WO2021072855A1 - 一种弯道转弯控制方法,弯道转弯控制装置及轨道车辆 - Google Patents

一种弯道转弯控制方法,弯道转弯控制装置及轨道车辆 Download PDF

Info

Publication number
WO2021072855A1
WO2021072855A1 PCT/CN2019/117463 CN2019117463W WO2021072855A1 WO 2021072855 A1 WO2021072855 A1 WO 2021072855A1 CN 2019117463 W CN2019117463 W CN 2019117463W WO 2021072855 A1 WO2021072855 A1 WO 2021072855A1
Authority
WO
WIPO (PCT)
Prior art keywords
rail vehicle
risk
turning control
force
curve
Prior art date
Application number
PCT/CN2019/117463
Other languages
English (en)
French (fr)
Inventor
陈磊
吉振山
李童生
张英余
焦东明
张义文
孙明录
闫晓庚
罗铁军
陈乐恒
Original Assignee
中车唐山机车车辆有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中车唐山机车车辆有限公司 filed Critical 中车唐山机车车辆有限公司
Publication of WO2021072855A1 publication Critical patent/WO2021072855A1/zh

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B61RAILWAYS
    • B61FRAIL VEHICLE SUSPENSIONS, e.g. UNDERFRAMES, BOGIES OR ARRANGEMENTS OF WHEEL AXLES; RAIL VEHICLES FOR USE ON TRACKS OF DIFFERENT WIDTH; PREVENTING DERAILING OF RAIL VEHICLES; WHEEL GUARDS, OBSTRUCTION REMOVERS OR THE LIKE FOR RAIL VEHICLES
    • B61F5/00Constructional details of bogies; Connections between bogies and vehicle underframes; Arrangements or devices for adjusting or allowing self-adjustment of wheel axles or bogies when rounding curves
    • B61F5/02Arrangements permitting limited transverse relative movements between vehicle underframe or bolster and bogie; Connections between underframes and bogies
    • B61F5/04Bolster supports or mountings
    • B61F5/10Bolster supports or mountings incorporating fluid springs
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B61RAILWAYS
    • B61CLOCOMOTIVES; MOTOR RAILCARS
    • B61C17/00Arrangement or disposition of parts; Details or accessories not otherwise provided for; Use of control gear and control systems

