置的结构示意图。
如图7所示,该基于终端设备的变焦虚化图像获取装置包括:获取模块100、判断模块200、确定模块300、拍摄模块400和处理模块500。
其中,获取模块100,用于获取携带变焦倍数的变焦拍照指令。
判断模块200,用于判断变焦倍数与主摄像头和至少一个副摄像头的等效变焦倍数的大小关系。
确定模块300,用于根据大小关系,在主摄像头和至少一个副摄像头中确定变焦主摄像头和变焦副摄像头以及在预设拍照模式中确定变焦主摄像头的拍照模式。
预设拍照模式,包括:
第一拍照模式和第二拍照模式,其中,第一拍照模式下拍摄的主图像由多个合并像素单元组成,每个合并像素单元包括多个感光像素单元,每个合并像素单元的感光像素值根据多个感光像素单元的感光像素值之和获取;
第二拍照模式下拍摄的主图像通过对第一拍照模式下的主图像中每个合并像素单元的感光像素值插值得到。
拍摄模块400,用于控制变焦主摄像头根据拍照模式拍摄主图像,并控制变焦副摄像头拍摄副图像。
处理模块500,用于根据变焦倍数裁切主图像以获取变焦主图像,并根据副图像对变焦主图像的背景虚化生成变焦虚化图像。
进一步地,在本申请实施例的一种可能的实现方式中,至少一个副摄像头包括广角摄像头,其中,广角摄像头的等效变焦倍数为p,其中,p小于1,确定模块300,具体用于:判断变焦倍数是否大于等于1小于预设的n;
若变焦倍数大于等于1小于预设的n,则确定主摄像头为变焦主摄像头,并确定广角摄像头为变焦副摄像头;
确定主摄像头的拍照模式为第一拍照模式。
在本实施例中,确定模块400,具体用于:
若变焦倍数大于等于n,则判断变焦倍数是否小于q;
若变焦倍数小于q,则确定主摄像头为变焦主摄像头,并确定广角摄像头为变焦副摄像头;
确定主摄像头的拍照模式为第二拍照模式。
在本实施例中,确定模块400,还用于在确定主摄像头的拍照模式为第二拍照模式之前,获取当前 环境亮度值,确定当前环境亮度值大于等于预设阈值。
需要说明的是,前述对基于终端设备的变焦虚化图像获取方法实施例的解释说明也适用于该实施例的基于终端设备的变焦虚化图像获取装置,此处不再赘述。
综上,本申请实施例的基于终端设备的变焦虚化图像获取装置,获取携带变焦倍数的变焦拍照指令,判断变焦倍数与主摄像头和至少一个副摄像头的等效变焦倍数的大小关系,根据大小关系,在主摄像头和至少一个副摄像头中确定变焦主摄像头和变焦副摄像头以及在预设拍照模式中确定变焦主摄像头的拍照模式,进一步的,控制变焦主摄像头根据拍照模式拍摄主图像,并控制变焦副摄像头拍摄副图像,最后,根据变焦倍数裁切主图像以获取变焦主图像,根据副图像对变焦主图像的背景虚化生成变焦虚化图像。由此,灵活的满足了多摄像头拍照时多种变焦倍数的拍摄需求,且保证了变焦后的成像清晰度。
为了实现上述实施例,本申请还提出了一种终端设备,包括主摄像头和至少一个副摄像头,其中,主摄像头的等效变焦倍数为1,存储器、处理器及存储在存储器上并可在处理器上运行的计算机程序,处理器与主摄像头和至少一个副摄像头连接,处理器执行计算机程序时,实现如前述实施例描述的基于终端设备的变焦虚化图像获取方法。
为了实现上述实施例,本申请还提出一种非临时性计算机可读存储介质,当存储介质中的指令由处理器被执行时,使得能够实现如前述实施例描述的基于终端设备的变焦虚化图像获取方法。