Definitions

  • the application relates to the technical field of rail vehicles, and in particular to a curve turning control method of a rail vehicle, a curve turning control device and a rail vehicle.
  • the outer track When laying the bends of the track, the outer track is generally super-high, that is, the outer track of the track is higher than the inner track.
  • Rail vehicles widely use air springs as the secondary suspension device of the bogie.
  • a differential pressure valve is installed between the two air springs of each vehicle.
  • the threshold of the differential pressure valve has been set and is a fixed value.
  • the relevant differential pressure valve is based on the characteristics of its structure, and the corresponding threshold can only be set before installation. The threshold cannot be adjusted regardless of the operating conditions of the rail vehicle.
  • the pressure of the inner air spring is large, and the pressure of the outer air spring is small.
  • the function of the differential pressure valve is that when the pressure difference between the air springs on both sides exceeds the threshold value of the differential pressure valve, the two air springs are turned on so that the pressure difference between the two air springs is reduced to the threshold value and then kept closed. That is, the air springs on both sides maintain a threshold pressure difference.
  • the differential pressure valve keeps the air springs on both sides of the threshold pressure difference according to the set threshold, combined with the centrifugal force of the rail vehicle and its own gravity. Under the action, the vehicle can pass normally; when the rail vehicle is at a low speed or the station is parked in the same curve, the gravity of the rail vehicle remains unchanged, but the centrifugal force on the rail vehicle itself is small, and the differential pressure valve still operates according to the set threshold.
  • the air springs on both sides maintain a threshold pressure difference, and the rail vehicle is at risk of overturning to the inside of the curve. That is, the gravity of the rail vehicle remains unchanged.
  • the differential pressure valve still keeps the air springs on both sides according to the set threshold.
  • the threshold value of the pressure difference leads to the risk of the rail vehicle overturning to the inside of the curve.
  • the embodiments of the present application provide a curve turning control method for a rail vehicle and a rail vehicle, so as to solve the problem that when a traditional rail vehicle passes a curve, it does not consider the operating conditions of the rail vehicle and does not determine whether the rail vehicle has the risk of overturning. Making judgments is a technical problem that those skilled in the art urgently need to solve.
  • the embodiment of the present application provides a curve turning control method of a rail vehicle, which includes the following steps:
  • the difference between the inner and outer [lambda] [lambda], of the rail vehicle is determined whether there is the risk of overturning.
  • a curve turning control device for rail vehicles including:
  • Coefficient calculation module used to calculate the derailment coefficient of the inner wheelset Derailment coefficient of outer wheelset
  • the judging module is used for judging whether the rail vehicle has the risk of overturning according to the difference between ⁇ inside and ⁇ outside.
  • a curve turning control device for rail vehicles including:
  • One or more processors are One or more processors;
  • Storage device for storing one or more programs
  • the one or more processors When the one or more programs are executed by the one or more processors, the one or more processors are caused to implement any one of the aforementioned curve turning control methods.
  • a rail vehicle includes the curve turning control device of the rail vehicle.
  • the difference between the inner and outer [lambda] [lambda], of the rail vehicle is determined whether there is the risk of overturning.
  • the lateral force Q acting on the one-sided wheelset of a rail vehicle is determined by the centrifugal force of the rail vehicle, the angle between the body of the rail vehicle and the ground, and the gravity of the rail vehicle, and the centrifugal force of the rail vehicle is determined by the speed of the rail vehicle Relevant; that is, ⁇ is related to the speed of the rail vehicle, and the angle between the body of the rail vehicle and the ground. ⁇ is related to the speed of the rail vehicle, and the angle between the body of the rail vehicle and the ground.
  • the curve rail vehicle turning control method of an embodiment of the present application by the speed of the rail vehicle, the difference between the angle of the vehicle body and the ground rail vehicle associated [lambda] [lambda] and the outside, determines whether there is a rail vehicle
  • the risk of overturning provides a basis for further precise control.
  • FIG. 1 is a flowchart of a curve turning control method of a rail vehicle according to Embodiment 1 of the application;
  • Figure 2 is a force analysis diagram of the rail vehicle shown in Figure 1 when passing through a curve
  • FIG. 3 is a flow chart of obtaining the angle ⁇ between the body of the rail vehicle and the ground in the curve turning control method according to the first embodiment of the application;
  • FIG 4 is a curve turning control application is a method according to a first embodiment of lateral force, the vertical force of gravity P of the rail vehicle, acting on the inner side of the wheel and the vertical force acting on the outer processes P on the outer side of the wheel Figure;
  • FIG. 5 is a flow chart of obtaining the lateral force Q of the one-sided wheelset of the rail vehicle in the curve turning control method according to the first embodiment of the application;
  • Fig. 6 is a schematic diagram of a rail vehicle according to the fourth embodiment of the application.
  • FIG. 1 is a flowchart of a curve turning control method of a rail vehicle in Embodiment 1 of the application.
  • the curve turning control method of a rail vehicle in the embodiment of the present application includes the following steps:
  • Step S100 obtaining the role of the outer rail vehicle wheel on one side of the transverse force Q, P and the vertical force and the vertical force P acting effect is obtained inside the wheel on the outside of the wheel;
  • Step S200 Calculate the derailment coefficient of the inner wheelset Derailment coefficient of outer wheelset
  • Step S300 Determine whether the rail vehicle has a risk of overturning according to the difference between ⁇ inside and outside ⁇ .
  • the method of controlling a rail vehicle turning for a curve of an embodiment of the present application is based on the difference between the inner and outer [lambda] [lambda], of the rail vehicle is determined whether there is the risk of overturning.
  • the lateral force Q acting on the one-sided wheelset of a rail vehicle is determined by the centrifugal force of the rail vehicle, the angle between the body of the rail vehicle and the ground, and the gravity of the rail vehicle, and the centrifugal force of the rail vehicle is determined by the speed of the rail vehicle Relevant; that is, ⁇ is related to the speed of the rail vehicle, and the angle between the body of the rail vehicle and the ground.
  • is related to the speed of the rail vehicle, and the angle between the body of the rail vehicle and the ground.
  • the curve rail vehicle turning control method of an embodiment of the present application by the speed of the rail vehicle, the difference between the angle of the vehicle body and the ground rail vehicle associated [lambda] [lambda] and the outside, determines whether there is a rail vehicle The risk of overturning provides a basis for further precise control.
  • step S300 specifically includes the following steps:
  • Step S310 [lambda] in the outer - ⁇ ⁇ 0 and
  • the rail vehicle When the risk of tilting the preset value, the rail vehicle is inclined inward large absolute value, greater than the difference between the outer and inner ⁇ ⁇ is more serious, there is a risk of introversion.
  • the preset value of introversion risk is for rail vehicles, obtained through simulation experiments and previous experimental data. If the preset value of introversion risk is exceeded, the rail vehicle has an introversion risk.
  • step S310 the following steps are further included:
  • the rail vehicle control two air springs conducting compressed air the air spring within two flow until a preset camber risk ⁇
  • the preset value stops conducting the two air springs.
  • the preset value of camber risk is for rail vehicle models, obtained through simulation experiments and previous experimental data. It is less than the preset value of camber risk, and rail vehicles have camber risk.
  • the two air springs are connected, and the compressed air flows in the two air springs.
  • the angle between the body of the rail vehicle and the ground becomes smaller, that is, the degree of inward tilt of the rail vehicle becomes smaller; until the preset value of camber risk ⁇
  • the differential pressure valve makes the air springs on both sides maintain a threshold pressure difference according to a set threshold, which is a fixed value and cannot be adjusted during the running of the train; the embodiment of this application is different, because the inner and the ⁇ ⁇ is related to the speed of the rail vehicle and the angle between the body of the rail vehicle and the ground.
  • the pressure difference between the air springs on both sides of the embodiment of the present application is related to the speed of the rail vehicle, the angle between the body of the rail vehicle and the ground, and
  • the preset value of introverted risk and the preset value of extroverted risk are related and are variable. In this way, in the curve turning control method of the embodiment of the present application, when the same rail vehicle passes through the same curve at different speeds, different control is performed during the control, so that the control accuracy is higher.
  • Stop timing on the two air springs is turned on may be the above predetermined value camber risk ⁇
  • the rail vehicle control two air springs conducting compressed air the air spring within two flow until
  • the lower limit of the smooth operation interval is greater than the preset value of extraversion risk