在本说明书的描述中,参考术语“一个实施例”、“一些实施例”、“示例”、“具体示例”、或“一些示例”等的描述意指结合该实施例或示例描述的具体特征、结构、材料或者特点包含于本申请的至少一个实施例或示例中。在本说明书中,对上述术语的示意性表述不必须针对的是相同的实施例或示例。而且,描述的具体特征、结构、材料或者特点可以在任一个或多个实施例或示例中以合适的方式结合。此外,在不相互矛盾的情况下,本领域的技术人员可以将本说明书中描述的不同实施例或示例以及不同实施例或示例的特征进行结合和组合。
此外,术语“第一”、“第二”仅用于描述目的,而不能理解为指示或暗示相对重要性或者隐含指明所指示的技术特征的数量。由此,限定有“第一”、“第二”的特征可以明示或者隐含地包括至少一个该特征。在本申请的描述中,“多个”的含义是至少两个,例如两个,三个等,除非另有明确具体的限定。
流程图中或在此以其他方式描述的任何过程或方法描述可以被理解为,表示包括一个或更多个用于实现定制逻辑功能或过程的步骤的可执行指令的代码的模块、片段或部分,并且本申请的优选实施方式的范围包括另外的实现,其中可以不按所示出或讨论的顺序,包括根据所涉及的功能按基本同时的方式或按相反的顺序,来执行功能,这应被本申请的实施例所属技术领域的技术人员所理解。
在流程图中表示或在此以其他方式描述的逻辑和/或步骤,例如,可以被认为是用于实现逻辑功能的可执行指令的定序列表,可以具体实现在任何计算机可读介质中,以供指令执行系统、装置或设备(如基于计算机的系统、包括处理器的系统或其他可以从指令执行系统、装置或设备取指令并执行指令的系统)使用,或结合这些指令执行系统、装置或设备而使用。就本说明书而言,"计算机可读介质"可以是任何可以包含、存储、通信、传播或传输程序以供指令执行系统、装置或设备或结合这些指令执行系统、装置或设备而使用的装置。计算机可读介质的更具体的示例(非穷尽性列表)包括以下:具有一个或多个布线的电连接部(电子装置),便携式计算机盘盒(磁装置),随机存取存储器(RAM), 只读存储器(ROM),可擦除可编辑只读存储器(EPROM或闪速存储器),光纤装置,以及便携式光盘只读存储器(CDROM)。另外,计算机可读介质甚至可以是可在其上打印所述程序的纸或其他合适的介质,因为可以例如通过对纸或其他介质进行光学扫描,接着进行编辑、解译或必要时以其他合适方式进行处理来以电子方式获得所述程序,然后将其存储在计算机存储器中。
应当理解,本申请的各部分可以用硬件、软件、固件或它们的组合来实现。在上述实施方式中,多个步骤或方法可以用存储在存储器中且由合适的指令执行系统执行的软件或固件来实现。如,如果用硬件来实现和在另一实施方式中一样,可用本领域公知的下列技术中的任一项或他们的组合来实现:具有用于对数据信号实现逻辑功能的逻辑门电路的离散逻辑电路,具有合适的组合逻辑门电路的专用集成电路,可编程门阵列(PGA),现场可编程门阵列(FPGA)等。
本技术领域的普通技术人员可以理解实现上述实施例方法携带的全部或部分步骤是可以通过程序来指令相关的硬件完成,所述的程序可以存储于一种计算机可读存储介质中,该程序在执行时,包括方法实施例的步骤之一或其组合。
此外,在本申请各个实施例中的各功能单元可以集成在一个处理模块中,也可以是各个单元单独物理存在,也可以两个或两个以上单元集成在一个模块中。上述集成的模块既可以采用硬件的形式实现,也可以采用软件功能模块的形式实现。所述集成的模块如果以软件功能模块的形式实现并作为独立的产品销售或使用时,也可以存储在一个计算机可读取存储介质中。
上述提到的存储介质可以是只读存储器,磁盘或光盘等。尽管上面已经示出和描述了本申请的实施例,可以理解的是,上述实施例是示例性的,不能理解为对本申请的限制,本领域的普通技术人员在本申请的范围内可以对上述实施例进行变化、修改、替换和变型。