  • the upper limit of the smooth operation interval is less than the preset value of introversion risk
  • the preset value of extraversion risk is 0.1
  • the preset value of introversion risk is 0.1.
  • the default value is 0.2.
  • the smooth running section is for rail vehicles, obtained through simulation experiments and previous experimental data.
  • the smooth running section there is not only no risk of inward and outward inclination, but also passengers have a better riding experience.
  • FIG. 2 is a force analysis diagram of the rail vehicle passing through a curve shown in FIG. 1;
  • FIG. 3 is a flow chart of obtaining the angle ⁇ between the rail vehicle body and the ground in the curve turning control method according to the first embodiment of the application;
  • FIG 4 is a curve turning control application is a method according to a first embodiment of lateral force, the vertical force of gravity P of the rail vehicle, acting on the inner side of the wheel and the vertical force acting on the outer processes P on the outer side of the wheel Figure;
  • Figure 5 is a flow chart of obtaining the lateral force Q of the one-sided wheelset of the rail vehicle in the curve turning control method according to the first embodiment of the application.
  • step S100 specifically includes:
  • Step S111 Obtain the lateral force B received by the rail vehicle
  • Step S112 Q is calculated
  • step S111 specifically includes the following steps:
  • the angle ⁇ between the body of the rail vehicle and the ground is greater than the inclination angle ⁇ of the outer rail relative to the inner rail shown in FIG. 2, because the deformation degree of the inner air spring 121 is greater than that of the outer air spring 122, the body and An included angle is also formed between the two air springs. What is needed in the implementation column of this application is the angle ⁇ between the body of the rail vehicle and the ground.
  • Two methods are used to obtain the lateral force received by the rail vehicle, and then the average value is calculated, which can reduce the error and obtain a more accurate lateral force B received by the rail vehicle.
  • the step of decomposing and synthesizing the force to obtain the lateral force received by the rail vehicle also includes the following steps:
  • the step of obtaining the angle ⁇ between the body of the rail vehicle and the ground specifically includes the following steps:
  • the angle between the body of the rail vehicle and the ground is obtained, which is represented by the second angle ⁇ 2 , Among them, h is the height of the outer rail over the inner rail, L is the track gauge, h and L are provided by the signal system of the rail vehicle;
  • Two methods are used to obtain the angle between the rail vehicle and the ground, and then the average value is calculated, which can reduce the error and obtain a more accurate angle ⁇ between the rail vehicle and the ground.
  • the step of decomposing and synthesizing the force to obtain the lateral force on the rail vehicle also includes the following steps:
  • the mass of the m-car rail vehicle v is the speed of the rail vehicle, r is the curve radius of the track, and the speed v and the curve radius r of the track are provided by the control system of the rail vehicle.
  • step SlOO outer vertical force P and P in the effect of the vertical force acting on the inside wheel is obtained on the outside of the wheel comprises the step of having the following steps:
  • m inner is the mass borne by the inner air spring
  • m outer is the mass borne by the outer air spring
  • m car m inner + m outer .
  • the curve turning control method further includes the following steps:
  • T inner and T outer are provided by the brake control system of the rail vehicle.
  • the step of judging whether the rail vehicle has a risk of overturning according to the difference between ⁇ inside and outside ⁇ specifically includes the following steps:
  • the curve turning control method also includes the following steps:
  • the rail vehicle control speed is reduced until the preset value of risk camber ⁇
  • the curve turning control method can not only prevent the inclination of the rail vehicle, but also the camber of the rail vehicle.
  • Coefficient calculation module used to calculate the derailment coefficient of the inner wheelset Derailment coefficient of outer wheelset
  • the judging module is used for judging whether the rail vehicle has the risk of overturning according to the difference between ⁇ inside and ⁇ outside.
  • the judgment module is specifically used for:
  • the curve turning control device also includes:
  • the control module is used to control the two air springs of the rail vehicle to conduct compressed air to flow in the two air springs when the rail vehicle has a risk of inclination, until the preset value of the risk of camber ⁇
  • the curve turning control device also includes:
  • the control module is used to control the two air springs of the rail vehicle to conduct compressed air to flow in the two air springs when the rail vehicle has a risk of inclination, until the value of
  • the lower limit of the smooth operation interval is greater than the preset value of extraversion risk
  • the upper limit of the smooth operation interval is less than the preset value of introversion risk
  • the preset value of extraversion risk is 0.1
  • the preset value of introversion risk is 0.1.
  • the default value is 0.2.
  • the force acquisition module includes:
  • the lateral force acquisition module is used to obtain the lateral force B received by the rail vehicle;
  • the lateral force acquisition module includes:
  • the curve turning control device further includes an inclination angle acquisition module, which is used to obtain the angle ⁇ between the body of the rail vehicle and the ground;
  • the inclination acquisition module includes:
  • the first acquisition sub-module of the inclination angle is used to detect and obtain the included angle between the body of the rail vehicle and the ground with a gyroscope, which is represented by the first included angle ⁇ 1 , where ⁇ 1 is detected by the gyroscope of the rail vehicle;
  • the second acquisition sub-module of the inclination angle is used to obtain the included angle between the body of the rail vehicle and the ground according to the setting of the curve, which is represented by the second included angle ⁇ 2 ,
  • h is the height of the outer rail over the inner rail
  • L is the track gauge
  • h and L are provided by the signal system of the rail vehicle;
  • the inclination calculation sub-module is used to calculate the angle ⁇ between the body of the rail vehicle and the ground,
  • the second lateral force acquisition sub-module includes:
  • the centrifugal force acquisition unit is used to obtain the centrifugal force F of the rail vehicle,
  • m car is the mass of the rail vehicle
  • r is the radius of the curve
  • v is the speed of the rail vehicle
  • r and v are provided by the signal system of the rail vehicle.
  • the force acquisition module further includes:
  • m inner is the mass borne by the inner air spring
  • m outer is the mass borne by the outer air spring
  • m car m inner + m outer .
  • the vertical force acquisition module further includes:
  • T inner and T outer are provided by the brake control system of the rail vehicle.
  • the judgment module is specifically used for:
  • the control module is further configured to present the outer rail vehicle when the risk of tilting, the controlling rail vehicle speed is reduced until the preset value of risk camber ⁇
  • One or more processors are One or more processors;
  • Storage device for storing one or more programs
  • the one or more processors When the one or more programs are executed by the one or more processors, the one or more processors are caused to implement the curve turning control method according to any one of claims 1 to 11.
  • Fig. 6 is a schematic diagram of a rail vehicle according to the fourth embodiment of the application.
  • a rail vehicle of the fourth embodiment of the present application includes the curve turning control device of the rail vehicle described in the third embodiment.
  • a solenoid valve 130 for turning control As shown in FIG. 6, a solenoid valve 130 for turning control; two air springs 120 of a rail vehicle are connected by the solenoid valve 130 for turning control;
  • the curve turning control device is communicatively connected with the turning control solenoid valve, and the curve turning control device is used to implement the curve turning control method described in the first embodiment to control the turning control solenoid valve guide.
  • the two air springs are turned on and off to realize the conduction and stop conduction of the two air springs.
  • the rail vehicle also includes two height valves 140 and an air spring cylinder 150.
  • An air spring 120 is connected in series with a height valve 140 and is connected to the air spring air cylinder 150;
  • the air spring air cylinder provides compressed gas for the air spring.
  • connection can also be detachable or integrated; it can be mechanical, electrical, or communication; it can be directly connected or indirectly connected through an intermediate medium, and it can be the internal communication between two components. Or the interaction between two elements.
  • connection can also be detachable or integrated; it can be mechanical, electrical, or communication; it can be directly connected or indirectly connected through an intermediate medium, and it can be the internal communication between two components. Or the interaction between two elements.
  • the "upper” or “lower” of the first feature of the second feature may include direct contact between the first and second features, or include the first feature.
  • the second feature is not in direct contact but through another feature between them.
  • "above”, “above” and “above” the second feature of the first feature include the first feature being directly above and obliquely above the second feature, or it simply means that the level of the first feature is higher than that of the second feature.
  • the “below”, “below” and “below” of the second feature of the first feature include the first feature directly above and obliquely above the second feature, or it simply means that the first feature has a lower level than the second feature.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Automation & Control Theory (AREA)
  • Transportation (AREA)
  • Vehicle Body Suspensions (AREA)