Claims (20)

  1. 一种基于终端设备的变焦虚化图像获取方法,其特征在于,所述终端设备包括主摄像头和至少一个副摄像头,其中,所述主摄像头的等效变焦倍数为1,所述方法包括以下步骤:
    获取携带变焦倍数的变焦拍照指令;
    判断所述变焦倍数与所述主摄像头和所述至少一个副摄像头的等效变焦倍数的大小关系;
    根据所述大小关系,在所述主摄像头和所述至少一个副摄像头中确定变焦主摄像头和变焦副摄像头以及在预设拍照模式中确定所述变焦主摄像头的拍照模式;
    控制所述变焦主摄像头根据所述拍照模式拍摄主图像,并控制所述变焦副摄像头拍摄副图像;
    根据所述变焦倍数裁切所述主图像以获取变焦主图像,并根据所述副图像对所述变焦主图像的背景虚化生成变焦虚化图像。
  2. 如权利要求1所述的方法,其特征在于,所述预设拍照模式,包括:
    第一拍照模式和第二拍照模式,其中,所述第一拍照模式下拍摄的主图像由多个合并像素单元组成,每个合并像素单元包括多个感光像素单元,所述每个合并像素单元的感光像素值根据所述多个感光像素单元的感光像素值之和获取;
    所述第二拍照模式下拍摄的主图像通过对所述第一拍照模式下的主图像中每个合并像素单元的感光像素值插值得到。
  3. 如权利要求2所述的方法,其特征在于,所述至少一个副摄像头包括广角摄像头,其中,所述广角摄像头的等效变焦倍数为p,其中,p小于1,所述根据所述大小关系,在所述主摄像头和所述至少一个副摄像头中确定变焦主摄像头和变焦副摄像头以及在预设拍照模式中确定所述变焦主摄像头的拍照模式,包括:
    判断所述变焦倍数是否大于等于1小于预设的n;
    若所述变焦倍数大于等于1小于n,则确定所述主摄像头为所述变焦主摄像头,并确定所述广角摄像头为所述变焦副摄像头;
    确定所述主摄像头的拍照模式为所述第一拍照模式。
  4. 如权利要求3所述的方法,其特征在于,所述至少一个副摄像头包括长焦摄像头,所述长焦摄像头的等效变焦倍数为q,其中,q大于n,在所述判断所述变焦倍数是否大于等于1小于预设的n之后,还包括:
    若所述变焦倍数大于等于n,则判断所述变焦倍数是否小于q;
    若所述变焦倍数小于q,则确定所述主摄像头为所述变焦主摄像头,并确定所述广角摄像头为所述变焦副摄像头;
    确定所述主摄像头的拍照模式为所述第二拍照模式。
  5. 如权利要求4所述的方法,其特征在于,在所述确定所述主摄像头的拍照模式为所述第二拍照模式之前,还包括:
    获取当前环境亮度值;
    当所述当前环境亮度值满足预设条件时,确定所述主摄像头的拍照模式为所述第二拍照模式。
  6. 如权利要求5所述的方法,其特征在于,在所述获取当前环境亮度值之后,还包括:
    若所述当前环境亮度值小于预设阈值,则确定所述主摄像头的拍照模式为所述第一拍照模式。
  7. 如权利要求4所述的方法,其特征在于,在所述判断所述变焦倍数是否小于q之后,还包括:
    若所述变焦倍数大于等于q,则判断所述变焦倍数是否小于预设变焦倍数;
    若所述变焦倍数小于所述预设变焦倍数,则确定所述长焦摄像头为所述变焦主摄像头,并确定所述主摄像头为所述变焦副摄像头;
    确定所述长焦摄像头的拍照模式为所述第一拍照模式。
  8. 如权利要求7所述的方法,其特征在于,在所述确定所述长焦摄像头的拍照模式为所述第一拍照模式之前,还包括:
    获取当前环境亮度值;
    当所述当前环境亮度值大于等于预设阈值时,确定所述长焦摄像头的拍照模式为所述第一拍照模式。
  9. 如权利要求7所述的方法,其特征在于,在所述则判断所述变焦倍数是否小于预设变焦倍数之后,还包括:
    若所述变焦倍数大于等于所述预设变焦倍数,则确定所述长焦摄像头为所述变焦主摄像头和所述变焦副摄像头;
    确定所述长焦摄像头的拍照模式为所述第二拍照模式。
  10. 如权利要求9所述的方法,其特征在于,所述根据所述变焦倍数裁切所述主图像以获取变焦主图像,并根据所述副图像对所述变焦主图像的背景虚化生成变焦虚化图像,包括:
    识别所述主图像中的拍摄主体所在区域为所述变焦主图像;
    计算所述变焦主图像中的非所述拍摄主体所在区域的景深信息;
    根据所述景深信息虚化所述变焦主图像中的非所述拍摄主体所在区域生成初始变焦虚化图像;