Abstract

一种轨道车辆的弯道转弯控制方法,弯道转弯控制装置及轨道车辆。弯道转弯控制方法,包括如下步骤:获得作用在轨道车辆的单侧轮对的横向力Q,以及获得作用在内侧轮对的垂向力P内和作用在外侧轮对的垂向力P外;计算内侧轮对的脱轨系数(I),外侧轮对的脱轨系数(I);根据λ 和λ 的差值,判断所述轨道车辆是否有倾覆风险。一种轨道车辆的弯道转弯控制装置,用于实现上述任一所述的弯道转弯控制方法。轨道车辆,包括上述轨道车辆的弯道转弯控制装置。所述控制方法解决了传统轨道车辆在通过弯道时,不考虑轨道车辆运行的工况条件,也不对轨道车辆是否存在倾覆风险不进行判断的技术问题。

Description

一种弯道转弯控制方法,弯道转弯控制装置及轨道车辆 技术领域
本申请涉及轨道车辆技术领域,具体地,涉及一种轨道车辆的弯道转弯控制方法,弯道转弯控制装置及轨道车辆。
背景技术
轨道的弯道在铺设时,一般会采用外轨超高的方式,即轨道的外轨比内轨高一些。轨道车辆广泛使用空气弹簧作为转向架的二系悬挂装置,每节车辆的两个空气弹簧之间安装差压阀,差压阀的阈值都是已经设定完成的,是一个固定值。相关的差压阀基于其结构本身的特点,只能在安装之前设定好相应的阈值,无论轨道车辆运行在任何工况条件下,该阈值都无法调整。
轨道车辆在通过弯道时,内侧空气弹簧的压力大,外侧空气弹簧的压力小。差压阀的作用是在两侧空气弹簧之间的压力差超过差压阀的阈值时,导通两个空气弹簧使得两个空气弹簧之间的压力差减小到阈值时,再保持关闭,即两侧空气弹簧保持阈值大小的压力差。
当轨道车辆的实际速度在弯道的设计速度范围内驶过弯道时,差压阀按照设定的阈值使两侧空气弹簧保持阈值大小的压力差,再结合轨道车辆的离心力和本身重力的作用下,车辆能够正常通过;当轨道车辆低速或站停在同样弯道时,轨道车辆的重力保持不变,但是轨道车辆本身受到的离心力较小,而差压阀依然按照设定的阈值使两侧空气弹簧保持阈值大小的压力差,则轨道车辆存在着向弯道内侧倾覆的风险。即轨道车辆的重力保持不变,同一轨道车辆以不同速度通过同一弯道时,不考虑轨道车辆因速度不同导致受到的离心力的不同,差压阀依然按照设定的阈值使两侧空气弹簧保持阈值大小的压力差,导致轨道车辆存在着向弯道内侧倾覆的风险。
因此,传统轨道车辆在通过弯道时,不考虑轨道车辆运行的工况条件,也 不对轨道车辆是否存在倾覆风险不进行判断,是本领域技术人员急需要解决的技术问题。
在背景技术中公开的上述信息仅用于加强对本申请的背景的理解,因此其可能包含没有形成为本领域普通技术人员所知晓的相关技术的信息。
发明内容
本申请实施例提供了一种轨道车辆的弯道转弯控制方法及轨道车辆,以解决传统轨道车辆在通过弯道时,不考虑轨道车辆运行的工况条件,也不对轨道车辆是否存在倾覆风险不进行判断,是本领域技术人员急需要解决的技术问题。
本申请实施例提供了一种轨道车辆的弯道转弯控制方法,包括如下步骤:
获得作用在轨道车辆的单侧轮对的横向力Q,以及获得作用在内侧轮对的垂向力P 和作用在外侧轮对的垂向力P
计算内侧轮对的脱轨系数
Figure PCTCN2019117463-appb-000001
外侧轮对的脱轨系数
Figure PCTCN2019117463-appb-000002
根据λ 和λ 的差值,判断所述轨道车辆是否有倾覆风险。
本申请实施例还提供了以下技术方案:
一种轨道车辆的弯道转弯控制装置,包括:
力获取模块,用于获得作用在轨道车辆的单侧轮对的横向力Q,以及获得作用在内侧轮对的垂向力P 和作用在外侧轮对的垂向力P
系数计算模块,用于计算内侧轮对的脱轨系数
Figure PCTCN2019117463-appb-000003
外侧轮对的脱轨系数
Figure PCTCN2019117463-appb-000004
判断模块,用于根据λ 和λ 的差值,判断所述轨道车辆是否有倾覆风险。
本申请实施例还提供了以下技术方案:
一种轨道车辆的弯道转弯控制装置,包括:
一个或多个处理器;
存储装置,用于存储一个或多个程序;
当所述一个或多个程序被所述一个或多个处理器执行时,使得所述一个或多个处理器实现上述任一所述的弯道转弯控制方法。
一种轨道车辆,包括上述轨道车辆的弯道转弯控制装置。
本申请实施例由于采用以上技术方案,具有以下技术效果:
根据λ 和λ 的差值,判断所述轨道车辆是否有倾覆风险。
Figure PCTCN2019117463-appb-000005
作用在轨道车辆的单侧轮对的横向力Q是由轨道车辆的离心力,轨道车辆的车体与地面的夹角,和轨道车辆的重力确定的,而轨道车辆的离心力是与轨道车辆的速度相关的;即λ 与轨道车辆的速度,轨道车辆的车体与地面的夹角相关。λ 与轨道车辆的速度,轨道车辆的车体与地面的夹角相关。这样,判断所述轨道车辆是否有倾覆风险时,就是与轨道车辆的速度,轨道车辆的车体与地面的夹角相关。因此,本申请实施例的轨道车辆的弯道转弯控制方法,是通过与轨道车辆的速度,轨道车辆的车体与地面的夹角相关的λ 和λ 的差值,判断轨道车辆是否存在倾覆风险的,为进一步的精确控制提供了基础。
附图说明
此处所说明的附图用来提供对本申请的进一步理解,构成本申请的一部分,本申请的示意性实施例及其说明用于解释本申请,并不构成对本申请的不当限定。在附图中:
图1为本申请实施例一的轨道车辆的弯道转弯控制方法的流程图;
图2为图1所示的轨道车辆经过弯道的受力分析图;
图3为本申请实施例一的弯道转弯控制方法的获得轨道车辆的车体与地面的夹角θ的流程图;
图4为本申请实施例一的弯道转弯控制方法的获得第一横向力,轨道车辆重力,作用在内侧轮对的垂向力P 和作用在外侧轮对的垂向力P 的流程图;
图5为本申请实施例一的弯道转弯控制方法的获得轨道车辆的单侧轮对的横向力Q的流程图;
图6为本申请实施例四的轨道车辆的示意图。
附图标记说明:
110车体,120空气弹簧,121内侧空气弹簧,122外侧空气弹簧,130转弯控制用电磁阀,140高度阀,150空簧风缸,211内轨,212外轨。
具体实施方式
为了使本申请实施例中的技术方案及优点更加清楚明白,以下结合附图对本申请的示例性实施例进行进一步详细的说明,显然,所描述的实施例仅是本申请的一部分实施例,而不是所有实施例的穷举。需要说明的是,在不冲突的情况下,本申请中的实施例及实施例中的特征可以相互组合。
实施例一
图1为本申请实施例一的轨道车辆的弯道转弯控制方法的流程图。
如图1所示,本申请实施例的轨道车辆的弯道转弯控制方法,包括如下步骤:
步骤S100:获得作用在轨道车辆的单侧轮对的横向力Q,以及获得作用在内侧轮对的垂向力P 和作用在外侧轮对的垂向力P
步骤S200:计算内侧轮对的脱轨系数
Figure PCTCN2019117463-appb-000006
外侧轮对的脱轨系数
Figure PCTCN2019117463-appb-000007
步骤S300:根据λ 和λ 的差值,判断所述轨道车辆是否有倾覆风险。
本申请实施例的轨道车辆的弯道转弯控制方法,是根据λ 和λ 的差值,判断所述轨道车辆是否有倾覆风险。
Figure PCTCN2019117463-appb-000008
作用在轨道车辆的单侧轮对的横向力Q是由轨道车辆的离心力,轨道车辆的车体与地面的夹角,和轨道车辆的重力确定的,而轨道车辆的离心力是与轨道车辆的速度相关的;即λ 与轨道车辆的速度,轨道车辆的车体与地面的夹角相关。λ 与轨道车辆的速度,轨道车辆的车体与地面的夹角相关。这样,判断所述轨道车辆是否有倾覆风险时,就是 与轨道车辆的速度,轨道车辆的车体与地面的夹角相关。因此,本申请实施例的轨道车辆的弯道转弯控制方法,是通过与轨道车辆的速度,轨道车辆的车体与地面的夹角相关的λ 和λ 的差值,判断轨道车辆是否存在倾覆风险的,为进一步的精确控制提供了基础。
实施中,步骤S300具体包括如下步骤:
步骤S310:在λ <0且|λ |>内倾风险预设值时,判断所述轨道车辆存在内倾风险。
在λ 和λ 的差值的绝对值较大,大于内倾风险预设值时,轨道车辆向内侧倾斜的较为严重,存在内倾风险。其中,内倾风险预设值是针对轨道车辆的车型,通过模拟仿真实验,以及以往的实验数据得到的,超过内倾风险预设值,轨道车辆具有内倾风险。
实施中,在步骤步骤S310之后,还包括如下步骤:
在所述轨道车辆存在内倾风险时,控制轨道车辆的两个空气弹簧导通压缩空气在两个所述空气弹簧内流动,直至外倾风险预设值≤|λ |≤内倾风险预设值,停止导通所述两个空气弹簧。其中,外倾风险预设值是针对轨道车辆的车型,通过模拟仿真实验,以及以往的实验数据得到的,小于外倾风险预设值,轨道车辆具有外倾风险。
两个空气弹簧导通,压缩空气在两个空气弹簧内流动,轨道车辆的车体与地面的夹角变小,即轨道车辆的向内侧倾斜的程度变小;直至外倾风险预设值≤|λ |≤内倾风险预设值时,停止导通所述两个空气弹簧,保持两侧空气弹簧之间的压力差。背景技术中,差压阀按照设定的阈值使两侧空气弹簧保持阈值大小的压力差,是固定的值,在列车行进的过程中无法进行调整;本申请实施例则不同,由于λ 和λ 与轨道车辆的速度,轨道车辆的车体与地面的夹角相关,本申请实施例的两侧空气弹簧的压力差是与轨道车辆的速度,轨道车辆的车体与地面的夹角以及内倾风险预设值,外倾风险预设值相关,是个变量。这样,本申请实施例的弯道转弯控制方法,在进行控制时,针对同一轨 道车辆以不同速度通过同一弯道时,进行了有差别的控制,使得控制的精确性更高。
关于停止导通所述两个空气弹簧的时机,可以是上述的外倾风险预设值≤|λ |≤内倾风险预设值的时机,还可以是不仅排除了内倾和外倾风险,而且是乘客具有较佳乘坐体验的时机,如下:
在所述轨道车辆存在内倾风险时,控制轨道车辆的两个空气弹簧导通压缩空气在两个所述空气弹簧内流动,直至|λ |的值位于平稳运行区间,停止导通所述两个空气弹簧;
其中,所述平稳运行区间的下限值大于外倾风险预设值,所述平稳运行区间的上限值小于内倾风险预设值,所述外倾风险预设值为0.1,所述内倾风险预设值为0.2。
平稳运行区间是针对轨道车辆的车型,通过模拟仿真实验,以及以往的实验数据得到的,位于平稳运行区间时,不仅没有内倾和外倾的风险,而且乘客具有较佳乘坐体验。
图2为图1所示的轨道车辆经过弯道的受力分析图;图3为本申请实施例一的弯道转弯控制方法的获得轨道车辆的车体与地面的夹角θ的流程图;图4为本申请实施例一的弯道转弯控制方法的获得第一横向力,轨道车辆重力,作用在内侧轮对的垂向力P 和作用在外侧轮对的垂向力P 的流程图;图5为本申请实施例一的弯道转弯控制方法的获得轨道车辆的单侧轮对的横向力Q的流程图。
实施中,如图5所示,步骤S100中获得作用在轨道车辆的单侧轮对的横向力Q的步骤具体包括:
步骤S111:获得轨道车辆受到的横向力B;
步骤S112:计算得到Q,
Figure PCTCN2019117463-appb-000009
直接获得作用在轨道车辆的单侧轮对的横向力Q是比较难的,通过获得轨 道车辆受到的横向力B和
Figure PCTCN2019117463-appb-000010
能够较为方便的近似得到作用在轨道车辆的单侧轮对的横向力Q。
实施中,具体的,步骤S111具体包括如下步骤:
如图4所示,用牛顿第二定律获得轨道车辆受到的横向力,用第一横向力Fa表示,F a=(m +m )×a,其中,a是轨道车辆的横向加速度,m 是内侧空气弹簧所承受的质量,m 是外侧空气弹簧所承受的质量,a通过轨道车辆的横向加速度传感器检测得到;
如图5所示,用力的分解与合成获得轨道车辆受到的横向力,用第二横向力F H表示,F H=F ×cosθ-G×sinθ,其中,F 是轨道车辆的离心力,G是轨道车辆的重力,θ是轨道车辆的车体与地面的夹角;
如图5所示,计算得到B,
Figure PCTCN2019117463-appb-000011
如图2所示,第二横向力F H是重力和离心力在X方向的合力,因此,满足F H=F ×cosθ-G×sinθ。轨道车辆的车体与地面的夹角θ要大于图2中所示的外轨相对于内轨的倾角α,由于内侧空气弹簧121的变形程度大于外侧空气弹簧122的变形成成,车体和两个空气弹簧之间还形成一个夹角。本申请实施列中需要的是轨道车辆的车体与地面的夹角θ。
用两种方法获得轨道车辆受到的横向力,之后再求平均值,能够减小误差,得到较为准确的轨道车辆受到的横向力B。
实施中,由于在用第二种方法获得轨道车辆受到的横向力F H时,需要用到轨道车辆与地面的夹角θ。因此,如图3所示,用力的分解与合成获得轨道车辆受到的横向力的步骤还包括以下步骤:
获得轨道车辆的车体与地面的夹角θ;
获得轨道车辆的车体与地面的夹角θ的步骤具体包括如下步骤:
用陀螺仪检测获得轨道车辆的车体与地面的夹角,用第一夹角θ 1表示,其中,θ 1由轨道车辆的陀螺仪检测得到;
根据弯道的设置获得轨道车辆的车体与地面的夹角,用第二夹角θ 2表示,
Figure PCTCN2019117463-appb-000012
其中,h为外轨超出内轨的高度,L为轨道的轨距,h和L由轨道车辆的信号系统提供;
计算得到轨道车辆与地面的夹角θ,
Figure PCTCN2019117463-appb-000013
用两种方法获得轨道车辆与地面的夹角,之后再求平均值,能够减小误差,得到较为准确的轨道车辆与地面的夹角θ。
实施中,由于在用力的分解与合成获得轨道车辆受到的横向力F x时,需要用到轨道车辆的离心力F 。因此,用力的分解与合成获得轨道车辆受到的横向力的步骤还包括以下步骤:
获得轨道车辆的离心力F
Figure PCTCN2019117463-appb-000014
其中,m 轨道车辆的质量,v是轨道车辆的速度,r是轨道的曲线半径,速度v和轨道的曲线半径r由轨道车辆的控制系统提供。
实施中,如图4所示,步骤S100中获得作用在内侧轮对的垂向力P 和作用在外侧轮对的垂向力P 的步骤具有包括如下步骤:
根据公式P =m ×g和P =m ×g,计算出作用在内侧轮对的垂向力P 和作用在外侧轮对的垂向力P
其中,m 是内侧空气弹簧承受的质量,m 是外侧空气弹簧承受的质量,m =m +m
实施中,为了获得m 和m ,弯道转弯控制方法还包括以下步骤:
根据内侧空气弹簧的压力值T ,外侧空气弹簧的压力值T ,以及空气弹 簧特性曲线,计算出内侧空气弹簧承受的质量m 和外侧空气弹簧承受的质量m
其中,T 和T 由轨道车辆的制动控制系统提供。
实施中,根据λ 和λ 的差值,判断所述轨道车辆是否有倾覆风险的步骤具体包括如下步骤:
在λ >0且|λ |<外倾风险预设值时,判断所述轨道车辆存在外倾风险;
弯道转弯控制方法还包括以下步骤:
在所述轨道车辆存在外倾风险时,控制所述轨道车辆降低速度,直至外倾风险预设值≤|λ |≤内倾风险预设值。
这样,弯道转弯控制方法不仅可以防止轨道车辆的内倾,而且可以防止轨道车辆的外倾。
实施例二
本申请实施例二的一种轨道车辆的弯道转弯控制装置,包括:
力获取模块,用于获得作用在轨道车辆的单侧轮对的横向力Q,以及获得作用在内侧轮对的垂向力P 和作用在外侧轮对的垂向力P
系数计算模块,用于计算内侧轮对的脱轨系数
Figure PCTCN2019117463-appb-000015
外侧轮对的脱轨系数
Figure PCTCN2019117463-appb-000016
判断模块,用于根据λ 和λ 的差值,判断所述轨道车辆是否有倾覆风险。
实施中,所述判断模块具体用于:
在λ <0且|λ |>内倾风险预设值时,判断所述轨道车辆存在内倾风险。
实施中,弯道转弯控制装置还包括:
控制模块,用于在所述轨道车辆存在内倾风险时,控制轨道车辆的两个空气弹簧导通压缩空气在两个所述空气弹簧内流动,直至 外倾风险预设值≤|λ |≤内倾风险预设值,停止导通所述两个空气弹簧。
实施中,弯道转弯控制装置还包括:
控制模块,用于在所述轨道车辆存在内倾风险时,控制轨道车辆的两个空气弹簧导通压缩空气在两个所述空气弹簧内流动,直至|λ |的值位于平稳运行区间,停止导通所述两个空气弹簧;
其中,所述平稳运行区间的下限值大于外倾风险预设值,所述平稳运行区间的上限值小于内倾风险预设值,所述外倾风险预设值为0.1,所述内倾风险预设值为0.2。
实施中,所述力获取模块包括:
横向力获取模块,用于获得轨道车辆受到的横向力B;
横向力计算模块,用于计算得到Q,
Figure PCTCN2019117463-appb-000017
实施中,所述横向力获取模块包括:
横向力第一获取子模块,用于用牛顿第二定律获得轨道车辆受到的横向力,用第一横向力Fa表示,F a=(m +m )×a,其中,a是轨道车辆的横向加速度,m 是内侧空气弹簧所承受的质量,m 是外侧空气弹簧所承受的质量,a通过轨道车辆的横向加速度传感器检测得到;
横向力第二获取子模块,用力的分解与合成获得轨道车辆受到的横向力,用第二横向力F H表示,F H=F ×cosθ-G×sinθ,其中,F 是轨道车辆的离心力,G是轨道车辆的重力,θ是轨道车辆的车体与地面的夹角;
横向力计算子模块,用于计算得到B,
Figure PCTCN2019117463-appb-000018
实施中,弯道转弯控制装置还包括倾角获取模块,用于获得轨道车辆的车体与地面的夹角θ;
所述倾角获取模块包括:
倾角第一获取子模块,用于用陀螺仪检测获得轨道车辆的车体与地面的夹 角,用第一夹角θ 1表示,其中,θ 1由轨道车辆的陀螺仪检测得到;
倾角第二获取子模块,用于根据弯道的设置获得轨道车辆的车体与地面的夹角,用第二夹角θ 2表示,
Figure PCTCN2019117463-appb-000019
其中,h为外轨超出内轨的高度,L为轨道的轨距,h和L由轨道车辆的信号系统提供;
倾角计算子模块,用于计算得到轨道车辆的车体与地面的夹角θ,
Figure PCTCN2019117463-appb-000020
实施中,所述横向力第二获取子模块包括:
离心力获取单元,用于获得轨道车辆的离心力F
Figure PCTCN2019117463-appb-000021
其中,m 是轨道车辆的质量,r为弯道的半径,v为轨道车辆的速度,r和v由轨道车辆的信号系统提供。
实施中,所述力获取模块还包括:
垂向力获取模块,用于根据公式P =m ×g和P =m ×g,计算出作用在内侧轮对的垂向力P 和作用在外侧轮对的垂向力P
其中,m 是内侧空气弹簧承受的质量,m 是外侧空气弹簧承受的质量,m =m +m
实施中,所述垂向力获取模块还包括:
质量获取单元,用于根据内侧空气弹簧的压力值T ,外侧空气弹簧的压力值T ,以及空气弹簧特性曲线,计算出内侧空气弹簧承受的质量m 和外侧空气弹簧承受的质量m
其中,T 和T 由轨道车辆的制动控制系统提供。
实施中,所述判断模块具体用于:
在λ >0且|λ |<外倾风险预设值时,判断所述轨道车辆存在外倾风险;
所述控制模块,还用于在所述轨道车辆存在外倾风险时,控制所述轨道车辆降低速度,直至外倾风险预设值≤|λ |≤内倾风险预设值。
实施例三
本申请实施例的一种轨道车辆的弯道转弯控制装置,包括:
一个或多个处理器;
存储装置,用于存储一个或多个程序;
当所述一个或多个程序被所述一个或多个处理器执行时,使得所述一个或多个处理器实现如权利要求1至11任一所述的弯道转弯控制方法。
实施例四
图6为本申请实施例四的轨道车辆的示意图。本申请实施例四的一种轨道车辆,包括实施例三所述的轨道车辆的弯道转弯控制装置。
本申请实施例的轨道车辆,包括:
如图6所示,转弯控制用电磁阀130;轨道车辆的两个空气弹簧120之间通过所述转弯控制用电磁阀130连接;
所述弯道转弯控制装置与所述转弯控制用电磁阀通信连接,所述弯道转弯控制装置用于实现实施例一所述的弯道转弯控制方法,以控制所述拐弯控制用电磁阀导通和关断,以实现导通和停止导通两个所述空气弹簧。
在传统的轨道列车的基础之上,仅仅需要增加转弯控制用电磁阀和转弯控制单元,即可实现弯道转弯控制方法。
如图6所示,轨道车辆还包括两个高度阀140和一个空簧风缸150,一个空气弹簧120串接一个高度阀140,连接到所述空簧风缸150;
其中,所述空簧风缸为空气弹簧提供压缩气体。
在本申请及其实施例的描述中,需要理解的是,术语“顶”、“底”、“高度”等指示的方位或位置关系为基于附图所示的方位或位置关系,仅是为了便于描述本申请和简化描述,而不是指示或暗示所指的装置或元件必须具有特定的方位、以特定的方位构造和操作,因此不能理解为对本申请的限制。
在本申请及其实施例中,除非另有明确的规定和限定,术语“设置”、“安装”、“相连”、“连接”、“固定”等术语应做广义理解,例如,可以是固定连接,也可以是可拆卸连接,或成一体;可以是机械连接,也可以是电连接,还可以是通信;可以是直接相连,也可以通过中间媒介间接相连,可以是两个元件内部的连通或两个元件的相互作用关系。对于本领域的普通技术人员而言,可以根据具体情况理解上述术语在本申请中的具体含义。
在本申请及其实施例中,除非另有明确的规定和限定,第一特征在第二特征之“上”或之“下”可以包括第一和第二特征直接接触,也可以包括第一和第二特征不是直接接触而是通过它们之间的另外的特征接触。而且,第一特征在第二特征“之上”、“上方”和“上面”包括第一特征在第二特征正上方和斜上方,或仅仅表示第一特征水平高度高于第二特征。第一特征在第二特征“之下”、“下方”和“下面”包括第一特征在第二特征正上方和斜上方,或仅仅表示第一特征水平高度小于第二特征。
上文的公开提供了许多不同的实施方式或例子用来实现本申请的不同结构。为了简化本申请的公开,上文中对特定例子的部件和设置进行描述。当然,它们仅仅为示例,并且目的不在于限制本申请。此外,本申请可以在不同例子中重复参考数字和/或参考字母,这种重复是为了简化和清楚的目的,其本身不指示所讨论各种实施方式和/或设置之间的关系。此外,本申请提供了的各种特定的工艺和材料的例子,但是本领域普通技术人员可以意识到其他工艺的应用和/或其他材料的使用。
尽管已描述了本申请的一些可选的实施例,但本领域内的技术人员一旦得知了基本创造性概念,则可对这些实施例作出另外的变更和修改。所以,所附权利要求意欲解释为包括一些可选的实施例以及落入本申请范围的所有变更和修改。
显然,本领域的技术人员可以对本申请进行各种改动和变型而不脱离本申请的精神和范围。这样,倘若本申请的这些修改和变型属于本申请权利要求及 其等同技术的范围之内,则本申请也意图包含这些改动和变型在内。