    根据所述变焦倍数裁切所述初始变焦虚化图像生成所述变焦虚化图像。
  11. 如权利要求1所述的方法,其特征在于,所述控制所述变焦主摄像头根据所述拍照模式拍摄主图像,包括:
    控制所述变焦主摄像头根据所述拍照模式拍摄连续的多帧主图像;
    在所述根据所述变焦倍数裁切所述主图像以获取变焦主图像之前,包括:
    对所述多帧主图像合成生成一帧主图像。
  12. 如权利要求1所述的方法,其特征在于,在所述根据所述变焦倍数裁切所述主图像以获取变焦主图像之前,包括:
    根据预设算法对所述主图像进行插值计算获取计算后的所述主图像。
  13. 如权利要求1所述的方法,其特征在于,所述控制所述变焦副摄像头拍摄副图像,包括:
    控制所述变焦副摄像头根据所述拍照模式拍摄所述副图像。
  14. 一种基于终端设备的变焦虚化图像获取装置,其特征在于,所述终端设备包括主摄像头和至少一个副摄像头,其中,所述主摄像头的等效变焦倍数为1,所述装置,包括:
    获取模块,用于获取携带变焦倍数的变焦拍照指令;
    判断模块,用于判断所述变焦倍数与所述主摄像头和所述至少一个副摄像头的等效变焦倍数的大小关系;
    确定模块,用于根据所述大小关系,在所述主摄像头和所述至少一个副摄像头中确定变焦主摄像头和变焦副摄像头以及在预设拍照模式中确定所述变焦主摄像头的拍照模式;
    拍摄模块,用于控制所述变焦主摄像头根据所述拍照模式拍摄主图像,并控制所述变焦副摄像头拍摄副图像;
    处理模块,用于根据所述变焦倍数裁切所述主图像以获取变焦主图像,并根据所述副图像对所述 变焦主图像的背景虚化生成变焦虚化图像。
  15. 如权利要求14所述的装置,其特征在于,所述预设拍照模式,包括:
    第一拍照模式和第二拍照模式,其中,所述第一拍照模式下拍摄的主图像由多个合并像素单元组成,每个合并像素单元包括多个感光像素单元,所述每个合并像素单元的感光像素值根据所述多个感光像素单元的感光像素值之和获取;
    所述第二拍照模式下拍摄的主图像通过对所述第一拍照模式下的主图像中每个合并像素单元的感光像素值插值得到。
  16. 如权利要求15所述的装置,其特征在于,所述至少一个副摄像头包括广角摄像头,其中,所述广角摄像头的等效变焦倍数为p,其中,p小于1,所述确定模块,具体用于:判断所述变焦倍数是否大于等于1小于预设的n;
    若所述变焦倍数大于等于1小于n,则确定所述主摄像头为所述变焦主摄像头,并确定所述广角摄像头为所述变焦副摄像头;
    确定所述主摄像头的拍照模式为所述第一拍照模式。
  17. 如权利要求16所述的装置,其特征在于,所述确定模块,具体用于:
    若所述变焦倍数大于等于n,则判断所述变焦倍数是否小于q;
    若所述变焦倍数小于q,则确定所述主摄像头为所述变焦主摄像头,并确定所述广角摄像头为所述变焦副摄像头;
    确定所述主摄像头的拍照模式为所述第二拍照模式。
  18. 如权利要求17所述的装置,其特征在于,所述确定模块,还用于:
    在确定所述主摄像头的拍照模式为所述第二拍照模式之前,获取当前环境亮度值,确定所述当前环境亮度值大于等于预设阈值。
  19. 一种终端设备,其特征在于,包括主摄像头和至少一个副摄像头,其中,所述主摄像头的等效变焦倍数为1,存储器、处理器及存储在所述存储器上并可在所述处理器上运行的计算机程序,所述处理器与所述主摄像头和至少一个副摄像头连接,所述处理器执行所述计算机程序时,实现如权利要求1-13中任一所述的基于终端设备的变焦虚化图像获取方法。
  20. 一种非临时性计算机可读存储介质,其上存储有计算机程序,其特征在于,所述计算机程序被处理器执行时实现如权利要求1-13中任一所述的基于终端设备的变焦虚化图像获取方法。
PCT/CN2020/115159 2019-10-14 2020-09-14 基于终端设备的变焦虚化图像获取方法和装置 WO2021073331A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201910972592.6A CN110572581B (zh) 2019-10-14 2019-10-14 基于终端设备的变焦虚化图像获取方法和装置
CN201910972592.6 2019-10-14