Claims (25)

  1. 一种轨道车辆的弯道转弯控制方法,其特征在于,包括如下步骤:
    获得作用在轨道车辆的单侧轮对的横向力Q,以及获得作用在内侧轮对的垂向力P 和作用在外侧轮对的垂向力P
    计算内侧轮对的脱轨系数
    Figure PCTCN2019117463-appb-100001
    外侧轮对的脱轨系数
    Figure PCTCN2019117463-appb-100002
    根据λ 和λ 的差值,判断所述轨道车辆是否有倾覆风险。
  2. 根据权利要求1所述的弯道转弯控制方法,其特征在于,根据λ 和λ 的差值,判断所述轨道车辆是否有倾覆风险的步骤具体包括如下步骤:
    在λ <0且|λ |>内倾风险预设值时,判断所述轨道车辆存在内倾风险。
  3. 根据权利要求2所述的弯道转弯控制方法,其特征在于,还包括以下步骤:
    在所述轨道车辆存在内倾风险时,控制轨道车辆的两个空气弹簧导通压缩空气在两个所述空气弹簧内流动,直至外倾风险预设值≤λ |≤内倾风险预设值,停止导通所述两个空气弹簧。
  4. 根据权利要求2所述的弯道转弯控制方法,其特征在于,还包括以下步骤:
    在所述轨道车辆存在内倾风险时,控制轨道车辆的两个空气弹簧导通压缩空气在两个所述空气弹簧内流动,直至|λ |的值位于平稳运行区间,停止导通所述两个空气弹簧;
    其中,所述平稳运行区间的下限值大于外倾风险预设值,所述平稳运行区间的上限值小于内倾风险预设值,所述外倾风险预设值为0.1,所述内倾风险预设值为0.2。
  5. 根据权利要求3或4所述的弯道转弯控制方法,其特征在于,获得作用在轨道车辆的单侧轮对的横向力Q的步骤具体包括如下步骤:
    获得轨道车辆受到的横向力B;
    计算得到Q,
    Figure PCTCN2019117463-appb-100003
  6. 根据权利要求5所述的弯道转弯控制方法,其特征在于,获得轨道车辆受到的横向力B的步骤具体包括如下步骤:
    用牛顿第二定律获得轨道车辆受到的横向力,用第一横向力Fa表示,F a=(m +m )×a,其中,a是轨道车辆的横向加速度,m 是内侧空气弹簧所承受的质量,m 是外侧空气弹簧所承受的质量,a通过轨道车辆的横向加速度传感器检测得到;
    用力的分解与合成获得轨道车辆受到的横向力,用第二横向力F H表示,F H=F ×cosθ-G×sinθ,其中,F 是轨道车辆的离心力,G是轨道车辆的重力,θ是轨道车辆的车体与地面的夹角;
    计算得到B,
    Figure PCTCN2019117463-appb-100004
  7. 根据权利要求6所述的弯道转弯控制方法,其特征在于,用力的分解与合成获得轨道车辆受到的横向力的步骤还包括以下步骤:
    获得轨道车辆的车体与地面的夹角θ;
    获得轨道车辆的车体与地面的夹角θ的步骤具体包括如下步骤:
    用陀螺仪检测获得轨道车辆的车体与地面的夹角,用第一夹角θ 1表示,其中,θ 1由轨道车辆的陀螺仪检测得到;
    根据弯道的设置获得轨道车辆的车体与地面的夹角,用第二夹角θ 2表示,
    Figure PCTCN2019117463-appb-100005
    其中,h为外轨超出内轨的高度,L为轨道的轨距,h和L由轨道车辆的信号系统提供;
    计算得到轨道车辆的车体与地面的夹角θ,
    Figure PCTCN2019117463-appb-100006
  8. 根据权利要求7所述的弯道转弯控制方法,其特征在于,用力的分解与合成获得轨道车辆受到的横向力的步骤还包括以下步骤:
    获得轨道车辆的离心力F
    Figure PCTCN2019117463-appb-100007
    其中,m 是轨道车辆的质量,r为弯道的半径,v为轨道车辆的速度,r和v由轨道车辆的信号系统提供。
  9. 根据权利要求8所述的弯道转弯控制方法,其特征在于,获得作用在内侧轮对的垂向力P 和作用在外侧轮对的垂向力P 的步骤具体包括如下步骤:
    根据公式P =m ×g和P =m ×g,计算出作用在内侧轮对的垂向力P 和作用在外侧轮对的垂向力P
    其中,m 是内侧空气弹簧承受的质量,m 是外侧空气弹簧承受的质量,m =m +m
  10. 根据权利要求9所述的弯道转弯控制方法,其特征在于,获得作用在内侧轮对的垂向力P 和作用在外侧轮对的垂向力P 的步骤还包括以下步骤:
    根据内侧空气弹簧的压力值T ,外侧空气弹簧的压力值T ,以及空气弹簧特性曲线,计算出内侧空气弹簧承受的质量m 和外侧空气弹簧承受的质量m外;
    其中,T 和T 由轨道车辆的制动控制系统提供。
  11. 根据权利要求10所述的弯道转弯控制方法,其特征在于,根据λ 和λ 的差值,判断所述轨道车辆是否有倾覆风险的步骤具体包括如下步骤:
    在λ >0且|λ |<外倾风险预设值时,判断所述轨道车辆存在外倾风险;
    弯道转弯控制方法还包括以下步骤:
    在所述轨道车辆存在外倾风险时,控制所述轨道车辆降低速度,直至外倾风险预设值≤λ |≤内倾风险预设值。
  12. 一种轨道车辆的弯道转弯控制装置,其特征在于,包括:
    力获取模块,用于获得作用在轨道车辆的单侧轮对的横向力Q,以及获得作用在内侧轮对的垂向力P 和作用在外侧轮对的垂向力P
    系数计算模块,用于计算内侧轮对的脱轨系数
    Figure PCTCN2019117463-appb-100008
    外侧轮对的脱轨系数
    Figure PCTCN2019117463-appb-100009
    判断模块,用于根据λ 和λ 的差值,判断所述轨道车辆是否有倾覆风险。
  13. 根据权利要求12所述的弯道转弯控制装置,其特征在于,所述判断模块具体用于:
    在λ <0且|λ |>内倾风险预设值时,判断所述轨道车辆存在内倾风险。
  14. 根据权利要求13所述的弯道转弯控制装置,其特征在于,还包括:
    控制模块,用于在所述轨道车辆存在内倾风险时,控制轨道车辆的两个空气弹簧导通压缩空气在两个所述空气弹簧内流动,直至外倾风险预设值≤λ |≤内倾风险预设值,停止导通所述两个空气弹簧。
  15. 根据权利要求13所述的弯道转弯控制装置,其特征在于,还包括:
    控制模块,用于在所述轨道车辆存在内倾风险时,控制轨道车辆的两个空气弹簧导通压缩空气在两个所述空气弹簧内流动,直至|λ |的值位于平稳运行区间,停止导通所述两个空气弹簧;
    其中,所述平稳运行区间的下限值大于外倾风险预设值,所述平稳运行区间的上限值小于内倾风险预设值,所述外倾风险预设值为0.1,所述内倾风险预设值为0.2。
  16. 根据权利要求14或15所述的弯道转弯控制装置,其特征在于,所述力获取模块包括:
    横向力获取模块,用于获得轨道车辆受到的横向力B;
    横向力计算模块,用于计算得到Q,
    Figure PCTCN2019117463-appb-100010
  17. 根据权利要求16所述的弯道转弯控制装置,其特征在于,所述横向力获取模块包括:
    横向力第一获取子模块,用于用牛顿第二定律获得轨道车辆受到的横向力, 用第一横向力Fa表示,F a=(m +m )×a,其中,a是轨道车辆的横向加速度,m 是内侧空气弹簧所承受的质量,m 是外侧空气弹簧所承受的质量,a通过轨道车辆的横向加速度传感器检测得到;
    横向力第二获取子模块,用力的分解与合成获得轨道车辆受到的横向力,用第二横向力F H表示,F H=F ×cosθ-G×sinθ,其中,F 是轨道车辆的离心力,G是轨道车辆的重力,θ是轨道车辆的车体与地面的夹角;
    横向力计算子模块,用于计算得到B,
    Figure PCTCN2019117463-appb-100011
  18. 根据权利要求17所述的弯道转弯控制装置,其特征在于,还包括倾角获取模块,用于获得轨道车辆的车体与地面的夹角θ;
    所述倾角获取模块包括:
    倾角第一获取子模块,用于用陀螺仪检测获得轨道车辆的车体与地面的夹角,用第一夹角θ 1表示,其中,θ 1由轨道车辆的陀螺仪检测得到;
    倾角第二获取子模块,用于根据弯道的设置获得轨道车辆的车体与地面的夹角,用第二夹角θ 2表示,
    Figure PCTCN2019117463-appb-100012
    其中,h为外轨超出内轨的高度,L为轨道的轨距,h和L由轨道车辆的信号系统提供;
    倾角计算子模块,用于计算得到轨道车辆的车体与地面的夹角θ,
    Figure PCTCN2019117463-appb-100013
  19. 根据权利要求18所述的弯道转弯控制装置,其特征在于,所述横向力第二获取子模块包括:
    离心力获取单元,用于获得轨道车辆的离心力F
    Figure PCTCN2019117463-appb-100014
    其中,m 是轨道车辆的质量,r为弯道的半径,v为轨道车辆的速度,r和v由轨道车辆的信号系统提供。
  20. 根据权利要求19所述的弯道转弯控制装置,其特征在于,所述力获取模块还包括:
    垂向力获取模块,用于根据公式P =m ×g和P =m ×g,计算出作用在内侧轮对的垂向力P 和作用在外侧轮对的垂向力P
    其中,m 是内侧空气弹簧承受的质量,m 是外侧空气弹簧承受的质量,m =m +m
  21. 根据权利要求20所述的弯道转弯控制装置,其特征在于,所述垂向力获取模块还包括:
    质量获取单元,用于根据内侧空气弹簧的压力值T ,外侧空气弹簧的压力值T ,以及空气弹簧特性曲线,计算出内侧空气弹簧承受的质量m 和外侧空气弹簧承受的质量m
    其中,T 和T 由轨道车辆的制动控制系统提供。
  22. 根据权利要求21所述的弯道转弯控制装置,其特征在于,所述判断模块具体用于:
    在λ >0且|λ |<外倾风险预设值时,判断所述轨道车辆存在外倾风险;
    所述控制模块,还用于在所述轨道车辆存在外倾风险时,控制所述轨道车辆降低速度,直至外倾风险预设值≤λ |≤内倾风险预设值。
  23. 一种轨道车辆的弯道转弯控制装置,其特征在于,包括:
    一个或多个处理器;
    存储装置,用于存储一个或多个程序;
    当所述一个或多个程序被所述一个或多个处理器执行时,使得所述一个或多个处理器实现如权利要求1至11任一所述的弯道转弯控制方法。
  24. 一种轨道车辆,其特征在于,包括权利要求23所述的轨道车辆的弯道转弯控制装置。
  25. 根据权利要求24所述的轨道车辆,其特征在于,包括:
    转弯控制用电磁阀;轨道车辆的两个空气弹簧之间通过所述转弯控制用电磁阀连接;
    所述弯道转弯控制装置与所述转弯控制用电磁阀通信连接。
PCT/CN2019/117463 2019-10-16 2019-11-12 一种弯道转弯控制方法,弯道转弯控制装置及轨道车辆 WO2021072855A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201910982823.1 2019-10-16
CN201910982823.1A CN110641499B (zh) 2019-10-16 2019-10-16 弯道转弯控制方法,弯道转弯控制装置及轨道车辆