Publications (1)

Publication Number Publication Date
WO2021073331A1 true WO2021073331A1 (zh) 2021-04-22

Family

ID=68784827

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/115159 WO2021073331A1 (zh) 2019-10-14 2020-09-14 基于终端设备的变焦虚化图像获取方法和装置

Country Status (2)

Country Link
CN (1) CN110572581B (zh)
WO (1) WO2021073331A1 (zh)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113473018A (zh) * 2021-07-01 2021-10-01 百果园技术(新加坡)有限公司 一种视频拍摄方法、装置、拍摄终端和存储介质
CN115662033A (zh) * 2022-10-18 2023-01-31 众芯汉创(北京)科技有限公司 一种基建工程施工围栏的动态识别监控系统
CN116051368A (zh) * 2022-06-29 2023-05-02 荣耀终端有限公司 图像处理方法及其相关设备
CN116347224A (zh) * 2022-10-31 2023-06-27 荣耀终端有限公司 拍摄帧率控制方法、电子设备、芯片系统及可读存储介质

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110572581B (zh) * 2019-10-14 2021-04-30 Oppo广东移动通信有限公司 基于终端设备的变焦虚化图像获取方法和装置
CN111131714A (zh) * 2019-12-31 2020-05-08 联想(北京)有限公司 图像采集控制方法、装置及电子设备
CN113194242B (zh) * 2020-01-14 2022-09-20 荣耀终端有限公司 一种长焦场景下的拍摄方法及移动终端
CN113840076B (zh) * 2020-06-24 2023-08-29 Oppo广东移动通信有限公司 一种拍摄变焦方法、电子设备及存储介质
CN112019738B (zh) * 2020-07-31 2022-03-01 广东小天才科技有限公司 一种拍照方法及终端设备
CN111988526B (zh) * 2020-08-27 2021-07-27 Oppo(重庆)智能科技有限公司 移动终端及图像数据处理方法
CN112351193A (zh) * 2020-09-17 2021-02-09 格科微电子(上海)有限公司 基于时序控制的变焦方法、图像采集设备及存储介质
CN113014806B (zh) * 2021-02-07 2022-09-13 维沃移动通信有限公司 虚化图像拍摄方法及装置
CN113727016A (zh) * 2021-06-15 2021-11-30 荣耀终端有限公司 一种拍摄方法及电子设备
CN115633252B (zh) * 2021-08-11 2023-10-20 荣耀终端有限公司 拍摄方法及其相关设备
CN115118871B (zh) * 2022-02-11 2023-12-15 东莞市步步高教育软件有限公司 一种拍照像素模式切换方法、系统、终端设备及存储介质
CN114745502A (zh) * 2022-03-30 2022-07-12 联想(北京)有限公司 拍摄方法及装置、电子设备、存储介质
CN118134771A (zh) * 2022-12-02 2024-06-04 Oppo广东移动通信有限公司 图像景深渲染方法、图像景深渲染装置、终端及存储介质

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20080218612A1 (en) * 2007-03-09 2008-09-11 Border John N Camera using multiple lenses and image sensors in a rangefinder configuration to provide a range map
CN106990646A (zh) * 2016-01-20 2017-07-28 深圳富泰宏精密工业有限公司 多镜头系统、其工作方法及便携式电子装置
CN108391035A (zh) * 2018-03-26 2018-08-10 华为技术有限公司 一种拍摄方法、装置与设备
CN109194881A (zh) * 2018-11-29 2019-01-11 珠海格力电器股份有限公司 图像处理方法、系统及终端
CN110572581A (zh) * 2019-10-14 2019-12-13 Oppo广东移动通信有限公司 基于终端设备的变焦虚化图像获取方法和装置

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107835372A (zh) * 2017-11-30 2018-03-23 广东欧珀移动通信有限公司 基于双摄像头的成像方法、装置、移动终端和存储介质
CN108769485A (zh) * 2018-06-27 2018-11-06 北京小米移动软件有限公司 电子设备