Publications (1)

Publication Number Publication Date
WO2021072855A1 true WO2021072855A1 (zh) 2021-04-22

Family

ID=68994118

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/117463 WO2021072855A1 (zh) 2019-10-16 2019-11-12 一种弯道转弯控制方法,弯道转弯控制装置及轨道车辆

Country Status (2)

Country Link
CN (1) CN110641499B (zh)
WO (1) WO2021072855A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112231834B (zh) * 2020-10-16 2022-05-13 湖北文理学院 基于铁轨的防脱轨方法、装置、铁轨汽车及存储介质

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3449976B2 (ja) * 2000-10-16 2003-09-22 東急車輛製造株式会社 輪重偏在度取得方法および装置、鉄道車両、鉄道車両および軌道の保守方法
CN103144652A (zh) * 2012-12-31 2013-06-12 华东交通大学 轨道曲线地段列车运行安全的远程监控预警方法及其系统
JP5884121B2 (ja) * 2011-12-12 2016-03-15 新日鐵住金株式会社 外軌脱線係数の要因解析方法
CN107472297A (zh) * 2017-08-02 2017-12-15 安徽骏达起重机械有限公司 轨道安全检测方法
CN109712270A (zh) * 2018-12-28 2019-05-03 西南交通大学 一种铁路货运车辆运行安全评估方法及系统

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03178862A (ja) * 1989-12-07 1991-08-02 Sumitomo Metal Ind Ltd 鉄道車両の輪重変動防止方法
CN206904319U (zh) * 2017-06-28 2018-01-19 中车青岛四方车辆研究所有限公司 一种差压阀及含该差压阀的轨道车辆用压力控制装置
CN108928360B (zh) * 2018-06-20 2020-01-14 中车青岛四方机车车辆股份有限公司 铰接式轨道车辆及其空气弹簧高度控制装置

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3449976B2 (ja) * 2000-10-16 2003-09-22 東急車輛製造株式会社 輪重偏在度取得方法および装置、鉄道車両、鉄道車両および軌道の保守方法
JP5884121B2 (ja) * 2011-12-12 2016-03-15 新日鐵住金株式会社 外軌脱線係数の要因解析方法
CN103144652A (zh) * 2012-12-31 2013-06-12 华东交通大学 轨道曲线地段列车运行安全的远程监控预警方法及其系统
CN107472297A (zh) * 2017-08-02 2017-12-15 安徽骏达起重机械有限公司 轨道安全检测方法
CN109712270A (zh) * 2018-12-28 2019-05-03 西南交通大学 一种铁路货运车辆运行安全评估方法及系统

Also Published As

Publication number Publication date
CN110641499B (zh) 2020-07-14
CN110641499A (zh) 2020-01-03

Similar Documents

Publication Publication Date Title
CN103661366B (zh) 车辆弯道翻覆预防系统及其方法
CN110517521A (zh) 一种基于路车融合感知的车道偏离预警方法
JP4246919B2 (ja) 鉄道車両の脱線検知方法及び脱線検知装置
US9963007B2 (en) Method for compensating for an inclination
US20110029184A1 (en) Road Vehicle Drive Behaviour Analysis Method
CN109910886A (zh) 一种路面颠簸检测方法、车辆控制方法及系统
JP2007278951A (ja) 車体挙動測定装置
US20190225149A1 (en) Graded early warning system for rollover of heavy-duty truck based on time-varying interactive kalman filtering and early warning method thereof
EP2029414A2 (en) Vehicle state quantity predicting apparatus and vehicle steering controller using the same, and a method for predicting a vehicle state quantity and vehicle steering controlling method using the same
WO2021072855A1 (zh) 一种弯道转弯控制方法,弯道转弯控制装置及轨道车辆
US11511588B2 (en) Active control system for vehicle suspensions
JP3684395B2 (ja) 自動車の車線離脱防止のための制御方法及びシステム
JP2008247333A (ja) 鉄道車両用振動制御装置
KR20100068595A (ko) 관성센서를 이용한 궤도의 수평 틀림 측정 시스템 및 그 방법
CN106891782A (zh) 座椅状态识别、座椅控制的方法及装置
CN103192830B (zh) 一种自适应视觉车道偏离预警装置
CN111284478A (zh) 预瞄路径跟踪计算方法及跟踪计算模块
US20190126959A1 (en) Abnormality detection device, abnormality detection method, and program
JP6435203B2 (ja) 脱線検知装置及び脱線検知方法
WO2017214678A1 (en) Apparatus, methods and systems for enabling a vehicle to anticipate irregularities in a travelling surface
JP5522549B2 (ja) 鉄道車両用振動制御装置
JP2002122468A (ja) 輪重偏在度取得方法および装置、鉄道車両、鉄道車両および軌道の保守方法
US7424352B2 (en) Driving situation detection system
KR20170068129A (ko) 횡풍 안정성을 보장하기 위한 현가 제어 방법과 현가 시스템 및 그를 실행하는 프로그램이 기록된 컴퓨터 판독 가능한 매체
KR101082764B1 (ko) 철도차량의 사전 틸팅 제어 시스템 및 방법

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19949453

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19949453

Country of ref document: EP

Kind code of ref document: A1