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20080218612A1 (en) * 2007-03-09 2008-09-11 Border John N Camera using multiple lenses and image sensors in a rangefinder configuration to provide a range map
CN106990646A (zh) * 2016-01-20 2017-07-28 深圳富泰宏精密工业有限公司 多镜头系统、其工作方法及便携式电子装置
CN108391035A (zh) * 2018-03-26 2018-08-10 华为技术有限公司 一种拍摄方法、装置与设备
CN109194881A (zh) * 2018-11-29 2019-01-11 珠海格力电器股份有限公司 图像处理方法、系统及终端
CN110572581A (zh) * 2019-10-14 2019-12-13 Oppo广东移动通信有限公司 基于终端设备的变焦虚化图像获取方法和装置

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113473018A (zh) * 2021-07-01 2021-10-01 百果园技术(新加坡)有限公司 一种视频拍摄方法、装置、拍摄终端和存储介质
CN113473018B (zh) * 2021-07-01 2023-10-31 百果园技术(新加坡)有限公司 一种视频拍摄方法、装置、拍摄终端和存储介质
CN116051368A (zh) * 2022-06-29 2023-05-02 荣耀终端有限公司 图像处理方法及其相关设备
CN116051368B (zh) * 2022-06-29 2023-10-20 荣耀终端有限公司 图像处理方法及其相关设备
CN115662033A (zh) * 2022-10-18 2023-01-31 众芯汉创(北京)科技有限公司 一种基建工程施工围栏的动态识别监控系统
CN115662033B (zh) * 2022-10-18 2023-07-07 众芯汉创(北京)科技有限公司 一种基建工程施工围栏的动态识别监控系统
CN116347224A (zh) * 2022-10-31 2023-06-27 荣耀终端有限公司 拍摄帧率控制方法、电子设备、芯片系统及可读存储介质
CN116347224B (zh) * 2022-10-31 2023-11-21 荣耀终端有限公司 拍摄帧率控制方法、电子设备、芯片系统及可读存储介质

Also Published As

Publication number Publication date
CN110572581B (zh) 2021-04-30
CN110572581A (zh) 2019-12-13

Similar Documents

Publication Publication Date Title
WO2021073331A1 (zh) 基于终端设备的变焦虚化图像获取方法和装置
JP5036599B2 (ja) 撮像装置
JP6157242B2 (ja) 画像処理装置及び画像処理方法
JP6436783B2 (ja) 画像処理装置、撮像装置、画像処理方法、プログラム、および、記憶媒体
JP6838994B2 (ja) 撮像装置、撮像装置の制御方法およびプログラム
KR102229811B1 (ko) 단말기를 위한 촬영 방법 및 단말기
US20160028969A1 (en) Digital photographing apparatus and method of controlling the digital photographing apparatus
JP6257285B2 (ja) 複眼撮像装置
JP5262417B2 (ja) 画像処理装置、画像処理方法および画像処理プログラム
JP2009193421A (ja) 画像処理装置、カメラ装置、画像処理方法、およびプログラム
CN109923850B (zh) 一种图像捕捉装置及方法
JP2008118348A (ja) 電子カメラおよびプログラム
CN110177212B (zh) 图像处理方法和装置、电子设备、计算机可读存储介质
WO2019124289A1 (ja) 装置、制御方法および記憶媒体
KR20120002834A (ko) 참조 영상을 제공하는 촬상장치 및 그의 참조 영상 제공방법
JP2018037857A (ja) 画像処理装置、画像処理方法およびプログラム
JP2015012481A (ja) 画像処理装置
JP2002158919A (ja) 撮像装置及び画像取得ステップ
JP6541501B2 (ja) 画像処理装置、撮像装置、及び画像処理方法
JP2017143354A (ja) 画像処理装置及び画像処理方法
WO2018196854A1 (zh) 一种拍照方法、拍照装置及移动终端
JP6645711B2 (ja) 画像処理装置、画像処理方法、プログラム
JP7051365B2 (ja) 画像処理装置、画像処理方法、及びプログラム
JP2015233211A (ja) 撮像装置およびその制御方法ならびにプログラム
JP2019047145A (ja) 画像処理装置、撮像装置、画像処理装置の制御方法およびプログラム

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20877571

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20877571

Country of ref document: EP

Kind code of ref document: A1